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Abstract. Despite a common perception in the physics community,
the Black Hole Rigidity problem remains wide open when one removes
the highly restrictive real analyticity assumption underlying the classical
results. In this survey we review the progress made in the last ten years
in understanding the conjecture in the more realistic setting of smooth
spacetimes. We review both local and global results and discuss the
new mathematical ideas behind them. We present three types of global
results which assert, under somewhat different assumptions, that any
stationary solution close to a non-extremal Kerr must be isometric to
a non-extremal Kerr, whose parameters a, M are determined by the
ADM mass and angular momentum of the given stationary solution. The
results illustrate an important geometric obstruction in understanding
the full rigidity problem, the possible presence of trapped null geodesics
perpendicular to the stationary Killing vectorfield. The key insight in
all these results is that such null geodesics are non-existent in any non-
extremal Kerr and thus, roughly, in any small perturbation of it.

Contents

1. Introduction 124
2. Local rigidity results 127
3. Mars-Simon tensor and global results 137
4. Conclusions 145
Appendix A. Proof of proposition 2.18 146
Appendix B. Proof of Proposition 3.10 150
References 154

2010 Mathematics Subject Classification. 35A01, 35L51, 35Q76, 83C05, 83C57.
Key words and phrases. Kerr black hole, black hole rigidity, Einstein equations,

trapped null geodesics, ADM.

c© 2015 International Press

123



124 ALEXANDRU D. IONESCU AND SERGIU KLAINERMAN

1. Introduction

A fundamental conjecture in General Relativity1 asserts that the do-
mains of outer communication of regular2, stationary, four dimensional, vac-
uum black hole solutions are isometrically diffeomorphic to those of Kerr
black holes. One expects, due to gravitational radiation, that general, asymp-
totically flat, dynamic, solutions of the Einstein-vacuum equations settle
down, asymptotically, into a stationary regime. A similar scenario is ex-
pected to hold true in the presence of matter. Thus the conjecture, if true,
would characterize all possible asymptotic states of the general evolution.

So far the conjecture has been resolved, by combining results of Hawking
[18], Carter [8], and Robinson [33], under the additional hypothesis of non-
degenerate horizons and real analyticity of the space-time. The assumption
of real analyticity, however, is both hard to justify and difficult to dispense
of. One can show, using standard elliptic theory, that stationary solutions
are real analytic in regions where the corresponding Killing vector-field T
is time-like, but there is no reason to expect the same result to hold true
in the ergo-region (in a Kerr spacetime K(a, m), 0 < a < m the Killing
vector-field T, which is time-like in the asymptotic region, becomes space-
like in the ergo-region). In view of the relevance of the conjectured result
to the general problem of evolution, i.e. the final state conjecture, there
is also no reason to expect that, by losing gravitational radiation, general
solutions become, somehow, analytic. Thus the assumption of analyticity is
a fundamental limitation of the present uniqueness results3 Here is a more
precise version of the Carter-Robinson-Hawking result.

Theorem 1.1 (Carter-Robinson-Hawking). The domain of outer com-
munication of a real analytic regular, stationary (i.e. there exists a killing
vectorfield T which is timelike in the asymptotic region), asymptotically flat,
four dimensional, vacuum black hole solution is isometrically diffeomorphic
to the domain of outer communication of a Kerr black hole.

The theorem relies on the following steps.
(1) Based on the observation that, though a general stationary space-

time may seem quite complicated, its behavior along the event hori-
zon is remarkably simple, Hawking has shown that in addition to
the original, stationary, Killing field, which has to be tangent to
the event horizon, there must exist, infinitesimally along the hori-
zon and tangent to its generators, an additional Killing vector-field.

1See reviews by B. Carter [7] and P. Chrusciel [11], [13], for a history and review of
the current status of the conjecture.

2The notion of regularity needed here requires a careful discussions concerning the
geometric hypothesis on the space-time.

3The results based on analyticity can be reformulated as a proof of the fact that there
can be no other explicit stationary solutions. Note also that the case of static solutions has
been treated in full generality, without assuming analyticity, by Israel [24] and Bunting-
Masood ul Alam [6].
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(2) In the case of a non-degenerate horizon the Hawking vectorfield
can be extended, by standard hyperbolic PDE techniques, to the
full domain of dependence of the horizon, see [17].

(3) The extension problem is however ill posed in the complement of the
domain of dependence, i.e. in the domain of outer communication
of the black hole. To overcome this difficulty Hawking assumes
analyticity and extends the vectorfield by a Cauchy-Kowalewski
type argument. In this step the field equations are no longer used;
the assumption of analyticity, which in effect replaces the Einstein
equations by the Cauchy-Riemann equations, completely trivializes
the problem.

(4) As a consequence of the previous step, the space-time under con-
sideration is not just stationary but also axi-symmetric, a situation
for which Carter-Robinson’s uniqueness theorem [8], [33] applies.
It is interesting to remark that this final step does not require an-
alyticity.

A similar result holds for the Einstein-Maxwell equations. Namely the only
real analytic, stationary, regular asymptotically flat solutions of the Einstein-
Maxwell equations belong to the Kerr-Newman family. The reduction to the
axially symmetric case, due to Hawking, follows precisely the same argument
as in the vacuum case. The rigidity of stationary, axially symmetric solutions
is due to Mazur [30], see also [13].

The goal of this article is to review recent results which aim to prove the
conjecture without appealing to analyticity. We focus our discussion to the
case of the vacuum, but we will also mention some of the more interesting
extensions to the case of the Einstein-Maxwell equations.

We start with a discussion, in section 2, of local extension results
for Killing vectorfields. The setting is very general; we consider a Killing
vectorfield Z defined in a domain O of a Ricci flat, smooth, semi-riemannian
manifold (M,g) and consider the question of whether Z admits a smooth
Killing extension in a full neighborhood of a point p in the boundary ∂O.
It turns out that the answer is affirmative if the boundary verifies what
we call the strict null convexity condition. This condition, concerning the
behavior of null geodesics tangent to ∂O at p, is automatically satisfied on
a Riemannian manifold, but imposes a serious restriction if g is Lorentzian.
If in addition the manifold admits a nowhere vanishing4 Killing vectorfield
T, which commutes with Z in O, we show that Z can be extended past p
under a weaker assumption which we call T-strict null convexity. This is a
condition which affects only the null vectors at Tp(∂O) orthogonal to T.

It is important to stress here that in the particular case of Kerr space-
time K(a, m), domains of the form r∗ < r < R with r the usual Boyer-
Lindquist coordinate and r∗ its value on the horizon are not, in general,

4It suffices to consider a Killing vectorfield defined in a neighborhood of the point
p ∈ ∂O.
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strictly null-convex at r = R but are all strictly T-null convex, where T is
the stationary Killing field of the Kerr solution. This fact, first discovered in
[20],[21], plays a fundamental role in the global results discussed in section
3 of this paper.

The null convexity condition is a particular instance of the more general
pseudoconvexity condition5 of Calderon-Hörmander. It is a necessary condi-
tion to derive uniqueness results for ill posed problems6 based on Carleman
type estimates. It is not a priori clear that the same necessary condition
is relevant to our extension problem. The main goal of section 2 is to de-
scribe the geometric ideas by which the extension problem can in fact be
turned into an unique continuation problem. The results are stated in the-
orems 2.3, 2.4. Though they are both very general (they hold for arbitrary
semi-Riemannian manifolds!) they rely in an essential way on the Ricci flat
condition. We also review related local extension results, see theorems 2.19,
2.20, for the Hawking vectorfield in a neighborhood of a bifurcate horizon.

In section 3 we discuss three global results, see [20], [2], [3], concerning
the black hole uniqueness problem, which assert, under somewhat different
assumptions, that any stationary solution close to a non-extremal Kerr must
be isometric to a non-extremal Kerr, whose parameters a, M are determined
by their ADM mass and angular momentum. They are all based on specific
regularity, non-degeneracy and asymptotic flatness assumptions discussed in
subsection 3.2.

The first two results are based on the local characterization of the Kerr
solution, due to Mars [27], by the vanishing of the so called Mars-Simon
tensor S. In theorem 3.14 we make an assumption on the bifurcation sphere
of the horizon which implies that S vanishes along the horizon. We then
derive a wave equation for S and show, by unique continuation results, that
S must vanish everywhere. In theorem 3.14 we assume instead that S is
sufficiently small and rely on the extension results discussed in section 2 to
show that the spacetime is axially symmetric. The rigidity result then follows
by applying the Carter-Robinson theorem. Both results assume the presence
of a unique non-degenerate horizon. This condition was later removed by
Wong and Yu in [40] by an ingenious argument based on the mountain pass
lemma.

The third rigidity result differs substantially from the other two in that
we only make a smallness assumption on the bifurcate sphere. More pre-
cisely we assume that the stationary vectorfield is small on the bifurcate
sphere and deduce that the entire domain of outer communication is iso-
metric to that of a Kerr solution with small angular momentum. This is the
first uniqueness result, in the framework of smooth, asymptotically flat, sta-
tionary solutions, which combines local considerations near the horizon, via
Carleman estimates, with information obtained by global elliptic estimates.

