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On proving future stability of cosmological
solutions with accelerated expansion

Hans Ringström

Abstract. In the late 90’s, the standard perspective on how to model
the universe changed dramatically; observational data concerning super-
novae, obtained in 98–99, indicate that our universe is expanding at an
accelerated rate. As a consequence, it is of interest to prove that cos-
mological solutions to Einstein’s equations with accelerated expansion
are future stable. That is the topic of the present contribution. The cur-
rent standard models of the universe include different types of matter,
but it turns out that many of the essential difficulties appear already in
the vacuum setting. As a consequence, we here focus on giving a rough
outline of how to prove future stability in the case of Einstein’s vacuum
equations with a positive cosmological constant. However, we also wish
to give an overview of the stability results that have been obtained more
generally, and to give an idea of how to arrive at the conclusion that the
universe is expanding at an accelerated rate on the basis of observations.

1. Introduction

In the presence of a cosmological constant Λ, Einstein’s equations read

(1) G + Λg = T,

where G is the Einstein tensor, T is the stress energy tensor, and g is
the metric. In Einstein’s heuristic derivation of his equations (based on an
analogy with the Poisson equation), there is no reason to prefer a specific
value of Λ. Even though certain non-zero values (ranges) have been preferred
by various communities in the last hundred years, Λ = 0 has been the
default choice for most of this period. However, due to the observational
data collected in the late 90’s, the situation has changed. Even though
cosmologists need not necessarily include a cosmological constant in their
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models, a mechanism for inducing accelerated expansion is currently a
standard ingredient when describing the universe. Due to the corresponding
shift towards solutions to Einstein’s equations with accelerated expansion,
it is of interest to address the question of stability in that setting. In the
present contribution, we wish to give an overview of results that have been
obtained on this topic. However, our main purpose is to give a sketch of
the proof of future stability in the case of Einstein’s vacuum equations with
a positive cosmological constant. It turns out that many of the essential
difficulties arise already in this setting. Due to the central role played by the
supernova observations in justifying the currently preferred models, we also
devote one section to describing in what sense the observations lead to the
conclusion that the universe is expanding at an accelerated rate.

The outline of this contribution is as follows. In Section 2, we describe
how the observations of supernovae of type Ia can be used to limit the
class of models consistent with observations. In Section 3, we then describe
previous results that have been obtained on the topic of future stability in the
case of accelerated expansion. Finally, most of the contribution is devoted
to a description of how to prove future stability in the case of Einstein’s
vacuum equations with a positive cosmological constant. This is the subject
of Section 4.

2. Observations

Background solutions. In order to be able to draw conclusions from
the observations, it is necessary to first select a class of models in which the
observations are to be interpreted. In cosmology, the starting point is always
the assumption of spatial homogeneity and isotropy (i.e., the cosmological
principle). However, it is also necessary to specify the matter content in
order to be able to proceed. Currently, the preferred ingredients are ordinary
matter (such as dust and radiation), dark matter and dark energy. However,
in practice, it is common to model the matter by dust, a radiation fluid and
a positive cosmological constant. Moreover, if one is interested in the early
universe, the radiation dominates over the dust (due to the relevant scaling
of the energy densities), so that one normally ignores the dust. Similarly,
if one is interested in the late time behaviour, the dust dominates over
the radiation, so that the radiation is normally ignored. The supernova
observations are made in the late time regime, so that it is common to
ignore the radiation. To summarize, the relevant metrics take the form

(2) g = −dt2 + a2(t)ḡΣ,

on M = I × Σ. Here I is an open interval, Σ is R
3, H

3 or S
3 (or a quotient

thereof), and ḡΣ is the standard metric on Σ. The matter is modelled by
dust (a perfect fluid with vanishing pressure):

(3) T = ρmdt ⊗ dt.



FUTURE STABILITY, ACCELERATED EXPANSION 251

The associated matter equation is obtained by requiring that T be divergence
free with respect to the metric (2). The final ingredient of the model is a
positive cosmological constant Λ, so that the relevant form of Einstein’s
equations is (1).

Drawing conclusions from the observations. The reason it is of in-
terest to study supernovae of type Ia is that they are expected to be standard
candles. What this means is that supernovae of type Ia have (approximately)
a fixed peak luminosity (amount of energy they emit per unit time in the
form of electromagnetic radiation when they are at their brightest), say L.
Considering a supernova, it is natural to measure its radiant flux (the elec-
tromagnetic energy that crosses a unit area perpendicular to the line of sight
per unit time) on earth, say F . Given these quantities, one can define the
luminosity distance according to

dL =

√
L

4πF
.

