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ABSTRACT. We survey some recent progress in the regularity theory of
stable minimal hypersurfaces, describing also earlier work related to the
recent results, some applications of the recent results, and key aspects

of their proofs.
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INTRODUCTION

Regularity and singularity theory of minimal submanifolds of Riemann-
ian manifolds is a subject with a rich history and a large number of inter-
esting, central open questions. Apart from producing beautiful, deep results
with many important direct applications in geometry and analysis, this sub-
ject has been the birthplace of an array of fundamental techniques of far
reaching significance. These widely applicable techniques have served as a
catalyst for a substantial volume of research in a diverse range of areas
in Geometric Analysis and non-linear PDE, such as the variational theo-
ries of harmonic maps, Yang—Mills connections, free boundary and phase
transition problems; their associated gradient flows; other geometric flows
including Ricci flow, mean curvature flow and Yamabe flow, and general
relativity, to name just a few.

In this brief survey our principal aim is to discuss some recent progress
in the theory of stable minimal hypersurfaces, focusing in particular on the
work [Wicl4a]. We shall also briefly survey several other results in minimal
surface theory along the way, choosing among the many important theorems
only the ones that are directly related—implicatively or contextually—to the
work [Wicl4al].

Main recent results and their historical context. The pioneering
work in the study of stable minimal hypersurfaces was done by De Giorgi,
whose work [DG61], published in 1961, established that an n-dimensional
locally area minimizing boundary in a Riemannian manifold is smoothly
embedded away from a closed (interior) singular set ¥ of n-dimensional
Hausdorff measure zero. This groundbreaking regularity result triggered a
large amount of activity in the theory of minimal submanifolds and related
areas. In particular, during the decade 1960-70, the regularity conclusion
of De Giorgi’s theorem itself went through a step-by-step process of being
strengthened, as a result of the work of Federer-Fleming ([FF60]), Reifen-
berg ([Rei60]), Fleming ([Fle62]), Almgren ([Alm66]), Simons ([SJ68])
and Federer ([Fed70]), and was shown to be valid for area minimizing codi-
mension 1 rectifiable currents (away from their boundary), for which an exis-
tence theory (in homology classes or subject to fixed boundary) had been de-
veloped in the seminal work of Federer—Fleming ([FF60]). The end result of
all of this was one of the most beautiful theorems in Geometric Analysis: the
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(interior) singular set 3 of the minimizer is in fact empty if n < 6, discrete if
n = 7 and has Hausdorfl dimension < n — 7 if n > &. Soon after this funda-
mental result had been established, Bombieri-De Giorgi-Giusti ([BDG69))
showed that the cone over the product of spheres %83 X %Sg’ C RS,
which Simons’ had already observed to be stable, is in fact locally area
minimizing. Thus interior singularities do occur in locally area minimizing
7-dimensional hypersurfaces, establishing the fact that the above Hausdorff
dimension bound on the singular set is in fact the best possible general
conclusion.

The work [Wic14a] sharpens this classical theory, by significantly weak-
ening its hypotheses. This work shows that one needs to verify surprisingly
little to draw the same regularity conclusion, and that the result in fact
holds in the more general varifold setting. Specifically, the main theorem of
[Wicl4a] shows that exactly the same conclusion on the size of the singular
set continues to hold under the following three conditions which together
form a sharp hypothesis that is considerably weaker than the area minimiz-
ing assumption:

(i) The hypersurface (by which we mean a codimension 1 integral
varifold; see the definition in Section 1 below) is stationary in
the sense that it has zero first variation with respect to the area
functional for any smooth ambient deformation that leaves the
region outside some compact set fixed.

(ii) The regular part (the smoothly embedded part of the support) of
the hypersurface is stable in the sense that the hypersurface has
non-negative second variation with respect to the area functional
for any smooth ambient deformation as in (i) that also leaves a
neighborhood of the singular set (the complement of the regular
part in the support of the hypersurface) fixed and moves the
regular part in the normal direction. (Note that the regular part is
always non-empty by Allard’s regularity theorem, but just under
the stationarity hypothesis it is not known if the singular set has
n-dimensional Hausdorfl measure zero, where n is the dimension of
the hypersurface.)

