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Abstract. In this paper we will review some facts, both classical
and recent, concerning the geometry and analysis of the Kerr and
related black hole spacetimes. This includes the analysis of test fields
on these spacetimes. Central to our analysis is the existence of a valence
(2, 0) Killing spinor, which we use to construct symmetry operators
and conserved currents as well as a new energy momentum tensor for
the Maxwell test fields on a class of spacetimes containing the Kerr
spacetime. We then outline how this new energy momentum tensor can
be used to obtain decay estimated for Maxwell test fields. An important
motivation for this work is the black hole stability problem, where fields
with non-zero spin present interesting new challenges. The main tool in
the analysis is the 2-spinor calculus, and for completeness we introduce
its main features.
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1. Introduction

In the same month as Einstein’s theory appeared, Karl Schwarzschild
published an exact and explicit solution of the Einstein vacuum equations
describing the gravitational field of a spherical body at rest. In analyzing
Schwarzschild’s solution, one finds that if the central body is sufficiently
concentrated, light emitted from its surface cannot reach an observer at
infinity. This phenomenon led John Archibald Wheeler to coin the term
black hole for this type of object.

It would take until the late 1950’s before the global structure of the
Schwarzschild solution was completely understood and until the early 1970’s
before the idea that black holes exist in nature became widely accepted in
the astrophysical community. The reasons for this can be traced to increasing
observational evidence for compact objects including neutron stars and
quasars as well as an increasing theoretical understanding of black holes.

One of the most important developments on the theoretical side was the
discovery in 1963 by Roy Kerr [53] of a new explicit family of asymptotically
flat solutions of the vacuum Einstein equations describing a stationary,
rotating black hole. The Kerr family of solutions has only two parameters,
mass and azimuthal angular momentum, and includes the Schwarzschild
solution as a special case in the limit of vanishing angular momentum.

Assuming some technical conditions, any stationary asymptotically flat,
stationary black hole spacetime is expected to belong to the Kerr family,
a fact which is known to hold in the real-analytic case. Further, the Kerr
black hole is expected to be stable in the sense that a small perturbation of
the Kerr space time settles down asymptotically to a member of the Kerr
family. In order to establish the astrophysical relevance of the Kerr solution,
it is vital to find rigorous proofs of both of these conjectures, and a great
deal of work has been devoted to these and related problems.

In general, the orbits of test particles in the spacetime surrounding
a rotating object will be chaotic. However, in 1968 Brandon Carter [32]
discovered that the Kerr spacetime admits a conserved quantity not present
in general rotating spacetimes, known as the Carter constant, and showed
that the geodesic equation in the Kerr spacetime can be integrated. This
has allowed a detailed analysis of the behaviour of light and matter near a
Kerr black hole, which has contributed substantially to the acceptance of
the Kerr black hole as a fundamental object in astrophysics.

The presence of the Carter constant is a manifestation of the separability
and integrability properties of the Kerr spacetime. As discovered by Teukol-
sky [75, 76], the equations for test fields on the Kerr spacetime, including
the scalar wave equation, the Dirac-Weyl, Maxwell and linearized gravity,
are governed by a wave equation which admits separation of variables. These
properties of the Kerr spacetime are analogues of the separability properties
of the Stäckel potentials which have been studied since the 19th century in
Newtonian physics, and which have important applications in astrophysics.
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The Carter constant was shown by Walker and Penrose [77] to originate
in a Killing tensor, a notion originating in the work of Killing in the 1890s, cf.
[54], and their and later work by Carter and others showed that the closely
related Killing spinors are at the foundation of many of the remarkable
properties of Kerr and other spacetimes admitting such objects.

Although we shall here focus on symmetries and conservation laws
related to the integrability properties of the Kerr and related spacetimes,
the black hole stability problem is a fundamental motivation for this work.
See section 1.3 below for further discussion.

1.1. The Kerr solution. The Kerr metric describes a family of sta-
tionary, axisymmetric, asymptotically flat vacuum spacetimes, parametrized
by ADM mass M and angular momentum per unit mass a. In Boyer-
Lindquist coordinates (t, r, θ, φ), the Kerr metric takes the form1

gab =
(Δ − a2 sin2 θ)dtadtb

Σ
− Σdradrb

Δ
− Σdθadθb

− sin2 θ
(
(a2 + r2)2 − a2 sin2 θΔ

)
dφadφb

Σ

+
2a sin2 θ(a2 + r2 − Δ)dt(adφb)

Σ
,(1.1)

where Δ = a2 − 2Mr + r2 and Σ = a2 cos2 θ + r2. The volume form is
Σ sin θdt ∧ dr ∧ dθ ∧ dφ. For |a| ≤ M , the Kerr spacetime contains a black
hole, with event horizon at r = r+ ≡ M +

√
M2 − a2. In the subextreme

case |a| < M , the surface gravity κ = (r+ − M)/(r2
+ + a2) is non-zero and

the event horizon is non-degenerate. See [66, 70] for background on the
geometry of the Kerr spacetime, see also [65].

The Kerr metric admits two Killing vector fields ξa = (∂t)a (stationary)
and (∂φ)a (axial). Although the stationary Killing field ξa is timelike near
infinity, since g(∂t, ∂t) → 1 as r → ∞, ξa becomes spacelike for r sufficiently
small, when 1 − 2M/Σ < 0. In the Schwarzschild case a = 0, this occurs
at the event horizon r = 2M . However, for a rotating Kerr black hole with
0 < |a| ≤ M , there is an ergoregion outside the event horizon where ∂t is
spacelike. In the ergoregion, null and timelike geodesics can have negative
energy. Physically, it is expected this means energy can be extracted from
a rotating Kerr black hole via the Penrose process, see [44] and references
therein.

The Kerr spacetime is expected to be the unique stationary, vacuum,
asymptotically flat spacetime containing a non-degenerate black hole, see
[61, 4] and references therein, and is further expected to be dynamically
stable. In fact, the scenario used by Penrose [67] to motivate the important

1Here we have given the form of the metric has signature + − −−, which is most
convenient when working with spinors, and which we shall use in this paper.
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conjecture now known as the Penrose inequality2 involves, together with
the weak cosmic censorship conjecture, the idea that the maximal vacuum
Cauchy development of generic asymptotically flat vacuum data is asymp-
totic to a Kerr spacetime.

Although a proof of uniqueness of Kerr is known for the real analytic
case, and substantial progress on the uniqueness problem without this
assumption has been made, the general case is still open. Similarly, the
problem of dynamical stability of the Kerr spacetime has motivated a
great deal of classical work exploiting the separability of the geometric
field equations on Kerr, see eg. [33, 43] and references therein. This work
however did not lead to pointwise decay estimates let alone with rates as
one expects are needed to deal with the full nonlinear stablity problem.
During the last decade, there has therefore been an intense focus on proving
such estimates and progress has been made on proving such estimates for
the wave, Dirac-Weyl, and Maxwell test fields on the Kerr spacetime, see
[14, 15] and references therein. At present, such estimates are not known
for the equations of linearized gravity on Kerr.

1.2. Special geometry. A key fact concerning the Kerr spacetime, is
that in addition to possessing the two Killing symmetries corresponding
to stationarity and axial symmetry, the Kerr spacetime is algebraically
special, with two repeated principal null directions for the Weyl tensor,
i.e. it is of Petrov type D. This fact is closely related to the existence of
the fourth constant of the motion for geodesics, discovered by Carter, as
well as symmetry operators and separability properties for field equations
in the Kerr spacetime. Algebraically special spaces have been the subject
of intense study in the Lorentzian case, see for example [73]. Although the
Petrov classification has been extended to the Riemannian case [52], see also
[49, 23], it has not played such an important role there.

In the Riemannian case, the special geometries which have been most
widely studied are the spaces with special holonomy. This class contains
many of the most important examples, such as the Calabi-Yau and G2
spaces. However, the Kerr black hole spacetime, arguably one of the most
important Lorentz geometries and a central object in the present paper,
does not have special holonomy, as can be seen from the fact that it has
type D3. An important consequence of the algebraically special nature of
the Kerr spacetime is that it admits a Killing spinor (or more properly,
spin-tensor) of valence (2, 0), see section 2. As will be explained below, this
fact implies the existence of symmetry operators and conserved currents.
These symmetries may be called hidden in the sense that they cannot be
represented in terms of the Killing vector fields of the Kerr spacetime.

2The Riemannian case of the Penrose inequality has been proved by Huisken and
Ilmanen [50] and Bray [30].

3This is true also for the Riemannian signature version of the Kerr geometry.



SPIN GEOMETRY AND CONSERVATION LAWS IN THE KERR SPACETIME 187

Riemannian spaces with special holonomy are characterized by the
existence of parallel spinors [78] or Killing spinors [21], a fact which extends
also to Lorentzian spaces with special holonomy. The existence of a parallel
spinor in the Riemannian case implies stability [39] in the sense of non-
negativity of the spectrum of the Lichnerowicz Laplacian, a fact which
applies to Calabi-Yau as well as G2 spaces. This fact is very closely related to
the representation of linearized perturbations of spaces with parallel spinors
discussed in [79]. Issues of stability are considerably more subtle in the
Lorentzian case.

In a Lorentzian 4-manifold, the Hodge star operator acting on 2-forms
has eigenvalues ±i, while in a Riemannian 4-manifold, it has eigenvalues ±1.
Hence, in the Lorentzian case, a real 2-form corresponds to a complex anti-
self dual 2-form, while in the Riemannian case, a real 2-form may be split
into self dual and anti-self dual parts. For this reason, there is no counterpart
in the Lorentzian case to spaces with self-dual Weyl tensor, which form an
important class of Riemannian 4-manifolds, containing e.g. K3-surfaces and
Gibbons-Hawking metrics. The just mentioned properties of the Hodge star
are also closely related to the fact that the spin group in four dimensions
with Lorentz signature is SL(2, C), with spin representations C

2 and C̄
2,

while in Riemannian signature, the spin group is SU(2) × SU(2) which acts
on C

2 × C
2 with independent action in each factor.

The correspondence between spinors and tensors provides a particularly
powerful tool in dimension four. In Lorentzian signature, the tensor product
C

2 ⊗ C̄
2 of the two inequivalent spinor representations is naturally identified

with the complexified Minkowski space. A similar situation obtains in the
four dimensional Riemannian case with respect to the tensor product of
the spin spaces C

2 ⊗ C
2. Systematically decomposing expressions into their

irreducible components gives an effective tool for investigating the conditions
for the existence of symmetry operators for field equations and conserved
currents on Lorentzian 4-dimensional spacetimes.

The SymManipulator package [16], which has been developed by one
of the authors (T.B.) for the Mathematica based symbolic differential
geometry suite xAct [62], exploits in a systematic way the above mentioned
decompositions for the case of Lorentzian signature, and allows one to carry
out investigations which are not feasible to do by hand. This has allowed
the authors in recent work [12] to complete and simplify the classification
of second order symmetry operators and conserved currents for the spin-s
field equations for spins 0, 1/2, 1 in general spacetimes.

1.3. Black hole stability. The Kerr spacetime is expected to be
dynamically stable, in the sense that the maximal development of Cauchy
data close to Kerr data tend asymptotically in the future to a member of the
Kerr family. The Black Hole Stability problem is to prove the just mentioned
stability statement. This is one of the most important open problems in



188 LARS ANDERSSON, THOMAS BÄCKDAHL, AND PIETER BLUE

general relativity and has been the subject of intense work for the last
decades.

Much of the work motivated by the Black Hole Stability problem, in
particular during the 21st century has been directed towards understanding
model problems, in particular to prove boundedness and decay in time
for test fields on the Kerr spacetime, as well as on spacetimes which are
asymptotic to Kerr in a suitable sense. For the case of scalar fields, i.e.
solutions of the wave equation on the Kerr spacetime, these problems are
now well understood, see [14, 74, 38].

The full non-linear stability problem, however, has some features which
are not present in the case of scalar fields. The Einstein equations have gauge
symmetry in the form of diffeomorphism invariance (general covariance) and
hence it is necessary to extract a hyperbolic system, either by performing
a gauge reduction, or by extending the Einstein system. In addition to
the gauge ambiguity, there is what one may term the moduli degrees of
freedom of Kerr black hole spacetimes. Restricting our considerations to
a black hole at rest with respect to an observer near infinity, the moduli
space is parametrized by the Kerr parameters a, M . As mass and angular
momentum is lost by radiation through null infinity, in the expected scenario
of a maximal Cauchy development asymptotic to a Kerr black hole, the
“final” parameters cannot be calculated from the given Cauchy data without
actually solving the full Cauchy problem.

We have a similar, but simpler situation if we consider the black hole
stability problem for axi-symmetric spacetimes. In this case, the angular
momentum is given by a Komar charge integral which is conserved, and
hence the angular momentum is known a priori from the Cauchy data. In
the case of zero angular momentum, the final state therefore must be a
Schwarzschild black hole, and hence (disregarding boosts, translations etc.)
the moduli space is reduced to having only one parameter, M . Also in this
case, energy is lost through radiation, and the mass of the final black hole
state cannot be determined a priori. The stability of the Schwarzschild black
hole for the Einstein-scalar field system in spherical symmetry has been
proved by Christodoulou [34].