Given the above class of background solutions, it turns out to be possible
to derive an expression for dL in terms of

• H0 (the present value of the Hubble parameter),
• the redshift of the supernova, and
• two parameters describing the matter content, say Ωm,0 and ΩΛ,0;

cf. [16, Chapter 5]. Here Ωm = c0ρm/H2, where ρm is the energy density
associated with the dust, H = ȧ/a is the Hubble parameter, and c0 is
an appropriately chosen constant. Moreover, ΩΛ = c1Λ/H2, where c1 is a
constant. The relevant values of c0 and c1 are to be found in [16, Chapter 5];
they depend on the speed of light and the gravitational constant, which we,
for simplicity, have set equal to 1 here. Finally, Ωm,0 and ΩΛ,0 denote the
present values of Ωm and ΩΛ. In fact, there is, for every Ωm,0 and ΩΛ,0, a
function FΩm,0,ΩΛ,0 such that

(4) H0dL = FΩm,0,ΩΛ,0(z),

where z is the redshift of the emitting object. The observations can be used
to determine H0dL and z. Combining this information with (4) yields a
curve in the Ωm,0, ΩΛ,0-plane. However, the curves are different for different
redshifts. Observing supernovae at different redshifts and using (4) then
yields a limited region of the Ωm,0, ΩΛ,0-plane which is consistent with
observations.

On the basis of arguments of the above type, one is led to prefer models
with a positive cosmological constant and Euclidean spatial geometry. It
should of course be noted that there are other observational data supporting
this conclusion. The above description is somewhat brief, and the reader
interested in more details is referred to [16, Chapter 5].
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3. Previous results

In the study of Einstein’s equations with a positive cosmological con-
stant, de Sitter space plays a prominent role due to its high degree of sym-
metry. Moreover, it expands both to the future and to the past. It is therefore
natural to begin by proving that de Sitter space is stable (and not only fu-
ture stable). In the case of 3 + 1 dimensions, this was done in the work of
Helmut Friedrich; cf. [3]. Later, he extended his results to include matter
of Maxwell and Yang-Mills type; cf. [4]. The arguments used to prove the
results are based on Friedrich’s conformal field equations. Since the confor-
mal field equations and their uses are described elsewhere in this volume,
we shall not discuss this perspective further here. Even though the relevant
ideas are very elegant, they do not seem to be well adapted to the problem
of proving future stability in the presence of matter which does not have
nice conformal invariance properties. Moreover, there seems to be an unnat-
ural restriction on the dimension; even though the results of Friedrich have
been extended to higher dimensions in the work of Michael Anderson, cf.
[1], there is still the requirement that the spacetime dimension be even.

The current contribution is based on the ideas which were developed
in [13] in the hope of obtaining more robust methods. The particular case
considered in [13] was that of Einstein’s equations coupled to a non-linear
scalar field. There were two main reasons for considering this particular case.
First of all, Einstein’s equation with a positive cosmological constant are
included as a special case. Since that case had already been dealt with using
the conformal methods of Friedrich, it was, however, of interest to consider
something more general. From a physics point of view, non-linear scalar fields
are a natural class of matter models. The reason for this is that even though
the observations indicate the the universe is expanding at an accelerated
rate, various mechanisms are conceivable. A positive cosmological constant
is one possibility, but one can also use a non-linear scalar field to explain
the accelerated expansion. In the end, the methods developed in [13] turn
out to be quite robust (cf. the examples of generalizations given below), and
since the essential ideas are most easily explained in the case of Einstein’s
vacuum equations with a positive cosmological constant, we shall do so in
Section 4.

3.1. The Einstein–non–linear scalar field system. Before pro-
ceeding, let us write down the Einstein–non–linear scalar field system. It
is given by

G =T,(5)

∇α∇αφ − V ′ ◦ φ =0,(6)

where T is the stress energy tensor associated with the non–linear scalar
field:

Tαβ = ∇αφ∇βφ −
[
1
2
∇γφ∇γφ + V ◦ φ

]
gαβ .
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In the above expressions, V is a smooth function from R to itself, referred
to as the potential. In order to be able to proceed, it is necessary to make
assumptions concerning the potential. Various choices are of interest (cf.
[11, 12] for a discussion), but we shall here mainly be interested in the
following cases.

Potentials with a positive non-degenerate minimum at the origin. Poten-
tials of this type are characterized by the conditions that V (0) > 0, V ′(0) = 0
and V ′′(0) > 0. They were studied, e.g., in [13]. Note that by demanding
that φ = 0, one obtains Einstein’s vacuum equations with a positive como-
logical constant. In order to have something with which to compare, it is
useful to write down a model solution. One simple example is given by

φ =0,(7)

g = − dt2 + e2Htḡ,(8)

where g and φ are defined on R × T
n, ḡ is the standard metric on T

n, and

(9) H =
(

2V0

n(n − 1)

)1/2

.

For future reference, it is also of interest to introduce the terminology

(10) χ = V ′′(0)/H2.

