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Decay of linear waves on black hole space-times

Daniel Tataru

Abstract. The aim of these notes is to describe recent and ongoing
work of the author and collaborators on decay estimates for linear waves
on black hole space times. For comparison purposes, our discussion
will also include nontrapping asymptotically flat space-times. We will
consider the scalar wave equation and perturbations thereof, as well as
the corresponding Maxwell system.

1. Introduction

These notes are concerned with the long time dynamics for solutions to
wave equations on asymptotically flat space times. Precisely, we are inter-
ested in several classes of decay estimates for linear waves. The motivation
for studying such decay estimates, however, comes in good part from non-
linear wave equations.

While for comparison purposes we do consider nontrapping space-times,
the main focus of this work is on black hole space-times, where trapping
necessarily occurs. Such space-times are of interest for instance from the
perspective of the black hole stability problem.

There are several types of decay estimates we consider, which will be
described in detail in the sequel. The first bounds we consider are not
decay bounds, but simply uniform energy bounds; these are crucial to our
discussion, but not a-priori true. In terms of decay bounds, we are interested
in the following:

• Local energy decay estimates. These measure the L2 averaged
energy decay in compact sets. These are invariant with respect
to time translation, but also, in some sense, fit well with the
asymptotically flat space-times.
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• Strichartz estimates. These are averaged Lp
t L

q
x decay bounds, which

are invariant with respect to both space and time translation, and
are useful in the study of nonlinear problems with Hs type data.

• Pointwise decay estimates. These correspond to problems with lo-
calized initial data; they fit better the nonlinear stability problems.

One key point in our results is that the local energy decay estimates are
the fundamental ones. Indeed, two of the results we have so far assert that,
under suitable asymptotic flatness assumptions, local energy decay implies
both Strichartz estimates and pointwise decay. Because of this, most of these
notes are devoted to explaining the local energy decay results and ideas.

Concerning the class of wave operators we work with, an important
distinction we make is between the self-adjoint and nonself-adjoint cases. For
the most part, our results apply to the self-adjoint case. Some of the ideas
carry over to small nonself-adjoint perturbations of self-adjoint problems.
However, so far there is no complete approach that applies to the general
nonself-adjoint case.

A second distinction we make is between stationary and nonstationary
metrics. In the stationary case, one can characterize the decay properties in
terms of (i) spectral assumptions and (ii) non-trapping type assumptions.
For the non-stationary case, however, we can only treat small perturbations
of stationary metrics, for the most part.

Further, in the black hole case, another important feature turns out to be
whether there exists a second, rotational group of symmetries, associated to
a second, space-like Killing vector field. This is particularly important since
a large class of relativistic stationary black hole space times necessarily have
this property.

For the remainder of the introduction we define the classes of space-times
we work with, and then discuss some of their geometric properties. Then we
describe all types of decay estimates listed above in the context of the scalar
wave equation. In the following sections of the paper we present some of
the results we have so far, as well as outline some open problems. The last
section is devoted to similar questions in the context of the Maxwell system.

1.1. Asymptotically flat nontrapping space-times. Here we work
in R

3+1, where we have a Lorentzian metric (i.e. with signature (3, 1)):

g = gαβdxαdxβ.

The simplest such example is the Minkowski metric,

m = −dt2 + dx2.

We will assume that the time slice foliation {t = const} is space-like,
and denote by N = ∇t its time-like normal. Concerning the metric g we will
always assume the following conditions:

(NT1) g is asymptotically flat,

g = m + O(r−ε), ∇g = O(r−ε−1), ∇2g = O(r−ε−2).
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(NT2) g is nontrapping, i.e, all null geodesics escape to infinity.

In terms of the time dependence of g, for some of our results we will
make no assumption, but for some we will restrict ourselves to either

(S) Stationary, where we have a time-like Killing field X = ∂t, so that
∇Xg = 0 or

(SV) Slowly varying, where X = ∂t is an almost Killing field, ∇Xg =
O(ε) with ε small enough.

We remark that all the assumptions here are time reversible.

1.2. Asymptotically flat black hole space-times (e.g. Schwarzs-
child, Kerr). The set-up here is as follows. We work in a domain

R
3+1 ⊃ M = {r > r0} × R.

As above, g is a Lorentzian metric in M, and we have the space-like foliation
{t = const}, with time-like forward normal N = ∇t.

Concerning the metric g, we begin with the following conditions:

(BH1) g is asymptotically flat, as above.

(BH2) The inner cylinder C = {r = r0} is space-like, with forward
outgoing time-like normal N0 = −∇r.

These two assumptions imply that there must be both trapped null
geodesics, as well as null geodesics which exit on the inner cylinder C. In
particular we can define the black hole BH as the ( spatially compact)
region of points which cannot escape to infinity along null geodesics. Its
outer boundary is called the event horizon H. We denote by T the set of
trapped null geodesics which stay away from the black hole. Concerning
these geometric objects, we will make the following assumptions:

(BH-3) (Red Shift) H is smooth and non-degenerate, i.e. in suitable coordi-
nates we have H = {r = rH}, with null forward normal L = −∇r,
tangent to H, and satisfying the non-degeneracy condition

∇LL = σL, σ ≥ c > 0.

(BH-4) (Hyperbolic trapping) The trapped set T is hyperbolic. It also has
positive energy, i.e. X = ∂t is forward time-like on T .

These two assumptions are not satisfied by all black hole space-times,
but are satisfied by most relativistic space times. They insure that the two
regions H and T are at least micro-locally separated, and that the red shift
property holds uniformly.

As before, we will consider in greater detail the stationary case and the
slowly varying case. In addition, we will further consider the case when there
is an additional one dimensional group of symmetries:
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(BH-5) The space (M, g) admits a second one parameter family of sym-
metries, generated by a space-like Killing vector field Ω = (x1∂2 −
x2∂1), commuting with X.

Examples of BH space times satisfying all the assumptions above are
the Schwarzschild and Kerr space-times, and indeed much of the research
in this field has been devoted to the study of these special cases. Our goal
here is to develop some general principles instead.

1.3. Scalar wave equations. Our main target here is the inhomoge-
neous wave equation:

(1.1) �gu = f, u[0] := (u(0), Nu(0)) = (u0, u1),

where

�g =
1√
g
∂αgαβ√

g ∂β.

More generally, we will add a real magnetic field A and potential V , and
consider the evolution

(1.2) Pu = f, u[0] := (u(0), Nu(0)) = (u0, u1).

where
P = �g,A + V

with

�g,A =
1√
g
(∂α + iAα)gαβ√

g(∂β + iAβ)

As defined, the above operator is self-adjoint. In the non-self-adjoint case
we will include small nonzero imaginary components in A and V .

To the wave operator �g we associate the energy momentum tensor:

Tαβ = ∂αu∂βu − 1
2
gαβ∂νu∂νu.

This is divergence free when �gu = 0,

∇αTαβ = 0,

and has a natural extension to the general self-adjoint case.
When X is a Killing vector field, this yields

∇α(TαβXβ) = 0,

which gives a conserved energy,

E(u(t)) =
∫

T (X, N) dx.