Infinitesimal variations of the moduli parameters correspond to solutions
of the linearized Einstein equations on the Kerr background which do not
disperse and can hence be described as non-radiating modes. The linearized
Einstein equation is the equation for a field of spin 2 which is relevant in this
context. In order to prove dispersion for the “radiating” part of the linearized
gravitational field, it is therefore necessary to eliminate these modes.

The same phenomenon is present already in the case of the spin-
1 or Maxwell field equation. For the case of Kerr, the domain of outer
communication is diffeomorphic to the exterior of a cylinder in R

4. It follows
that a source-free Maxwell field on the Kerr background can carry electric
and magnetic charges. The charge integrals are conserved, and hence a
Maxwell field with non-zero charge cannot disperse. Similarly, for linearized
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gravity, the linearized mass and angular momentum correspond to conserved
charge integrals, and hence solutions of linearized gravity with nonvanishing
such charges cannot disperse, see [3].

This means that for the Maxwell field and for linearized gravity, it is not
possible to prove dispersive (Morawetz) estimates except by using a method
which eliminates those solutions which “carry” the non-radiating modes.
One approach to this is to make use of the linearity of the equations and
explicitly subtract a suitable non-radiating solution so that the remainder
has zero charges and will disperse. Another, and perhaps more direct
approach is to use a projection which eliminates the “non-radiating” modes.
Both for Maxwell and for linearized gravity on the Kerr background, such a
projection can be found.

In addition to the just mentioned difficulties, which are due to the non-
trivial geometry of black hole spacetimes, the quadratic nature of the non-
linearity in the Einstein equation makes it necessary to exploit cancellations
in order to prove non-linear stability. This played a central role in the
proofs of the nonlinear stability of Minkowski space by Christodoulou and
Klainerman [35] and by Lindblad and Rodnianski [57], and related ideas
must be included in any successful approach to the black hole stability
problem.

Overview of this paper. In section 2 we introduce some background
for the analysis in this paper, including some material on spin geometry
and section 3 contains some material on algebraically special spacetimes
and spacetimes with Killing spinors. In section 4 we discuss some aspects
of the Kerr geometry, the main example of the phenomena and problems
discussed in this paper, in more detail. A new characterization of Kerr from
the point of view of Killing spinors, fitting the perspective of this paper,
is given section 4.2. Section 5 collects some results on symmetry operators
and conserved currents due to the authors. The discussion of symmetry
operators follows the paper [12] while the results on conserved currents is
part of ongoing work. A complete treatment will appear in [9]. The ideas
developed in section 5 is applied to the Teukolsky system in section 6, where
a new conserved stress-energy tensor for the Maxwell field is given, which
can be argued to be the stress-energy tensor appropriate for the compbined
spin-1 Teukolsky, and Teukolsky-Starobinsky system. Part of the results
presented here can be found in [11]. Finally in section 7, we indicate how
the new stress-energy tensor can be used to prove dispersive (Morawetz
type) estimates for the Maxwell field on the Schwarzschild spacetime. This
new result is part of ongoing work aimed at proving dispersive estimates for
the Maxwell and linearized gravity field on the Kerr spacetime.

2. Preliminaries

In this paper we will make use of the 2-spinor formalism, as well
as the closely related GHP formalism. A detailed introduction to this
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material is given by Penrose and Rindler in [68]. Following the conven-
tions there, we use the abstract index notation with lower case latin
letters a, b, c, . . . for tensor indices, and unprimed and primed upper-
case latin letters A, B, C, . . . , A′, B′, C ′, . . . for spinor indices. Tetrad
and dyad indices are boldface latin letters following the same scheme,
a,b, c, . . . ,A,B,C, . . . ,A′,B′,C′, . . . . For coordinate indices we use greek
letters α, β, γ, . . . .

2.1. Spinors on Minkowski space. Consider Minkowski space M,
i.e. R

4 with coordinates (xα) = (t, x, y, z) and metric

gαβdxαdxβ = dt2 − dx2 − dy2 − dz2.

Define a complex null tetrad (i.e. frame) (ga
a)a=0,··· ,3 = (la, na, ma, m̄a),

normalized so that lana = 1, mam̄a = −1, so that

(2.1) gab = 2(l(anb) − m(am̄b)),

by

la = g0
a =

1√
2
((∂t)a + (∂z)a), na = g1

a =
1√
2
((∂t)a − (∂z)a),

ma = g2
a =

1√
2
((∂x)a − i(∂y)a), m̄a = g3

a =
1√
2
((∂x)a + i(∂y)a).

Similarly, let εA
A be a dyad (i.e. frame) in C

2, with dual frame εA
A. The

complex conjugates will be denoted ε̄A′A
′
, ε̄A′A

′
and again form a basis in

another 2-dimensional complex space denoted C̄
2, and its dual. We can

identify the space of complex 2 × 2 matrices with C
2 ⊗ C̄

2. By construction,
the tensor products εA

Aε̄A′A
′
and εA

Aε̄A′A
′
forms a basis in C

2 ⊗ C̄
2 and its

dual.
Now, with xa = xaga

a, writing

(2.2) xaga
AA′ ≡

(
x0 x2

x3 x1

)
defines the soldering forms, also known as Infeld-van der Waerden symbols
ga

AA′
, (and analogously gAA′a). By a slight abuse of notation we may write

xAA′
= xa instead of xAA′

= xaga
AA′

or, dropping reference to the tetrad,
xAA′

= xaga
AA′

. In particular, we have that xa ∈ M corresponds to a 2 × 2
complex Hermitian matrix xAA′ ∈ C

2 ⊗ C̄
2. Taking the complex conjugate

of both sides of (2.2) gives

x̄a = x̄A′A = (xAA′
)∗.

where ∗ denotes Hermitian conjugation. This extends to a correspondence
C

4 ↔ C
2 ⊗ C̄

2 with complex conjugation corresponding to Hermitian
conjugation.

Note that

(2.3) det(xAA′
) = x0x1 − x2x3 = xaxa/2.



SPIN GEOMETRY AND CONSERVATION LAWS IN THE KERR SPACETIME 191

We see from the above that the group

SL(2, C) =
{

A =
(

a b
c d

)
, a, b, c, d ∈ C, ad − bc = 1

}
acts on X ∈ C

2 ⊗ C̄
2 by

X �→ AXA∗.
In view of (2.3) this exhibits SL(2, C) as a double cover of the identity
component of the Lorentz group SO0(1, 3), the group of linear isometries of
M. In particular, SL(2, C) is the spin group of M. The canonical action

(A, v) ∈ SL(2, C) × C
2 �→ Av ∈ C

2

of SL(2, C) on C
2 is the spinor representation. Elements of C

2 are called
(Weyl) spinors. The conjugate representation given by

(A, v) ∈ SL(2, C) × C
2 �→ Āv ∈ C

2

is denoted C̄
2.

Spinors4 of the form xAA′
= αAβA′

correspond to matrices of rank one,
and hence to complex null vectors. Denoting oA = ε0

A, ιA = ε1
A, we have

from the above that

(2.4) la = oAoA′
, na = ιAιA

′
, ma = oAιA

′
, m̄a = ιAoA′

This gives a correspondence between a null frame in M and a dyad in C
2.

The action of SL(2, C) on C
2 leaves invariant a complex area element,

a skew-symmetric bispinor. A unique such spinor εAB is determined by the
normalization

gab = εAB ε̄A′B′ .

The inverse εAB of εAB is defined by εABεCB = δA
C , εABεAC = δC

B. As
with gab and its inverse gab, the spin-metric εAB and its inverse εAB is used
to lower and raise spinor indices,

λB = λAεAB, λA = εABλB.

We have
εAB = oAιB − ιAoB.

In particular,

(2.5) oAιA = 1.

An element φA···DA′···D′ of
⊗k

C
2 ⊗l

C̄
2 is called a spinor of valence

(k, l). The space of totally symmetric5 spinors φA···DA′···D′ = φ(A···D)(A′···D′)
is denoted Sk,l. The spaces Sk,l for k, l non-negative integers yield all irre-
ducible representations of SL(2, C). In fact, one can decompose any spinor
into “irreducible pieces”, i.e. as a linear combination of totally symmetric
spinors in Sk,l with factors of εAB. The above mentioned correspondence

4It is conventional to refer to spin-tensors eg. of the form xAA′
or ψABA′ simply as

spinors.
5The ordering between primed and unprimed indices is irrelevent.
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between vectors and spinors extends to tensors of any type, and hence the
just mentioned decomposition of spinors into irreducible pieces carries over
to tensors as well. Examples are given by Fab = φABεA′B′ , a complex anti-
self-dual 2-form, and −Cabcd = ΨABCDεA′B′εC′D′ , a complex anti-self-dual
tensor with the symmetries of the Weyl tensor. Here, φAB and ΨABCD are
symmetric.

2.2. Spinors on spacetime. Let now (M, gab) be a Lorentizian 3+1
dimensional spin manifold with metric of signature +−−−. The spacetimes
we are interested in here are spin, in particular any orientable, globally
hyperbolic 3+1 dimensional spacetime is spin, cf. [47, page 346]. If M is
spin, then the orthonormal frame bundle SO(M) admits a lift to Spin(M),
a principal SL(2, C)-bundle. The associated bundle construction now gives
vector bundles over M corresponding to the representations of SL(2, C), in
particular we have bundles of valence (k, l) spinors with sections φA···DA′···D′ .
The Levi-Civita connection lifts to act on sections of the spinor bundles,

(2.6) ∇AA′ : ϕB···DB′···D′ → ∇AA′ϕB···DB′···D′

where we have used the tensor-spinor correspondence to replace the index a
by AA′. We shall denote the totally symmetric spinor bundles by Sk,l and
their spaces of sections by Sk,l.

The above mentioned correspondence between spinors and tensors, and
the decomposition into irreducible pieces, can be applied to the Riemann
curvature tensor. In this case, the irreducible pieces correspond to the scalar
curvature, traceless Ricci tensor, and the Weyl tensor, denoted by R, Sab,
and Cabcd, respectively. The Riemann tensor then takes the form

Rabcd = − 1
12gadgbcR + 1

12gacgbdR + 1
2gbdSac − 1

2gbcSad − 1
2gadSbc

+ 1
2gacSbd + Cabcd.(2.7)

The spinor equivalents of these tensors are

Cabcd = ΨABCD ε̄A′B′ ε̄C′D′ + Ψ̄A′B′C′D′εABεCD,(2.8a)

Sab = − 2ΦABA′B′ ,(2.8b)

R = 24Λ.(2.8c)

Projecting (2.6) on its irreducible pieces gives the following four funda-
mental operators.

Definition 2.1. The differential operators

Dk,l : Sk,l → Sk−1,l−1, Ck,l : Sk,l → Sk+1,l−1,

C †
k,l : Sk,l → Sk−1,l+1, Tk,l : Sk,l → Sk+1,l+1
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are defined as

(Dk,lϕ)A1...Ak−1
A′

1...A′
l−1 ≡ ∇BB′

ϕA1...Ak−1B
A′

1...A′
l−1B′ ,(2.9a)

(Ck,lϕ)A1...Ak+1
A′

1...A′
l−1 ≡ ∇(A1

B′
ϕA2...Ak+1)

A′
1...A′

l−1B′ ,(2.9b)

(C †
k,lϕ)A1...Ak−1

A′
1...A′

l+1 ≡ ∇B(A′
1ϕA1...Ak−1B

A′
2...A′

l+1),(2.9c)

(Tk,lϕ)A1...Ak+1
A′

1...A′
l+1 ≡ ∇(A1

(A′
1ϕA2...Ak+1)

A′
2...A′

l+1).(2.9d)

The operators are called respectively the divergence, curl, curl-dagger, and
twistor operators.

With respect to complex conjugation, the operators D ,T satisfy Dk,l =

Dl,k, Tk,l = Tl,k, while Ck,l = C †
l,k, C †

k,l = Cl,k.
Denoting the adjoint of an operator by A with respect to the bilinear

pairing

(φA1···AkA′
1···A′

l
, ψA1···AkA′

1···A′
l
) =

∫
φA1···AkA′

1···A′
l
ψA1···AkA′

1···A′
ldμ

by A†, and the adjoint with respect to the sesquilinear pairing

〈φA1···AkA′
1···A′

l
, ψA1···AlA

′
1···A′

k
〉 =

∫
φA1···AkA′

1···A′
l
ψ̄A1···AkA′

1···A′
ldμ

by A� , we have

(Dk,l)† = −Tk−1,l−1, (Tk,l)† = −Dk+1,l+1,

(Ck,l)† = C †
k+1,l−1, (C †

k,l)
† = Ck−1,l+1,

and

(Dk,l)� = −Tl−1,k−1, (Tk,l)� = −Dl+1,k+1,

(Ck,l)� = Cl−1,k+1, (C †
k,l)

� = C †
l+1,k−1.