In particular, solutions typically exhibit exponential expansion in this set-
ting. As is clear from the above, we do not require the spacetime dimension
to be 4. The reason for this is that some of the results hold for all spa-
tial dimensions n ≥ 3, in contrast with the arguments based on conformal
methods.

Exponential potentials. Potentials of this type are characterized by the
conditions that

(11) V (φ) = V0e
−λφ,

where V0 > 0 and λ are constants, and

(12) 0 < λ < 2(n − 1)−1/2,

where n is the space dimension. They were studied, e.g., in [7, 15]. In this
case, a natural model solution is given by

g = −dt2 + t2pḡ(13)

φ =
2
λ

ln t − 1
λ

c0,(14)

on R+ × T
n, where R+ = (0, ∞), p > 1 is a constant and

λ =
2

[(n − 1)p]1/2 ,(15)

c0 = ln
[
(n − 1)(np − 1)p

2V0

]
.(16)
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Note that one obtains power law expansion, and that the restriction (12)
has been chosen so that the scale factor a(t) of the spatially homogeneous
model solution equals tp, with p > 1; in particular, 1/a is integrable.

3.2. Prototype results. In order to have something with which to
compare, let us give a rough formulation of a prototype result in the case
of a potential with a positive non-degenerate minimum at the origin. Before
stating the result, note that if γ(t) = [t, γ̄(t)] is a causal curve in R × T

n

with respect to (8), then

−1 + e2Ht| ˙̄γ(t)|2 ≤ 0.

In particular

d[γ̄(0), γ̄(t)] ≤ 1
H

for t ≥ 0, where d denotes the standard topological metric on T
n. In

particular, there is a bound on how far an observer can travel in the spatial
directions. As a consequence, it is possible to obtain results which only
involve local assumptions in space, but yield global conclusions in time. To
be more specific, let us assume the following:

• We are given initial data to the Einstein–non–linear scalar field
system (Σ, ḡ, k̄, φ̄0, φ̄1); here Σ is an n-dimensional manifold; ḡ and
k̄ are a Riemannian metric and a symmetric covariant 2-tensor field
on Σ respectively; and φ̄0, φ̄1 are smooth functions on Σ. Moreover,
these objects satisfy the relevant constraint equations.

• On a sufficiently large ball, say B4r0(p), the initial data (expressed
with respect to suitable coordinates) are close enough to those of
the model solution defined by (7) and (8).

Let (M, g, φ) be the maximal globally hyperbolic development of the initial
data and i : Σ → M be the corresponding embedding. Then we obtain the
following conclusions:

• The causal geodesics in (M, g) which start in i[Br0(p)] are future
complete.

• There is a region U , containing J+{i[Br0(p)]}, in which it is pos-
sible to write down detailed asymptotics for the metric, second
fundamental form, and the scalar field.

Clearly, the above is a rough formulation. Readers interested in a mathe-
matically precise statement are referred to [13, Theorem 2, pp. 131–132].
Finally, let us point out that there are results of this type for general spatial
dimensions n ≥ 3.

In the case of an exponential potential, it is still true that causal curves
can only travel a finite distance in the spatial directions (given the condition
(12)). As a consequence, there is a similar result in that case; cf. [15,
Theorem 2, pp. 160–161].

Stability of spatially homogeneous solutions. Combining results of the
above type with an analysis of spatially homogeneous solutions and Cauchy
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stability, it is possible to derive stability results for spatially locally homo-
geneous solutions. To give an example of results of this type, let us state a
slightly reformulated version of [13, Theorem 4, pp. 134–135]:

Theorem 1. Let V be a smooth function such that V (0) = V0 >
0, V ′(0) = 0 and V ′′(0) > 0. Let H, χ > 0 be defined by (9) and
(10) respectively, let M be a connected and simply connected 3-dimensional
manifold and let (M, g, k) be initial data to Einstein’s equations with a
positive cosmological constant Λ = 3H2. Assume, furthermore, that one of
the following conditions are satisfied:

• M is a unimodular Lie group different from SU(2) and g and k are
left invariant under the action of this group.

• M = H
3, where H

3 is 3-dimensional hyperbolic space, and the
initial data are invariant under the full isometry group of the
standard metric on H

3.
• M = H

2 × R and the initial data are invariant under the full
isometry group of the standard metric on H

2 × R.

Assume finally that trgk > 0. Let Γ be a cocompact subgroup of M in the
case that M is a unimodular Lie group and a cocompact subgroup of the
isometry group otherwise. Let Σ be the compact quotient. Then (Σ, g, k) are
initial data. Make a choice of Sobolev norms ‖ · ‖Hl on tensorfields on Σ.
Then there is an ε > 0 such that if (Σ, ρ, κ, φ0, φ1) are initial data for (5)
and (6) satisfying

‖ρ − g‖H4 + ‖k − κ‖H3 + ‖φ0‖H4 + ‖φ1‖H3 ≤ ε,

then the maximal globally hyperbolic development corresponding to (Σ, ρ, κ,
φ1, φ0) is future causally geodesically complete and there are expansions of
the form given in the statement of [13, Theorem 2, pp. 131–132] to the
future.