(i) A certain type of singularities, which we shall call classical sin-
gularities, are entirely absent from the hypersurface. A classical
singularity of an n-dimensional surface is a singular point Z of the
surface about which there is a neighborhood in which the surface
is the union of embedded sheets coming together smoothly along a
common (n — 1)-dimensional free boundary containing Z.

See Sections 1.1 and 3.1 for the precise definitions of stationarity and
stability respectively, and Section 2.2 for the precise definition of classical
singularity.
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The work [Wicl4a] also establishes a compactness theorem: any uni-
formly mass-bounded subset of the collection of stationary, stable hyper-
surfaces with no classical singularities is compact with respect to measure-
theoretic (i.e. varifold) convergence.

These regularity and compactness results and the precise hypotheses
needed for them are stated as Theorem 3.3 below. Note in particular (see
the statement of Theorem 3.3) that the actual stability hypothesis needed
for these results is a priori even weaker than what is stated in (ii) above.
This is an important point because the weaker stability hypothesis makes it
possible to use in the proofs the stability inequality (i.e. the inequality in the
section entitled “Geometric aspects of the proof” below) without having to
make any orientability hypotheses on the regular part of the hypersurface.

For the purposes of the rest of this introduction, we now state a version of

Theorem 3.3 in mildly imprecise language, in which the stability hypothesis
is not explicitly stated in the weaker form referred to above:
Theorem 1. ([Wicl4a]) The support of a stationary, stable n-dimensional
integral varifold V- on an (n+ 1)-dimensional smooth Riemannian manifold
U is a smoothly embedded hypersurface away from a closed set sing V' (the
singular set of V') of Hausdorff dimension < n —7 (which is empty if n < 6
and discrete if n = 6) provided V' has no classical singularities. Moreover,
the family of stationary, stable n-dimensional integral varifolds on U with
no classical singularities and locally uniformly bounded mass is compact in
the topology of varifold convergence.

An important special case of this result was established in 1981 by
Schoen and Simon in [SS81], where in place of the no-classical-singularities
hypothesis a more restrictive condition was assumed, namely, that the
singular set (of the stable hypersurface) has locally finite (n—2)-dimensional
Hausdorff measure.

It is easy to see a priori, by a straightforward comparison surface
construction, that a codimension 1 area minimizing rectifiable current with
no boundary cannot have a classical singularity, so Theorem 1 does indeed
subsume the aforementioned regularity theory for area minimizers.

Optimality. The above theorem is sharp with respect to all of its
hypotheses and, as already pointed out, also with respect to its conclusion
(in view of the cone over %SP’ X %S?’ in R®). Its sharpness with respect to
the no-classical-singularities hypothesis is evident in view of simple examples
such as transversely intersecting pairs of hyperplanes in a Euclidean space.

The cone over the Clifford torus %Sl X %Sl in R* shows that the stability

hypothesis of the theorem is necessary for the codimension 7 conclusion on
the singular set.

Indeed in the absence of stability, for stationary n-dimensional hypersur-
faces even almost everywhere regularity remains a major open problem even
in the case n = 2 and subject to the no-classical-singularities hypothesis.
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Thus the stability hypothesis of the theorem is a restriction only on a po-
tentially very small part of the (stationary) hypersurface, namely the regular
part, in contrast to the case where an appropriate a priori size restriction on
the singular set is imposed, e.g. as in [SS81]. This is why it is surprising that
stability on the regular part in conjunction with the no-classical-singularities
hypothesis is all that is needed for the sharp conclusions of the theorem. (See
the section entitled “Geometric aspects of the proof” below for a more de-
tailed discussion of this point.)