As we will see in section 2.3.1, the kernels of C †
2s,0 and C0,2s are the

massless spin-s fields. The kernels of Tk,l, are the valence (k, l) Killing
spinors, which we will discuss further in section 2.3.2 and section 3.2. A
multitude of commutator properties of these operators can be found in [12].

2.3. GHP formalism. Given a null tetrad la, na, ma, m̄a we have a
spin dyad oA, ιA as discussed above. For a spinor ϕA···D ∈ Sk,0, it is
convenient to introduce the Newman-Penrose scalars

(2.10) ϕi = ϕA1···AiAi+1···Ak
ιA1 · · · ιAioAi+1 · · · oAk .

In particular, ΨABCD corresponds to the five complex Weyl scalars Ψi, i =
0, . . . 4. The definition ϕi extends in a natural way to the scalar components
of spinors of valence (k, l).

The normalization (2.5) is left invariant under rescalings oA → λoA,
ιA → λ−1ιA where λ is a non-vanishing complex scalar field on M. Under
such rescalings, the scalars defined by projecting on the dyad, such as ϕi
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given by (2.10) transform as sections of complex line bundles. A scalar ϕ is
said to have type {p, q} if ϕ → λpλ̄qϕ under such a rescaling. Such fields
are called properly weighted. The lift of the Levi-Civita connection ∇AA′

to these bundles gives a covariant derivative denoted Θa. Projecting on the
null tetrad la, na, ma, m̄a gives the GHP operators

� = laΘa, �′ = naΘa, � = maΘa, �′ = m̄aΘa.

The GHP operators are properly weighted, in the sense that they take
properly weighted fields to properly weighted fields, for example if ϕ has
type {p, q}, then �ϕ has type {p + 1, q + 1}. This can be seen from the fact
that la = oAōA′

has type {1, 1}. There are 12 connection coefficients in a
null frame, up to complex conjugation. Of these, 8 are properly weighted,
the GHP spin coefficients. The other connection coefficients enter in the
connection 1-form for the connection Θa.

The following formal operations take weighted quantities to weighted
quantities,
(2.11)

−(bar) : la → la, na → na, ma → m̄a, m̄a → ma, {p, q} → {q, p},
′(prime) : la → na, na → la, ma → m̄a, m̄a → ma, {p, q} → {−p, −q},

∗(star) : la → ma, na → −m̄a, ma → −la, m̄a → na, {p, q} → {p, −q}.

The properly weighted spin coefficients can be represented as

κ = mbla∇alb, σ = mbma∇alb, ρ = mbm̄a∇alb, τ = mbna∇alb,

(2.12)

together with their primes κ′, σ′, ρ′, τ ′.
A systematic application of the above formalism allows one to write

the tetrad projection of the geometric field equations in a compact form.
For example, the Maxwell equation corresponds to the four scalar equations
given by

(�−2ρ)φ1 − (�′ − τ ′)φ0 = −κφ2,(2.13)

with its primed and starred versions.
Working in a spacetime of Petrov type D gives drastic simplifications,

in view of the fact that choosing the null tedrad so that la, na are aligned
with principal null directions of the Weyl tensor (or equivalently choosing
the spin dyad so that oA, ιA are principal spinors of the Weyl spinor), as has
already been mentioned, the Weyl scalars are zero with the exception of Ψ2,
and the only non-zero spin coefficients are ρ, τ and their primed versions.

2.3.1. Massless spin-s fields. For s ∈ 1
2N, ϕA···D ∈ ker C †

2s,0 is a totally
symmetric spinor ϕA···D = ϕ(A···D) of valence (2s, 0) which solves the
massless spin-s equation

(C †
2s,0ϕ)A′B···D = 0.
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For s = 1/2, this is the Dirac-Weyl equation ∇A′AϕA = 0, for s = 1, we
have the left and right Maxwell equation ∇A′BφAB = 0 and ∇A

B′
ϕA′B′ = 0,

i.e. (C †
2,0φ)A′A = 0, (C0,2ϕ)AA′ = 0.

An important example is the Coulomb Maxwell field on Kerr,

(2.14) φAB = − 2
(r − ia cos θ)2

o(AιB)

This is a non-trivial sourceless solution of the Maxwell equation on the Kerr
background. We note that φ1 = (r − ia cos θ)−2 while φ0 = φ2 = 0.

For s > 1, the existence of a non-trivial solution to the spin-s equation
implies curvature conditions, a fact known as the Buchdahl constraint. [31]

(2.15) 0 = Ψ(A
DEF φB...C)DEF .

This is easily obtained by commuting the operators in

(2.16) 0 = (D2s−1,1C
†
2s,0φ)A...C .

For the case s = 2, the equation ∇A′DΨABCD = 0 is the Bianchi equation,
which holds for the Weyl spinor in any vacuum spacetime. Due to the
Buchdahl constraint, it holds that in any sufficiently general spacetime, a
solution of the spin-2 equation is proportional to the Weyl spinor of the
spacetime.

2.3.2. Killing spinors. Spinors κA1···Ak
A′

1···A′
k ∈ Sk,l satisfying

(Tk,lκ)A1···Ak+1
A′

1···A′
k+1 = 0,

are called Killing spinors of valence (k, l). We denote the space of Killing
spinors of valence (k, l) by KSk,l. The Killing spinor equation is an over-
determined system. The space of Killing spinors is a finite dimensional
space, and the existence of Killing spinors imposes strong restrictions on
M, see section 3.2 below. Killing spinors νAA′ ∈ KS1,1 are simply conformal
Killing vector fields, while Killing spinors κAB ∈ KS2,0 are also known as
conformal Killing-Yano forms, or twistor forms.6 Further, we mention that
Killing spinors LABA′B′ ∈ KS2,2 are traceless symmetric conformal Killing
tensors Lab, satisfying the equation

0 = ∇(aLbc) − 1
3g(ab∇dLc)d

For any κAB ∈ KS2,0 we have that LABA′B′ = κABκ̄A′B′ ∈ KS2,2. See section
3.2 below for further details.

6In the mathematics literature, Killing spinors of valence (1, 0) are known as twistor
spinors. The terms conformal Killing-Yano form or twistor form is used also for the real
2-forms corresponding to Killing spinors of valence (2, 0), as well as for forms of higher
degree and in higher dimension, in the kernel of an analogous Stein-Weiss operator.
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2.4. Space spinors. Let τa be a timelike vector, normalized so that
τaτa = 1. Define the projector

hab = gab − τaτb.

The space-spinor version of the soldering form is

ha
AB =

√
2ga

(A
A′τB)A′

This gives a correspondence which represents spatial vectors xa with respect
to τa, i.e. satisfying xaτa = 0, in terms of symmetric spinors. The Hermitian
conjugate of a spinor λA is defined as

λ̂A =
√

2τA
B′

λ̄B′ .

A spinor with even valence is called real if λ̂A1...A2s = (−1)sλA1...A2s . Real
spinors of even valence, eg. ωAB, ξABCD correspond to real tensors ωa, ξab.

A general spinor can be decomposed into space spinor terms and terms
containing τAA′

. For example,

νAA′ = τAA′ν −
√

2τB
A′νAB,(2.17)

where ν = τAA′
νAA′ , νAB =

√
2τ(A

A′
νB)A′ are a scalar and a space spinor,

respectively.
We also define the second fundamental form as

kab = ha
chb

d∇cτd.(2.18)

Applying the space spinor split to the spinor covariant derivative ∇AA′

gives
∇AA′ = τAA′∇τ −

√
2τB

A′∇AB

where now ∇τ = τAA′∇AA′ is the normal derivative and

∇AB =
√

2τ(A
A′∇B)A′

is the Sen connection.
Let kABCD denote the space spinor counterpart of the tensor kab. One

has that

kABCD =
√

2τC
A′∇ABτDA′ , kABCD = k(AB)(CD).

For the rest of this section we will assume that τa is the timelike
normal of a Cauchy surface Σ. With a slight abuse of notation we will
identify such tensors and spinors on the spacetime with their pullbacks to
the surface Σ. Let Da denote the intrisic Levi-Civita connection on Σ, and
DAB = D(AB) = σa

ABDa its spinorial counterpart. Then we see that the
Sen connection, ∇AB, and the Levi-Civita connection, DAB, are related to
each other through the spinor kABCD. For example, for a valence 1 spinor
πC one has that

∇ABπC = DABπC +
1√
2
kABC

DπD.
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On the surface Σ the Weyl spinor can be split into its electric and
magnetic parts via

EABCD ≡ 1
2

(
ΨABCD + Ψ̂ABCD

)
, BABCD ≡ i

2

(
Ψ̂ABCD − ΨABCD

)
,

so that
ΨABCD = EABCD + iBABCD.

Crucial for our applications is that the spinors EABCD and BABCD can
be expressed in terms of quantities intrinsic to the hypersurface Σ. In detail,
we have

EABCD = − Φ̃ABCD − kFH
FHk(ABCD) − r(ABCD) + k(AB

FHkCD)FH ,

(2.19a)

BABCD = − i
√

2D(A
F kBCD)F ,

(2.19b)

where rABCD is the space spinor counterpart of the Ricci tensor of the
intrinsic metric of the hypersurface Σ, and Φ̃ABCD = 2Φ(AC|B′D′|τB

B′
τD)

D′

is given by the matter content.
We can formulate the Cauchy problem for the spin-s testfield equation

in terms of space spinors as follows.7 The space spinor split of the spin-s
equation (C †

2s,0ϕ)A...EA′ = 0 takes the form

0 = 1√
2
∇τϕA...F − ∇A

GϕB...FG = 0.

If we split this equation into irreducible parts we get the first order,
symmetric hyperbolic, evolution equation

∇τϕA...F =
√

2∇(A
GϕB...F )G,

and for the cases s ≥ 1, the constraint equation

(2.20) ∇ABϕAB...F = 0.

on Σ. One can verify that this constraint automatically propagates for s = 1.
For higher spin the Buchdahl constraint gives an obstruction for propagation
of the constraint (2.20).

If we make a space spinor splitting of the valence (2, 0) Killing spinor
equation (T2,0κ)ABCA′ = 0, we get

∇τκAB = − 1√
2
∇(A

C
κB)C ,(2.21a)

∇(ABκCD) = 0.(2.21b)

Hence, also in this case we have an evolution equation and a constraint
equation. However, the integrability condition for the Killing spinor gives
an obstruction to the propagation of the constraint. The propagation of
the integrability condition is a bit more complicated, but we still have the
following result for vacuum spacetimes.

7Observe that we do not assume vacuum when we study propagation of spin-s test
fields. We only assume that the evolution of the metric is known.
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Theorem 2.2 ([19, Theorem 9], [17, Theorem 4]). Consider an initial
data set for the Einstein vacuum field equations on a Cauchy hypersurface
Σ. Let U ⊂ Σ be an open set. The development of the initial data set will
then have a Killing spinor in the domain of dependence of U if and only if

∇(ABκCD) = 0,(2.22a)

Ψ(ABC
F

κD)F = 0,(2.22b)

are satisfied on U.

Observe that these two conditions can be formulated entirely in terms of
the data for κAB, kABCD and rABCD, i.e. quantities intrinsic to the surface
Σ.

3. Spacetimes with special geometry

3.1. Algebraically special spacetimes. Let ϕA···D ∈ Sk,0. A spinor
αA is a principal spinor of ϕA···D if

ϕA···DαA · · ·αD = 0.

An application of the fundamental theorem of algebra shows that any
ϕA···D ∈ Sk,0 has exactly k principal spinors αA, . . . , δA, and hence is of
the form

ϕA···D = α(A · · · δD).

If ϕA···D ∈ Sk,0 has n distinct principal spinors α
(i)
A , repeated mi times,

then ϕA···D is said to have algebraic type {m1, . . . , mn}. Applying this to
the Weyl tensor leads to the Petrov classification, see table 1. We have the
following list of algebraic, or Petrov, types8. A principal spinor oA determines

I {1, 1, 1, 1} ΨABCD = α(AβBγCδD)
II {2, 1, 1} ΨABCD = α(AαBγCδD)
D {2, 2} ΨABCD = α(AαBβCβD)
III {3, 1} ΨABCD = α(AαBαCβD)
N {4} ΨABCD = αAαBαCαD

O {−} ΨABCD = 0
Table 1. The Petrov classification

a principal null direction la = oAōA′ . The Goldberg-Sachs theorem states
that in a vacuum spacetime, the congruence generated by a null field la
is geodetic and shear free (i.e. σ = κ = 0) if and only if la is a repeated
principal null direction of the Weyl tensor Cabcd (or equivalently oA is a
repeated principal spinor of the Weyl spinor ΨABCD).