Remark 1. The restriction that the spatial dimension be 3 is due to
the fact that the proof is based on a 3 + 1-dimensional result concerning
the future asymptotics of spatially homogeneous solutions. Given sufficient
information concerning the future asymptotics of a spatially homogeneous
solution in higher dimensions, we would obtain an analogous stability result
concerning that solution.

Remark 2. The reader interested in an explanation for the additional
restrictions imposed (that M not be isomorphic to SU(2) etc.) is referred to
[13].

3.3. Previous results. We are now in a position to describe results
that have been obtained in the past. To begin with, there are the results by
Friedrich and Anderson [1, 3, 4] which we have already discussed (see also
Friedrich’s contribution to the present volume). In the case of a potential
with a positive non-degenerate minimum, we have desribed the main results
in Subsection 3.2. When the potential has special properties, the conformal
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methods of Friedrich also apply to this case; cf. [5]. Results analogous to
those described in Subsection 3.2 hold in the case of an exponential potential;
cf. [15, Theorem 2, pp. 160–161] and [15, Theorem 3, p. 162]. However, it is
of interest to note that stability results in this setting have also been obtained
in [7] (prior to the appearance of [15]); cf., in particular, [7, Theorem 1,
pp. 2-3]. The results of [7] are based on a combination of Kaluza-Klein
reduction and appealing to the stability of higher dimensional de Sitter
spaces (cf. [1]). In other words, the methods are very different from those
used in [15]. However, there is an associated restriction; the methods of [7]
only apply for a discrete set of λ-values (cf. (11) and [7, (6), p. 2]), whereas
[15] applies for all λ of the form (15) with p > 1.

The Einstein–Maxwell–non–linear scalar field setting. It is of interest
to prove results of the type described in Subsection 3.2 in the case of the
Einstein–Maxwell–non–linear scalar field system. In the case of a potential
with a positive non-degenerate local minimum, this is done in [19]. The case
of an exponential potential is considered in [9].

The Einstein–Euler system. The study of the Einstein–Euler system with
a positive cosmological constant was initiated in [17]. In this paper, the
authors study the irrotational case under the assumption that the equation
of state takes the form p = cρ, where 0 < c < 1/3; here p is the pressure
and ρ is the energy density. In particular, dust (corresponding to p = 0)
and radiation (p = ρ/3) are excluded. In the case of T

3 spatial topology, the
authors prove future global non-linear stability of spatially homogeneous and
isotropic solutions. In particular, it is of interest to note that no shocks form
in the evolution. The authors do not prove results similar to those described
in Subsection 3.2, but by combining ideas from [17] and [13], it should be
possible to do so. The method of proof used in [17] is partly based on [13]
(as far as dealing with the metric components is concerned). However, the
analysis of the matter requires new ideas. In the irrotational case, the matter
is described by one scalar function Φ, but the equation for Φ has a different
symbol than the equations for the metric components. Moreover, it is a non-
trivial issue to verify that the symbol does not degenerate in the course of
the evolution.

It is of interest to ask if similar results can be obtained in the general
case. That the answer to this question is yes is demonstrated in [18]. In the
general setting, the relevant equations are a system of wave equations for
the metric components, coupled to a system of first order equations for the
matter fields. Nevertheless, it turns out to be possible to construct suitable
energy currents in order to deal with the matter fields.

As mentioned earlier, dust and radiation fluids are excluded in the
results described above. However, such fluids are important in the solutions
physicists use to model the universe. Interestingly, the case of a radiation
fluid is suited to a treatment using conformal methods. In fact, future
stability of the FLRW models has been demonstrated in the case of Einstein’s
equations with a positive cosmological constant, coupled to a radiation fluid;
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cf. [8]. Finally, the case of dust and a positive cosmological constant has been
treated in [6]. Note that of all the matter models discussed above, dust is
the most relevant; the matter content is expected to behave as dust in the
expanding direction.

The Einstein–Vlasov–non–linear scalar field system. Results analogous
to those described in Subsection 3.2 have also been obtained in the case
of the Einstein–Vlasov–non–linear scalar field system; cf. [16]. The relevant
type of potential to which the results apply is one with a positive non–
degenerate local minimum. In particular, the Einstein–Vlasov system with
a positive comological constant is contained as a special case. Moreover, it is
possible to use Vlasov matter to approximate dust and radiation fluids; cf.
[16, Chapter 28]. As a consequence, future stability of models consistent with
observations is contained as a special case of the results of [16]. A separate
topic which is discussed in [16] is that of the restrictions on the topology
of the universe imposed by observations. Given the current preference for
spatially flat model solutions, the constructions provided in [16] indicate
that there are no restrictions. Since we have discussed this topic at length
elsewhere, we shall not do so here, but rather refer the reader interested in
more details to [16, Section 7.9].