5Which applies to general, scalar linear partial differential operators
6Problems where existence is by no means guaranteed.
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These results illustrate an important geometric obstruction in under-
standing the full rigidity problem, the possible presence of trapped null
geodesics perpendicular to the stationary Killing vectorfield. The key in-
sight7 in all these results is that such null geodesics are non-existent in any
non-extremal Kerr and thus, roughly, in any small perturbation of it.

In the last section we formulate, together with S. Alexakis, a general
conjecture which illustrates the importance of trapped null geodesics per-
pendicular to T and thus the importance of developing strategies based on
global considerations, not just on unique continuation methods starting from
the horizon.

2. Local rigidity results

In this section we revisit the extension problem for Killing vector-fields
in smooth Ricci flat Lorentzian manifolds and its relevance to the black hole
rigidity problem. In the most general situation the problem can be stated
as follows:

Assume (M,g) is a given smooth semi-riemannian manifold, O ⊆ M
is an open subset, and Z is a smooth Killing vector-field in O. Under what
assumptions does Z extend (uniquely) as a Killing vector-field in M?

A classical result8 of Nomizu establishes such a unique extension pro-
vided that the metric is real analytic, M and O are connected and M is
simply connected. The result has been used, see [18] and [13], to reduce
the black hole rigidity problem, for real analytic stationary solutions of the
Einstein field equations, to the simpler case of axial symmetry treated by
the Carter-Robinson theorem. This reduction has been often regarded as
decisive, especially in the physics literature, without a clear understanding
of the sweeping simplification power of the analyticity assumption. Indeed
the remarkable thing about Nomizu’s theorem, to start with, is the fact the
metric is not assumed to satisfy any specific equation. Moreover no assump-
tions are needed about the boundary of O in M and the result is global with
only minimal assumptions on the topology of M and O. The result is clearly
wrong in the case of smooth manifolds (M,g) which are not real analytic.
To be able to say anything meaningful we need to both restrict the metric
g by realistic equations and make specific assumptions about the boundary
of O. Local and global assumptions are also need to be carefully separated.

In this section we limit our attention to a purely local description of
the extension problem in the smooth case. We assume that (M,g) is a non-
degenerate Ricci flat, semi-riemannian metric i.e.

(2.1) Ric(g) = 0,

7A related fact plays a fundamental role in recent linear stability results concerning
solutions of the scalar wave equation in a non-extremal Kerr, see [15] and the references
therein.

8See [31]. We rely here on the version of the theorem given in [13] .
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and denote by D the Levi-Civita connection induced by g.
We define the following crucial concept9.

Definition 2.1. A domain O ⊂ M is said to be strictly null-convex at a
boundary point p ∈ ∂O if there exists a smooth function h, defined in a small
neighborhood U of p, such that dh(p) �= 0 and O ∩ U = {x ∈ U : h(x) < 0}
(i.e. h is a nondgenerate defining function for O at p) which verifies the
following null convexity property at p:

(2.2) D2h(X, X)(p) < 0

for all null vectors X (i.e. g(X, X) = 0) tangent to ∂O at p (i.e. X(h) = 0
at p).

It is easy to see that (2.2), does not depend on the choice of the defining
function h. The strict null-convexity condition is automatically satisfied if
the metric g is Riemannian. It is also satisfied for Lorentzian metrics g
if ∂O is space-like at p, but it imposes serious restrictions for time-like
hypersurfaces. It clearly fails if ∂O is null in a neighborhood of p. Indeed in
that case we can choose the defining function h to be optical, i.e.,

(2.3) DαhDαh = 0

at all points of ∂O in a neighborhood of p, and thus, choosing Xα = Dαh,
we have,

XαXβDαDβh =
1
2
X(DαhDαh) = 0.

One can also show that unique continuation fails in this case.
Under the assumption that M contains a Killing vectorfield T we also

define the following variant of the null convexity condition.

Definition 2.2. The domain O ⊂ M is said to be strict T- null-convex
at a boundary point p ∈ ∂O if the defining function h at p is T invariant
and verifies the convexity condition (2.2) for all null vectors X ∈ Tp(∂O)
which are orthogonal to T.

The following general extension principle was proved in [22]. A previous,
related, version appeared in [1]. We note however that the version used in
[1] applies to a bifurcate null hypersurface which fails to be smooth at all
points on the bifurcate sphere. The results mentioned in theorems 2.3, 2.4,
based on unique continuation, can however be extended to cover that case,
see [20].

Theorem 2.3. Assume that (M,g) is a smooth d-dimensional Ricci flat,
semi-riemannian manifold and O ⊂ M is a strictly null-convex domain at
a point p ∈ ∂O. We assume that Z is a Killing vectorfield in O. Then Z
extends as a Killing to a neighborhood of the point p in M.

Using similar techniques one can also prove the following.

9In our previous papers we have used the broader terminology of pseudo-convexity
condition, which applies to a given scalar linear PDE.
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Theorem 2.4. If (M,g) admits a (nowhere vanishing) Killing vector-
field Tand Z is a Killing vectorfield in O which commutes with T, then
the same extension result holds true if we replace strict null convexity by the
weaker strict T-null convexity condition. Moreover the extended Z continues
to commute with T.

The proof of both theorems is based on the following ideas10.
(1) Extend the vectorfield Z in a full neighborhood of the point p by

solving a Jacobi type equation along a family of congruent geodesics
transversal to ∂O. In the case of theorem (2.4) one needs to make
sure that extended Z still commutes with T. This can easily be
done by choosing a congruence left invariant by T, i.e. such that
the generator L of the congruence commutes with T. We note that
(unlike other contexts in the GR literature where L denotes a null
vectorfield) L here does not have to be null.

(2) Derive a closed system of covariant wave equations for a modified
version of the Lie derivative of the curvature tensor R, denoted W ,
coupled with transport equations for the deformation tensor (Z)π
of the extended Z.

(3) Use a unique continuation argument to show that both W and
(Z)π have to vanish in a full neighborhood of p. To implement the
continuation criterion one needs the strict null convexity conditions
in the definitions 2.1 and 2.2.

We start with a few general results:

Lemma 2.5. For arbitrary k-covariant tensor-field V and vector-field X
we have,

(2.4) Dβ(LXVα1...αk
) − LX(DβVα1...αk

) =
k∑

j=1

(X)ΓαjβρVα1...
ρ

...αk

where (X)π = LXg is the deformation tensor of X and,

(X)Γαβμ :=
1
2
(Dα

(X)πβμ + Dβ
(X)παμ − Dμ

(X)παβ).

Lemma 2.6. Let X be a vectorfield with deformation tensor (X)π and
define,

(X)Pαβμ := (1/2)(Dα
(X)πβμ − Dβ

(X)παμ).

Then,

Dν
(X)Pαβμ − Dμ

(X)Pαβν

= (LXR)αβμν − (1/2) (X)πα
ρRρβμν − (1/2) (X)πβ

ρRαρμν(2.5)

where R is the Riemann curvature tensor of the metric g.

10In [1] similar results were proved using a frame dependent approach.



130 ALEXANDRU D. IONESCU AND SERGIU KLAINERMAN

Note that,

(X)Γαμβ = (X)Pαβμ +
1
2
Dμ

(X)παβ(2.6)

Recall that a Weyl field on M is a four covariant trace-less tensor,
verifying all the symmetries of the Riemann curvature tensor. Note that
the Lie derivative of a Weyl field may fail to have vanishing trace. The leads
us to the following modified definition.

Definition 2.7. Given a Weyl field W , X an arbitrary vectorfield and
ωαβ an arbitrary 2-form on M, we define,

L̂X,ωW := LXW − 1
2
( (X)π + ω) � W

where, for any 2-tensor B, B � W denotes the tensor,

(B � W )αβγδ := Bα
λWλβγδ + Bβ

λWαλγδ + Bγ
λWαβλδ + Bδ

λWαβγλ.

Lemma 2.8. The tensor L̂X,ωW defined above is a Weyl field.

2.1. Proof of Theorem (2.3). To prove the theorems we first extend
Z past p according to the following equation

(2.7) DLDLZ = R(L, Z)L,

Let (Z)π = LZg be the deformation tensor of Z. To show that (Z)π ≡ 0 in
a neighborhood U of p we need to prove that (Z)π, (Z)P , LZR all vanish,
simultaneously in U . The idea is to try to derive transport equations for
(Z)π and (Z)P , along the geodesics generated by L, coupled to a covariant
wave equation for LZR. To do this we will need however to redefine slightly
the main quantities. The crucial ingredient which makes possible to derive
useful transport equations is the following.

Lemma 2.9. If Z is extended according to (2.7) then the deformation

tensor π := (Z)π of Z verifies

παβLβ = 0.(2.8)

2.1.1. The main coupled system. To derive the desired transport equa-
tions we would also need that P = (Z)P verifies PαβμLμ = 0. This is not
true however and we are forced to introduce the modification,

Pαβμ = Pαβμ − 1
2
Dμωαβ = (1/2)(Dαπβμ − Dβπαμ − Dμωαβ)(2.9)

with ω a 2-form chosen precisely such that PαβμLμ = 0. This leads to the
following.

Lemma 2.10. If we define ω in M as the solution of the transport
equation

(2.10) DLωαβ = παρDβLρ − πβρDαLρ,
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with ω = 0 in O, then

(2.11) LμPαβμ = 0, Lβωαβ = 0, LμBαμ = 0 = LμBμα in M.

where B = 1
2(π + ω),

With these preliminaries one can easily derive transport equations for
the tensors B and P along the geodesics generated by L.