In higher codimension, the best possible regularity conclusion one could
hope for for n-dimensional stable varifolds with no classical singularities is
that their singular sets have Hausdorff dimension < n — 2. This is known
to be true for area minimizing rectifiable currents with no boundary by the
grand work of Almgren [Alm83], in which case the no-classical-singularities
hypothesis is automatically satisfied. Furthermore, the result in this case is
already sharp in view of the many two dimensional examples of oriented
area minimizers provided by singular complex analytic varieties (such as
{(z,w) : zw =0} NC x C or {(z,w) : 22 = w3} NC x C) which are all
calibrated and consequently locally area minimizing. (See also the recent
papers of De Lellis and Spadaro [DS, DS11] which present Almgren’s
lengthy proof concisely in a more accessible, step-by-step form, making also
interesting connections between some of Almgren’s key estimates and ideas
in metric geometry and PDE).

Applications. The fact that Theorem 1 requires no a priori size hy-
pothesis on the singular set and that the stability hypothesis is required to
hold only on the regular part are very useful features for its applications.
In particular, one needs no a priori information on the possible degenerate
singular points (i.e. branch points) where there is a planar tangent cone;
one only needs to verify the no-classical-singularities hypothesis which in
principle is easier to check, and the theorem then guarantees, among other
things, non-existence of such degenerate singularities.

Note also that the no-classical-singularities hypothesis is a condition
requiring ruling out a certain type of local structure of the support of the
varifold, as opposed to being an “asymptotic hypothesis” requiring ruling out
various types of tangent cones. Conventionally, the latter has been the case in
many results in the literature related to controlling the size of a singular set.
This difference is significant if for no other reason than the fact that it means
that in applying the theorem to an n-dimensional, codimension 1 varifold
with stable regular part, it suffices to verify the no-classical-singularities
hypothesis (and in particular to rule out tangent cones supported on unions
of three or more half-hyperplanes meeting along a common axis) away from
any subset Z of the support of the varifold with Z having (n—1)-dimensional
Hausdorff measure zero, regardless of whether Z is known to be closed; that
is to say, it suffices to verify that no point in the complement of such a subset
Z of the support is a classical singularity. This observation has indeed been
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crucial in the recent application of the theorem to phase transition problems
(see below and also Section 4.4).

Theorem 1 has already found applications in a variety of interesting
situations. A long conjectured strong maximum principle and a unique
continuation theorem for stationary codimension 1 integral varifolds follow
from the theorem ([Wicl4b]). These two results are sharp with respect to
the size of the allowable singular sets, and they require Theorem 1 not in its
full strength but in the special case when the (n — 1)-dimensional Hausdorff
measure of the singular set is zero (which very directly implies the no-
classical-singularities hypothesis but does not seem to lead to a significantly
easier proof; see the discussion in the section entitled “Geometric aspects
of the proof” below). Both the strong maximum principle and the unique
continuation theorem of [Wic14b] build upon the important earlier work
of Moschen ([Mos77]), Simon ([Sim87]), Solomon-White ([SimWic]|) and
Ilmanen ([Ilm96]) that had investigated special cases of the maximum
principle.

Theorem 1 in its full strength has been crucial for settling the interface
regularity question associated with a class of phase transition problems.
Specifically, in the work of Tonegawa and the author ([TW10]), regularity of
the limit-interfaces associated with stable critical points of the Cahn—Hilliard
(or Allen—-Cahn) functionals has been shown to follow from, and require, the
full force Theorem 1. This result extends earlier work on the I'-convergence
properties of the functionals (and hence restricted to the context of energy
minimizers) due to many authors including Modica, Mortola, Sternberg and
Kohn ([Mod87], [IMMT77], [Ste88], [KS89]). It builds upon the work of
Hutchinson-Tonegawa ([HTO00]) and Tonegawa ([Ton05]) that brought in,
influenced by the work of Ilmanen ([Ilm93]) in the parabolic setting, a new
perspective to the elliptic problem based on the theory of varifolds, opening
up the study of the behavior of non-minimizing critical points.