Stability of spatially inhomogeneous solutions, the cosmic no–hair con-
jecture. The above results yield future stability of large classes of spa-
tially homogeneous solutions. However, it is also of interest to consider
inhomogeneous solutions. In the case of the Einstein–Vlasov equations
with a positive cosmological constant, it turns out to be possible to an-
alyze the future asymptotics under the assumption of surface symmetry
and under the assumption of T

3-Gowdy type symmetry; cf. [20] and [2].
Moreover, [2] contains a proof of future stability of the T

3-Gowdy sym-
metric solutions in the class of all solutions. The analogous problem in
the case of surface symmetry is considered in [10]. One reason results of
this type are interesting is that the relevant symmetry classes are such
that both significant anisotropies and significant spatial inhomogeneities
are allowed. However, due to the results of [20, 2], these anisotropies
and spatial inhomogeneities vanish asymptotically from the point of view
of observers. In fact, the solutions appear de Sitter like to late time ob-
servers. Moreover, the stability results indicate that this is not just a fea-
ture of the symmetric solutions, since it persists under perturbations. In
particular, the evolution associated with Einstein’s equations is such that
the solutions tend to homogenize and isotropize from the point of view
of the observers. This is clearly a desirable feature, given that the cur-
rently preferred models of the universe are spatially homogeneous and
isotropic. Finally, let us point out that the expectation that solutions
to Einstein’s equations with a positive cosmological constant should ap-
pear de Sitter like to late time observers goes under the name of the
cosmic no–hair conjecture; cf., e.g., [2] for a precise formulation of the
conjecture.
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4. Sketch of proof of future stability, vacuum setting

Let us now sketch the proof of stability of the solution

g = −dt2 + e2Htḡ

to Einstein’s vacuum equations with a cosmological constant Λ = n(n −
1)H2/2; here ḡ is the standard flat metric on T

n, H > 0 is a constant, and
the metric is defined on R × T

n. In order to obtain a hyperbolic system
of equations to which the appropriate analysis tools can be applied, it is
necessary to make a gauge choice. There are of course many ways of doing
so, but we shall here use gauge source functions. The idea underlying this
perspective is the following. Note, first of all, that the Ricci tensor can be
written
(17)

Rμν = −1
2
gαβ∂α∂βgμν +∇(μΓν) + gαβgγδ[ΓαγμΓβδν +ΓαγμΓβνδ +ΓαγνΓβμδ].

In this equation,

Γαγβ =
1
2
(∂αgβγ + ∂βgαγ − ∂γgαβ),

Γν =gαβΓανβ ,

∇μΓν =∂μΓν − Γα
μνΓα.

Moreover, a parenthesis denotes symmetrization. In other words,

∇(μΓν) =
1
2
(∇μΓν + ∇νΓμ).

The equation we wish to solve is (1) with T = 0. This equation can be
reformulated to

(18) Rμν =
2

n − 1
Λgμν .

Considering (17), it is clear that if the second term on the right hand side
were absent, then (18) would be a system of hyperbolic partial differential
equation for the metric components. The idea of using gauge source functions
is then the following:

• Replace the Γν appearing in (17) by some other functions, say Fν ;
we shall refer to the functions Fν as the gauge source functions.
Assuming the Fν only to depend on the spacetime coordinates
and the metric components (but not on their derivatives), the
corresponding modified Ricci tensor is a hyperbolic differential
operator acting on the components of the metric, so that (18) is a
hyperbolic system of equations.

• Let R̂μν denote the object obtained when replacing Γν by Fν in
(17). In other words,

R̂μν = Rμν + ∇(μDν),
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where
Dμ = Fμ − Γμ.

• Due to the assumptions concerning Fν , solving the equation

(19) R̂μν =
2

n − 1
Λgμν

locally is a matter of standard PDE theory.
• The equation (19) and the Bianchi identities imply that Dν satisfies

a homogeneous wave equation.
• Setting up the initial data for (19) correctly (appropriate require-

ments are that Dν should vanish initially and that the constraint
equations should be satisfied initially), it can be verified that the
initial data for Dν vanish; note that Dμ could vanish initially with-
out the normal derivative of Dμ vanishing initially. Since Dν satisfies
a homogeneous wave equation, we conclude that Dν = 0 whenever
the solution to (19) is defined. As a consequence, we obtain a solu-
tion to (18).

The above description is a bit brief. The reader interested in a somewhat
longer explanation (of an overview character) is referred to [16, Chapter 2].
Readers interested in the technical details are referred to [14, Chapter 14].