8The Petrov classification is exclusive, so a spacetime belongs at each point to exactly
one Petrov class.
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3.1.1. Petrov type D. The vacuum type D spacetimes have been classi-
fied by Kinnersley [55], see also Edgar et al [40]. A Petrov type D spacetime
has two repeated principal spinors oA, ιA. In this case, the Weyl spinor takes
the form

ΨABCD =
1
6
Ψ2o(AoBιCιD).

In this case κAB ∈ KS2,0 is of the form κAB = −2κ1o(AιB). In particular,
the principal spinors of κAB coincide with the principal spinors of ΨABCD.
One finds, using this fact and the Bianchi identity, that in a vacuum Petrov
type D spacetime, κAB ∈ KS2,0 if and only if κ1 ∝ Ψ−1/3

2 ; hence the space
of Killing spinors is 1-dimensional. Since the Petrov classes are exclusive, we
have that Ψ2 �= 0 for a Petrov type D space. It follows from the above that
in a vacuum Petrov type D spacetime, there is a Killing spinor κAB, and
the principal spinors of κAB coincide with those of the Weyl spinor ΨABCD.

3.2. Killing spinor spacetimes. Differentiating the Killing spinor
equation (Tk,lφ)A···DA′···D′ = 0, and commuting derivatives yields an al-
gebraic relation between the curvature, Killing spinor, and their covariant
derivatives which restrict the curvature spinor, see [12, §2.3]. Explicitely, for
a valence (1, 0) Killing spinor κA, we have the condition

ΨABCDκD = 0(3.1a)

while for a valence (2, 0) Killing spinor κAB, the condition takes the form

Ψ(ABC
EκD)E = 0(3.1b)

If M admits a Killing spinor of valence (1, 0), then by (3.1a) it is of Petrov
type N or O. The vacuum spacetimes of type N admitting a Killing spinor
of valence (1, 0) have been classified by Lewandowski [56]. Similarly, by
(3.1b)we have that a spacetime admitting a valence (2, 0) Killing spinor is
of type D, N , or O.

Definition 3.1. A spacetime is said to satisfy the aligned matter con-
dition with respec to ΨABCD if

0 = Ψ(ABC
F ΦD)FA′B′ .(3.2)

If a spacetime has a valence (2, 0) Killing spinor κAB, then we say that it
satisfies the aligned matter condition with respect to κAB, if

0 = Φ(A
C |A′B′|κB)C .(3.3)

Remark 3.2. In a spacetime of Petrov type D or N with a valence (2, 0)
Killing spinor, these two conditions agree, so we can simply say the aligned
matter condition.

Remark 3.3. The aligned matter condition is interesting since a number
of properties of vacuum spacetimes generalize to spacetimes with aligned
matter. An example of a spacetime with aligned matter is the Kerr-Newman
charged, rotating, black hole solution. This metric can be obtained from
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the Kerr metric (1.1) by setting Δ = |Q|2 + a2 − 2Mr + r2, where Q is
the electromagnetic charge. Replacing Δ in (4.2) below by the just given
expression, yields a null tetrad for the Kerr-Newman metric. In geometric
units, we have

κAB = 2
3(r − ia cos θ)o(AιB),(3.4a)

φAB =
Qo(AιB)

(r − ia cos θ)2
=

√
2QκAB

9
(−(κCDκCD)

)3/2(3.4b)

ΦABA′B′ =
2|Q|2o(AιB)ō(A′ ῑB′)

Σ2 = 2φABφ̄A′B′ .(3.4c)

If (M, gab) has a valence (2, 0) Killing spinor κAB for which the aligned
matter condition holds, the 1-form

(3.5) ξAA′ = (C †
2,0κ)AA′ ,

is a Killing field, ∇(aξb) = 0. To see this, apply a T1,1 to both sides of (3.5)
and commute derivatives. This gives

(T1,1ξ)ABA′B′ = − 3Φ(A
C |A′B′|κB)C .(3.6)

and hence (T1,1ξ)AA′ = 0 in case the aligned matter condition holds. Hence
ξAA′ is a conformal Killing field. To see that ξAA′ is a Killing field, we note
that also D1,1ξ = 0 due to the fact that D1,1C

†
2,0 = 0, which follows from

the commutation formulas given in [12, Lemma 18].
Clearly the real and imaginary parts of ξa are also Killing fields. If ξa is

proportional to a real Killing field, we can without loss of generality assume
that ξa is real. In this case, the 2-form

Yab = 3
2 i(κAB ε̄A′B′ − κ̄A′B′εAB)

is a Killing-Yano tensor, ∇(aYb)c = 0, and the symmetric 2-tensor Kab =
Ya

cYcb is a Killing tensor ∇(aKbc) = 0. Further, in this case,

ζa = ξbKab

is a Killing field.

Remark 3.4. In the case of Kerr, with κAB given by (3.4a), we get

ξa = (∂t)a,

ζa = a2(∂t)a + a(∂φ)a.

Remark 3.5. 1. In the class of vacuum spacetimes of Petrov type
D, the existence of a Killing tensor excludes the Kinnersley type
III metrics [55], see [37]. The complement includes the Kerr-NUT
family of spacetimes which thus do admit a Killing tensor. Vacuum
spacetimes with κAB ∈ KS2,0 such that ξAA′ is proportional to a real
Killing field are said to be in the generalized Kerr-NUT class, see
[19, 18, 41].
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2. If M is a vacuum spacetime of Petrov type N , then a valence (2, 0)
Killing spinor factorizes as κAB = λAλB where (T1,0λ)ABA′ = 0.
This can be shown by comparing the equations for valence (2, 0)
and valence (1, 0) Killing spinors on a vacuum type N spacetime
in Newman-Penrose formalism, and making use of (3.1).

3. A Killing spinor of valence (4, 0), in a vacuum spacetime factor-
izes into factors of valence (2, 0), see [12, Theorem 8], see also Re-
mark 5.2. For Killing spinors of valence (k, l), the situation is more
complicated.

4. An example of a metric with a Killing spinor of valence (2, 2) which
does not factorize is given in [12, §6.3]. This metric also satisfies
the aligned matter condition.

4. The Kerr spacetime

The Kerr metric is algebraically special, of Petrov type D, i.e. there
are two repeated principal null directions la, na, for the Weyl tensor, see
section 3. We can without loss of generality assume that lana = 1, and
define a null tetrad by adding complex null vectors ma, m̄a normalized such
that mam̄a = −1. By the Goldberg-Sachs theorem both la, na are geodetic
and shear free, and only one of the 5 independent complex Weyl scalars is
non-zero, namely

Ψ2 = − lambm̄dncCabcd = − M

(r − ia cos θ)3
.(4.1)

An explicit choice for la, na, ma is given by the Carter tetrad [80]

la =
a(∂φ)a

√
2Δ1/2Σ1/2

+
(a2 + r2)(∂t)a

√
2Δ1/2Σ1/2

+
Δ1/2(∂r)a

√
2Σ1/2

,(4.2a)

na =
a(∂φ)a

√
2Δ1/2Σ1/2

+
(a2 + r2)(∂t)a

√
2Δ1/2Σ1/2

− Δ1/2(∂r)a

√
2Σ1/2

,(4.2b)

ma =
(∂θ)a

√
2Σ1/2

+
i csc θ(∂φ)a

√
2Σ1/2

+
ia sin θ(∂t)a

√
2Σ1/2

.(4.2c)

In view of the normalization of the tetrad, the metric takes the form
gab = 2(l(anb) − m(am̄b)). We remark that the choice of la, na to be aligned
with the principal null directions of the Weyl tensor, together with the
normalization of the tetrad fixes the tetrad up to rescalings. Taking the
point of view that the tetrad components of tensors are sections of complex
line bundles with action of the non-vanishing complex scalars corresponding
to the rescalings of the tetrad, leads to the GHP formalism [48].

The tensor

(4.3) Kab = 2Σl(anb) − r2gab

is a Killing tensor, satisfying ∇(aKbc) = 0. For a geodesic γ, the quantity
k = Kabγ̇

aγ̇b, known as Carter’s constant, is conserved. For a �= 0, the
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tensor Kab cannot be expressed as a tensor product of Killing fields [77], and
similarly Carter’s constant k cannot be expressed in terms of the constants
of the motion associated to Killing fields. In this sense Kab and k manifest a
hidden symmetry of the Kerr spacetime. As we shall see in section 5 below,
these structures are also related to symmetry operators and separability
properties, as well as conservation laws, for field equations on Kerr, and
more generally in spacetimes admitting Killing spinors satisfying certain
auxiliary conditions.

4.1. Geodesics in Kerr. The dispersive properties of fields, i.e. the
tendency of the energy density contained within any stationary region to
decrease asymptotically to the future is a crucial property for solutions of
field equations on spacetimes, and any proof of stability must exploit this
phenomenon. In view of the geometric optics approximation, the dispersive
property of fields can be seen in an analogous dispersive property of null
geodesics, i.e. the fact that null geodesics in the Kerr spacetime which do
not orbit the black hole at a fixed radius must leave any stationary region in
at least one of the past or future directions. We will here give an explanation
for this fact using tools which can readily be adapted to the case of field
equations.

Conserved quantities play a crucial role in understanding the behaviour
of geodesics as well as fields. Along any geodesic γa with velocity γ̇a in the
Kerr spacetime, there are the following conserved quantities

μ = gabγ̇
aγ̇b, e = (∂t)aγ̇a, �z = (∂φ)aγ̇a, k = Kabγ̇

aγ̇b,

which are the mass squared, the energy, the azimuthal angular momentum,
and Carter’s fourth constant respectively. The presence of the extra con-
served quantity allows one to integrate the equations of geodesic motion9.

We shall consider only null geodesics, i.e. μ = 0. In this case, it is
convenient to introduce

q = k − 2ae�z − �z
2 =

(
∂a

θ ∂b
θ +

cos2 θ

sin2 θ
∂a

φ∂b
φ + a2 sin2 θ∂a

t ∂b
t

)
γ̇aγ̇b.

Observe that q is both a conserved quantity, since it is a sum of conserved
quantities, and non-negative, since it is a sum of non-negative terms. Of
most interest to us is the equation for the r-coordinate [65],

Σ2
(

dr

dλ

)2

= − R(r; M, a; e, �z, q),(4.4)

where λ is the affine parameter of the null geodesic and

R(r; M, a; e, �z, q) = − (r2 + a2)2e2 − 4aMre�z + (Δ − a2)�z
2 + Δq.

(4.5)

9In general, the geodesic equation in a 4-dimensional stationary and axi-symmetric
spacetime cannot be integrated, and the dynamics of particles may in fact be chaotic, see
[46, 60] and references therein.
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For a null geodesic γa, we define the energy associated with a vector field X
and evaluated on a Cauchy hypersurface Σ to be

eX [γ](Σ) = gαβXαγ̇β|Σ.

Since ∇γ̇ γ̇ = 0 for a geodesic, integrating the derivative of the energy gives

eX [γ](Σ2) − eX [γ](Σ1) =
∫ λ2

λ1

(γ̇αγ̇β)∇(αXβ)dλ,(4.6)

where λi is the unique value of λ such that γ(λ) is the intersection of γ with
Σi. Formula (4.6) is particularly easy to work with, if one recalls that

∇(αXβ) = −1
2
LXgαβ .

The tensor ∇(αXβ) is commonly called the “deformation tensor”. In the
following, unless there is room for confusion, we will drop reference to γ and
Σ in referring to eX .

If one makes the (implicitly defined) change of variables dτ/dλ =
Σ−1, then equation (4.4) for the radial component becomes (dr/dτ)2 =
−R(r; M, a; e, �z, q). For fixed (M, a) and (e, �z, q), this takes the form of
the equations of motion of particle in 1-dimension with a potential. The
roots and double roots of the potential R determine the turning points
and stationary points, respectively, for the motion in the r direction. The
potential −R = ((r2 + a2)e + a�z)2 − Δ(q + �z

2 + 2ae�z) is always non-
negative at r = r+ and, unless e = 0, is positive as r → ∞, and has at most
two roots counting multiplicity.

By simply considering the turning points, one can use r and γ̇r to
construct a quantity that is increasing overall from the asymptotic past
to the asymptotic future. In fact, for a null geodesic with given parameters
(e, �z, q), one may use a simple turning point analysis to show that there is
a number ro ∈ (r+,∞) so that the quantity (r−ro)γ̇r increases overall. This
quantity corresponds to the energy eA for the vector field A = −(r − ro)∂r.
Following this idea, we may now look for a function F which will play the
role of −(r − ro), so that for A = F∂r, the energy eA is non-decreasing for
all τ and not merely non-decreasing overall. For a �= 0, both ro and F will
necessarily depend on both the Kerr parameters (M, a) and the constants
of motion (e, �z, q); the function F will also depend on r, but no other
variables.