Proposition 2.11. Let B,P as above and W := L̂Z,ωR. We have,

DLBαβ + DαLρBρβ = LρPρβα(2.12)
DLPαβμ + DμLρPαβρ = LνWαβμν + LνBμ

ρRαβρν(2.13)

Proof of Proposition 2.11. Using the above properties of π, ω
and P we calculate

2LρDρBαβ = LρDρπβα + LρDρωαβ

= Lρ(2Pρβα + Dαωρβ + Dβπρα) + παρDβLρ − πβρDαLρ

= 2LρPρβα − 2BρβDαLρ,

and the desired identity (2.12) follows.
To prove (2.13), we rely on the following identity:

(2.14)

DνP̃αβμ − DμP̃αβν = (LZR)αβμν − (1/2)π ρ
α Rρβμν − (1/2)π ρ

β Rαρμν .

P̃αβμ := (1/2)(Dαπβμ − Dβπαμ) = Pαβμ + (1/2)Dμωαβ .

Assuming (2.14) we easily prove now (2.13). Indeed, relying on the defini-
tions above and the cacellation properties of π and P we calculate

Lν(DνPαβμ − DμPαβν)

= Lν
[1
2
DμDνωαβ − 1

2
DνDμωαβ + Wαβμν + (B · R)αβμν − 1

2
π ρ

α Rρβμν

− 1
2
π ρ

β Rαρμν

]
= LνWαβμν + LνB ρ

μ Rαβρν .

The identity (2.13) is now an immediate consequence of (2.11). The proof
of the identity (2.14) is a simple verification. �

Definition 2.12. By convention, we let M((1)B, . . . , (k)B) denote any

smooth “multiple” of the tensors (1)B, . . . , (k)B, i.e. any tensor of the form

M((1)B, . . . , (k)B)α1...αr = (1)Bβ1...βm1
(1)Cα1...αr

β1...βm1(2.15)

+ . . . + (k)Bβ1...βmk

(k)Cα1...αr
β1...βmk ,

for some smooth tensors (1)C, . . . , (k)C in M.
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With this definition proposition 2.11 takes the form,

DLB = M(W,B,P), DLP = M(W,B,P),

To get a closed system it remains to establish an equation for W = L̂Z,ωR.
This is achieved by the following.

Lemma 2.13. Let W := LZ,ωR, with ω an arbitrary 2 form. Then, with
the definitions made above,

DaWαβγδ = Jβγδ(2.16)

where,

Jβγδ = BμνDνRμβγδ + gμνPμρνR
ρ

βγδ + PβνμR
μν

γδ

+ PγνμR
μ

β
ν

δ + PδνμR
μ

βγ
ν .

Proof. Follows easily from the definition of W and lemma 2.5 applied
to the curvature tensor R and vectorfield Z.

�

Differentiating (2.16) and using the symmetries of W we easily deduce
(see equation 7.1. in [20]),

DρDρWαβμν = M(B,DB,P, DP,W)αβμν .

We have thus derive the closed system,

DLB = M(W,B,P)
DLP = M(W,B,P),
�W = M(W,B,DB,P,DP)

with the notation M(W, B, P ) explained above.

2.1.2. Unique continuation argument. Once we have our coupled system
it remains to prove the simultaneous vanishing of B,P,W by a unique
continuation argument. More generally we consider solutions of systems of
equations of the form,

(2.17)

{
�gS = M((1)B, . . . , (k)B, S,DS)
DL

(i)B = M((1)B, . . . , (k)B, S,DS), i = 1, . . . , k.

Theorem 2.3 is now an immediate consequence of the following.

Proposition 2.14. Let (M,g) be a general semi-riemannian manifold,
O a domain in M verifying the strict null-convexity condition at p ∈ ∂O.
Assume given a collection of tensorfields S, B on M, and a vectorfield
L verifying (2.17) in a neighborhood of p. Then, if (S, B) vanish in a
neighborhood of p intersected with O, they also vanish in a full neighborhood
of p.
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Expressing the equations (2.17) in local coordinates11, we can easily
reduce the statement of proposition 2.14 to the following statement.

Proposition 2.15. Assume that h is a strictly null convex defining
function for O in a neighborhood U of p ∈ ∂O. Assume given smooth
function Gi, Hj i = 1, . . . , I, j = 1, . . . , J , which satisfy the following
differential inequalities in U of p ∈ ∂O,

(2.18)

{
|�gGi| ≤ M

∑I
l=1(|Gl| + |∂Gl|) + M

∑J
m=1 |Hm|;

|L(Hj)| ≤ M
∑I

l=1(|Gl| + |∂Gl|) + M
∑J

m=1 |Hm|,
for any i = 1, . . . , I, j = 1, . . . , J . Then, if the function G, H vanish in U ∩O
then they also vanish in a full, small, neighborhood of p.

The proof of the proposition is based on Carleman estimates. The first
step is to obtain a quantitative version of our null-convexity condition.

Lemma 2.16. Assume the defining function h is strictly null-convex
at p. There exists a constant M > 0, depending only on bounds for the
metric g and its derivatives (with respect to our fixed coordinate system in
a neighborhood V of p) and μ ∈ [−M, M ] as well as a small neighborhood
U ⊂ V of p such that, for any vectorfield Y = Y α∂α{

|dh| ≥ M−1

Y αY β (μgαβ − DαDβh) + M |Y (h)|2 ≥ M−1|Y |2,(2.19)

uniformly, at all points of U , with |Y |2 = (Y 0)2 + (Y 1)2 + . . . + (Y d)2..

Here is also a quantitative version of the T-null-convexity condition.

Lemma 2.17. Assume the defining function h is strictly T-null-convex
at p There exists a constant M > 0, depending only on bounds for the metric
g and its derivatives in a fixed coordinate neighborhood V of p, a constant
μ ∈ [−M, M ] and a sufficiently small neighborhood U ⊂ V of p such that,
for any vectorfield Y = Y α∂α

(2.20){
|dh| ≥ M−1

Y αY β(μgαβ − DαDβh) + M
(|Y (h)|2 + |g(T, Y )|2) ≥ M−1|Y |2,

uniformly, at all points of U , with |Y |2 = (Y 0)2 + (Y 1)2 + . . . + (Y d)2 and
|dh|2 =

∑n
α=0(∂αh)2.

The proof of proposition (2.15) can be reduced to two Carleman esti-
mates. The first, and by far the more important one, concerns the scalar
wave operator �g. To state it we assume that the defining function h of the
domain O, near p ∈ ∂O, verifies (2.19) in a full neighborhood U1 of a point

11Using definition 2.12 and also enlarging M and restricting the neighborhood U of
p as necessary.
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p with h(p) = 0. Let Uε be small neighborhoods of p such that |h| ≤ 2−1ε in
Uε and define the weight functions, fε : Uε −→ R

fε := log(ε + h + ep)

with ep is a small perturbation such that the weights efε verify (2.19) in Uε,
uniformly in ε > 0

We are now ready to state our main Carleman estimate, see also the
more precise statement and its proof in proposition A.1 in the Appendix.
For a full account of the more general Carleman estimates, which are also
adapted to T null-convexity, see [20, section 3.2].

Proposition 2.18. If fε are as above, there exists a sufficiently small
ε > 0 and a large constant Cε > 0 such that, for all φ ∈ C2

0 (Uε) and all
sufficiently large λ > 0,

(2.21) λ · ‖e−λfε · φ‖L2 + ‖e−λfε · |Dφ|‖L2 ≤ Cελ
−1/2 · ‖e−λfε · �gφ‖L2 ,

where, |Dφ|2 =
∑n

α=0 |∂αφ|2 relative to the given coordinate system.

We also need a Carleman estimate to deal with the ODE part of our
system. This is considerably easier, no additional restrictions are needed,
see [1, Lemma 3.4].

2.2. Existence results in a neighborhood of the horizon. The
methods discussed in the previous subsections can be applied to construct
Killing vectorfields in a neighborhood of a bifurcate horizon of stationary
vacuum solutions. One can in fact present the result without reference to
stationarity as follows.

Let (M,g) to be a smooth12 vacuum Einstein space-time. Let S be an
embedded spacelike 2-sphere in M and let N ,N be the null boundaries of
the causal set of S, i.e. the union of the causal future and past of S. We fix U
to be a small neighborhood of S such that both N ,N are regular, achronal,
null hypersurfaces in U spanned by null geodesic generators orthogonal to
S. We say that the triplet (S, N ,N ) forms a local, regular, bifurcate, non-
expanding horizon in U if both N ,N are non-expanding null hypersurfaces
in U . This simply means that the traces of the null second fundamental
forms of N and N , called expansions, are both vanishing respectively on N
and N . Our main results are the following:

Theorem 2.19. Given a local, regular, bifurcate (S, N , N ) in a smooth,
vacuum Einstein space-time (M,g), there exists an open neighborhood V ⊂
U of S and a non-trivial Killing vector-field K in M, which is tangent to the
null generators of N and N . In other words, every local, regular, bifurcate,
non-expanding horizon is a Killing bifurcate horizon.