This is a positive definite energy for the equation (1.1) in the nontrapping
case, when X is time-like. However for the more general problem (1.2), as
well as in the black hole case it is merely positive definite outside a compact
set.
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1.4. Energy and resolvent bounds. For the scalar wave equation
we define the energy norm as

‖u[t]‖2
Ḣ1×L2 = ‖∇x,tu(t)‖2

L2 .

Definition 1.1. We say that uniform energy estimates hold for the
homogeneous scalar wave equation (1.2) if we have the uniform bound

(1.3) ‖∇u(t)‖L2 � ‖∇u(s)‖L2 , t > s.

We note that by the Duhamel formula one can also rewrite this as a
bound for the inhomogeneous problem,

(1.4) ‖∇u(t)‖L2 � ‖∇u(s)‖L2 + ‖f‖L1[s,t]L2
x
, t > s.

We also remark that, in general, by local theory we only have exponential
energy bounds,

‖∇u(t)‖L2 � eC(t−s)‖∇u(s)‖L2 , t > s.

For various purposes, it is also useful to track the time evolution of the
higher Sobolev norms, namely

‖∇u(t)‖Hk , k > 0.

Definition 1.2. We say that higher Sobolev energy bounds hold for the
homogeneous scalar wave equation (1.2) if for k ≥ 1 we have the uniform
bound

(1.5) ‖∇u(t)‖Hk � ‖∇u(s)‖Hk t > s.

For NT or stationary BH metrics and operators P , the transition be-
tween energy bounds and higher energy bounds is relatively straightforward:

Theorem 1.3. Let (M, g) be either a NT or a stationary BH space-time
as above. If uniform energy estimates hold for the wave equation (1.2) then
higher Sobolev uniform energy estimates hold as well.

In the stationary NT case this is easily proved by commuting with ∂t and
some elliptic analysis. In the nonstationary NT case, the argument requires
essentially the full high frequency part of the local energy decay proof.

In the stationary BH case, the elliptic analysis works only partially, and
is supplemented by a microlocal high frequency bound near the horizon H,
which takes advantage of the red shift assumptions (BH-3) and (BH-4).
These guarantee that any null geodesic on which ∂t is not timelike spends
only a limited amount of time in the exterior region and away from the
horizon H and the null rays generated by L along H. The rays near H and
L, on the other hand, are red shifted, so they correspond to exponential
energy decay and exponential frequency decay.

We further remark that in some sense one would hope that the BH
result extends to the slowly varying nonstationary case. However, this does
not appear to work unless some additional conditions are imposed near the
trapped set T .
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In the stationary case, one can further interpret the energy estimates
in terms of resolvent bounds. To define the resolvent take a time Fourier
transform in (1.2):

Pu = f ←→ Pτ û(τ) = f̂(τ) ←→ û(τ) = Rτ f̂(τ)

where the resolvent
Rτ : L2 → Ḣ1

is defined whenever Pτ is invertible. A-priori we have exponential bounds

‖∇u(t)‖L2 � eMt‖∇u(0)‖L2 ,

so the resolvent is well defined and holomorphic at least for 	τ < −M . In
effect the operators Pτ are uniformly elliptic away from the real axis, so
by Fredholm theory the resolvent is well defined as a meromorphic function
away from the real axis.

The uniform energy bounds are related to the resolvent as follows:

Proposition 1.4. Uniform energy estimates are equivalent to the resol-
vent bound1

‖Rτ‖L2→Ḣ1 � |	τ |−1, 	τ < 0.

It is immediately apparent that an obstruction to having uniform energy
bounds is the presence of negative eigenfunctions, which solve

Pτuτ = 0, 	τ < 0

By standard elliptic analysis, such eigenfunctions uτ must decay rapidly
(indeed exponentially) at infinity.

They correspond to exponentially growing solutions to (1.2). We remark
that the assumption that P is self-adjoint does not guarantee that there
are no eigenvalues outside of the continuous spectrum (i.e. the real axis ).
However, it does guarantee that these eigenvalues are isolated and away from
the real axis, and also that they come in conjugate pairs.

A less obvious obstruction to uniform energy bounds is given by reso-
nances on the real axis, which correspond to polynomially growing modes for
the wave evolution. These are discussed in greater detail in the next section,
with a special emphasis on the zero modes.

1.5. Local energy decay. The simplest local energy norm is defined
at the L2 level as

‖u‖LE = sup
k

‖〈r〉− 1
2 u‖L2(R×Ak), Ak = {〈x〉 ≈ 2k}.

We also define its H1 counterpart,

‖u‖LE1 = ‖∇u‖LE + ‖〈r〉−1u‖LE

1This applies to our problem but not in general; compare with the Hille-Yosida
theorem.
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as well as the dual norm

‖f‖LE∗ =
∑
k≥0

‖〈r〉 1
2 f‖L2(R×Ak).

Then the sharp formulation of local energy decay in the NT case is as
follows:

Definition 1.5. We say that local energy decay holds for the wave
equation (1.2) in the NT case if

(1.6) ‖u‖LE1 + ‖∇u‖L∞L2 � ‖f‖LE∗+L1L2 + ‖∇u(0)‖L2

The heuristics for local energy decay are quite simple, at least in the
nontrapping case. As waves propagate with unit speed, they will spend a
time of at most 2k in the dyadic cylinder Ak. Thus their integrated local
energy in Ak is controlled by their energy with an integration factor of 2k.

Just as in the case of the uniform energy bounds, we also can look at
higher local energy decay bounds. For this we define the higher local energy
norms as

‖u‖LEk =
∑

|α|≤k

‖∂αu‖LE

and similarly LEk,1 and LE∗,k. Then we have

Definition 1.6. We say that higher local energy decay bounds hold for
the equation (1.2) in the NT case if

‖u‖LEk,1 + ‖∇u‖L∞Hk � ‖f‖LE∗,k+L1Hk + ‖∇u(0)‖Hk .

The same local energy norms cannot be used ad literam in the BH case,
due to trapping. Heuristically, one can have high frequency waves which stay
for an arbitrarily long time near the trapped set. The redeeming feature
here is the hyperbolicity of the trapped set. By the uncertainty principle, a
frequency λ wave must spread spatially at least λ−1. But by hyperbolicity,
most of the λ−1 spatial ball will have spread out when propagated along the
Hamilton flow for a time about log λ (Ehrenfest time). This hints that there
is at most a | log λ| 1

2 loss in the local energy decay bounds, occurring only
on the trapped set.

This leads us to introduce a modified local energy norm LET which has
log losses on the trapped set, and its dual LE∗

T . Thus we have the inclusions

LE1 ⊂ LE1
T , LE∗

T ⊂ LE∗,

with equality away from T . The modified local energy decay is as follows

‖u‖LE1
T

+ ‖∇u‖L∞L2 � ‖f‖LE∗
T +L1L2 + ‖∇u(0)‖L2 .