We define A = F∂r and emphasise to the reader that this is a map
from the tangent bundle to the tangent bundle, which is not the same as
a standard vector field, which is a map from the manifold to the tangent
bundle. To derive a monotonicity formula, we wish to choose F so that eA

has a non-negative derivative. We define the covariant derivative of A by
holding the values of (e, �z, q) fixed and computing the covariant derivative
as if A were a regular vector field. Similarly, we define LAgαβ by fixing the
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values of the constants of geodesic motion. Since the constants of motion
have zero derivative along null geodesics, equation (4.6) remains valid.

The Kerr metric can be written as

Σgαβ = −Δ∂α
r ∂β

r − 1
Δ

Rαβ ,

where

Rαβ = −(r2 + a2)2∂α
t ∂β

t − 4aMr∂
(α
t ∂

β)
φ + (Δ − a2)∂α

φ∂β
φ + ΔQαβ

Qαβ = ∂α
θ ∂β

θ + cot2 θ∂α
φ∂β

φ + a2 sin2 θ∂α
t ∂β

t .

The double contraction of the tensor Rαβ with the tangent to a null geodesic
gives the potential R(r; M, a; e, �z, q) = Rαβ γ̇αγ̇β. If one ignores distracting
factors of Σ, Δ, their derivatives, and constant factors, one finds that the
most important terms in −LAgαβ γ̇αγ̇β are

−2(∂rF)γ̇rγ̇r + F(∂rR
αβ)γ̇αγ̇β = −2(∂rF)γ̇rγ̇r + F(∂rR).

The second term in this sum will be non-negative if F = ∂rR(r; M, a; e,
�z, q). Recall that the vanishing of ∂rR(r; M, a; e, �z, q) is one of the two
conditions for orbiting null geodesics. With this choice of F, the instability of
the null geodesic orbits ensures that, for these null geodesics, the coefficient
in the first term, −2(∂rF), will be positive. We can now perform the
calculations more carefully to show that this non-negativity holds for all
null geodesics.

Since, up to reparameterization, null geodesics are conformally invari-
ant, it is sufficient to work with the conformally rescaled metric Σgαβ . Fur-
thermore, since γ is a null geodesic, for any function qreduced, we may add
qreducedΣgαβ γ̇αγ̇β wherever it is convenient. Thus, the change in eA is given
as the integral of

Σγ̇αγ̇β∇(αAβ) =
(

−1
2
LA(Σgαβ) + qreducedΣgαβ

)
γ̇αγ̇β

To progress further, choices of F and qreduced must be made. For the
choices we make here, the calculations are straight forward but lengthy. Let
z and w be smooth functions of r and the Kerr parameters (M, a). Let
R̃′ denote ∂r( z

ΔR(r; M, a; e, �z, q)) and choose F = zwR̃′ and qreduced =
(1/2)(∂rz)wR̃′. In terms of these functions,

Σγ̇αγ̇β∇(αAβ) = w(R̃′)2 − z1/2Δ3/2

(
∂r

(
w

z1/2

Δ1/2 R̃′
))

γ̇2
r .(4.7)



SPIN GEOMETRY AND CONSERVATION LAWS IN THE KERR SPACETIME 205

If we now take z = z1 = Δ(r2 + a2)−2 and w = w1 = (r2 + a2)4/(3r2 − a2),
then

R̃′ = 4Ma
3r2 − a2

(r2 + a2)3
e�z − 2

r3 − 3Mr − a2r + Ma2

(r2 + a2)3
�z

2(4.8a)

− 2
r3 − 3Mr + a2r + Ma2

(r2 + a2)3
q,

∂r

(
w

z1/2

Δ1/2 R̃′
)

= −2
3r4 + a4

(3r2 − a2)2
�z

2 − 2
3r4 − 6a2r2 − a4

(3r2 − a2)2
q.(4.8b)

Since q is non-negative it follows that the right-hand side of (4.8b) is non-
positive and that the right-hand side of equation (4.7) is non-negative. Since
equation (4.7) gives the rate of change, the energy eA is monotone.

These calculations reveal useful information about the geodesic motion.
The positivity of the term on the right-hand side of (4.8b) shows that R̃′
can have at most one root, which must be simple. In turn, this shows that
R can have at most two roots, as previously asserted.

The role of orbiting geodesics can be seen in equation (4.7). Along null
geodesics for which R has a double root, the double root occurs at the root
of R̃′, so it is convenient to think of the corresponding value of r as being
ro. In particular, this root is where null geodesics orbit the black hole with
a constant value of r. The first term in (4.7) vanishes at the root of R̃′, as
it must so that eA can be constantly zero on the orbiting null geodesics.
When a = 0, the quantity R̃′ reduces to −2(r − 3M)r−4(�z

2 + q), so that
the orbits occur at r = 3M . The continuity in a of R̃′ guarantees that its
root converges to 3M as a → 0 for fixed (e, �z, q).

From the geometrics optics approximation, it is natural to imagine that
the monotone quantity constructed in this section for null geodesics might
imply the existence of monotone quantities for fields, which would imply
some form of dispersion. For the wave equation, this is true. In fact, the
above discussion, when carried over to the case of the wave equation, closely
parallels the proof of the Morawetz estimate for the wave equation given in
[14]. The quantity (γ̇αγ̇β)(∇(αXβ)) corresponds to the Morawetz density,
i.e. the divergence of the momentum corresponding to the Morawetz vector
field. The role of the conserved quantities (e, �z, q) for geodesics is played,
in the case of fields, by the energy fluxes defined via second order symmetry
operators corresponding to these conserved quantities. The fact that the
quantity R vanishes quadratically on the trapped orbits is reflected in the
Morawetz estimate for fields, by a quadratic degeneracy of the Morawetz
density at the trapped orbits.

4.2. Characterizations of Kerr. Consider a vacuum Cauchy data set
(Σ, hij , kij). We say that (Σ, hij , kij) is asymptotically flat if Σ has an end
R

3 \ B(0, R) with a coordinate system (xi) such that

(4.9) hij = δij + O∞(rα), kij = O∞(rα−1)
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for some α < −1/2. The Cauchy data set (Σ, hij , kij) is asymptotically
Schwarzschildean if

hij = −
(

1 +
2A

r

)
δij − α

r

(
2xixj

r2 − δij

)
+ o∞(r−3/2),(4.10a)

kij =
β

r2

(
2xixj

r2 − δij

)
+ o∞(r−5/2),(4.10b)

where A is a constant, and α, β are functions on S2, see [19, §6.5] for details.
Here, the symbols o∞(rα) are defined in terms of weighted Sobolev spaces,
see [19, §6.2] for details.

If (M, gab) is vacuum and contains a Cauchy surface (Σ, hij , kij) satisfy-
ing (4.9) or (4.10), then (M, gab) is asymptotically flat, respectively asymp-
totically Schwarzschildean, at spatial infinity. In this case there is a space-
time coordinate system (xα) such that gαβ is asymptotic to the Minkowski
line element with asymptotic conditions compatible with (4.10). For such
spacetimes, the ADM 4-momentum Pμ is well defined. The positive mass
theorem states that Pμ is future directed causal PμPμ ≥ 0 (where the con-
traction is in the asymptotic Minkowski line element), P 0 ≥ 0, and gives
conditions under which Pμ is strictly timelike. This holds in particular if Σ
contains an apparent horizon.

Mars [61] has given a characterization of the Kerr spacetime as an
asymptotically flat vacuum spacetime with a Killing field ξa asymptotic to
a time translation, positive mass, and an additional condition on the Killing
form FAB = (C1,1ξ)AB,

ΨABCDFCD ∝ FAB

A characterization in terms of algebraic invariants of the Weyl tensor has
been given by Ferrando and Saez [42]. The just mentioned characterizations
are in terms of spacetime quantities. The fact that Killing spinor initial data
propagates, (see Theorem 2.2) can be used to formulate a characterization
of Kerr in terms of Cauchy data, see [18, 19, 20, 17]

We here give a characterization in terms spacetimes admitting a Killing
spinor of valence (2, 0).

Theorem 4.1. Assume that (M, gab) is vacuum, asymptotically Schwarz-
schildean at spacelike infinity, and contains a Cauchy slice bounded by an
apparent horizon. Assume further (M, gab) admits a non-vanishing Killing
spinor κAB of valence (2, 0). Then (M, gab) is locally isometric to the Kerr
spacetime.

Proof. Let Pμ be the ADM 4-momentum vector for M. By the positive
mass theorem, PμPμ ≥ 0. In the case where M contains a Cauchy surface
bounded by an apparent horizon, then PμPμ > 0 by [22, Remark 11.5]10.

Recall that a spacetime with a Killing spinor of valence (2, 0) is of
Petrov type D, N , or O. From asymptotic flatness and the positive mass

10Section 11 appears only in the ArXiv version of [22].
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theorem, we have CabcdC
abcd = O(1/r6), and hence there is a neighbourhood

of spatial infinity where M is Petrov type D. It follows that near spatial
infinity, κAB = −2κ1o(AιB), with κ1 ∝ Ψ−1/3

2 = O(r). It follows from
our asymptotic conditions that the Killing field ξAA′ = (C †

2,0κ)AB is O(1)
and hence asymptotic to a translation, ξμ → Aμ as r → ∞, for some
constant vector Aμ. It follows from the discussion in [3, §4] that Aμ is
non-vanishing. Now, by [24, §III], it follows that in the case PμPμ > 0,
then Aμ is proportional to Pμ, see also [25]. We are now in the situation
considered in the work by Bäckdahl and Valiente-Kroon, see [20, Theorem
B.3], and hence we can conclude that (M, gab) is locally isometric to the
Kerr spacetime. �

Remark 4.2. 1. This result can be turned into a characterization
in terms of Cauchy data along the lines in [19] using Theorem 2.2.

2. Theorem 4.1 can be viewed as a variation on the Kerr character-
ization given in [20, Theorem B.3]. In the version given here, the
asymptotic conditions on the Killing spinor have been removed.

5. Hidden symmetries

5.1. Symmetry operators. A symmetry operator for a field equation
is an operator which takes solutions to solutions. In the paper [14], two of
the authors have given a proof of a Morawetz estimate for the scalar wave
equation in the Kerr spacetime, which makes use of higher-order conserved
currents constructed from the scalar field, using second order symmetry op-
erators related to the Carter constant. In order to generalize this approach
to higher spin fields, it is important to gain an understanding of the sym-
metry operators for this case. In the paper [12] we have given a complete
characterization of those spacetimes admitting symmetry operators of sec-
ond order for the field equations of spins 0, 1/2, 1, i.e. the conformal wave
equation, the Dirac-Weyl equation and the Maxwell equation, respectively,
and given the general form of the symmetry operators, up to equivalence. In
order to simplify the presentation here, we shall discuss only the spin-1 case,
and restrict to spacetimes admitting a valence (2, 0) Killing spinor κAB.

There are two spin-1 equations (left and right) depending on the helicity
of the spinor. These are

(C †
2,0φ)AA′ = 0 (left), and (C0,2ϕ)AA′ = 0 (right)

The real Maxwell equation ∇aFab = 0, ∇[aFbc] = 0 for a real two form
Fab = F[ab] is equivalent to either the right or the left Maxwell equations.
Henceforth we will always assume that φAB solves the left Maxwell equation.

Given a conformal Killing vector νAA′
, we follow [7, Equations (2) and

(15)], see also [6], and define a conformally weighted Lie derivative acting
on a symmetric valence (2s, 0) spinor field as follows
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Definition 5.1. For νAA′ ∈ ker T1,1, and ϕA1...A2s ∈ S2s,0, we define

L̂νϕA1...A2s ≡ νBB′∇BB′ϕA1...A2s + sϕB(A2...A2s
∇A1)B′νBB′

+ 1−s
4 ϕA1...A2s∇CC′

νCC′ .(5.1)

If νa is a conformal Killing field, then (C †
2,0L̂νϕ)AA′ = Lν(C

†
2,0ϕ)AA′ . It

follows that the first order operator ϕ → L̂νϕ defines a symmetry operator
of first order, which is also of the first kind. For the equations of spins 0 and
1, the only first order symmetry operators are given by conformal Killing
fields. For the spin-1 equation, we may have symmetry operators of the first
kind, taking left fields to left, i.e. kerC † �→ ker C † and of the second kind,
taking left fields to right, kerC † �→ ker C . Observe that symmetry operators
of the first kind are linear symmetry operators in the usual sense, while
symmetry operators of the second kind followed by complex conjugation
gives anti-linear symmetry operators in the usual sense.

Recall that the Kerr spacetime admits a constant of motion for geodesics
k which is not reducible to the conserved quantities defined in terms of
Killing fields, but rather is defined in terms of a Killing tensor. Similarly, in
a spacetime with Killing spinors, the geometric field equations may admit
symmetry operators of order greater than one, not expressible in terms of
the symmetry operators defined in terms of (conformal) Killing fields. We
refer to such symmetry operators as “hidden symmetries”.