12M is assumed to be a connected, oriented, C∞ 4-dimensional manifold without
boundary.
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Theorem 2.20. Under the same assumptions as above, if in addition
there exists a Killing vectorfield T in U tangent to N ∪N and not identically
vanishing on S, then there exists an open neighborhood V ⊂ U and a non-
trivial rotational Killing vector-field Z in U which commutes with T.

It was already known, see [17], that such a Killing vector-field exists in
a small neighborhood of S intersected with the domain of dependence of
N ∪ N , which we could call O in reference to theorem 2.3. The extension
of K to a full neighborhood of S has been known to hold only under the
restrictive additional assumption of analyticity of the space-time (see [18],
[23], [17]). The novelty of both theorems is the ability to construct these
local Killing fields in a full neighborhood of the 2-sphere S, without making
any analyticity assumption. Both theorems can be viewed as applications
of theorems 2.3, 2.4 to domains O which are obtained by intersecting
neighborhoods of S in M with the domain of dependence of the bifurcate
sphere S. The strict null convexity condition is an easy consequence of the
bifurcation (non-degeneracy) property of the boundary (N ∪ N ) ∩ U of O.
Note however that O is not smooth at points of S. This requires a slight
modification of the Carleman estimates needed in the proof of theorems 2.3,
2.4. A full account of such Carleman estimates is given in [20, section 3.2].

2.3. Counterexamples. We review a counterexample to Haking’s
rigidity theorem in the non-analytic case. Let (K(m, a),g) denote the
(maximally extended) Kerr space-time of mass M and angular mo-
mentum Ma, 0 ≤ a < M . Let M(end) denote an asymptotic region,
E = I−(M(end)) ∩ I+(M(end)) the corresponding domain of outer com-
munication, and H− = δ(I+(M(end)) the boundary (event horizon) of the
corresponding white hole13. Let T = d/dt denote the stationary (timelike
in M(end)) Killing vector-field of (K(m, a),g), and let Z = d/dφ denote its
rotational (with closed orbits) Killing vector-field. The following theorem
was proved in [22].

Theorem 2.21. Assume that 0 < a < M and U0 ⊆ K(m, a) is an open
set such that U0 ∩ H− ∩ E �= ∅. Then,

(1) There is an open set U ⊆ U0, U ∩ H− �= ∅, and a smooth Lorentz
metric g̃ in U such that,

(2.22) g̃Ric = 0 in U, LTg̃ = 0 in U, g̃ = g in U \ E;

(2) The vector-field Z = d/dφ does not extend to a Killing vector-field
for g̃, commuting with T, in U .

In other words, one can modify the Kerr space-time smoothly, on one
side of the horizon H−, in such a way that the resulting metric still satisfies
the Einstein vacuum equations, has T = d/dt as a Killing vector-field, but
does not admit an extension of the Killing vector-field Z. The crucial point

13A similar statement can be made on the future event horizon H+.
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here is that the neighborhood under consideration is away from the bifurcate
sphere, where theorems 2.19 - 2.20 apply. The result illustrates one of the
major difficulties one faces in trying to extend Hawking’s rigidity result to
the more realistic setting of smooth stationary solutions of the Einstein
vacuum equations: unlike in the analytic situation, one cannot hope to
construct an additional symmetry of stationary solutions of the Einstein-
vacuum equations (as in Hawking’s Rigidity Theorem) by relying only on
the local information provided by the equations.

The proof relies on a symmetry reduction induced by the Killing vec-
torfield T. We denote the fixed Kerr metric by g and define the reduced
metric

hαβ = Xgαβ − TαTβ, where X = g(T,T),

on a hypersurface Π passing through the point p and transversal to T. The
metric h is nondegenerate (Lorentzian) as long as X > 0 in Π, which explains
our assumption 0 < a < m. It is well-known, see for example [37, Section
3], that the Einstein vacuum equations together with stationarity LTg = 0
are equivalent to the system of equations

hRicab =
1

2X2 (∇aX∇bX + ∇aY ∇bY ),

h�(X + iY ) =
1
X

hab∂a(X + iY )∂b(X + iY ),
(2.23)

in Π, where X + iY is the complex Ernst potential associated14 to T.
We then modify the metric h and the functions X and Y in a neighbor-

hood of the point p in such a way that the identities (2.23) are still satisfied.
The existence of a large family of smooth triplets (h̃, X̃, Ỹ ) satisfying (2.23)
and agreeing with the Kerr triplet in Π\E follows by a classic local existence
result, solving a characteristic initial-value problem, using, for example, the
main existence result in [32].

One can then we construct the new space-time metric g̃,

g̃ab = X̃−1h̃ab + X̃ÃaÃb, g̃a4 = X̃Ãa, g̃44 = X̃, a, b = 1, 2, 3,

associated to the triplet (h̃, X̃, Ỹ ), the vector-field T = ∂4, and a suitable
1-form Ã which is defined in Π. By construction (see [37, Theorem 1]) this
metric verifies the identities g̃Ric = 0 and LTg̃ = 0, in a suitable open set
U . Finally one can show that we have enough flexibility to choose initial
conditions for X̃, Ỹ such that the vector-field Z cannot be extended as a
Killing vector-field for g̃ commuting with T, in the open set U .

Remark 2.22. Note that the construction of the extended metric in
theorem 2.21 relies in an essential way on the fact that a �= 0 to allow
for a non-trivial ergo-region near the horizon where T is space-like. No such
result is known for a = 0.

14See section 3.1
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3. Mars-Simon tensor and global results

3.1. Killing vector-fields. In what follows we consider 1 + 3 dimen-
sional Lorentzian manifolds endowed with a Killing vectorfield K, i.e.

DαKβ + DβKα = 0(3.1)

We define the 2-form,

Fαβ = DαKβ =
1
2
(
DαKβ − DβKα)

as well as its Hodge dual,

∗Fαβ =
1
2

∈αβ
μνFμν

Note that ∗( ∗F) = −F. We also define the left and right Hodge duals of the
curvature tensor,

∗Rαβγδ =
1
2

∈αβ
μνRμνγδ, R∗

αβγδ =
1
2
Rαβμν ∈μν

γδ

and note that for a vacuum manifold, i.e. Ric(g) = 0, we have ∗R = R∗,
∗( ∗R) = −R. We also define the complex tensors,

Fαβ = Fαβ + i ∗Fab, Rαβγδ = Rαβγδ + ∗Rαβγδ

Note that R verifies all the symmetries of the curvature tensor as well
as15 gαγRαβγδ = 0. Note also that both F and R are self dual i.e ∗F =
−iF , ∗R = −iR.

We recall the following well known,

Lemma 3.1. For all tensor-fields U in M, if K is Killing we have,

DμDαKβ = RλμαβK
λ(3.2)

[LK,D]U = 0(3.3)

In particular, if (M,g) has vanishing Ricci curvature then,

DμFαβ = RλμαβK
λ

Corollary 3.2. If (M,g) is a vacuum Lorentzian manifold endowed
with a Killing vectorfield K we have,

D[μFαβ] = DμFαβ + DαFβμ + DβFμα = 0, DβFαβ = 0.

We define also the Ernst 1-form associated to the Killing vector-field K,

σμ = 2(iKFα) = 2KαFαμ = Dμ(−KαKα) − i ∈μβγδ KβDγKδ.(3.4)

Proposition 3.3. The following are true,

(3.5)

⎧⎪⎨⎪⎩
Dμσν − Dνσμ = 0;
Dμσμ = −F2;
σμσμ = g(K,K)F2.

15i.e. R is a complex valued Weyl tensor.
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Proof. We have,

2−1(Dμσν − Dνσμ

)
= Kα

(
DνFαμ − DμFαν

)
+ DνK

αFαμ − DμK
αFαν

= −KαDαFμν − DμK
αFαν − DνK

αFμα = −LKFμν

= 0.

Also,

2−1Dμσμ = KαDμFαμ + DμKαFαμ = −FαμFαμ = −2−1F2

The last formula in (3.5) follows easily from the lemma below. �

Lemma 3.4. Introduce the decomposition

iK(F)α = KμFμα, iK( ∗F)α = Kμ ∗Fμα, iK(F)α = KμFμα.

Clearly, iK(F), iK( ∗F), iK(F) are orthogonal to K and,

g(K,K)Fαβ = Kα iK(F)β − Kβ iK(F)α+ ∈αβμν Kμ iK( ∗F)ν(3.6)

Also,

g(K,K)Fαβ = Kα iK(F)β − Kβ iK(F)α − i ∈αβμν Kμ iK(F)ν(3.7)

In particular,

g(K,K)F2 = 4iK(F)μiK(F)μ = σμσμ(3.8)

Remark 3.5. Since d(σμdxμ) = 0, if M is simply connected, we infer
that there exists a function σ : M → C, called the Ernst potential, such that
σμ = Dμσ. Note also that Dμg(K,K) = 2FμλK

λ = −�σμ. Hence we can
choose the potential σ such that,

�σ = −g(K,K).(3.9)

Moreover, if (M,g) is asymptotically flat, we can choose σ = 1 at space like
infinity.