An obvious question that arises in light of the work [TW10] is whether
the well-known Almgren—Pitts—Schoen—Simon existence theory ([Alm65],
[Pit77], [SS81]) for embedded minimal hypersurfaces in compact Riemann-
ian manifolds can be recast, and perhaps also made simpler (given, of course,
Theorem 1) and strengthened, with an approach based on the Cahn—Hilliard
functional. (See Section 5 below).

We mention finally that in the striking recent work of Colding—Minicozzi,
Theorem 1 has been shown to play a role in the study of singularities of mean
curvature flow of initially embedded hypersurface. Specifically, it is used in
[CM14] to show that for 2 < n < 6, an n-dimensional self-shrinker in R**
with polynomial volume growth and no classical singularities, whose regular
part satisfies a certain stability property (called F-stability, see [CM14])
with respect to Gaussian area, must be supported on either a hyperplane or
a round sphere. This classification result is expected to play an important
role in the study of generic singularities of mean curvature flow of embedded
hypersurfaces.
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See the discussion in Sections 4.1-4.4 below for more details of some of
these applications, and Section 5 for some open questions arising from the
work described above.

Geometric aspects of the proof. To discuss some key aspects of the
proof of the above theorem, let V' be an n-dimensional stable stationary
hypersurface admitting no classical singularities. The principal geometric
difficulty one faces in proving the theorem arises from the possible presence
of higher multiplicity in V. Note that the hypotheses of the theorem allow
the possibility that the multiplicity function of V' varies on the regular part of
V even if the support of V' is connected, as well as of course on the singular
set which a priori could have positive, or even proportionately large, n-
dimensional Hausdorff measure. In particular, a priori, there could be a set
of singularities of positive n-dimensional Hausdorff measure at each of which
there is a tangent hyperplane with multiplicity > 2. (Allard’s regularity
theorem (Theorem 1.2 below)—a far reaching generalization of De Giorgi’s
work applicable to stationary varifolds—implies that any point where there
is a multiplicity 1 tangent hyperplane is a regular point.) Yet as the very
first step towards the conclusions of the theorem, one has to rule out such
singularities completely, i.e. prove the following:

(a) no tangent cone to V at a singular point can be a higher multiplicity
hyperplane.

This step goes a long way towards resolving the higher multiplicity issue,
and would imply that the singular set has n-dimensional measure zero. To
get closer to the full conclusion of the theorem, one needs next the following
additional result:

(b) no tangent cone to V' can be supported on a union of three or more
n-dimensional half-hyperplanes meeting along a common (n — 1)-
dimensional subspace.

For oriented locally area minimizing hypersurfaces (i.e. locally area
minimizing codimension 1 rectifiable currents with no boundary), (a) and
(b) are relatively easy to prove and can be established independently of
each other by straightforward construction of comparison surfaces. For such
minimizers, De Giorgi’s theorem on the other hand says that any point where
there is a multiplicity 1 tangent hyperplane is a regular point, and therefore
it follows from (a) that any point of an oriented locally area minimizing
hypersurface where there is a tangent cone supported on a hyperplane is
a regular point. With the help of (b), the compactness theorem for area
minimizers and little additional thought, one can take this further to deduce
that the dimension of the subspace along which a singular tangent cone to
an oriented locally area minimizing hypersurface is translation invariant is
at most n — 3. This fact and Federer’s dimension reducing principle quickly
take us to the (intermediate) conclusion that the singular set of an oriented
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n-dimensional locally area minimizing hypersurface must have Hausdorff
dimension < n — 3.

For the larger class S of stable hypersurfaces V' with no classical singu-
larities (as considered in the above theorem), the facts (a) and (b) as well as
the relevant compactness theorem are considerably more difficult to estab-
lish and require a fundamentally different approach. In particular, the key
in that case turns out to be to aim to prove (a) and (b) simultaneously by
an inductive argument. In fact, the key is to prove simultaneously two re-
sults for S—the Sheeting Theorem (Theorem 6.1 below) and the Minimum
Distance Theorem (Theorem 6.3)—that very directly imply (a), (b) as well
as the compactness theorem. With that approach it is possible to establish,
as shown in [Wicl4a], various key a priori estimates for V' € S that ap-
pear to be inaccessible via an attempt, inductive or otherwise, to reach the
conclusions (a) and (b) one after the other.