The transition to higher local energy decay bounds follows the same
rules as for the uniform energy estimates:

Theorem 1.7. Let (M, g) be either a NT or a stationary BH space-
time as above. If local energy decay estimates hold for the wave equation
(1.2) then higher local energy decay estimates hold as well.
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Again, the result extends to slowly varying BH space times once some
care is taken with the trapped set T .

We next consider the interpretation of local energy decay in terms of
resolvent bounds in the stationary case. For that we use the norms LE , LE1

and LE∗ obtained by freezing time in the definition of LE, LE1 respectively
LE∗. We will also use the subscript zero, as in LE0, for the closure of C∞

0
in the corresponding space.

Proposition 1.8. Consider either a stationary NT or BH space-time.
Then local energy decay is equivalent to the uniform resolvent bound

‖Rτf‖LE1
T

� ‖f‖LE∗
T

, 	τ ≤ 0.

Here one needs to carefully define the resolvent on the real line as the
limit when the real line is approached from the lower half-space (this is often
called the limiting absorption principle). Here it is natural to distinguish two
cases:

(i) τ �= 0. Then u = Rτf must satisfy the outgoing radiation condition
(or the Sommerfeld radiation condition)

r− 1
2 (∂r − iτ)u ∈ L2

Thus, in addition to complex eigenvalues, one is led to introduce the
embedded resonances as an obstruction to local energy decay:

Definition 1.9. A function u ∈ LE1 is an embedded resonance associ-
ated to the real time frequency τ ∈ R\{0} if it satisfies the outgoing radiation
condition above and Pτu = 0.

Less obviously, embedded resonances also cause uniform energy bounds
to fail. It is not too difficult to show that in polar coordinates the embedded
resonances must have the asymptotics

u(r, ω) = v(ω)r−1eiτr + O(r−2), v �= 0

(ii) (ii) τ = 0. There the outgoing radiation condition is meaningless.
These have simpler asymptotics

u(r, ω) = vr−1 + O(r−2)

and a symbol type behavior at infinity. Unlike the case of embedded reso-
nances, here we can also have v = 0, in which case these become eigenvalues.
The zero resonances play a special role in our story. Their absence is equiv-
alent to a bound of the form

(1.7) ‖u‖LE1 � ‖P0u‖LE∗

which we will refer to in the sequel as the zero energy resolvent bound.
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1.6. Strichartz estimates (averaged decay). The Strichartz esti-
mates are averaged decay bounds, where the decay is measured using mixed
norm spaces LpLq = Lp

t L
q
x, with an associated Sobolev index ρ. The range

of indices depends on the decay properties of the fundamental solution for
the wave equation, and thus on the dimension; in 3 + 1 dimensions it is

2 < p ≤ ∞,
1
p

+
1
q

≤ 1
2
, ρ =

3
2

− 1
p

− 3
q
.

Then we have

Definition 1.10. Strichartz estimates hold for the equation (1.2) if

(1.8) ‖|Dx|−ρ∇u‖LpLq + ‖∇u‖L∞L2 � ‖f‖|Dx|−ρLp′
Lq′+L1L2 + ‖u[0]‖Ḣ1×L2

for all admissible indices2 (p, q).

Standard methods show that at least in the NT case it suffices to have
the estimates for the homogeneous wave equation (1.2)

‖|Dx|−ρ∇u‖LpLq � ‖∇u0‖L2 + ‖u1‖L2 ,

or equivalently to have an inhomogeneous estimate for the forward inhomo-
geneous problem Pu = f (i.e. with vanishing data at t = −∞):

‖∇u‖L∞L2 � ‖|Dx|ρf‖Lp′
Lq′ .

Strichartz estimates have been originally proved in the constant coeffi-
cient case, and then locally in time for variable coefficients.

1.7. Pointwise decay estimates (Price’s Law). The context here
is that we start with regular initial data, which is further localized in a
compact set. Then the question we ask is what is the pointwise decay rate
at infinity for solutions to the homogeneous wave equation.

The context we choose here is the one which agrees with most relativistic
space-times, where the asymptotic flatness condition takes the more precise
form:

g = m + Orad(r−1) + O(r−2), V = Orad(r−3) + O(r−4).

Here the Orad(r−1) corresponds to the relativistic mass term, while the
O(r−2) nonradial term is associated to the angular momentum.

For the initial data we use the Hm.k spaces, which require m derivatives
and k moments to be in L2.

The expected decay rate for linear waves along the light cone is still t−1.
The interesting question is what is the decay rate inside the cone, and in
particular, within a compact set. The latter case was the subject of some
heuristic computations in the 70’s, due to a physicist, Robert Price. His
computed t−3 decay rate [25] was later referred to as Price’s law. It is also
interesting to fill in the cone and understand the proper decay rates in all

2Here and below one can use different pairs (p, q) on the left and on the right in the
inequality,
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directions. The correct rates, which we will still refer to as Price’s law for
simplicity, are as follows:

|u(t, x)| � 1
〈t〉〈t − |x|〉2 ‖∇u(0)‖Hm,k ,

|∂tu(t, x)| � 1
〈t〉〈t − |x|〉3 ‖∇u(0)‖Hm,k ,

|∂xu(t, x)| � 1
〈r〉〈t − |x|〉3 ‖∇u(0)‖Hm,k .

(1.9)

Remark 1.11. When true, the above decay rates are sharp due to the
contribution of the leading order radial terms at spatial infinity in the metric
or potential. Interestingly enough, this has nothing to do with the local
properties of the metric.

1.8. Local Energy Decay as the core decay bound. While each of
the three types of decay estimates may be more useful for certain purposes,
it is the local energy decay that has emerged in the work of the author and
collaborators as the fundamental estimate. Precisely, one has the following
heuristic relations between local energy decay and the other types of decay
estimates:

Principle 1.12. Let (M, g) be either a NT or a BH space-time. If
uniform energy estimates and local energy decay hold for the wave equation
(1.2), then Strichartz estimates hold as well.

The ideas that lead to this, as well as more precise results of this type
are described in Section 2.

Principle 1.13. Let (M, g) be either a NT or a BH space-time. If
uniform energy estimates and local energy decay hold for the wave equation
(1.2), then pointwise decay bounds (Price’s law) hold as well.

Results of this type, together with the appropriate assumptions, are
described in Section 3.

2. Strichartz estimates

The starting point in our description of the results concerning Strichartz
estimates for the wave equation on asymptotically flat space-times is the
article [20], where only NT space-times are considered. The first main result
in [20] is as follows:

Theorem 2.14. Let (M, g) be an asymptotically flat space-time which
is a small perturbation of the Minkowski space-time. Then both local energy
decay and Strichartz estimates hold in (M, g).

The local energy decay part of this result is not so difficult, and is proved
using exactly the same multiplier method as in the case of the Minkowski
space-time. The interesting part is the assertion on Strichartz estimates.
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This is in turn a consequence of a result which gives the existence of an
outgoing parametrix for the wave equation. Unlike the more classical concept
of a forward parametrix, an outgoing parametrix corresponds to solving the
wave equation partially forward in time and partially backward, so that all
waves move in an outward direction. The parametrix construction, in turn,
is a special case of a more general result proved earlier by the author in [27].