As a corollary of the lemma we also deduce,

�σ = −g(K,K)−1DμσDμσ(3.10)

or, writing σ = −f − if∗ we deduce,

�f = f−1(DμfDμf − Dμf∗Dμf∗)(3.11)

�f∗ = f−1Dμf Dμf∗(3.12)

In other words the pair (x = f, y = f∗) defines, whenever f = g(K, K) �= 0,
a wave map to the Poincaré plane H := {(x, y)/x > 0} with metric,

ds2 =
dx2 + dy2

x2
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3.2. Stationary Vacuum Spacetimes. We consider vacuum, asymp-
totically flat, 1 + 3 dimensional spacetimes which are stationary, i.e. they
possess a smooth, non degenerate, Killing vectorfield T which is timelike in
the asymptotic region (i.e. a neighborhood of null infinity). More precisely
we make the following assumptions:

(1) (Asymptotic flatness.) We assume that there is an open subset
M(end) of M which is diffeomorphic to R× ({x ∈ R

3 : |x| > R}) for
some R sufficiently large. In local coordinates {t, xi} defined by this
diffeomorphism, we assume that, with r =

√
(x1)2 + (x2)2 + (x3)2,

(3.13)

g00 = −1+
2M

r
+O(r−2), gij = δij+O(r−1), g0i = −εijk

2Sjxk

r3 +O(r−3),

for some constants M > 0, S1, S2, S3 such that J = [(S1)2+(S2)2+
(S3)2]1/2 ∈ [0, M2). We also assume T = ∂t with t = x0. We
define the domain of outer communication (exterior region)

E = I−(M(end)) ∩ I+(M(end)).

(2) (Completeness.) We also assume that E is globally hyperbolic and
every orbit of T in E is complete and intersects transversally a given
spacelike Cauchy hypersurface Σ0. We also assume, for convenience,
that Σ0 is diffeomorphic to {x ∈ R

3 : |x| > 1/2} and agrees with
the hypersurface corresponding to t = 0 in M(end).

(3) (Smooth bifurcate sphere.) Let S0 = ∂(I−(M(end))) ∩
∂(I+(M(end))). We assume that S0 ⊆ Σ0 and S0 is an imbed-
ded 2-sphere which agrees with the sphere of radius 1 in R

3 under
the identification of Σ0 with {x ∈ R

3 : |x| > 1/2}. Furthermore, we
assume that there is a neighborhood O of S0 in M such that the
sets

H+ = O ∩ ∂(I−(M(end)) and H− = O ∩ ∂(I+(M(end))

are smooth imbedded hypersurfaces diffeomorphic to S0 × (−1, 1),
We assume that these hypersurfaces are null, non-expanding and
intersect transversally in S0.

(4) (Tangency at Horizon16 ) Finally, we assume that the vector-field
T is tangent to both hypersurfaces H+ = O ∩ δ(I−(M(end))) and
H− = O ∩ δ(I+(M(end))).

Definition 3.6. A space-time verifying the above assumptions will be
called a regular, nondegenerate stationary vacuum spacetime.

Remark 3.7. Note that the definition pre-supposes the presence of a
unique connected horizon.

16It can be shown in fact that this assumption follows from the first two, using in
particular the completeness of T.
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3.3. Kerr spacetime. In Boyer-Lindquist coordinates the Kerr metric
takes the form,

(3.14)

ds2 = −q2Δ
Σ2 (dt)2 +

Σ2(sin θ)2

q2

(
dφ − 2aMr

Σ2 dt
)2

+
ρ2

Δ
(dr)2 + q2(dθ)2,

where,

q2 = r2 + a2 cos2 θ, Δ = r2 + a2 − 2Mr,

Σ2 = (r2 + a2)q2 + 2Mra2(sin θ)2.

On the horizon we have r = r+ := M +
√

M2 − a2 and Δ = 0. The domain
of outer communication E is given by r > r+. One can show that the
complex Ernst potential σ and the complex scalar F2 associated to the
Killing vectorfield T = ∂t are given by

σ = 1 − 2M

r + ia cos θ
, F2 = − 4M2

(r + ia cos θ)4
.(3.15)

Thus,

−4M2F2 = (1 − σ)4(3.16)

everywhere in the exterior region. Writing y + iz := (1 − σ)−1 we observe
that,

y =
r

2M
≥ r+

2M
>

1
2
.

everywhere in the exterior region.

3.4. Mars-Simon. In [27] M. Mars gave a very useful local character-
ization of the Kerr family in terms of the vanishing of complex 4-tensor S,
called the Mars-Simon tensor. In other words S plays the same role in de-
tecting a Kerr spacetime as the Riemann curvature tensor plays in detecting
flat space.

Definition 3.8. Given a stationary spacetime with Killing field T and
associated Ernst potential σ, we define the Mars-Simon tensor17,

Sαβμν := Rαβμν + 6(1 − σ)−1Qαβμν .

where,

Qαβμν := FαβFμν − 1
3
F2Iαβμν

and,

Iαβμν := (gαμgβν − gανgβμ + i ∈αβμν)/4

Remark 3.9. Note that R,Q,S are all complex, self dual Weyl fields in
the sense defined above.

17in regions where σ �= 1.
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Here is an important property of S, derived and made use of in [20].

Proposition 3.10. The tensor S verifies the equation,

DαSαβμν = −6(1 − σ)−1TσSσργδ

[Fβ
ρ δγ

μ δδ
ν +

2
3
Iρ

βμνFγδ
]

We give a complete proof of the proposition in appendix B. As a corollary
we derive,

Corollary 3.11. The tensor S verifies a covariant wave equation of
the form,

�S = M(DS,S)(3.17)

3.5. A Maxwell System. In the appendix we also derive a Maxwell
type equation for the following slightly modified version of the Mars-Simon
tensor,

S ′
αβμν := Rαβμν + 6�−1Qαβμν .

where, for some constant18 C,

� := C(−F2)1/4(3.18)

Proposition 3.12. The self-dual complex 2-form

Hαβ := �−3S ′
αβμνFμν ,

verifies the Maxwell equations,

(3.19) DαHαβ = −�−3Tσ(S ′ · S ′)σβ − 3�−1EρHρβ ,

where,

(S ′ · S ′)σβ = S ′
β

ρμνS ′
σρμν

and,

Eρ := σρ + Dρ� = −1
2
C4TσHσρ(3.20)

Remark 3.13. Remark that the right hand side of (3.19) is quadratic
in S and thus, if S = O(ε), sufficiently small, we can ignore it in a first
approximation and derive the linearized equation

DαH(lin)
αβ = 0.(3.21)

18The precise constant in Kerr is C = (4M2)1/4
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3.6. Rigidity results based on S.

Theorem 3.14 (Ionescu-Klainerman [20]). Assume that (M,g) is reg-
ular, nondegenerate stationary vacuum spacetime and that the stationary
Killing vectorfield T does not vanish on the bifurcate sphere. Assume also
that the following conditions are verified

(3.22) −4M2F2 = (1 − σ)4 on S0,

and

(3.23) �(
(1 − σ)−1) > 1/2 at some point on S0.

Then (M,g) is isometric to the domain of outer communication of a Kerr
space-time with mass M and 0 < a < M .

The proof of the theorem is based on the following ingredients:
(1) Assumption (3.22) is used to show that S vanishes along the

horizon19.
(2) Due to the non-degeneracy of the horizon one can check that the

null convexity condition is verified at all points of the bifurcate
sphere20. Thus our unique continuation results applied to equation
(3.17) can be applied to prove that S vanishes in a neighborhood
of the horizon.

(3) This is the key step! We define functions y, z such that y + iz =
(1 − σ)−1. In the particular case of a Kerr space K(a, M) they
are y = (2M)−1r, z = (2M)−1a cos θ. Remarkably the foliation
induced by y, in the direction of growing y, verifies the strict T-
null convexity condition. Using some of the main steps of Mars’s
theorem in [27] one can check that this fact remains true as long
as S vanishes. Thus the vanishing of S in a region y ≤ y0 leads,
based on our results on unique continuation (applied to equation
(3.17)) to its vanishing in a larger region y ≤ y0 + ε. Therefore, by
a simple continuity argument, S vanishes everywhere.

(4) According to Mars theorem [27] we conclude that our space-time
is isometric to K(a, M), with a, M determined from the asymptotic
conditions of the metric g.

We now state our second main theorem. Roughly the theorem shows that
any stationary spacetime close to a non-extremal Kerr solution K(a, M),
|a| < M , must be a non-extremal Kerr solution. The closeness to Kerr is
expressed in terms of the smallness of the Mars-Simon tensor S.

19We also make use of the fact that, in view of our assumption that T does not vanish
identically on the bifurcate sphere S0 can only vanish at a finite number isolated points
on S0.

20Strictly speaking the classical null-cinvexity condition applies only to smooyh
boundaries. Yet the defintion of null convexity can be extended to our bifurcate horizon
situation.
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Theorem 3.15 (Alexakis-Ionescu-Klainerman [2]). Assume that (M,g)
is regular, nondegenerate stationary vacuum spacetime verifying all the
assumptions of theorem 3.14 except (3.22) which is replaced by the condition.

(3.24) |(1 − σ)S(T, Eα, Eβ, Eγ)| ≤ ε on Σ0 ∩ E,

for some sufficiently small constant ε > 0 (depending only on our regularity
assumption on the metric g) where E0, E1, E2, E3 is a fixed orthonormal
frame along Σ0 with E0 the future unit normal. Then the entire domain of
outer communication E is isometric to the exterior region of a Kerr solution
K(a, M).