Once (a), (b) and the compactness theorem are in place, the full regular-
ity conclusion can be deduced from Simons’ theorem (Theorem 3.1 below,
which asserts non-existence, when 2 < n < 6, of an n-dimensional stable
minimal hypercone with an isolated singularity) and, in case of area min-
imizers, Federer’s dimension reducing principle, or, in case of the class S,
the elementary yet more general principle known as the Almgren—Federer
Generalized Stratification Theorem (Theorem 2.1 below).

In establishing the claims (a), (b) above for V' € S and the compactness
theorem for S, one faces a serious geometric difficulty that stems from the
extremely weak nature of the stability hypothesis. To discuss this in the
right context, note first that by the definition of classical singularity, if an
n-dimensional varifold has a classical singularity then it must have classical
singularities along an (n — 1)-dimensional submanifold. Thus for instance if
the singular set of an n-dimensional varifold V satisfies H"~! (sing V) = 0,
then V' cannot have classical singularities and hence, if V' is also stable and
has codimension 1, then the above theorem would imply that its singular set
has codimension > 7. Subject to the even more restrictive hypothesis that
the singular set has locally finite (n —2)-dimensional Hausdorff measure, the
conclusions of the theorem had been established, as mentioned before, by
Schoen and Simon in 1981 ([SS81)).

The key a priori consequence of this simplifying assumption on the
singular set, upon which the proof in [SS81] relied heavily, is that the
singular set is “removable for the stability inequality for V” (see below),
giving strong a priori L? control of the second fundamental form of the
hypersurface. Not having the benefit of such a priori curvature control is the
most significant geometric difficulty one faces in proving (a), (b) for V € §
and the compactness theorem for S.

To elaborate on this point further, let V' be as in the theorem above and
let M denote its regular part. Note that since V is stationary, we have by
Allard’s regularity theorem that M is an open, dense subset of the support
of V but as mentioned before, it is not known whether one can conclude,
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just under the stationarity hypothesis, that the singular set of V' must have
zero n-dimensional Hausdorff measure. On the other hand, since V is stable,
a computation (assuming orientability of M) of the second variation with
respect to area for compactly supported deformations of M in the direction
normal to M shows that the stability inequality

[ 1apcae < [ pan
M M

holds for every test function ¢ € C!(M). This condition is equivalent to
non-negativity of the Dirichlet eigenvalues of the Jacobi operator £ on
M, defined by £ = A + |A|?¢C for u € C?(M). Here A is the second
fundamental form of M, V is the gradient operator on M, H"™ denotes the
n-dimensional Hausdorff measure and A is the Laplace-Beltrami operator
on M. (Incidentally, as mentioned above, the orientability assumption on M
is not needed for the results of [Wic1l4a] since a weaker stability hypothesis
suffices. See the statement of Theorem 3.3 below). Note that the test function
¢ in the above stability inequality is required to be zero near the singular set
of V; thus, unlike the stationarity hypothesis which requires deformation of
both regular and singular parts of V', the stability inequality a priori imposes
absolutely no restriction on the singular set.

If however we assume, as in the Schoen—Simon result, that the singular
set has locally finite (n — 2)-dimensional Hausdorff measure (or slightly
more generally, that the singular set has zero 2-capacity), then an easy
cut-off function argument can be used to strengthen the stability inequality
a priori so that it is valid with any choice of { that is the restriction to M
of a function ¢; € C}(U). Thus, under such a hypothesis on the size of the
singular set, ¢ only needs to vanish near 9 U and no longer needs to vanish
near the singular set of V. This is the sense in which the singular set is a
priori removable for the stability inequality. Having the freedom to use, in
the stability inequality, ambient test functions that behave in an arbitrary
way over the singular set (whose location is unknown) was essential to the
Schoen—Simon method of proof, and in particular allowed them to deduce
various a priori estimates on the size of the region where |A| is potentially
large.