One useful observation in [20] is that one can put together the local
energy bounds and the Strichartz estimates to obtain the more complete
bound

||Dx|−ρ∇u‖LpLq + ‖∇u‖L∞L2 + ‖u‖LE1

� ‖f‖|Dx|−ρLp′Lq′+L1L2+LE∗ + ‖∇u(0)‖L2 .(2.10)

This comes in very handy in the proof of the next result in [20]:

Theorem 2.15. Let (M, g) be an asymptotically flat NT space-time.
Assume that uniform energy bounds and local energy decay hold in (M, g).
Then the Strichartz estimates hold as well.

This is essentially an immediate consequence of the estimate (2.10).
To see this, suppose at first that f ∈ L1L2 + LE∗. One then splits the
space R

3+1 in two parts, namely the inside of a fixed large cylinder Cint

and its exterior Cext. Correspondingly, the solution u to (1.2) is split into
two parts u = uint + uext, using an appropriate partition of unit. By
hypothesis u satisfies the local energy decay bounds. Using these to estimate
the truncation errors in L2, the problem is reduced to proving the LpLq

Strichartz estimates separately for uint and uext.
In the exterior domain Cext one can view the metric as a small pertur-

bation of the Minkowski metric, and use the bound (2.10). In the interior
domain, on the other hand, one can use the local energy decay bound (which
is now a global H1 bound on u) to further localize on the unit time scale,
retaining l2 summability in this decomposition. Then it suffices to apply the
local Strichartz estimates to each of these pieces.

To work with f ∈ |Dx|−ρLp′
Lq′

, it suffices to produce an approximate
solution v so that Pv − f ∈ LE∗. But this can be done separately in
the exterior region and in unit time slices of the interior region, using
Theorem 2.14 for the former and again the local Strichartz estimates for
the latter.

The same method applies in the black hole setting, provided one has
only hyperbolic trapping and a good result near the trapped set T :

Theorem 2.16. Let (M, g) be an asymptotically flat BH space-time.
Assume that uniform energy bounds and local energy decay hold in (M, g).
Then the Strichartz estimates hold as well.

The proof of this theorem still uses the local energy decay to split the
space, but this time into four regions:

(i) An inner region, near and inside the event horizon.
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(ii) A small neighbourhood of the trapped region.
(iii) A spatially bounded large exterior nontrapping annulus
(iv) An exterior region.
Theorem 2.14 and the bound (2.10) applies in the exterior region, while

in regions (i) and (iii) one can further truncate to the unit temporal scale, as
above. That leaves us with the near-trapped region. A direct bound for that
was obtained in [19] and [30] in special cases (Schwarzschild/Kerr), but one
can also treat the general case using (variations3 of) the results in [7].

3. Pointwise decay (Price’s law)

Our goal here is to work with either NT or BH asymptotically flat metrics
(M, g) and associated magnetic potentials A and potentials V , and seek to
understand the decay rates at infinity for linear waves for regular localized
initial data.

A-priori there are two factors which may influence these local decay
rates, namely the local behavior and the asymptotic behavior at infinity.
However, these two factors turn out to play very different roles. The local
behavior will be the more fundamental factor, which decides whether there
is decay or not; we measure this in terms of the uniform energy bounds and
local energy decay. On the other hand, once we know that there is decay,
the actual decay rate will depend on the asymptotic behavior at infinity.

For this reason, we need to be more precise about the asymptotics at
infinity. We describe this using vector fields as follows:

T = {∂t, ∂i}, (translations)

Ω = {xi∂j − xj∂i}, (rotations)

S = t∂t + x∂x. (scaling)

We set Z = {T, Ω, S}. Then we define the classes SZ(rk) of functions in
R

+ × R
3 by

a ∈ SZ(rk) ⇐⇒ |Zja(t, x)| ≤ cj〈r〉k, j ≥ 0.

By SZ
rad(r

k) we denote spherically symmetric functions in SZ(rk).
Then for the purpose of this section we consider metrics g which are of

the following form:
g = m + gsr + glr,

where m stands for the Minkowski metric, glr is a stationary long range
spherically symmetric component, with SZ

rad(r
−1) coefficients, of the form

glr = glr,tt(r)dt2 + glr,tr(r)dtdr + glr,rr(r)dr2 + glr,ωω(r)r2dω2

and gsr is a short range component of the form

gsr = gsr,ttdt2 + 2gsr,tidtdxi + gsr,ijdxidxj

3As the results in [7] are only for a corresponding Schrödinger equation with time
independent coefficients, there is still some work to be done here.
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with SZ(r−2) coefficients.
Similarly, respecting the same scaling as above, we consider magnetic

potentials A of the form

A = Asr + Alr, Alr ∈ Srad(r−2), Asr ∈ S(r−3)

as well as potentials V of the form

V = Vsr + Vlr, Vlr ∈ Srad(r−3), Vsr ∈ S(r−4)

This definition is motivated by standard classes of relativistic metrics,
e.g. Schwarzschild and Kerr. In turn, this leads to the decay rates prescribed
by Price’s law. We remark that choosing different polynomial decay rates
for the coefficients will lead in a straightforward manner to adjusted decay
rates.

Finally, our decay results are expressed relative to the distance to the
Minkowski null cone {t = |x|}. This can only be done provided that there is
a null cone associated to the metric g which is within O(1) of the Minkowski
null cone. However, in general the long range component of the metric
produces a logarithmic correction to the cone. This issue can be remedied
via a change of coordinates which roughly corresponds to using Regge-
Wheeler coordinates in Schwarzschild/Kerr near spatial infinity, see [28].
This corresponds to choosing glr of the form glr = glr,ωω(r)r2dω2.

Now we can state our main result, which is a more accurate version of
Principle 1.13 stated earlier:

Theorem 3.17. Let (M, g) be either an NT or BH asymptotically flat
space time and potentials A, V so that g, A, V have size and regularity as
described above. Assume that uniform energy bounds and local energy decay
hold for the scalar wave equation (1.2). Then the pointwise decay bounds
(1.9) hold (Price’s Law).

This result was first established by the author in [28] for stationary
space-times, and then by the author and collaborators in the nonstationary
case in [22]. These results follow a large body of work where partial results
were obtained in various BH space-times, see e.g. [1, 6, 11, 13] and
references therein. However, in all prior works the issues of obtaining various
weighted energy estimates and that of obtaining pointwise decay rates were
combined. It was only in [28] and [22] that the relation between these two
concepts became clear. We also refer the reader to [14] for a more complete
analysis in the Schwarzschild space-time.

The common feature of the two papers is the use of the above vector
fields in combination with energy estimates and Klainerman-Sobolev type
embeddings.

The idea of the argument in [28] is to use a time Fourier transform to
translate the results in terms of resolvent bounds, and then use a careful
analysis of the resolvent in order to get good pointwise bounds. The delicate
part is that of obtaining a precise resolvent expansion near time frequency
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zero. This also provides a good clue as to the key importance of the zero
frequency bound (1.7).