In general, the existence of symmetry operators of the second order
implies the existence of Killing spinors (of valence (2, 2) for the conformal
wave equation and for Maxwell symmetry operators of the first kind for
Maxwell, or (4, 0) for Maxwell symmetry operators for of the second kind)
satisfying certain auxiliary conditions. The conditions given in [12] are are
valid in arbitrary 4-dimensional spacetimes, with no additional conditions
on the curvature. As shown in [12], the existence of a valence (2, 0) Killing
spinor is a sufficient condition for the existence of second order symmetry
operators for the spin-s equations, for s = 0, 1/2, 1.

Remark 5.2. 1. If κAB is a Killing spinor of valence (2, 0), then
LABA′B′ = κABκ̄A′B′ and LABCD = κ(AB)κCD

are Killing spinors of
valence (2, 2) and (4, 0) satisfying the auxiliary conditions given in
[12].

2. In the case of aligned matter with respect to ΨABCD, any valence
(4, 0) Killing spinor LABCD factorizes, i.e. LABCD = κ(AB)κCD

for some Killing spinor κAB of valence (2, 0) [12, Theorem 8]. An
example of a spacetime with aligned matter which admits a valence
(2, 2) Killing spinor that does not factorize is given in [12, §6.3], see
also [63].

Proposition 5.3 ([9]). 1. The general symmetry operator of the
first kind for the Maxwell field, of order at most two, is of the form

χAB = QφAB + (C1,1A)AB,(5.2)



SPIN GEOMETRY AND CONSERVATION LAWS IN THE KERR SPACETIME 209

where φAB is a Maxwell field, and AAA′ is a linear concomitant11 of

first order, such that AAA′ ∈ ker C †
1,1 and Q ∈ ker T0,0, i.e. locally

constant.
2. The general symmetry operator of the second kind for the Maxwell

field is of the form

ωA′B′ = (C †
1,1B)A′B′ ,(5.3)

where BAA′ is a first order linear concomitant of φAB such that
BAA′ ∈ ker C1,1.

Remark 5.4. The operators C †
1,1 and C1,1 are the adjoints of the left and

right Maxwell operators C †
2,0 and C0,2. As we shall see in section 5.2 below,

conserved currents for the Maxwell field can be characterized in terms of
solutions of the adjoint Maxwell equations

(C †
1,1A)A′B′ = 0(5.4a)

(C1,1B)AB = 0(5.4b)

Definition 5.5. Given a spinor κAB ∈ S2,0 we define the operators
E2,0 : S2,0 → S2,0 and Ē0,2 : S0,2 → S0,2 by

(E2,0ϕ)AB = − 2κ(A
CϕB)C ,(5.5a)

(Ē0,2φ)A′B′ = − 2κ̄(A′C
′
φB′)C′ .(5.5b)

Let κi be the Newman-Penrose scalars for κAB. If κAB is of algebraic
type {1, 1} then κ0 = κ2 = 0, in which case κAB = −2κ1o(AιB). A direct
calculations gives the following result.

Lemma 5.6. Let κAB ∈ S2,0 and assume that κAB is of algebraic type
{1, 1}. Then the operators E2,0, Ē2,0 remove the middle component and rescale
the extreme components as

(E2,0ϕ)0 = − 2κ1ϕ0, (E2,0ϕ)1 = 0, (E2,0ϕ)2 = 2κ1ϕ2,(5.6a)

(Ē0,2φ)0′ = − 2κ̄1′φ0′ , (Ē0,2φ)1′ = 0, (Ē0,2φ)2′ = 2κ̄1′φ2′ .(5.6b)

Remark 5.7. If κAB is a Killing spinor in a Petrov type D spacetime,
then κAB is of algebraic type {1, 1}.

Definition 5.8. Define the first order 1-form linear concomitants
AAA′ , BAA′ by

AAA′ [κAB, φAB] = − 1
3(E2,0φ)AB(C0,2κ̄)B

A′ + κ̄A′B′(C †
2,0E2,0φ)A

B′
,(5.7a)

AAA′ [νAA′ , φAB] = νBA′φA
B(5.7b)

BAA′ [κAB, φAB] = κAB(C †
2,0E2,0φ)B

A′ + 1
3(E2,0φ)AB(C †

2,0κ)B
A′ ,(5.7c)

11A concomitant is a covariant, local partial differential operator.
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When there is no room for confusion, we suppress the arguments, and
write simply AAA′ , BAA′ . The following result shows that AAA′ , BAA′ solves
the adjoint Maxwell equations, provided φAB solves the Maxwell equation.

Lemma 5.9 ([12, §7]). Assume that κAB is a Killing spinor of valence
(2, 0), that νAA′ is a conformal Killing field, and that φAB is a Maxwell
field. Then, with AAA′ , BAA′ given by (5.7) it holds that AAA′ [κAB, φAB]
and AAA′ [νAA′ , φAB] satisfy (C †

1,1A)A′B′ = 0, and BAA′ [κAB, φAB] satisfies

(C1,1B)AB = 0.

Remark 5.10. Proposition 5.3 together with Lemma 5.9 show that the
existence of a valence (2, 0) Killing spinor implies that there are non-trivial
second order symmetry operators of the first and second kind for the Maxwell
equation.

5.2. Conserved currents. Recall that the symmetric stress energy
tensor for the Maxwell field is Tab = φABφ̄A′B′ . Since the Maxwell equation is
conformally invariant, we have T a

a = 0. If φAB solves the Maxwell equation,
then Tab is conserved, ∇aTab = 0, and hence if νa is a conformal Killing field,
then the current Ja = Tabν

b is conserved, ∇aJa = 0. Lie differentiating with
respect to conformal Killing fields and using a polarized form of the stress
energy tensor yields conserved currents which are higher-order in derivatives
of the field. However, as discovered by Lipkin [58] and Fushchich and Nikitin,
see [45] and references therein, there are nontrivial currents for the Maxwell
field on Minkowski space which are not given by this construction. The
conserved currents Ja for the Maxwell and more generally spin-s fields,
s ∈ 1

2N, on Minkowski space, have been classified by Anco and Pohjanpelto,
see [6] and references therein12. The conserved currents Ja considered in the
just cited works are bilinear or quadratic concomitants of the Maxwell field,
of any finite order. The order of such a current is defined to be the sum of
the order of derivatives on each factor. Thus, for example, the order of the
current φABχ̄A′B′ξBB′

, where χAB is given by (5.2), is two.

Definition 5.11. A current J̃AA′
is called trivial if it is of the form

J̃AA′
= (C †

2,0S)AA′ + (C0,2T )AA′

for some symmetric spinor fields SAB and TA′B′.

In this case, (∗J)abc is an exact 3-form, so the flux through a hypersurface
of a trivial current J̃AA′

is given by a pure boundary term. We shall
consider equivalence classes of currents up to trivial currents. Two currents
JAA′

, KAA′
are said to be equivalent if JAA′ − KAA′

is a trivial current. In
this case we write JAA′ ∼ KAA′

.
A current which is invariant under φAB �→ iφAB is said to be of even

parity, while a current which changes sign under this substitution is said to

12 The problem of classifying conserved currents for the Maxwell field on the Kerr
spacetime has been mentioned but not addressed by Anco et al, cf. [8, p. 55] and [5, §VII].
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be of odd parity, often termed chiral. A current which is a concomitant of
φAB can be written as a sum of terms with even or odd parity.

The structure of conserved currents of up to second order for the Maxwell
field on a general spacetime has recently been determined by the authors,
see [9]. As shown in [5], see also [6], the conserved currents for the Maxwell
field on Minkowski space are all generated from solutions of the adjoint
equation. The same statement holds for currents up to second order in a
general spacetime [9], and it seems reasonable to conjecture that this holds
for currents of arbitrary order.

Lemma 5.12 ([9]). Let φAB be a Maxwell field, i.e. φAB ∈ ker C †
2,0 and

assume that JAA′ ∈ ker D1,1 is a conserved concomitant of φAB of quadratic
type.

1. If JAA′ has even parity, then

JAA′ ∼ AA
B′ φ̄A′B′

,

where AAA′ is a linear concomitant of φAB satisfying the left adjoint

Maxwell equation (C †
1,1A)A′B′ = 0.

2. If JAA′ has odd parity (chiral), then

JAA′ ∼ BB
A′

φAB + B̃B′Aφ̄A′B′
,

where BAA′, B̃AA′ are linear concomitants of φAB satisfying the right

adjoint Maxwell equation (C1,1B)A′B′ = 0, (C1,1B̃)A′B′ = 0.

Definition 5.13. The stress, zilch and chiral currents are defined in
terms of the spinors AAA′, BAA′ by

stress: ΨSAA′ =
1
2
(ĀA′BφA

B + AAB′ φ̄A′B
′
)(5.8a)

zilch: ΨZAA′ =
1
2
i(ĀA′BφA

B − AAB′ φ̄A′B
′
)(5.8b)

chiral: ΨCAA′ =
1
2
(BBA′φA

B + B̄B′Aφ̄A′B
′
)(5.8c)

Of these, the currents ΨSAA′ , ΨZAA′ have even parity, while ΨCAA′ has
odd parity.

Example 5.14. 1. Let AAA′ [νAA′ , φAB] = νBA′φA
B where νAA′ is

a real Killing vector. The current ΨSAA′ = TAA′BB′νBB′
is the

standard stress-energy current associated with νa.
2. If we have a symmetry operator φAB → χAB, the concomitant

AAA′ [νAA′ , χAB] is again a solution of the adjoint equation (5.4a),
and hence the current

ΨSAA′ = 1
2νBB′

χABφ̄A′B′ + 1
2νBB′

φABχ̄A′B′ ,

is also conserved. The current ΨSAA′ is in this case derived from the
polarized form of the standard Maxwell stress energy tensor.
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Lemma 5.15 ([9, 11]). Let κAB ∈ KS2,0, and assume that the aligned
matter condition holds with respect to κAB. Define

ξAA′ ≡ (C †
2,0κ)AA′ ,(5.9)

ηAA′ ≡ (C †
2,0E2,0φ)AA′ .(5.10)

Let

J1
AA′ = 1

2ξBB′
φ̄A′B′χAB + 1

2ξBB′
φABχ̄A′B′ ,(5.11)

J2
AA′ = VABA′B′ξBB′

,(5.12)

where χAB is given by (5.2) with AAA′ given by (5.7a) and Q = 0, and

VABA′B′ ≡ 1
2ηAB′ η̄A′B + 1

2ηBA′ η̄B′A + 1
3(E2,0φ)AB(L̂ξ̄φ̄)A′B′

+ 1
3(Ē2,0φ̄)A′B′(L̂ξφ)AB.(5.13)

Then both currents J1
AA′ and J2

AA′ are conserved. If we furthermore assume
that ξAA′ is real, one can show that the currents are equivalent, up to sign.
In detail we get

−J1
AA′ = J2

AA′ + (C0,2S̄)AA′ + (C †
2,0S)AA′ ,

where

SAB = 1
2 η̄A′CξD

A′κ(ABφCD) − 1
6ξCA′

(Ē0,2φ̄)A′B
′
ξ(A|B′|φB)C

− 1
6ξCA′

φ̄A′B
′
(E2,0φ)(A|C|ξB)B′ − 1

4 κ̄B′C′
φ̄B′C′η(A

A′
ξB)A′

− 1
12κCDφCDη̄A′

(AξB)A′ − 3
8ξCA′

η̄A′(A(E2,0φ)BC).(5.14)

6. Conservation laws for the Teukolsky system

In this section we will analyze the tensor Vab defined by (5.13) and
show that in a Petrov type D spacetime with aligned matter condition it
is conserved, and depends only on the extreme components φ0, φ2 of the
Maxwell field.

Recall that the operators C and C † are adjoints, and hence their
composition yields a wave operator. We have the identities (valid in a general
spacetime)

�ϕAB + 8ΛϕAB − 2ΨABCDϕCD = − 2(C1,1C
†
2,0ϕ)AB,(6.1a)

�ϕABCD − 6Ψ(AB
FHϕCD)FH = − 2(C3,1C

†
4,0ϕ)ABCD.(6.1b)

Here ϕAB and ϕABCD are elements of S2,0 and S4,0, respectively. This means
that the the Maxwell equation (C †

2,0φ)AA′ = 0 in a vacuum spacetime implies
the wave equation

�φAB − 2ΨABCDφCD = 0.(6.2)
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Similarly, in a vacuum spacetime, the Bianchi system (C †
4,0Ψ)A′ABC = 0

holds for the Weyl spinor, and we arrive at the Penrose wave equation

�ΨABCD − 6Ψ(AB
FHΨCD)FH = 0(6.3)

Restricting to a vacuum type D spacetime, and projecting the Maxwell
wave equation (6.2) and the linearized Penrose wave equation (6.3) on the
principal spin dyad, one obtains wave equations for the extreme Maxwell
scalars φ0, φ2 and the extreme linearized Weyl scalars Ψ̇0, Ψ̇4.