Global considerations. As far as local considerations are concerned,
the particular choice of gauge source functions is not important. However,
we are interested in proving future global existence, and in that context,
the choice is important. There are of course many possibilities, but the
most naive possibility would be to choose the gauge source functions to be
the contracted Christoffel symbols of the background. Even so, there are,
however, two different choices; we could choose equality with indices upstairs
or with indices downstairs. It turns out to be convenient to choose equality
with indices downstairs; i.e.,

(20) Fν = nHg0ν .

The reason this choice is convenient is that it gives rise to a damping term in
the equations. The question is then: are the equations (19), given the choice
(20) of gauge source functions, appropriate for proving future stability? In
order to develop some intuition concerning this question, it is useful to
consider the equations that arise when the terms in the equations containing
two or more factors that vanish on the background have been removed.
Considering, for example, the 00-component of (19), it reads

− 1
2
gαβ∂α∂βg00 +

1
2
nH∂0g00 + nH2 − Hgij∂0gij + 2Hgij∂igj0 + ΔA,00

= nH2g00,

where ΔA,00 consists of terms that are quadratic in expressions that vanish
on the background; cf. [13, pp. 154–157]. Clearly, it would be preferable
to have a simpler equation. Moreover, if we replace gαβ by the background
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metric in the first term, replace gij , gij and gj0 by their background values
in the fourth and fifth terms, and if we remove ΔA,00, then the resulting
equation reads

1
2
∂2

0g00 − 1
2
e−2HtΔg00 +

1
2
nH∂0g00 − nH2(g00 + 1) = 0,

where Δ denotes the standard Laplacian on T
n. This equation can be

rewritten

∂2
0(g00 + 1) − e−2HtΔ(g00 + 1) + nH∂0(g00 + 1) − 2nH2(g00 + 1) = 0.

Note that there are exponentially growing spatially homogeneous solutions
to this equation. On the other hand, we would like g00+1 to converge to zero
(preferably exponentially). To conclude, to choose the equation (19) does not
seem to be a good idea. However, there is still a freedom in modifying the
equations. In particular, adding multiples of Dν to the equations is allowed.
It turns out to be convenient to consider

R̂μν − 2
n − 1

Λgμν + Mμν = 0,

where
M00 = −2Hg0λDλ, M0i = 2HDi, Mij = 0.

With this choice, it turns out that the equations can be written

−gαβ∂α∂βu + (n + 2)H∂0u + 2nH2u + Δ00 =0(21)

−gαβ∂α∂βg0m + nH∂0g0m + 2(n − 2)H2g0m − 2HgijΓimj + Δ0m =0(22)

−gαβ∂α∂βhij + nH∂0hij + Δij =0,(23)

where Δμν are quadratic in terms that vanish on the background, u = g00+1
and hij = e−2Htgij ; cf. [13, Lemma 14, p. 171]. Replacing gαβ with the
corresponding object for the background, and removing Δ00, the equation
(21) becomes

∂2
0u − e−2HtΔu + (n + 2)H∂0u + 2nH2u = 0.

It can quite easily be demonstrated that solutions to this equation decay
to zero exponentially. Modifying (23) similarly, one concludes that hij

converges exponentially. Finally, modifying (22) similarly, and assuming hij

to converge at the appropriate rate, one can conclude that g0m converges
exponentially. On this naive level, the choice (21)–(23) thus seems to be
appropriate.

Bootstrap argument. The essence of the proof of future stability is
a bootstrap argument; assuming that certain bootstrap assumptions are
fulfilled (concerning u, g0m and hij) on a time interval, say [0, T ], the idea is
to improve the bootstrap assumptions on this time interval (given that the
initial data are close enough to those of the background). If it is possible to
improve the bootstrap assumptions, it follows that they hold for the entire
future. In particular, the argument yields future global existence. Moreover,
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the knowledge concerning the asymptotics can later on be improved in order
to obtain detailed information concerning the behaviour of solutions.

The bootstrap assumptions can be divided into two groups. The first
group consists of assumptions concerning the metric gμν in the supremum
norm. To begin with, it is important to make sure that gμν are the compo-
nents of a Lorentz metric in the course of the evolution. However, it is also
natural to make assumptions that are adapted to the expected asymptotic
behaviour. Judging by the background solution, u should be small and gij

should expand as e2Ht. Moreover, g0m should be small. In the end, it turns
out that g0m converges, but that only follows by a rather complicated ar-
gument carried out a posteriori. Moreover, it is not natural to assume that
g0m is bounded (as part of the bootstrap assumptions). The reason for this
is that there is a natural scaling associated with the number of downstairs
spatial indices in the expressions that have to be estimated; it is natural to
associate a factor of eHt with each downstairs spatial index. The natural
way to state that g0m is small is to say that e−Htg0m is small; in practice
this corresponds to saying that gijg0ig0j is small, or that the one form field
g(∂t, ·) is small relative to the Riemannian metric induced on the constant
t hypersurfaces by g. To summarize, the first group of bootstrap assump-
tions consists of the requirements that u be small, that hij remain equivalent
to the Kronecker delta δij , and that e−Htg0m be small (in fact, we require
e−Htg0m not only to be small, but also to be exponentially decaying).