The argument in [22] happens all in the physical space. In this way it
is more robust, and has greater potential to be useful in nonlinear stability
problems. This is the proof that we outline in what follows. It is convenient
to split it into several steps:

Step 1. Vector fields. A-priori, the local energy bounds apply to the
linear waves and their derivatives by commuting the vector fields Z with the
equation. Assuming compactly supported data, one expands this to bounds
of the type

(3.11) ‖Zαu‖LE1 � ‖∇u(0)‖Hm , |α| ≤ cm.

Step 2. Klainerman-Sobolev estimates. Once we have the above local
energy decay estimates, one can ask about the pointwise bounds which can
be derived from it. This is a weighted version of the Sobolev embeddings,
and leads essentially to a bound of the form

(3.12) |∇u| � 1

〈r〉〈t − r〉 1
2
‖∇u(0)‖Hm .

Step 3. Near cone analysis. The goal of this step is to provide a better
tool to obtain improved bounds near the cone, as well as to make the
transition from ∇u to u in the previous bound. This is done by rewriting
our equation in the form

�u = Qu,

where � is the Minkowski d’Allembertian and Q is the remaining part of
the operator P . Then we estimate the right hand side directly using the
prior bounds and the solution u using the fundamental solution for the
d’Alembertian. This leads to a decay bound for u, which is better than
what one would obtain directly by integrating the previous bound on ∇u:

(3.13) |u| � log〈t − r〉
〈r〉〈t − r〉 1

2
‖∇u(0)‖HN

Step 4. Low frequency analysis. The aim of this step is to improve the
above bound inside the inner region r ≤ t/2. In this region we can use the
scaling derivative S as a proxy for ∂t, so our problem becomes essentially
a zero frequency problem. Hence, using the zero resolvent bound (1.7) and
appropriate Sobolev embeddings, we can improve the previous bound to

(3.14) |u| � log〈t − r〉
〈t〉〈t − r〉 1

2
‖∇u(0)‖HN

We note that in [22], an alternate estimate, called the stationary local energy
decay was used instead of (1.7). However, the two bounds are essentially
equivalent.
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Step 5. Reiteration. The final bound is obtained by successively re-
peating Steps 3 and 4 in an alternating manner. Some additional care is
required at the last application of Step 4, where the fundamental solution
for the d’Alembertian is not applied directly in a pointwise fashion, but
instead some cancellation is used.

4. Local energy decay

The goal of this section is to discuss local energy decay bounds in
increasingly difficult situations. We begin our discussion with the Minkowski
space-time, and then continue with the NT case, first stationary and then
nonstationary. Finally we discuss the BH case. Some of this is still work in
progress.

4.1. Local energy decay in Minkowski space-time. Here we con-
sider the equation

�φ = 0 in R
n+1, φ[0] = (φ0, φ1).

In the simplest form, local energy decay (also known as Morawetz estimates),
can be stated as:

‖∇x,tφ(x, t)‖L2(R×BR) � R
1
2 ‖∇x,tφ(x, 0)‖L2 .

These are based on the very simple heuristic that a speed 1 wave spends at
most O(R) time inside BR.

Morawetz’s proof uses the positive commutator method. If P and Q are
self-adjoint, respectively skew-adjoint operators then

2�〈Pφ, Qφ〉 = 〈[P, Q]φ, φ〉
Applying this with

P = �, Q = ∂r +
n − 1

2r
,

already yields a positive commutator,

‖r− 1
2 /∇φ(x, t)‖L2 + ‖φ(0, t)‖L2 � ‖∇x,tφ(x, 0)‖L2 , n = 3

but not exactly what is needed. The desired result is obtained in a similar
manner by replacing the operator ∂r with a(r/R)∂r for a suitably chosen
increasing function a.

4.2. Local energy decay in the nontrapping case. The simplest
result in this direction is Theorem 2.14, which deals with small perturbations
of the Minkowski space-time. Small perturbations have two advantages,
namely (i) they are nontrapping, and (ii) the low frequency bounds are
stable with respect to small metric perturbations.

Moving up to general NT space-times, we retain the first property above
but not the second. Thus the difficulties come from low frequencies. In effect
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one could prove a high frequency bound which allows for lower order errors,
and asserts that

(4.15) ‖u‖LE1 +‖∇u‖L∞L2 � ‖f‖LE∗+L1L2 +‖∇u(0)‖L2 +‖u‖L2(R×B(0,R)).

This shows that any obstruction to local energy decay is localized and
compact. To continue our discussion, we consider first the stationary case.
As described earlier, two enemies of local energy decay are

(i) negative eigenfunctions u ∈ L2 with Pτu = 0, which correspond to
time frequencies 	τ < 0 and to exponentially increasing solutions.

(ii) resonances u ∈ LE with Pτu = 0 and the outgoing radiation
condition, and τ ∈ R. These correspond to polynomially increasing solutions.

One key element here is the following classical result, due originally to
Kato and Agmon; see [16] and the references therein.

Theorem 4.18. Assume that P is asymptotically flat and self-adjoint.
Then there are no nonzero resonances for P embedded in the continuous
spectrum.

We emphasize here the self-adjointness requirement, without which
the result is no longer true. However, it is stable with respect to small
perturbations, even nonself-adjoint.

Given the above discussion, the following result in [21] is natural:

Theorem 4.19. Assume that no negative eigenfunctions and zero reso-
nances exist for a P in (1.2) in a stationary symmetric NT context. Then
local energy decay holds.

A similar result was previously proved for the nontrapping Schrödinger
flow in the asymptotically flat setting in [18]. One key intermediate result
in the proof of the above theorem is the two point local energy bound
(4.16)
‖u‖LE1(0,T ) +‖∇u‖L∞(0,T ;L2) � ‖f‖LE∗+L1L2(0,T ) +‖∇u(0)‖L2 +‖∇u(T )‖L2

which holds under the sole assumption that there are no zero resonances.
This concludes our discussion of the self-adjoint stationary case, though the
results in [21] go beyond the above theorem and also apply to operators P
which have eigenvalues τ with 	τ < 0.

The remaining part of this section is devoted to the time dependent
case. Suppose first that we have a continuous family of asymptotically flat
NT operators Ph (and thus, also a continuous family of metrics). Can we
continue the above spectral properties of P along this family ? The next
stability result in [21] describes the only way this could happen:

Theorem 4.20. Bifurcations to negative eigenfunctions for asymptoti-
cally flat NT symmetric operators P can occur only via zero resonances.

As an extension of these ideas we are able in [21] to expand the range
of our results to slowly varying operators:
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Theorem 4.21. Assume that P (t) is a slowly varying and almost self-
adjoint NT asymptotically flat operator so that no negative eigenfunctions
and zero resonances exist for P (t) in (1.2). Then local energy decay holds
for the linear wave equation (1.2).