In the absence of any such smallness hypothesis on the singular set,
how, or even whether, such a seemingly weak stability hypothesis could
possibly control the singular set was perhaps the most fundamental question
on regularity of stable hypersurfaces that had remained open since the work
[SS81]. This issue was in fact just as serious even under a natural smallness
hypothesis on the singular set that is more general than in [SS81], such
as H" ! (sing V) = 0 (which, in view of examples such as pairs of crossed
hyperplanes, is the weakest size hypothesis under which the conclusions of
the theorem could possibly be true). For if a large singular set is present,
then the amount of curvature of the regular part M concentrating near
the singular set could be large, causing the second fundamental form of
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M to blow up on approach to the singular set even in an integral sense;
indeed, with no information on the size of the singular set (or even with
the assumption H" ! (sing V') = 0), it is not at all clear a priori whether
stability of M for normal perturbations leaving a neighborhood of sing V'
fixed implies that A € L' (M N K) for every compact subset K C U, let
alone the validity of the stability inequality across the singular set.

The work [Wicl4a] develops a method (outlined in Part 2 of this article)
that surmounts this basic geometric difficulty and proves claims (a), (b) for
V € § and the compactness theorem for S§ subject to no assumption on
the singular sets beyond ruling out classical singularities; in particular, it is
shown that no smallness hypothesis on the singular set of V' is necessary,
and the sharp dimension bound on the singular set is entirely a conclusion.

This work is perhaps of interest as much for the method of proof
it develops as it is for the end result. It builds upon a large body of
results and ideas found in earlier fundamental work in Geometric Measure
Theory, both in the regularity theory of minimal submanifolds and on
the analysis of their singularities. These include the a priori estimates
established in the work of Schoen—Simon [SS81] discussed above as well
as results and variants of techniques developed in the work of De Giorgi
([DG61]), Simons ([SJ68]), Federer ([Fed70]), Allard ([All72]), Hardt—
Simon ([HS79]), Almgren ([Alm83]) and Simon ([Sim93]). In particular,
the ideas contained in Simon’s seminal work [Sim93] on asymptotics for
minimal submanifolds near singularities play an extremely crucial role in
[Wicl4a]. The work also introduces some novel techniques that have since
been useful in other contexts (e.g. in [Hug] and [Krum?2]) and appear to
hold promise for further development.

Structure of the rest of the paper. The rest of the paper consists of
two parts, Part 1 and Part 2. Part 1 contains a brief survey of some (earlier)
work related to the results of [Wicl4a] and a statement of the main results
of [Wicl4a], followed by a discussion of some applications of this work and
questions arising from it.

One of our main goals in this paper is to elucidate the fact that the theory
developed in [Wicl4a] is quite general, and is ultimately based upon a few
basic principles that are also widely in use in many other parts of Geometric
Analysis. For this reason one could imagine that the methods developed in
[Wicl4a] may have applications in further study. With this in mind, in Part
2 we outline the proof strategy adopted in [Wicl4a], focusing on how to
handle the aforementioned geometric difficulties and referring the reader to
[Wicl4a] for details of the more technical aspects of the proof.

A more detailed guide to the rest of the paper is as follows:

Part 1 is subdivided into Sections 1-4. In Section 1 we describe the
basic notion of first variation with respect to the area functional, first for
smooth submanifolds and then for the larger class of integral varifolds,
and discuss several consequences of stationarity, i.e. vanishing of the first
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variation. In Section 2 we give a brief discussion of singularities of stationary
integral varifolds, describe two special types of singularities (namely, classical
singularities and branch points), describe the key difficulties in the study of
singularities of general stationary varifolds, and describe some known results
on fine properties of singularities of stationary integral varifolds in a given
“multiplicity 1 class”. Section 3 consists of a discussion of regularity of stable
minimal hypersurfaces including a variety of classical results and the recent
results in [Wicl4a]. Section 4 describes some applications of the results in
[Wicl4a]. Part 1 ends in Section 5 where some open questions arising from
the work [Wicl4a] are discussed.