Letting ψ(s) denote φ0, Ψ
−2/3
2 φ2 for s = 1,−1, respectively, and

Ψ̇0, Ψ
−4/3
2 Ψ̇4 for s = 2,−2, respectively, one finds that these fields satisfy

the system

(6.4) [�T 2s − 4s2Ψ2]ψ(s) = 0,

see [2, §3], where, in GHP notation

(6.5) �T p = 2(�−pρ − ρ̄)(�′ − ρ′) − 2(� −pτ − τ̄ ′)(�′ − τ ′) + (3p − 2)Ψ2.

The equation (6.4) was first derived by Teukolsky [75, 76] for massless
spin-s fields and linearized gravity on Kerr, and is referred to as the
Teukolsky Master Equation (TME). It was shown by Ryan [71] that the
tetrad projection of the linearized Penrose wave equation yields the TME,
see also Bini et al [28, 29]. In the Kerr case, the TME admits a commuting
symmetry operator, and hence allows separation of variables. The TME
applies to fields of all half-integer spins between 0 and 2.

As discussed above, the TME is a wave equation for the weighted field
ψ(s). It is derived from the spin-s field equation by applying a first order
operator and hence is valid for the extreme scalar components of the field,
rescaled as explained above. It is important to emphasize that there is a loss
of information in deriving the TME from the spin-s equation. For example, if
we consider two independent solutions of the TME with spin weights s = ±1,
these will not in general be components of a single Maxwell field. If indeed
this is the case, the Teukolsky-Starobinsky identities (TSI) (also referred to
as Teukolsky-Press relations), see [51] and references therein, hold.

Although the TSI are usually discussed in terms of separated forms of
ψ(s), we are here interested in the TSI as differential relations between the
scalars extreme spin weights. From this point of view, the TSI expresses
the fact that the Debye potential construction starting from the different
Maxwell scalars for a given Maxwell field φAB yields scalars of the the
same Maxwell field. The equations for the Maxwell scalars in terms of
Debye potentials can be found in Newman-Penrose notation in [36]. These
expressions correspond to the components of a symmetry operator of the
second kind. See [1, §5.4.2] for further discussion, where also the GHP
version of the formulas can be found. An analogous situation obtains for
the case of linearized gravity, see [59]. In this case, the TSI are of fourth
order. Thus, for a Maxwell field, or a solution of the linearized Einstein
equations on a Kerr, or more generally a vacuum type D background, the
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pair of Newman-Penrose scalars of extreme spin weights for the field satisfy
a system of differential equations consisting of both the TME and the TSI.

Although the TME is derived from an equation governed by a variational
principle, it has been argued by Anco, see the discussion in [69], that the
Teukolsky system admits no real variational principle, due to the fact that
the operator �T p defined by the above fails to be formally self-adjoint. Hence,
the issue of real conserved currents for the Teukolsky system, which appear
to be necessary for estimates of the solutions, appears to be open. However,
as we shall demonstrate here, if we consider the combined TME and TSI in
the spin-1 or Maxwell case, as a system of equations for both of the extreme
Maxwell scalars φ0, φ2, this system does admit both a conserved current and
a conserved stress-energy like tensor.

6.1. A new conserved tensor for Maxwell. We have seen in the
last section that polarized stress current −ΨSAA′ [ξAA′ , χAB] with ξa given
by (5.9) and φAB → χAB the second order symmetry operator of the first
kind given by (5.2) with Q = 0 and AAA′ given by (5.7a), is equivalent to
a current Vabξ

b defined in terms of the symmetric tensor Vab. In fact, as we
shall now show, Vab is itself conserved,

∇aVab = 0,

and hence may be viewed as a higher-order stress-energy tensor for the
Maxwell field. The tensor Vab has several important properties. First of all,
it depends only on the extreme Maxwell scalars φ0, φ2, and hence cancels
the static Coulomb Maxwell field (2.14) on Kerr which has only the middle
scalar non-vanishing. In order to analyze Vab, we first collect some properties
of the one-form ηAA′ as defined in (5.10).

Lemma 6.1 ([11, Lemma 2.4]). Let κAB ∈ KS2,0, and assume the aligned
matter condition holds with respect to κAB. Let ξAA′ be given by (5.9).
Further, let φAB be a Maxwell field, and let ηAA′ be given by (5.10). Then
we have

(D1,1η) = 0,(6.6a)

(C1,1η)AB = 2
3(L̂ξφ)AB,(6.6b)

(C †
1,1η)A′B′ = 0,(6.6c)

ηAA′ξAA′
= κAB(L̂ξφ)AB.(6.6d)

Corollary 6.2. Assume M is of Petrov type D. Then Vab depends only
on the extreme components of φAB.

Proof. We first note that by Lemma 5.6, if M is of type D, then
(E2,0φ)AB depends only on the extreme components of φAB, and hence the
same property holds for ηAA′ . Next, recall that if M is of Petrov type D, κAB
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is of algebraic type {1, 1} and hence κABκAB �= 0 provided κAB is nonzero.
A calculation using (6.6d) and commutation of L̂ξ and E2,0 now gives

(L̂ξφ)AB =
ηFF ′

κABξFF ′

(κABκAB)
− (E2,0L̂ξE2,0φ)AB

2(κABκAB)
.(6.7)

This completes the proof. �

Lemma 6.3. Assume that ϕAB ∈ S2,0 satisfies the system

(C †
1,1C

†
2,0ϕ)A′B′ = 0,(6.8a)

(C1,1C
†
2,0ϕ)AB = �AB,(6.8b)

for some �AB ∈ S2,0. Let

ςAA′ = (C †
2,0ϕ)AA′ ,(6.9)

and define the symmetric tensor XABA′B′ by

XABA′B′ = 1
2 ςAB′ ς̄A′B + 1

2 ςBA′ ς̄B′A + 1
2�̄A′B′ϕAB + 1

2�ABϕ̄A′B′ .(6.10)

Then

∇BB′
XABA′B′ = 0.(6.11)

Proof. By applying the operator C †
2,0 to (6.8b), commuting derivatives

and using (6.8a), we get the integrability condition (C †
2,0�)AA′ = 0. With

ςAA′ given by (6.9), we directly get

(D1,1ς) = 0, (C †
1,1ς)A′B′ = 0, (C1,1ς)AB = �AB.(6.12)

The equations above give (6.11). �

Remark 6.4. 1. No assumptions were made on the spacetime ge-
ometry in Lemma 6.3.

2. The tensor

UAA′BB′ = 1
2 ςAB′ ς̄A′B + 1

2 ςBA′ ς̄B′A

is a super-energy tensor for the 1-form field ςAA′, and hence satisfies
the dominant energy condition, cf. [26, 72]. In particular, with
ςAA′ = ∇AA′ψ for some scalar ψ, then UAA′BB′ is just the standard
stress-energy tensor for the scalar wave equation,

Uab = ∇(aψ∇b)ψ̄ − 1
2
∇cψ∇cψ̄gab

3. Similarly to the wave equation stress energy, Vab has non-vanishing
trace, V a

a = Ua
a = −ς̄aςa.

We now have the following result.
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Theorem 6.5 ([11, Theorem 1.1]). Assume that (M, gab) admits a va-
lence (2, 0) Killing spinor κAB and assume that the aligned matter condition
holds with respect to κAB. Let φAB be a solution of the Maxwell equation.
Then the tensor VABA′B′ given by (5.13) is conserved, i.e.

∇AA′
VABA′B′ = 0

If in addition (M, gab) is of Petrov type D, then Vab depends only on the
extreme components of φAB.

Remark 6.6. 1. A first order conserved tensor for the Maxwell
field has previously been found by Bergquist et al. [27]. As they
showed, the tensor Bab = ∇cφAB∇cφ̄A′B′ is conserved in a Ricci
flat spacetime. However, one may demonstrate that in the Kerr
spacetime, the current Babξ

b is trivial in the sense of Definition
5.11. On the other hand the current Vabξ

b is non-trivial in the Kerr
spacetime. See [9].

2. The correction terms in Vab involving (E2,0φ)AB(L̂ξφ̄)A′B′ and its
complex conjugate are of first order in derivatives of the Maxwell
field, which opens the possibility of dominating these using a Cauchy-
Schwarz argument involving Vab and the zeroth order Maxwell stress
energy Tab = φABφ̄A′B′.

The properties of Vab discussed above indicate that Vab, rather than the
Maxwell stress-energy Tab may be used in proving dispersive estimates for
the Maxwell field. In fact, it is immediately clear that the Maxwell stress
energy cannot be used directly to prove dispersive estimates since it does
not vanish for the Coulomb field on the Kerr spacetime.

6.2. Teukolsky equation and conservation laws.

Lemma 6.7. Assume that (M, gab) is a type D spacetime which admits
a valence (2, 0) Killing spinor κAB and assume that the aligned matter
condition holds with respect to κAB. Let φAB be a solution of the Maxwell
equation. Then φAB is a solution of the system of equations

(C †
1,1C

†
2,0E2,0φ)A′B′ = 0(6.13a)

(E2,0C1,1C
†
2,0E2,0φ)AB = 2

3(L̂ξE2,0φ)AB.(6.13b)

Furthermore, this system is equivalent to (6.8a), (6.8b), with ϕAB =
(E2,0φ)AB and �AB = 2

3(L̂ξφ)AB.

Proof. The equations (6.13a) and (6.13b) follows from equations
(6.6b), (6.6c) and the fact that E2,0 and L̂ξ commutes. The equation (6.6b),
can be split into two parts, one where E2,0 is applied, and the other when
the equation is contracted with κAB. The latter part can be seen by differ-
entiating κAB(E2,0φ)AB = 0 twice. �
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In order to compare equations (6.13) with the scalar forms of the TME
and TSI, we now project these equations on the dyad. A calculation gives
the following result.

Lemma 6.8. 1. The GHP form of equation (6.13a) is

0 = − 2ρ �ϕ2 + � �ϕ2 − 2τ ′ �′ ϕ0 + �′ �′ ϕ0,(6.14a)

0 = − τ �ϕ2 + 1
2τ ′ �ϕ2 + 1

2 � �ϕ2 + 1
2 τ̄ �′ ϕ0

− τ ′ �′ ϕ0 + 1
2 �′ �′ ϕ0 − ρ � ϕ2 + 1

2 ρ̄ � ϕ2

+ 1
2 � �ϕ2 − ρ′ �′ ϕ0 + 1

2ρ′ �′ ϕ0 + 1
2 �′ �′ ϕ0,(6.14b)

0 = − 2ρ′ �′ ϕ0 + �′ �′ ϕ0 − 2τ � ϕ2 + � � ϕ2,(6.14c)

where ϕ0 = −2κ1φ0 and ϕ2 = 2κ1φ2.

2. The GHP form of equation (6.13b) is

0 = − � �′ ϕ0 + ρ �′ ϕ0 + ρ̄ �′ ϕ0 + � �′ ϕ0 − τ �′ ϕ0 − τ ′ �′ ϕ0,(6.15a)

0 = − ρ′ �ϕ2 − ρ′ �ϕ2 + �′ �ϕ2 + τ̄ � ϕ2 + τ ′ � ϕ2 − �′ � ϕ2.(6.15b)

Remark 6.9. We see from 6.8 that equation (6.13a) is equivalent to the
TSI for Maxwell given in scalar form in [1, §5.4.2], while equation (6.13b)
is equivalent to the scalar form of TME for Maxwell given in (6.4) above.

7. A Morawetz estimate for the Maxwell field on Schwarzschild

As discussed in section 4.1, one may construct a suitable function of
the conserved quantities for null geodesics in the Kerr spacetime which is
monotone along the geodesic flow. This function may be viewed as arising
from a generalized vector field on phase space. The monotonicity property
implies, as discussed there, that non-trapped null geodesics disperse, in the
sense that they leave any stationary region in the Kerr space time. As
mentioned in section 4.1, in view of the geometric optics approximation for
the wave equation, such a monotonicity property for null geodesics reflects
the tendency for waves in the Kerr spacetime to disperse.

At the level of the wave equation, the analogue of the just mentioned
monotonicity estimate is called the Morawetz estimate. For the wave equa-
tion ∇a∇aψ = 0, a Morawetz estimate provides a current Ja defined in terms
of ψ and some of its derivatives, with the property that ∇aJa has suitable
positivity properties, and that the flux of Ja can be controlled by a suitable
energy defined in terms of the field.

Let ψ be a solution of the wave equation ∇a∇aψ = 0. The stress-energy
tensor Tab for ψ is

Tab = ∇(aψ∇b)ψ̄ − 1
2
∇cψ∇cψ̄gab

Define the current Ja by

Ja = TabA
b +

1
2
q(ψ̄∇aψ + ψ∇aψ̄) − 1

2
∇aqψψ̄.
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We have

(7.1) ∇aJa = Tab∇(aAb) + q∇cψ∇cψ̄ − 1
2
(∇c∇cq)ψψ̄.

We now specialize to Minkowski space, with the line element gabdxadxb =
dt2 − dr2 − dθ2 − r2 sin2 θdφ2. Let

E(τ) =
∫

{t=τ}
Tttd

3x

be the energy of the field at time τ , where Ttt is the energy density. The
energy is conserved, so that E(t) is independent of t.