A brief outline of the proof of this theorem is as follows:
Step 1: Establish a two point local energy decay bound (4.16). This

is done in three stages, partitioning the time frequencies into low, medium
and high. The high frequency bounds are obtained by standard microlocal
propagation arguments. The medium frequencies, instead, require Carleman
estimates for the near part. Finally, the low frequencies are dealt with
perturbatively, starting from the zero resolvent bound. The slowly varying
property allows us to harmlessly absorb the errors in gluing the three regions.
Interestingly enough, this step does not use the nonexistence of negative
eigenvalues.

Step 2: Almost energy conservation, which is another consequence of the
self-adjointness and the slowly varying property, is combined with the two
point local energy decay in order to distinguish two disjoint energy growth
modes, bounded versus exponentially growing energy (at a rate bounded
away from zero). Notably, this step does not require a positive definite energy
except near infinity.

Step 3. By the slowly varying property, the absence of negative eigen-
functions shows that only very small exponential growth rates are allowed.
Then, by the previous step, energy actually has to stay bounded. Then the
two point local energy decay turns into full local energy decay.

4.3. Local Energy Decay in black hole space-times. The geome-
try of BH space-times is more complicated than the NT space-times. Here
we can identify three distinct regions, along with their main features:

(i) Exterior region r � 1.
Feature: asymptotically flat, g = m + O(r−1).

(ii) Trapped set T .
Features: (a) hyperbolic trapping,
(b) separate from horizon, and
(c) τ �= 0 on the trapped set (i.e. ∂t energy positive there).

(iii) The event horizon H.
Features: smooth, nondegenerate red shift and convexity.

The challenges we encounter are two-fold:
• Understand the coupling of three regions at high frequency, and

the energy propagation in the high frequency limit.
• The separation between the three regions is blurred at medium and

low frequencies, in particular region (ii) disappears there.
In the high frequency limit, null geodesics (light rays) can come from

(a) infinity, (b) trapped set or (c) the event horizon. On the other hand,
forward in time they can go to (i) the black hole (in finite time), (ii) the
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event horizon (in infinite time) (iii) the trapped set and (iv) to infinity. Our
condition (BH-4) is critical here, as it disallows the scenario (b) → (ii), and
thus prevents reiterations between the horizon and the trapped set.

At low frequencies, the difficulty is to seamlessly connect infinity with
the event horizon. This works in a straightforward manner in the spherically
symmetric case. Otherwise, the assumption (BH-5) seems to serve as an
adequate replacement.

In what follows we provide a brief outline of ongoing work, joint with
Jacob Sterbenz. This is still work in progress, so the reader should take it
with a grain of salt.

As in the NT case, we begin our discussion with the self-adjoint station-
ary case. Our first result is as follows:

Theorem 4.22. Consider the wave equation (1.2) in the BH, stationary,
self-adjoint case. Assume that there are no eigenvalues in 	τ < 0, and no
resonances on 	τ = 0. Then local energy decay holds. The converse is also
true.

As in the NT case, the first step in the proof is to establish the high
frequency local energy bound similar to (1.6), namely

(4.17) ‖u‖LE1
T

+ ‖∇u‖L∞L2 � ‖�u‖LE∗
T +L1L2 + ‖∇u(0)‖L2 + ‖u‖L2

loc
.

This is done using microlocal analysis tools, and shows that we have
complete resolvent bounds outside a compact set. We can also characterize
eigenvalues and resonances:

Proposition 4.23. a) Eigenvalues and resonances can only occur in a
compact subset of {	τ ≤ 0}.

b) Eigenvalues in 	τ < 0 are smooth and decay exponentially at infinity.
c) Resonances in 	τ = 0 are smooth and decay like r−1eiτr at infinity.

From here on, a compactness argument combined with the absence of
negative eigenvalues yields a resolvent extension to the full lower half-space,
with a bound of the form

‖Rτ‖L2→Ḣ1 � c(|	τ |)

for some decreasing function c(y) which equals
1
y

for large y. In particular

this gives sub-exponential decay bounds in the wave flow (1.2).
This then allows for a second compactness argument as we approach the

real line, which gives a local energy resolvent bound,

‖Rτ‖LE∗→LE1 � 1.

In turn this implies the desired local energy decay.
The above result is not entirely satisfactory because it only provides a

qualitative bound, which is not very useful for the transition to the slowly
varying case. This is also related to our lack of a result on the absence of
embedded resonances. As a mechanism to remedy the above difficulty, we
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are proposing to use the second Killing field given in the assumption (BH-5).
This implies that the null generator L extends to a Killing vector field which
is time-like near the horizon. Then we first seek to prove the following result
on absence of embedded resonances:

Theorem 4.24. For stationary BH space-times as above which also
satisfy the assumption (BH-5) and associated self-adjoint operators P , there
are no nonzero resonances for P embedded in the continuous spectrum.

As a consequence of this, we aim to directly obtain the following
improvement of the Theorem 4.22,

Theorem 4.25. Consider the wave equation (1.2) in the BH, stationary,
self-adjoint case, where the assumption (BH-5) is also satisfied. Assume that
there are no eigenvalues in 	τ < 0, and no zero resonances. Then local
energy decay holds.

Our goal is also to provide an alternate proof of this result, which
yields a quantitative constant. This proof follows the same steps as in the
proof of Theorem 4.21, using the two point local energy decay bound as
an intermediate step. One difference here is in the treatment of medium
frequencies; instead of a single Carleman weight coming from infinity, here
we use a pair of weights, one coming from infinity and the other from the
event horizon. This is where the additional Killing vector field is used.

Once this is achieved, the (qualitative) subexponential decay coming
from the nonexistence of negative eigenfunctions yields a quantitative uni-
form energy bound. This in turn leads to local energy decay.

The last step in our analysis is to switch to slowly varying metrics. The
results are summarized as follows:

Theorem 4.26. For continuous families of BH space-times as above,
negative eigenvalues can only bifurcate via a zero resonance.

Theorem 4.27. a) The local energy decay result above is stable with
respect to small stationary perturbations.

b) The local energy decay result above extends to slowly varying metrics
(with a suitable extra assumption on the trapped set).

We observe that as a corollary of this result, one can get local energy
decay for Kerr with large a by continuity only by knowing that no zero
resonances exist in Kerr.

We also observe that the trapped set dynamics are a-priori unstable with
respect to small nonstationary non-decaying perturbations.

5. Maxwell fields

In this section we describe recent and current work on decay estimates
for electromagnetic waves, in either NT or BH space-time. This is the next
natural step after the scalar wave equations. For local energy decay we
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have comparatively fewer results. For the Strichartz estimates there is no
difference whatsoever, as we can rewrite the Maxwell system as a coupled
system of wave equations. Finally, our results for pointwise decay are on par
with those for the scalar wave equation.

5.1. Electromagnetic waves. The Maxwell system is a first order
system for the electromagnetic field F , which is a two form on our Lorentzian
space time (M, g). Using differential forms, the homogeneous Maxwell
system can be written as

(5.18) dF = 0, d ∗ F = 0, F (0) = F0.