Part 2, which is subdivided into Sections 6-8, gives an outline of the
proof of the main results in [Wicl4a] emphasizing geometric aspects of the
proof, and highlighting the general principles and the earlier fundamental
work upon which the proof is built.

It is a pleasure to thank Spencer Hughes for valuable comments on a
first draft of this paper.

Part 1. STATIONARY VARIFOLDS, THEIR SINGULARITIES, AND THE CODI-
MENSION 1 THEORY FOR STABLE VARIFOLDS

1. The Allard—Almgren theory of varifolds

1.1. Smooth minimal submanifolds. Let U be an open subset of
R™ 1. (More generally, one may consider an (n+1)-dimensional Riemannian
manifold U, but since in this article we are concerned with local questions,
we shall work in Euclidean space. There is little loss of generality in doing
this since extending the results to more general Riemannian manifolds only
requires routine technical modifications to the arguments needed for the
Euclidean case.) Let m be an integer with 1 < m < n, and let M be an
embedded m-dimensional C! submanifold of U with the closure M of M
in U a C! submanifold with boundary d M (possibly with 0 M = ), with
locally finite area, i.e. with H"™ (M N K) < oo for each compact subset K
of U, where H™ denoted the m-dimensional Hausdorff measure. M is said
to be stationary in U if M has zero first variation with respect to the area
functional for all compactly supported ambient deformations. This means
precisely that

d n
SM(y)= | H"(pya(M)) =0
t=0
for every ambient vector field 1 € CHU;R™™), where ¢y (X) = X +
t(X) for (t,X) € (—¢,e) x U with € > 0 sufficiently small. A compu-
tation using the area formula ([Sim83a], Sec. 9) shows that 6 M(¢) =
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Jar divar (X) dH™(X), and consequently, stationarity of M in U is equiva-
lent to the requirement that

/ divyr (X)) dH™(X) =0 Yy € CHU;R™).
M

Here divy ¢(X) = 327, 75-Dr9p(X), where {71, 72,..., 7} is any orthonor-
mal basis for the tangent space Tx M and D, denotes the directional deriv-
ative in the direction 7.

The preceding equation is known as the first variation formula. One can
use this equation and the quasilinear elliptic PDE theory to establish higher
regularity (in fact analyticity) of M away from 0 M U dU. It then follows
from the Divergence Theorem that stationarity of M in U is also equivalent
to the fact that 9 M = () and M has zero mean curvature everywhere, i.e.
that M is a classical minimal submanifold of U with no boundary in U.

1.2. Varifolds. For various natural reasons such as for establishing ex-
istence of m-dimensional minimal submanifolds in a compact Riemannian
manifold N for fixed m < dim N (see [Alm65], [Pit77], [SS81]), for un-
derstanding the completion of the space of mass bounded smooth minimal
submanifolds of a given dimension m, and for analyzing, by studying tan-
gent cones, the nature of singularities that may arise in various situations
including in carrying out either of the preceding tasks, it is highly desirable
to work in a space V of “possibly singular m-dimensional surfaces.” Such a
space must obviously contain the set of C'' submanifolds with locally finite
area, and must admit (a) an extension of the area functional, (b) an ex-
tension of the above variational definition of stationarity and (c) a topology
relative to which the area functional, at least in the case of compact ambient
manifolds, is continuous, and the stationary elements form a closed subset on
which the area functional is always continuous. With these properties of the
space V, the existence question may be approached via min-max methods
and singularity analysis will be facilitated by tangent cones being non-trivial
and stationary. (Note that direct area minimization—for which area lower
semi-continuity would suffice—is not possible as a way of proving existence
unless the surfaces are constrained in some way such as by a boundary value
requirement or non-trivial ambient space homology).