The proof of the theorem is based on the following ideas.
(1) A simple argument, due to Hawking21 , shows that one can con-

struct a second Killing vectorfield K on the horizon H+ ∪H−, with
K tangent to the generators.

(2) We check that the strict-null convexity condition is verified at all
point of the bifurcate sphere S0 and extend K in a full neighborhood
of S0. Moreover K commutes with T, [K,T] = 0.

(3) Introduce the coordinates y, z such that y+iz = (1−σ)−1 and show,
using the smallness assumption on S, that y verifies the strict T-
null-convexity condition.

(4) Extend K everywhere in E as a Killing vectorfield such that
[K,T] = 0 and find a combination Z of T,K which has closed
orbits.

(5) Use the Carter-Robinson theorem to conclude that E is isometric
to the exterior domain of a Kerr solution.

Remark 3.16. Theorem 3.15 has been significantly strengthened by
Wong and Yu in [40] in which they show, by a clever application of the
mountain pass lemma, that the assumption of a connected horizon, implicit
in both theorems 3.14, 3.15, is unnecessary.

Remark 3.17. The reliance on the Carter-Robinson theorem in the last
step of the proof is somewhat unsatisfactory since we are in a small S regime.
In fact the authors believe that an alternative argument can be given relying
on proposition 3.12 and the study of stationary solutions to the linearized
system (3.21).

3.7. Third rigidity result. In this section we review a recent black
hole rigidity result for slowly rotating stationary solutions of the Einstein
vacuum equations. The result states that the domain of outer communication
of any stationary vacuum black hole, in the sense of definition 3.6, with the
stationary Killing vector-field T being small on the bifurcation sphere of the
horizon, must be isometric to the domain of outer communication of a Kerr
solution K(a, M) with small a. More precisely,

21Hawking’s original argument also applies to degenerate horizons. In the case of a
non-degenerate horizon, assumed here, the proof is completely trivial.
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Theorem 3.18 (Alexakis-Ionescu-Klainerman [3]). Assume that (M,g)
is regular, nondegenerate stationary vacuum spacetime, as in subsection 3.2.
Assume in addition that there exists a regular maximal hypersurface Σ1
passing through the bifurcation sphere and that

(3.25) ‖g(T,T)‖L∞(S0) < ε,

where ε is a sufficiently small constant22. Then (M,g) is stationary and
axially symmetric, thus, in view of the Carter-Robinson theorem, isometric
to a Kerr spacetime K(a, m) with small a.

This result should be compared with that stated in theorem 3.15 in
which rigidity was proved, for the entire range 0 ≤ a < M , under a global
smallness assumption on the Mars-Simon tensor associated to the stationary
space-time. We recall that the proof of theorem 3.15 rested on the following
ingredients:

(1) An unconditional local rigidity result, discussed in section 2, ac-
cording to which a second, rotational Killing vector-field Z can be
constructed in a small neighborhood of the bifurcate sphere of the
horizon.

(2) An extension argument for the Killing vector-field Z based on a
global foliation of the space-time with T- conditional pseudo-convex
hypersurfaces. The crucial T- conditional null-convexity condition
is ensured by the assumed smallness of the Mars-Simon tensor.

(3) Once Z is globally extended, and thus the space-time is shown to be
both stationary and axisymmetric, one can appeal to the classical
Carter-Robinson theorem to conclude the desired rigidity.

Theorem 3.18 is still based on the first and third ingredients above but
replaces the second one with a new ingredient inspired from the classical
work of Sudarsky and Wald [36] (see also [7]) on the staticity of stationary,
axially symmetric, black hole solutions with zero angular momentum. The
Sudarski-Wald result was based on a simple integral formula linking the
total extrinsic curvature of a regular maximal hypersurface Σ imbedded in
the space-time and passing through the bifurcate sphere, with the angular
momentum of the horizon. It can be easily shown23 that zero ADM angular
momentum implies vanishing angular momentum of the horizon and thus,
in view of the above mentioned formula, the maximal hyper-surface has to
be totally geodesic. This then implies the desired conclusion of [36], i.e the
space-time is static. The main observation in the proof of theorem 3.18 is
that a simple smallness assumption of T on the bifurcate sphere24 implies

22We note that the smallness depends on the entire geometry of (M,g), in particular
on its ADM mass M .

23This step is based on the additional assumption of axial symmetry.
24This is equivalent with a small angular momentum assumption on the horizon. It

remains open whether this condition can be replaced with a smallness assumption of the
ADM angular momentum.
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the smallness of the total curvature of the maximal hypersurface. This can
then be combined with a simple application of the classical Hopf Lemma
to conclude that the entire ergo-region of the black hole can be covered
by the local neighborhood of the horizon in which the second, rotational,
Killing vector-field Z has been extended, according to step (1) above. Away
from the ergo-region T is time-like and thus T-conditional null-convexity is
automatically satisfied. Thus, the second Killing vector-field Z can be easily
extended to the entire space-time by the results discussed in section 2.

3.8. Einstein-Maxwell case. The results of theorems 3.14, 3.15 pre-
sented in this section have been extended to the Einstein-Maxwell equations
by W. Wong and P. Yu. The analogue of the Mars Simon tensor was dis-
covered by Wong in [38]. It consists of a pair of tensors, one related to
the curvature tensor and the second related to the Maxwell field. A Kerr-
Newman solution is characterized by their simultaneous vanishing. A slight
modification of the pair appears in [40]. The applications to the rigidity
problem appear in [40] as well as [39] and [41].

4. Conclusions

Despite statements to the contrary made often in physics literature,
the rigidity conjecture remains wide open. Though a lot of progress was
made in the last ten years, the full scope of the conjecture remains out
of reach. The global results presented in this survey are mostly limited
to perturbative regimes. Under somewhat different assumptions they all
assert that that stationary solutions closed to a non-extremal Kerr must
be isometric to a non-extremal Kerr whose parameters a, M are determined
by their ADM mass and angular momentum. Despite their limitations they
offer however a perspective of what one might expect to encounter in the
general case. To start with, the results illustrate the important role played by
null geodesics perpendicular to the stationary Killing vectorfield T. Based
on the experience we have accumulated so far, we conjecture, together with
our collaborator Spyros Alexakis, the following general conjecture.

Conjecture[Alexakis-Ionescu-Klainerman]. Any asymptotically flat, regu-
lar, stationary vacuum solution, as as in subsection 3.2, which admits no
trapped null geodesics perpendicular to T must be isometric to the exterior
part of a non-extremal Kerr solution.

All the three global results discussed in the survey are based on the fact
that small, stationary perturbations of a non-extremal Kerr spacetime25 ver-
ifies the hypothesis of the conjecture. It is conceivable that the conjecture
can be proved with current techniques, based on unique continuation meth-
ods. The conjecture leaves however open the question whether such null
geodesics can be ruled out in general. It thus illustrates an important aspect
of the general case, namely the fact that we cannot hope to prove the full

25Note however that the Kerr family admits plenty of trapped null geodesics.
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rigidity conjecture based only on a continuation argument starting form the
horizon. Indeed such an argument may not distinguish between the given
stationary Killing vectorfield T and any other possible Killing vectorfield,
such as T + cZ in Kerr. While, in Kerr, there are no trapped null geodesics
perpendicular to T there are plenty of those perpendicular26 to T+cZ. Thus
a full proof of the rigidity conjecture must rely on global properties of the
space-time.

Appendix A. Proof of proposition 2.18

We first restate the proposition in a general setting of an arbitrary
Lorentzian manifold (M, g), a domain O ⊂ M , p ∈ ∂O and h a defining,
nondgenerate, function for ∂O in a full neighborhood U1 of p, i.e. h < 0
in O ∩ U1 and h = 0 on ∂O ∩ U1. Moreover we assume that h verifies the
condition (2.19) in U1.{

|dh| ≥ M−1

Y αY β (μgαβ − DαDβh) + M |Y (h)|2 ≥ M−1|Y |2,(A.1)

uniformly, at all points of U , with |Y |2 = (Y 0)2 + (Y 1)2 + . . . + (Y d)2..
Let Uε be small neighborhoods of p such that |h| ≤ 2−1ε in Uε and define

the weight functions, fε : Uε −→ R

fε := log(ε + h + ep)

where ep is a small perturbation. More precisely, we say that eε is a negligible
perturbation if

sup
Uε

|Djeε| ≤ ε2 for j = 0, 1, 2.

In particular the weights fε verify (2.19) in Uε, uniformly in ε > 0. Also,
uniformly in Uε,

|Dfε| ≤ Cε−1

Proposition A.1. If fε are as above, there exists a sufficiently small
ε > 0 and a large constant Cε > 0 such that, for all φ ∈ C2

0 (Uε) and all
sufficiently large λ > 0,

(A.2) λ · ‖e−λfε · φ‖L2 + ‖e−λfε · Dφ‖L2 ≤ Cελ
−1/2 · ‖e−λfε · �gφ‖L2 ,

Remark A.2. Note that Cε denotes a constant which depends only on
the small parameter ε but not on λ. Throughout the proof below we shrink
ε > 0 whenever necessary and enlarge the constant Cε.