In 3 + 1 dimensions this is a six dimensional system with two compatibility
conditions. In particular the initial condition cannot be chosen arbitrarily.
From the above system one can also derive a coupled wave system for F ,
namely

�gF = 0

where �g is the Hodge d’Alembertian.
The above equations can also be written using covariant differentiation:

(5.19) ∇αFαβ = 0, ∇[γFαβ] = 0

or using electromagnetic potential A, F = dA, with gauge condition ∇αAα =
0, as

∇α∇αAβ = 0

though we will not take advantage of that here.
We are also interested in the inhomogeneous system

(5.20) dF = G1, d ∗ F = G2, F (0) = F0,

Here the source terms are subject to compatibility conditions dG1 = 0,
dG2 = 0, and F0 also needs to satisfy two compatibility conditions. The
physical set-up corresponds to G1 = 0; however, for mathematical purposes
it is also interesting to allow a nonzero G1.

Similarly to the wave equation, we have an energy-momentum tensor

Tαβ = gγδFαγFβδ +
1
4
gαβFγδF

γδ,

which is divergence free in the homogeneous case,

∇αTαβ = 0.

If X is a Killing field then

∇α(TαβXβ) = 0

and one obtains a conserved energy,

EX(F ) =
∫

Σt

∗iXT =
∫

Σt

T (X, N)dVΣ.
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Again, this is positive definite if X is space-like and Σ is space-like (e.g. in
the stationary NT case). Then

EX(F ) ≈ ‖F‖2
L2(Σt).

A special role is played in the Maxwell case by the electric and magnetic
charges. Given a compact two dimensional surface S, we define the electric
charge inside S by

Q∗ =
∫

S
F ∗

and the magnetic charge inside S as

Q =
∫

S
F

In the black hole case is natural to take S which includes the black hole
inside. Then these are conserved quantities for the homogeneous Maxwell
problem. However, in the inhomogeneous case the charges are nonconstant,
and are associated to non-decaying solutions for the inhomogeneous equa-
tion. In the BH case, we even have non-decaying charged solutions for the
homogeneous equation. As an example, in the Schwarzschild space-time we
have the Hodge dual stationary solutions

F0 =
Q

4π
dωS2 , ∗F0 =

Q∗

4π
r−2dr ∧ dt.

There is also a straightforward modification for Kerr, with a similar decay
rate at infinity. The Minkowski space-time, and any NT space-time for that
matter, does not admit such solutions.

5.2. Energy estimates. For the Maxwell system we define the energy
norm as ‖F (t)‖L2 , and the higher energy norm as ‖F (t)‖Hk . For NT or
stationary BH metrics, the transition between energy bounds and higher
energy bounds is relatively straightforward, and follows the model of the
scalar wave equation:

Theorem 5.28. Let (M, g) be either a NT or a stationary BH space-
time as above. If uniform energy estimates hold for the Maxwell system
(5.18) then higher Sobolev uniform energy estimates hold as well.

In the stationary case, one can further interpret the energy estimates
in terms of resolvent bounds. To define the resolvent take a time Fourier
transform in (5.20) to obtain the stationary system:

d0
τ F̂ (τ) = Ĝ1(τ), d0

τ ∗ F̂ (τ) = Ĝ2

where the functions Ĝi(τ) are subject to the compatibility conditions

d0
τ Ĝi(τ) = 0.

Here we define the operator d0
τ as follows:

(5.21) d0
τF = dF − dt ∧ (L∂t − iτ)F.
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Then the resolvent
Rτ (Ĝ1(τ), Ĝ2(τ)) = F̂ (τ)

is defined whenever the above problem is solvable in L2. The uniform energy
bounds are related to resolvent as follows:

Proposition 5.29. Uniform energy bounds are equivalent to the resol-
vent bound

‖Rτ‖L2→L2 � |	τ |−1, 	τ < 0.

The case when τ = 0 is of particular interest. There we simply use the
notation d0 instead of d0

τ .

5.3. Local energy decay. The set-up for the Maxwell system is
simpler then the one for the wave equation, at least as long as we consider
only the homogeneous case with zero charges Q = Q∗ = 0. Then in the NT
case we have

Definition 5.30. We say that local energy decay holds for the homoge-
neous charge free Maxwell system (5.18) if

‖F‖LE + ‖F‖L∞L2 � ‖F (0)‖L2 .

A similar definition as above applies for the BH case, with similar
modifications as in the scalar case in order to account for the trapped set
T .

The inhomogeneous case is more delicate. Adding source terms intro-
duces charges into the system, and that obstructs standard decay estimates.
In order to understand how to handle this difficulty, we first consider the
case of a spherically symmetric space-time.

Restricting our attention to the charge associated to spheres, we can
decompose both the Maxwell field and the sources G1, G2 into a radial and
nonradial part. Due to the radiality of the metric, the Maxwell equations
decouple into a radial and and a nonradial part.

To define this decomposition, for a function ψ in R
3+1 we will denote by

ψ its zero spherical harmonic. Then set

F̄ = Ftrdt ∧ dr + Fφθdω2,

respectively
Ḡ = Gtφθdt ∧ dω2 + Grφθdr ∧ dω2.

The Maxwell equations for the radial parts become quite simple,

dFφθ = G1,tφθdt + G1,rφθdr, dF ∗
φθ = G2,tφθdt + G2,rφθdr.

Thus F̄ is simply obtained by integrating its differential. In order to have
decay at infinity, the integration needs to be also from infinity. However, as
we have

|F̄ | ≈ r2(|Fφθ| + |F ∗
φθ|), |Ḡi| ≈ r2(|Gi,tφθ| + |Gi,rφθ|),
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the condition Gi ∈ LE∗ is insufficient. Instead we need to assume at least
that rG1 ∈ LE∗, in which case we obtain the bound

‖〈r〉F̄‖LE � ‖〈r〉Ḡ1‖LE∗ + ‖〈r〉Ḡ2‖LE∗

In the case of metrics without spherical symmetry, the radial and
nonradial modes can no longer be cleanly decoupled. In particular, the
spheres are no longer invariantly defined objects. However, to the r−2 order
they still decouple as r → ∞. This motivates the following definition:

Definition 5.31. We say that local energy decay holds for the inhomo-
geneous Maxwell system if we have the estimate

‖F‖LET + ‖〈r〉F̄‖LE + ‖F‖L∞L2

� ‖F (0)‖L2 + ‖(G1, G2)‖LE∗
T

+ ‖〈r〉(Ḡ1, Ḡ2)‖LE∗ .(5.22)

The transition to higher local energy decay bounds follows the same
rules as for the uniform energy estimates:

Theorem 5.32. Let (M, g) be either a NT or a stationary BH space-
time as above. If local energy decay estimates hold for the Maxwell system
(5.20) then higher local energy decay estimates hold as well.

Again, the result extends to slowly varying BH space times once some
care is taken with the trapped set T .

We next consider the interpretation of local energy decay in terms of
resolvent bounds in the stationary case. For that we use again the norms
LE , and LE∗ obtained by freezing time in the definition of LE, respectively
LE∗.