Setting Aa = r(∂r)a, we have

(7.2) ∇(aAb) = gab − (∂t)a(∂t)b.

With q = 1, we get

∇aJa = −Ttt.

With the above choices, the bulk term ∇aJa has a sign. This method can
be used to prove dispersion for solutions of the wave equation. In particular,
by introducing suitable cutoffs, one finds that for any R0 > 0, there is a
constant C, so that∫ t1

t0

∫
|r|≤R0

Tttd
3xdt ≤ C(E(t0) + E(t1)) ≤ 2CE(t0),(7.3)

see [64]. The local energy,
∫
|r|≤R0

Tttd
3x, is a function of time. By (7.3)

it is integrable in t, and hence it must decay to zero as t → ∞, at least
sequentially. This shows that the field disperses. Estimates of this type are
called Morawetz or integrated local energy decay estimates.

For the Maxwell field on Minkowski space, we have

Tab = φABφ̄A′B′

with T a
a = 0. Setting Ja = TabA

b, with Aa = r(∂r)a we have

∇aJa = −Ttt

which again gives local energy decay for the Maxwell field on Minkowski
space.

For the wave equation on Schwarzschild we can choose

Aa =
(r − 3M)(r − 2M)

3r2 (∂r)a,(7.4a)

q =
6M2 − 7Mr + 2r2

6r3 .(7.4b)

This gives
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−∇(aAb) = − Mgab(r − 3M)
3r3 +

M(r − 2M)2(∂r)a(∂r)b

r4

+
(r − 3M)2((∂θ)a(∂θ)b + csc2 θ(∂φ)a(∂φ)b)

3r5 ,(7.5a)

−∇aJ
a =

M |∂rψ|2(r − 2M)2

r4 +

(|∂θψ|2 + |∂φψ|2 csc2 θ
)
(r − 3M)2

3r5

+
M |ψ|2(54M2 − 46Mr + 9r2)

6r6 .(7.5b)

Here, Aa was chosen so that the last two terms (7.5a) have good signs. The
form of q given here was chosen to eliminate the |∂tψ|2 term in (7.5b). The
first terms in (7.5b) are clearly non-negative, while the last is of lower-order
and can be estimated using a Hardy estimate [14]. The effect of trapping in
Schwarzschild at r = 3M is manifested in the fact that the angular derivative
term vanishes at r = 3M .

In the case of the wave equation on Kerr, the above argument using a
classical vector field cannot work due to the complicated structure of the
trapping. However, making use of higher-order currents constructed using
second order symmetry operators for the wave equation, and a generalized
Morawetz vector field analogous to the vector field Aa as discussed in section
4.1. This approach has been carried out in detail in [14].

If we apply the same idea for the Maxwell field on Schwarzschild, there is
no reason to expect that local energy decay should hold, in view of the fact
that the Coulomb solution is a time-independent solution of the Maxwell
equation which does not disperse. In fact, with

Aa = F(r)
(
1 − 2M

r

)
(∂r)a,(7.6)

−φABφ̄A′B′
(T1,1P )ABA′B′ =

(|φ00|2 + |φ11|2
)(r − 2M)

2r
F′(r)

− |φ01|2
(
r(r − 2M)F′(r) − 2F(r)(r − 3M)

)
r2 .(7.7)

If F′ is chosen to be positive, then the coefficient of the extreme components
in (7.7) is positive. However, at r = 3M , the coefficient of the middle
component is necessarily of the opposite sign. It is possible to show that
no choice of F will give positive coefficients for all components in (7.7).

The dominant energy condition, that TabV
aW b ≥ 0 for all causal vectors

V a, W a is a common and important condition on stress energy tensors.
In Riemannian geometry, a natural condition on a symmetric 2-tensor
Tab would be non-negativity, i.e. the condition that for all Xa, one has
TabX

aXb ≥ 0.
However, in order to prove dispersive estimates for null geodesics and

the wave equation, the dominant energy condition on its own is not sufficient
and non-negativity cannot be expected for stress energy tensors. Instead, a
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useful condition to consider is non-negativity modulo trace terms, i.e. the
condition that for every Xa there is a q such that TabX

aXb + qT a
a ≥ 0.

For null geodesics and the wave equation, the tensors γ̇aγ̇b and ∇au∇bu =
Tab+T γ

γgab are both non-negative, so γ̇aγ̇b and Tab are non-negative modulo
trace terms.

From equation (7.5a), we see that −∇(aAb) is of the form f1g
ab +

f2∂
a
r ∂b

r + f3∂
a
θ ∂b

θ + f4∂
a
φ∂b

φ where f2, f3 and f4 are non-negative functions.
That is −∇(aAb) is a sum of a multiple of the metric plus a sum of
terms of the form of a non-negative coefficient times a vector tensored
with itself. Thus, from the non-negativity modulo trace terms, for null
geodesics and the wave equation respectively, there are functions q such
that γ̇aγ̇b∇aAb = γ̇aγ̇b∇aAb + qgabγ̇aγ̇b ≤ 0 and Tab∇aAb + qT a

a ≤ 0. For
null geodesics, since gabγ̇aγ̇b = 0, the q term can be ignored. For the wave
equation, one can use the terms involving q in equations (7.1), to cancel the
T a

a term in ∇aJa. For the wave equation, this gives non-negativity for the
first-order terms in −∇aJa, and one can then hope to use a Hardy estimate
to control the zeroth order terms.

If we now consider the Maxwell equation, we have the fact that the
Maxwell stress energy tensor is traceless, T a

a = 0 and does not satisfy the
non-negativity condition. Therefore it also does not satisfy the condition of
non-negativity modulo trace. This appears to be the fundamental underlying
obstruction to proving a Morawetz estimate using Tab. This can be seen as
a manifestation of the fact that the Coloumb solution does not disperse.

Attempts to overcome this problem were a major motivating factor in
our efforts to understand conserved currents and tensors for the Maxwell
equation, other than the ones derived from Tab. As we shall see, an important
observation is that the tensor

UAA′BB′ = 1
2ηAB′ η̄A′B + 1

2ηBA′ η̄B′A

which is the leading order part of the higher-order conserved tensor Vab

satisfies the non-negativity modulo trace terms condition.

7.1. Morawetz for Maxwell using Vab. In this section we shall
apply the first order stress energy tensor Vab given in (5.13) to construct
a Morawetz estimate for the Maxwell field on the Schwarzschild spacetime.
In order to do this, we shall use a radial Morawetz vector field AAA′

as
explained above for the wave equation, together with lower-order correction
terms with a scalar field q analogous to the one used there. However, due to
the cross terms in Vab involving (E2,0φ)ABLξφA′B′ and its complex conjugate,
additional correction terms are needed. These are given below and involve
the vector field BAA′

and the scalar function s.
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Define

JAA′
= ABB′

V A
B

A′
B′ + 1

2qη̄A′
B(E2,0φ)AB

+ 1
2qηA

B′(Ē0,2φ̄)A′B′
+ 1

2(E2,0φ)AB(Ē0,2φ̄)A′B′
(T0,0q)BB′

+ BBB′(E2,0φ)AB(Ē0,2φ̄)A′B′
+ sWξAA′

,(7.8a)

where

W = ((E2,0φ)AC(Ē0,2φ̄)A′B′κB
C + (E2,0φ)AB(Ē0,2φ̄)A′C′ κ̄B′C

′
)ξAA′

ξBB′
.

(7.8b)

From this, we get

ξAA′
(T0,0W )AA′ = OABA′B′(Ē0,2φ̄)A′B′

ΞAB + OA′B′AB(E2,0φ)ABΞA′B′
,

(7.9)

where

ΞAB = 1
2LξφAB − Lξφ

CDκACκBD

(κABκAB)
,(7.10a)

OAB
A′B′

= (κABκAB)ξ(A
(A′

ξB)
B′) + 2κA

C κ̄A′
C′ξ(B

(B′
ξC)

C′).(7.10b)

We remark that ΞAB contains only the extreme components of LξφAB and
has vanishing middle component. The divergence of the current, ∇aJa =
D1,1J , is given by

−(D1,1J) = − V ABA′B′
(T1,1A)ABA′B′ + 1

4ηBB′
η̄B′B(D1,1A) − qηBB′

η̄B′B

− BBB′
η̄B′A(E2,0φ)BA

− BBB′
ηB

A′
(Ē0,2φ̄)B′A′ − sξBB′

(T0,0W )BB′

− (E2,0φ)BA(Ē0,2φ̄)B′A′
(T1,1B)BAB′A′

− 1
2(E2,0φ)BA(Ē0,2φ̄)B′A′

(T1,1T0,0q)BAB′A′

− WξBB′
(T0,0s)BB′ .(7.11)

The fields AAA′
, BAA′

, q and s can then be engineered to obtain a sign
for the integrated divergence of JAA′

. The fields AAA′
and q are chosen so

that the terms involving AAA′
, q give a non-negative quadratic form in ηAA′ .

Terms analogous to those generated by the cross terms in Vab of the form
(E2,0φ)ABLξφ̄A′B′ are not present in the case of the wave equation. These
are controlled using the scalar s. Here it is important to note that the terms
involve ΞAB can be related to those involving LξφAB using the identity

LξφAB =
ηCA′

κABξCA′

(κABκAB)
+ ΞAB.

This is related to the fact that the middle component of LξφAB can be
written in terms of ηAA′ , cf. (6.6d). The vector BAA′

together with a
subsequent modification of q allows us to write a quadratic form not in ηAA′ ,
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but in ηAA′ plus lower-order terms. This allows us to modify the remaining
term quadratic in (E2,0φ)AB so it can be estimated with a Hardy estimate
on the sphere.

Recall that the Schwarzschild metric is the Kerr metric with a = 0.
Choosing the principal tetrad in Schwarzschild given by specializing (4.2) to
a = 0, gives in a standard manner an orthonormal frame,

TAA′ ≡ 1√
2
(oAōA′

+ ιAῑA
′
), XAA′ ≡ 1√

2
(ōA′

ιA + oAῑA
′
),

Y AA′ ≡ i√
2
(−ōA′

ιA + oAῑA
′
), ZAA′ ≡ 1√

2
(oAōA′ − ιAῑA

′
).

Choosing the vector fields AAA′
, BAA′

to be radial vector fields, with radial
coefficients, and the scalars q, s as radial functions, where s is in addition
chosen to eliminate cross terms involving LξφABΞA′B′ , the divergence D1,1J
can be written in the form

−(D1,1J) = ζ|TAA′
ηAA′ |2 + ζ|ZAA′

ηAA′ |2 + E[ηAA′ + βZC
A′(E2,0φ)AC ]

+ ςTAA′
TBB′

(E2,0φ)AB(Ē0,2φ̄)A′B′ ,(7.12)

where ζ, β and ς are radial functions completely determined AAA′
, BAA′

, q,
and where E is a quadratic expression in its argument of the form

E[νAA′ ] = A νAA′
ν̄B′BT(A|A′|TB)B′ + BνAA′

ν̄B′BZ(A|A′|ZB)B′ + C νAA′
ν̄A′A,

(7.13)

where the coefficients depend on the choice of AAA′
, BAA′

, q. We note that
the first two terms in (7.12) are non-negative provided ζ is non-negative.
Further, it is possible to arrange that E given by (7.13) is non-negative, at
the same time as ζ is non-negative.

In Schwarzschild, the vector TAA′
is timelike outside the horizon, and

hence due to the fact that the tensor (E2,0φ)AB(Ē0,2φ̄)A′B′ has the dominant
energy condition, the expression TAA′

TBB′
(E2,0φ)AB(Ē0,2φ̄)A′B′ is positive

outside the horizon. However, it is not possible to choose the coefficient
function ς to be non-negative everywhere. In order to overcome this obstacle,
we use a Hardy estimate on the sphere of radius r,∫

Sr

|TAA′
ηAA′ |2 + |ZAA′

ηAA′ |2dμSr

≥ 2
r2

∫
Sr

TAA′
TBB′

(E2,0φ)AB(Ē0,2φ̄)A′B′dμSr .(7.14)

This estimate, together with the positivity of the first two terms in (7.12)
allows us to to compensate for the negative part in the last term, after
integration.

Putting these ideas together, it is possible to prove a Morawetz estimate
for the Maxwell equation on the Schwarzschild spacetime. In the paper [13]
we give a complete proof of a Morawetz estimate using a slight modification
of Vab which is not conserved, but which simpler and still gives a conserved
energy current in the Schwarzschild case.
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If we consider the Maxwell field on the Kerr spacetime, the approach
based on Vab outlined above generalizes. However, as in the case of the wave
equation on Kerr, one is faced with difficulties caused by the complicated
trapping. As for the wave equation, one expects that higher-order currents
constructed using the second order symmetry operators for the Maxwell
field discussed in this paper, cf. [12], can be applied along the lines of [14]
to prove a Morawetz estimate for the Maxwell field also in this case, see
[10].
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