Proof. We first fix ε > 0. Since all derivatives of f = fε are bounded
on U = Uε it suffices to prove ( with a different Cε !),

(A.3) λ · ‖e−λf · φ‖L2 + ‖D(e−λf · φ
)‖L2 ≤ Cελ

−1/2 · ‖e−λf · �gφ‖L2 .

26In fact for any given trapped null geodesic we can find a constant c such that T+cZ
is perpendicular to it.
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Note that in (A.3), as well as in all similar places below, ‖Dψ‖L2 :=
‖|Dψ|‖L2 with |Dψ|2 =

∑n
α=0 |∂αψ|2 as in proposition 2.18.

To prove estimate (A.3) we start by setting,

φ = eλfψ(A.4)

Observe that,

e−λf�(eλfψ) = �ψ + λ(2DβfDβψ + �fψ) + λ2(DβfDβf)ψ
= Lψ + �fψ

where,

Lψ = �ψ + 2λX(ψ) + λ2Gψ, X = Dαf∂α, G = DβfDβf.

Thus estimate (A.3) follows from,

λ‖ψ‖L2 + ‖Dψ‖L2 ≤ Cελ
−1/2‖Lψ‖L2 ,(A.5)

Recall the energy momentum tensor of � = �g,

Qμν = DμψDνψ − 1
2
gμν(DσψDσψ).

Given a vectorfield X and a scalar function w we define Pμ = Pμ[X, w]

Pμ : = QμνX
ν − wφ∂μφ +

1
2
∂μwφ2

Lemma A.3. The one form Pμ = Pμ[X, w] verifies the identity,

DμPμ = (X(ψ) − wψ)�ψ +
1
2
Qμν

(X)πμν +
1
2
�wψ2 − wg(dψ, dψ)(A.6)

In our case we have �ψ = Lψ − 2λX(ψ) − λ2Gψ. Hence,

DμPμ = (X(ψ) − wψ)
(
Lψ − 2λX(ψ) − λ2Gψ

)
+

1
2
Qμν

(X)πμν − wDμψDμψ +
1
2
�gw|ψ|2

or,

(Div P ) + λ|X(ψ)|2 − 1
2
Qμν

(X)πμν + wDμψDμψ = E

where,

E = (X(ψ) − wψ)
(
Lψ − 2λX(ψ) − λ2Gψ

)
+ λ|X(ψ)|2 +

1
2
�gw|ψ|2

= (X(ψ) − wψ)Lψ + (X(ψ) − wψ)
[−λ(X(ψ) − wψ) − λ(X(ψ) + wψ) − λ2Gψ

)
+ λ|X(ψ)|2 +

1
2
�gw|ψ|2

= (X(ψ) − wψ)Lψ − λ(X(ψ) − wψ)2 − λ
(|X(ψ)|2 − w2ψ2) + λ|X(ψ)|2 +

1
2
�gw|ψ|2

− λ2Gψ(X(ψ) − wψ)

= (X(ψ) − wψ)Lψ − λ(X(ψ) − wψ)2 + |ψ|2
(

λw2 +
1
2
�gw

)
− λ2Gψ(X(ψ) − wψ)
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Note that,

Gψ(X(ψ) − wψ) =
1
2
GXμDμ(ψ2) − wGψ2 = Dμ

(
1
2
GXμψ2

)
− 1

2
ψ2 [Dμ(GXμ) + 2Gw]

Thus,

Lemma A.4. We have the point wise identity,

DμP ′
μ + λ|X(ψ)|2 − 1

2
Qμν

(X)πμν + wDμψDμψ − λ2

2
ψ2 [Dμ(GXμ) + 2Gw]

= E′

where,

P ′
μ = Pμ +

1
2
λ2GXμψ2

and,

E′ = (X(ψ) − wψ)Lψ − λ(X(ψ) − wψ)2 + |ψ|2
(

λw2 +
1
2
�gw

)
Now,

(X(ψ) − wψ)Lψ ≤ λ−1|Lψ|2 + λ|X(ψ) − wψ|2

Hence,

E′ ≤ λ−1|Lψ|2 + |ψ|2
(

λw2 +
1
2
�gw

)
Since by integration DαP ′

α disappears, it suffices to check that the desired
inequality

λ2‖ψ‖2
L2 + ‖Dψ‖2

L2 ≤ Cελ
−1‖Lψ‖2

L2

for λ sufficiently large, follows by integrating the following pointwise inequal-
ity,

λ|X(ψ)|2 − 1
2
Qμν

(X)πμν + wDμψDμψ − λ2

2
ψ2 [Dμ(GXμ) + 2Gw]

≤ λ−1|Lψ|2 + |ψ|2
(

λw2 +
1
2
�gw

)
It thus suffices27 to prove the following two inequalities, for Cε sufficiently
large and λ large,

λ|X(ψ)|2 − 1
2
Qμν

(X)πμν + wDμψDμψ ≥ C−1
ε |Dψ|2

−1
2

[Dμ(GXμ) + 2Gw] ≥ C−1
ε

27Note indeed that the remaining term |ψ|2 (
λw2 + 1

2�gw
)

on the right of the above
inequality is lower order and can be easily absorbed.
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Recalling the definition of X = Dαf∂α and G = DafDαf we write,

−1
2
Qμν

(X)πμν + wDμψDμψ =
[
−DμDνf +

1
2
gμν(2w + �f)

]
DμψDνψ

Dμ(GXμ) + 2Gw = X(G) + GDμXμ + 2Gw

= DαfDα(DβfDβf) + G(�f + 2w)

= 2DαfDβfDαDβf + DαfDαf(�f + 2w)

Hence, it suffices to show the inequalities (with 2w′ = �f + 2w ),

λ|DαfDαψ|2 +
[−DαDβf + w′gαβ

]
DαψDβψ ≥ C−1

ε |Dψ|2(A.7)

− (
DαDβf + w′gαβ

)
DαfDβf ≥ C−1

ε(A.8)

Now recall that f = fε = log(h + ε). Therefore,

Dαf = (h + ε)−1Dαh

DαDβf = (h + ε)−1DαDβh − (h + ε)−2DαhDβh

The inequality (A.7) becomes,

(λ + 1)(h + ε)−1|DαhDαψ|2 + [−DαDβh + w(h + ε)gαβ ] DαψDβψ

≥ C−1
ε (h + ε)|Dψ|2

which follows if,
1
2ε

λ|DαhDαψ|2 + [w(h + ε)gαβ − DαDβh)]DαψDβψ ≥ 2εC−1
ε |Dψ|2

for some Cε large. The inequality (A.8) becomes,

− [
(h + ε)−1DαDβh − (h + ε)−2DαhDβh

]
DαhDβh − w′gαβDαhDβh

≥ C−1
ε (h + ε)2

or,

(h + ε)−1(DαhDαh)2 − DαDβhDαhDβh − w′(h + ε)(DαhDαh) ≥ C−1
ε (h + ε)3

It thus suffices to have, with a slightly different Cε,
1
2ε

(DαhDαh)2 − DαDβhDαhDβh − w′(h + ε)(DαhDαh) ≥ C−1
ε ε3

It thus remains to show that, with the right choice of ε sufficiently small and
λ sufficiently large we can verify the inequalities,

(A.9)
1
2ε

λ|DαhDαψ|2 +
[
w′(h + ε)gαβ − DαDβh

)
]DαψDβψ ≥ 2εC1|Dψ|2

(A.10)
1
2ε

(DαhDαh)2 − DαDβhDαhDβh − w′(h + ε)(DαhDαh) ≥ C−1
ε ε3
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In view of the quantitative strict null convexity condition (2.19) we have,
for a sufficiently large M , μ ∈ [−M, M ] and for all vector fields Y in U ,

(A.11)

Y αY β(μgαβ − DαDβh) + M |Y h|2 ≥ M−1|Y |2, |Dh| ≥ M−1.

Hence with Y α = Dαψ, λ ≥ M ,

DαψDβψ(μgαβ − DαDβh) + λ|DαψDα(h)|2 ≥ M−1|Dψ|2,
Therefore, choosing w′ = (h + ε)−1μ, i.e. w = (h + ε)−1μ − 1

2�fε, we deduce
that (A.9) holds true provided that ε � M−1.

If DαhDαh(p) �= 0, we can also find ε sufficiently small such (A.10) holds
uniformly on U = Uε. Once again we need ε � M−1. If DαhDαh = 0 holds
at p, we take Y = Dαh∂α in (A.11) and derive, at p,

−DαDβhDαhDβh(p) ≥ M−1|dh(p)|2(A.12)

On the other hand the inequality (A.10) becomes, at p.

−DαDβhDαhDβh ≥ 2C−1
ε ε3

In view of (A.12) this last inequality is satisfied if,

M−1|dh(p)|2 ≥ 2C−1
ε ε3.

Since |dh(p)| ≥ M−1 we need M−3 � Cεε
3. Thus, to have both inequalities

satisfied on Uε we need,

ε � M−1

for a sufficiently large Cε In other words given M , such that (A.11) is verified,
we first choose ε � M−1 and then choose Cε sufficiently large.

�

Appendix B. Proof of Proposition 3.10

We give a slightly modified definition of the Mars-Simon tensor.