Proposition 5.33. Consider either a stationary NT or BH space-time.
Then local energy decay is equivalent to the uniform resolvent bound

‖Rτ (G1, G2)‖LE + ‖〈r〉Rτ (G1, G2)‖LE � ‖(G1, G2)‖LE∗ + ‖〈r〉(Ḡ1, Ḡ2)‖LE∗

for 	τ ≤ 0.

As in the scalar case, one needs to carefully define the resolvent on
the real line as the limit when the real line is approached from the lower
half-space. This implies that the field F = Rτ (G1, G2) must satisfy the
outgoing radiation (Sommerfeld) condition for Maxwell, otherwise known
as the Silver-Muller conditions. Thus, in addition to complex eigenvalues,
one is led to introduce the embedded resonances as an obstruction to local
energy decay:

Definition 5.34. F ∈ LE is an embedded resonance associated to the
real time frequency τ if it satisfies the outgoing radiation condition and
d0

τF = 0, d0
τ ∗ F = 0.

A special case is that of zero resonances. These have simpler asymptotics

F (r, ω) = F 0(ω)r−2 + O(r−3)
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and a symbol type behavior at infinity. There the outgoing radiation condi-
tion is meaningless. According to the above decay rates, the charged solu-
tions are examples of zero resonances. However, this is a stable zero mode,
which we exclude; this is achieved using the different weight for the radial
mode in our function spaces. Thus we define

Definition 5.35. A zero resonance for the Maxwell system is a charge
free stationary solution F for the Maxwell equations, i.e. which solves
d0F = 0, d0 ∗ F = 0, with decay at infinity F, 〈r〉F̄ ∈ LE0.

Their absence is equivalent to a bound of the form
(5.23)
‖F‖LE + ‖rF̄‖LE � ‖d0F‖LE∗ + ‖d0F ∗‖LE∗ + ‖〈r〉d0F‖LE∗ + ‖〈r〉d0F ∗‖LE∗

which we will refer to in the sequel as the zero energy resolvent bound. One
can also state a higher regularity version of this bound, but that follows
from the one above.

5.4. Local energy decay results. The first local energy decay result
in this setting, proved in [26], is as follows:

Theorem 5.36. Consider a spherically symmetric stationary BH space-
time. Then:

a) Uniform energy estimates hold for the inhomogeneous Maxwell sys-
tem.

b) Local energy decay holds for the inhomogeneous Maxwell system.

Some related results were obtained in [3], [2].
We conjecture that a similar bound holds also in the nonradial case,

under suitable spectral assumptions:

Conjecture 5.37. Consider a stationary BH space-time, so that the
homogeneous Maxwell system has no negative eigenfunctions and no zero
resonances. Then

a) Uniform energy estimates hold for the inhomogeneous Maxwell sys-
tem.

b) Local energy decay holds for the inhomogeneous Maxwell system.

5.5. Pointwise decay bounds. For the purpose of this section, we
assume that the metric g is asymptotically flat in the sense of Section 3. We
begin with the statement of the Price law, which carries somewhat different
weights here. Further, different components of F in a null frame decay at
better rates; this is what is usually called peeling estimates. See [24, 8].
To state this we work in normalized (Regge-Wheeler type) coordinates near
infinity, and introduce a null frame (∂u, ∂v, eA, eB), where as usual we set

u = t − r, v = t + r

and (eA, eB) is an orthonormal frame of S
2.
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Definition 5.38. We say that pointwise decay bounds hold for the
Maxwell system if for all localized data F (0) we have

|FuA| � κ
1

〈t〉〈t − r〉3

|Fuv| � κ
1

〈t〉2〈t − r〉2

|FAB| � κ
1

〈t〉2〈t − r〉2

|FvA| � κ
1

〈t〉3〈t − r〉

(5.24)

where
κ = ‖F (0)‖Hm .

Our last result is the Maxwell counterpart of our earlier result for the
scalar wave:

Theorem 5.39 ([23]). Let (M, g) be a BH asymptotically flat space-
time. Assume that uniform energy bounds and local energy decay estimates
hold for the Maxwell system. Then pointwise decay estimates (Price’s law)
hold as well.

This last result does not require the metric to be radial or stationary.
Its proof is not dissimilar to the proof of the similar result for the scalar
wave equation, but with changes to account for the different zero resolvent
bound, and also for the charges.

References

[1] L. Andersson, P. Blue, Hidden symmetries and decay for the wave equation on the
Kerr spacetime, arXiv:0908.2265.

[2] L. Andersson and P. Blue, A uniform energy bound for Maxwell fields in the exterior
of a slowly rotating Kerr black hole, arXiv:1310.2664.

[3] P. Blue, Decay of the Maxwell field on the Schwarzschild manifold. J. Hyperbolic
Diff. Equ. 5 (2008), no.4, 807–856.

[4] P. Blue, A. Soffer, Semilinear wave equations on the Schwarzschild manifold I: local
decay estimates. Advances in Differential Equations 8 (2003), 595–614.

[5] P. Blue, A. Soffer, The wave equation on the Schwarzschild metric II: Local decay
for the spin-2 Regge-Wheeler equation, J. Math. Phys., 46 (2005), 9pp.

[6] P. Blue, J. Sterbenz, Uniform decay of local energy and the semi-linear wave equation
on Schwarzschild space, Comm. Math. Phys. 268 (2006), no. 2, 481–504.

[7] Nicolas Burq, Colin Guillarmou and Andrew Hassell, Strichartz estimates without
loss on manifolds with hyperbolic trapped geodesics. Geom. Funct. Anal. 20 (2010),
no. 3, 627–656.

[8] D. Christodoulou, S. Klainerman, Asymptotic properties of linear field equations in
Minkowski space. Comm. Pure Appl. Math. 43 (1990), 137–199.

[9] M. Dafermos, I. Rodnianski, The red-shift effect and radiation decay on black hole
spacetimes. Comm. Pure Appl. Math. 62 (2009), no. 7, 859–919. MR2527808

[10] M. Dafermos, I. Rodnianski, Lectures on black holes and linear waves, Evolu-

tion equations, 97–205, Clay Math. Proc., 17, Amer. Math. Soc., Provi-

dence, RI, 2013.



182 DANIEL TATARU

[11] M. Dafermos, I. Rodnianski, Decay for solutions of the wave equation on Kerr
exterior spacetimes I-II: The cases |a| � M or axisymmetry, arXiv:1010.5132

[12] M. Dafermos, I. Rodnianski, The black hole stability problem for linear scalar
perturbations, Proceedings of the Twelfth Marcel Grossmann Meeting on

General Relativity, T. Damour et al (ed.), World Scientific, Singapore

(2011), 132–189,

[13] M. Dafermos, I. Rodnianski, and Y. Shlapentokh-Rothman Decay for so-
lutions of the wave equation on Kerr exterior spacetimes III: The full subextremal
case |a| < M , arXiv:1402.7034v1

[14] Roland Donninger, Wilhelm Schlag, and Avy Soffer. A proof of Price’s

law on Schwarzschild black hole manifolds for all angular momenta.

Adv. Math., 226(1):484–540, 2011.
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