The second group of bootstrap assumptions consists of the requirements
that certain energies associated with u, g0m and hij are small. The relevant
energies for u and g0m are given by

El,k =
1
2

∑
|α|≤k

∫
Tn

{(∂α∂tu)2 + gij∂α∂iu∂α∂ju + H2(∂αu)2}dx,

(24)

Es,k =
1
2

∑
|α|≤k

∑
i

∫
Tn

[(∂α∂tg0i)2 + glm∂α∂lg0i∂
α∂mg0i + H2(∂αg0i)2]dx.

(25)

The energy for hij is somewhat different, since hij is expected to converge.
Note that in order for these energies to make sense it is necessary to make
assumptions concerning the metric; this is one of the reasons for dividing
the bootstrap assumptions into two groups. The second group of bootstrap
assumptions concerning u and g0m then consists of the requirement that

(26) e2aHtEl,k + e−2Ht+2aHtEs,k ≤ ε2

for some small parameter ε, where a > 0 is an appropriately chosen
parameter. The assumption concerning hij is somewhat more technical, but
it is similar in character.

Enery estimates. The main step in improving the bootstrap assump-
tions consists of improving the estimates for the energies. In order to do so,
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we need to construct energies that are roughly of the form (24) and (25),
but which are adapted to the equations (21)–(23). For appropriate choices
of constants γ and δ, it turns out that basic energies of the form

(27) Eγ,δ[v] =
1
2

∫
Tn

[−g00(∂0v)2 + gij∂iv∂jv − 2γHg00v∂0v + δH2v2]dx

are appropriate. In fact, if v satisfies the equation

(28) −gαβ∂α∂βv + αH∂0v + βH2v = F,

where α, β > 0, then the constants γ and δ can be chosen so that Eγ,δ[v] is
equivalent to ∫

Tn

[(∂0v)2 + gij∂iv∂jv + H2v2]dx.

Moreover,
dEγ,δ

dt
≤ −ηHEγ,δ +

∫
Tn

{(∂0v + γHv)F + ΔE,γ,δ[v]}dx,

where η > 0 is a constant, and ΔE,γ,δ[v] is an ’error term’ which can be
controlled (see below). In the process of improving the bootstrap assump-
tions, we need to take higher derivatives into account, and then we need to
consider

Ek =
∑

|α|≤k

Eγ,δ[∂αv].

However, up to a commutator term,

[gαβ∂α∂β, ∂γ ]v,

∂γv satisfies the same equation as v, so that the same energy estimates can
be applied. In fact,

dEk

dt
≤ − ηHEk +

∑
|α|≤k

∫
Tn

{(∂0∂
αv + γH∂αv)(∂αF + [−gμν∂μ∂ν , ∂

α]v)

+ ΔE,γ,δ[∂αv]}dx.

(29)

Estimates. As mentioned above, the main step in improving the boot-
strap assumptions consists of improving the estimates for the energies. The
main tool in obtaining this improvement is (29). In order to be able to use
this estimate, we need to estimate

‖ΔE,γ,δ[∂αv]‖L1 , ‖[−gμν∂μ∂ν , ∂
α]v‖L2 , ‖∂αΔμν‖L2 ,

where Δμν is the ’error term’ that appears in (21)–(23). In these expressions,
v is one of u, g0m or hij . It turns out that the terms that need to be
estimated are quite involved; cf. [13, pp. 154–158] for details. Moreover,
the different metric components (and derivatives thereof) that appear in the
expressions have very different asymptotic behaviour; g00 should be expected
to tend to −1 exponentially, g0m should a priori be expected to tend to
infinity exponentially, and gij should tend to infinity as e2Ht. Due to the
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sheer number of terms in the expressions that need to be dealt with, it is
extremely important to develop a systematic way of estimating them. There
are several aspects to this problem. One aspect is the specific appearance
of the terms; this is not something that much can be done about. Another
aspect is the choice of bootstrap assumptions. As mentioned earlier, it is
in the end possible to prove that u converges to zero exponentially, that
g0m converges to a (typically non-zero) limit exponentially to the future,
and that hij converges exponentially. However, the estimates for the ’error
terms’ become quite complicated if one phrases the bootstrap assumptions
in a way that naturally incorporates such asymptotics (moreover, it is very
difficult to improve bootstrap assumptions for g0i that involve a bound; i.e.,
no exponential growth). In the end, the choice of bootstrap assumptions is
such as to make a systematic estimate of the ’error terms’ as easy as possible.
In particular, the choice is not motivated by a desire to obtain the correct
asymptotics immediately from the bootstrap assumptions.