Sαβμν : = Rαβμν + 6�−1Qαβμν ,(B.1)

Qαβμν : = FαβFμν − 1
3
F2Iαβμν ,

Iαβμν : = (gαμgβν − gανgβμ + i ∈αβμν)/4

with an arbitrary complex function �.

Proposition B.1. The tensor S verifies the equation,

DαSαβμν = −6�−1TσSσργδ

[Fβ
ρ δγ

μ δδ
ν +

2
3
Iρ

βμνFγδ
] − 6�−2EρQρβμν

where,

Eρ = Dρ� + σρ

Remark B.2. Note that proposition 3.10 is an immediate consequence
of the above proposition for the special case h = (1 − σ).
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Proof. In view of (3.2) and the definitions of S and σ,

DαFβγ = TλRλαβγ = TλSλαβγ − 6�−1TλQλαβγ

= TλSλαβγ − 6�−1Tλ
(FλαFβγ − 1

3
F2Iλαβγ

)
= TλSλαβγ − 3�−1σαFβγ + 2�−1F2TλIλαβγ

i.e.,

DαFβγ = 2�−1F2TλIλαβγ − 3�−1σαFβγ + TλSλαβγ(B.2)

Thus,

Dα[�−3Fβγ ] = �−3
[
2�−1F2TλIλαβγ − 3�−1σαFβγ + TλSλαβγ

]
−3�−4DαhFβγ

= 2�−4F2TσIσαβγ − 3�−4(σα + Dαh)Fβγ + �−3TλSλαβγ

= 2�−4F2TσIσαβγ − 3�−4EαFβγ + �−3TλSλαβγ

We record this result for future reference,

(B.3)

Dα[�−3Fβγ ] = 2�−4F2TσIσαβγ − 3�−4EαFβγ + �−3TλSλαβγ

Since IλαβγFβγ = Fλα,

FβγDαFβγ = −3�−1σαF2 + 2�−1F2TλFλα + TλSλαβγFβγ

= −2�−1σαF2 + TλSλαβγFβγ

Thus,

Dα(F2) = −4�−1σαF2 + 2TλSλαβγFβγ(B.4)

We now calculate, using (B.2), (B.4) and (3.19),

DαQαβμν = gραDρ

(FαβFμν − (1/3)F2Iαβμν

)
= gραFαβDρFμν + gραFμνDρFαβ − (1/3)gραIαβμνDρF2

= gραFαβDρFμν − (1/3)gραIαβμνDρF2

= −Fβ
ρ[2�−1F2TσIσρμν − 3�−1σρFμν + TσSσρμν ]

− (1/3)Iαβμν [−4�−1σαF2 + 2gαρ(TσSσργδ)Fγδ]

= −2�−1F2F ρ
β TσIσρμν + 3�−1Fβρσ

ρFμν

+(4/3)�−1F2Iαβμνσ
α

− [Fβ
ρTσSσρμν + (2/3)Iαβμνg

αρFγδTσSσργδ

]
.
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We deduce,

DαQαβμν = �−1Aβμν + Bβμν

Aβμν = −2F2Fβ
ρTσIσρμν + 3Fβρσ

ρFμν + (4/3)F2Iρβμνσ
ρ.

Bβμν = −[Fβ
ρTσSσρμν + (2/3)Iαβμνg

αρFγδTσSσργδ

]
Recalling the definition of Q we derive,

Aβμν = −2F2Fβ
ρTσIσρμν + 2Fβρσ

ρFμν + F2Iρβμνσ
ρ − σρQρβμν

= Kβμν − σρQρβμν

where,

Kβμν = −2F2Fβ
ρTσIσρμν + 2Fβρσ

ρFμν + F2Iρβμνσ
ρ

Making use of the identity,

F σ
μ Iνσαβ + F σ

ν Iμσαβ =
1
2
gμνFγδIγδαβ =

1
2
gμνFαβ .(B.5)

and σρ = 2TσFσρ we derive,

Kβμν = −2F2Fβ
ρTσIσρμν + F2Iρβμνσ

ρ + 2Fβρσ
ρFμν

= −2F2(Fβ
ρTσIσρμν − IρβμνT

σFσρ

)
+ 4TσFσ

ρFβρFμν

= −2F2Tσ(Fβ
ρIσρμν + Fσ

ρIβρμν) + 4TσFσ
ρFβρFμν

= −2F2Tσ · (1/2)gβσFμν + 4TσFμν · (1/4)gσβF2

= 0.

Consequently,

DαQαβμν = −�−1σρQρβμν + Bβμν

from which we deduce, recalling σρ + Dρh = Eρ

Dα
(
�−1Qαβμν) = −�−2σρQρβμν + �−1Bβμν − �−2DρhQρβμν

= �−1Bβμν − �−2EρQρβμν

Finally, recalling the definitions of S and B, we deduce,

DαSαβμν = DαRαβμν + 6Dα
(
�−1Qαβμν

)
= 6�−1Bβμν − 6�−2EρQρβμν

= −6�−1[Fβ
ρTσSσρμν + (2/3)Iρ

βμνFγδTσSσργδ

]
−6�−2EρQρβμν

= −6�−1TσSσργδ

[Fβ
ρ δγ

μ δδ
ν +

2
3
Iρ

βμνFγδ
] − 6�−2EρQρβμν

�
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B.1. Second Mars Tensor. In [28] Mars was able to give an alterna-
tive, stronger, characterization of the Kerr solution in terms of the vanishing
of the tensor SαβμνFμν . In what follows we show that a simple modification
of that tensor verifies a Maxwell equation. We choose,

� = C(−F2)1/4(B.6)

in the generalized definition of S in (B.1), where C is a constant to be
determined. With this choice of h we define the complex self-dual 2-form,

(B.7) Hαβ := �−3SαβμνFμν .

Since QαβμνFμν = 2
3F2Fαβ we also have,

Hαβ = �−3RαβμνFμν − 4C−4Fαβ .(B.8)

Proposition B.3. The self-dual complex 2-form Hαβ defined above
verifies the Maxwell equations,

(B.9) DαHαβ = −�−3Tσ(S · S)σβ − 3�−1EρHρβ ,

where,

(S · S)σβ = Sβ
ρμνSσρμν

and,

Eρ := σρ + Dρ� = −1
2
C4TσHσρ(B.10)

Proof. Recall (B.4),

Dα(F2) = −4�−1σαF2 + 2TλSλαβγFβγ = 4�−1σα(hC−1)4 + 2TλSλαβγFβγ

= 4C−4h3σα + 2TλSλαβγFβγ

Hence,

C−1Dα� = Dα

[
(−F2)1/4

]
= −1

4
DαF2(−F2)−3/4 = −1

4
[�4C−4]−3/4(DαF2)

= −1
4
C3�−3(DαF2) = −1

4
C3�−3(4C−4�3σα + 2TλSλαβγFβγ

)
= −C−1σα − 1

2
C3TλHλα

or,

Dβ� = −σβ − 1
2
C4TσHσβ .(B.11)

We deduce,

Eβ = −1
2
C4TσHσβ(B.12)

We now calculate,

DαHαβ = Dα[Sαβμν · �−3Fμν ] = DαSαβμν · �−3Fμν + SαβμνD
α[�−3Fμν ].

Using proposition 3.10 ,

DαSαβμν = −6�−1TσSσργδ

[Fβ
ρ δγ

μ δδ
ν +

2
3
Iρ

βμνFγδ
] − 6�−2EρQρβμν
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we deduce,

DαSaβμν · �−3Fμν = −6�−4Fμν
[Fβ

ρTσSσρμν + (2/3)Iρ
βμνFγδTσSσργδ

]
− 6�−2EρQρβμν�

−3Fμν

= −6�−4Fμν
[Fβ

ρTσSσρμν + (2/3)Iρ
βμνFγδTσSσργδ

]
− 6�−5Eρ

(
FρβFμν − 1

3
F2Iρβμν

)
Fμν

= −6�−1Fβ
ρTσHσρ + 4�−1Fβ

ρTσHσρ

−4�−5(F2)EρFρβ

= −2�−1Fβ
ρTσHσρ + 4�−2(F2)EρFβρ

= −2�−1Fβ
ρTσHσρ + 4�−5(−h4/C4)EρFβρ

= −2�−1Fβ
ρTσHσρ + 4�−1C−4EρFβρ

= −2�−1Fβ
ρ
(
TσHσρ + 2C−4Eρ

)
Thus, in view of (B.12),

DαSaβμν · �−3Fμν = 0.

On the other hand, recalling (B.3)

Dρ[�−3Fμν ] = 2�−4F2TσIσρμν − 3�−4EρFμν + �−3TλSλρμν

we have,

SρβμνD
ρ[�−3Fμν ] = Sρ

β
μν

[
2�−4F2TσIσρμν + �−3TσSσρμν − 3�−4EρFμν

]
Observe that Sρ

β
μνIσρμν = 0 Thus,

SρβμνD
ρ[�−3Fμν ] = Sρ

β
μν�−3TσSσρμν − 3�−1Hρ

βEρ

Finally we deduce,

DαHαβ = DαSαβμν · �−3Fμν + SαβμνD
α[�−3Fμν ]

= Sρ
β

μν�−3TσSσρμν − 3�−1Hρ
βEρ

= −�−3Tσ(S · S)σβ − 3�−1EρHρβ

�
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