System of differential inequalities. Once the terms Δμν etc. have
been estimated and the relevant energies have been defined, it is possible to
derive a system of differential inequalities for the energies. The system one
obtains is the following (assuming that the bootstrap assumptions hold):

dĤl,k

dt
≤ − 4aHĤl,k + CHεe−aHtĤ

1/2
k Ĥ

1/2
l,k ,(30)

dĤs,k

dt
≤ − 4aHĤs,k + CHĤ

1/2
m,kĤ

1/2
s,k + CHεe−aHtĤ

1/2
k Ĥ

1/2
s,k ,(31)

dĤm,k

dt
≤He−aHtĤm,k + CHεe−aHtĤ

1/2
k Ĥ

1/2
m,k.(32)

In these inequalities, a and ε are the same parameters that appear in the
bootstrap assumption (26). In order to define the energies Ĥl,k and Ĥs,k,
one proceeds as follows. Consider (21) and (22). These equations are of the
form (28). As a consequence, it is possible to associate appropriate γ’s and
δ’s with them and to construct energies Ek as described above. The Ĥl,k and
Ĥs,k are then appropriately rescaled versions of these energies. In particular,
if γl and δl are the constants associated with (21) according to the above
scheme, then

Ĥl,k = H−2e2aHt
∑

|α|≤k

Eγl,δl [∂
αu].

Similarly,
Ĥs,k = H−2e−2Ht+2aHt

∑
i

∑
|α|≤k

Eγs,δs [∂
αui].

The definition of the energy Ĥm,k is slightly different, but similar. Finally,

Ĥk = Ĥl,k + Ĥs,k + Ĥm,k.

In order to develop some intuition for the differential inequalities, it is
useful to compare them with the equations (21)–(23). Considering (21), this
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equation should yield exponential decay (up to some ’error terms’). This
intuition should be compared with (30); the first term on the right hand side
corresponds to the expected exponential decay. However, there is an error
term, corresponding to the second term on the right hand side. Consider
(22). If it were not for the second to last term on the left hand side of this
equation, we would expect the same structure in the differential inequality
for Ĥs,k. However, the term −2HgijΓimj does make a difference. In fact, it
gives rise to the second term on the right hand side of (31). Note that this
is the most problematic term in the system of differential inequalities; if we
were not to distinguish between the different components of the energy, this
term would read CHĤk, and it would make it impossible to improve the
bootstrap assumptions. Finally, consider (23). This equation is such that
one does not expect convergence to zero of hij . However, one does expect
the energy to converge to a non-zero number. This expectation fits well with
(32).

Proving future stability; improving the bootstrap assumptions.
The main step in proving future global non-linear stability consists of im-
proving the bootstrap assumptions. Moreover, the main bootstrap assump-
tion is essentially equivalent to

(33) Ĥk0(t) ≤ ε2

on some time interval, say [0, T ]; here k0 is an integer strictly larger than
n/2 + 1. In other words, this is the estimate we need to improve. In order
for this to be possible, we clearly have to have a strict inequality at t = 0.
In fact, we shall assume

Ĥk0(0) ≤ c2
0ε

2

for some constant c0 ∈ (0, 1). The tool relevant for improving the bootstrap
assumptions is the system of differential inequalities (30)–(32). The most
naive way to proceed would be to add the differential inequalities in order
to obtain a differential inequality for Ĥk. However, the resulting inequality
would be of the form

dĤk

dt
≤ CĤk,

where C ≥ 0 is an unknown constant. Clearly, this is not useful in improving
the bootstrap assumptions. On the other hand, combining the differential
inequality for Ĥl,k with the bootstrap assumption yields

dĤl,k0

dt
≤ CHε3e−aHt.

This inequality can be integrated to

Ĥl,k0(t) ≤ Ĥl,k0(0) + Ca−1ε3 ≤ c2
0ε

2 + Ca−1ε3.

Clearly, we can thus assume Ĥl,k0 to be as small a factor as we wish times
ε2 (by assuming c0 and ε to be small enough). Similarly, it is possible to
improve the estimates for Ĥm,k0 . Finally, once these improvements have
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been obtained, it is possible to use (31) in order to improve the estimate for
Ĥs,k0 . Adding up arguments of the above type yields an improvement of the
bootstrap assumptions, and as a consequence future global existence follows.
Moreover, using the fact that the bootstrap assumptions hold for the entire
future, it is possible to derive more detailed asymptotics. However, we omit
the details.
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son Foundation for Research in Natural Sciences and Medicine, and the
Swedish Research Council.

References

[1] Anderson, M. T., Existence and Stability of even-dimensional asymptotically de Sitter
spaces. Ann. Henri Poincaré 6 (2005), 801–820.
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