A natural class of surfaces satisfying requirements (a) and (b) is the set
of m-rectifiable subsets M, with area equal to the m-dimensional Hausdorff
measure; indeed, the above first variation formula makes sense for such M,
and in the case of Euclidean ambient space, is equivalent (by the same
computation as in the case of C! submanifolds) to the same variational
requirement that 6(M)(¢)) = 0 for each C!' ambient vector field v with
compact support. The requirement (¢) however is more subtle. It forces
one to enlarge the class even more, to consist of m-dimensional integral
varifolds (which we shall often refer to as integral m-varifolds below),
a class of measure-theoretic m-dimensional surfaces with the topology of
measure theoretic convergence. This space was introduced by Almgren in his
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seminal paper [Alm65] where he established among other things the crucial
closure theorem for elements satisfying appropriate variational requirements,
which in particular implied the closure property for the stationary elements
(Theorem 1.1 below). The definition and properties of this class were
streamlined by Allard in his landmark paper [A1172] in which he generalized
Almgren’s closure theorem and also established a fundamental regularity
theorem which in particular applies to stationary elements (see Theorem 1.2
below).

We now define this class, and in Sections 1.3—1.8 below extend the
notion of stationarity to it and discuss briefly the main consequences of
stationarity. We remark that although our discussion here is restricted to
the stationary case, much of the theory is valid in a more general setting,
for instance for integral varifolds with locally bounded first variation whose
first variation measure has no singular part and generalized mean curvature
satisfies suitable local integrability hypotheses; stationarity corresponds to
the case when the generalized mean curvature is zero. Besides [All72], a
standard reference for the theory of varifolds in full generality is [[Sim83a],
Chapters 4 and 8], to which we shall refer the reader for details of various
assertions made below.

Let U be open in R™! as before, m an integer with 1 < m < n, and
let V' be an m-dimensional varifold (or an m-varifold for short) on U. Thus
V is a non-negative Radon measure on U x G(m,n), where G(m,n) is the
space of m-dimensional subspaces of R**! (with the topology induced by
any of the equivalent norms).

Any m-varifold V' on U naturally induces a Radon measure on U, called
the weight measure associated with V', denoted ||V (uy in [Sim83a]) and
defined by ||V||(A) = V(A x G(m,n)) for A C U.

The varifold V is integral if for ||[Vl-a.e. X € U, there is an m-
dimensional plane T'= T'x V' (the tangent space of V') and a positive integer
6 = Oy(X) (the multiplicity of V' at X) such that limy o+ Vxx = 6T
where the convergence is as Radon measures on R"*! x G(m,n),

VA (A) =A""VH{(X +AY,S) : (V,S5) € A}n (U x G(m,n))) and

IT|(A) = H™ (TN{Y : (Y,T) € A})

for A C R""! x G(m,n). (See [Sim83a], Sec. 38.1.)

Any countably m-rectifiable subset M of U with locally H™ integrable,
positive integer-valued multiplicity function 6y, (see [Sim83a], Sec. 11)
defines an integral m-varifold |M| on U via

M|(A) = / 01 (X) dH™ (X)
{X:(X,TxM)eA}

for A C U x G(m,n). The converse of this is also true; i.e. if V' is an integral
m-varifold on U, then the set M of points X € U where V has an m-
dimensional tangent plane Tx V' with positive integer multiplicity 0y (X) is
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countably m-rectifiable, 0y is locally H™ integrable on M and V = |M]| if
we take 0y = 0y . (See [Sim83a], Theorem 38.3.)

In particular, an m-dimensional C' submanifold M of U with locally
finite mass (i.e. locally finite m-dimensional Hausdorff measure) defines the
integral m-varifold |M| (with multiplicity 1) given by

IM|(A) = H™ (M N{X : (X,Tx M) € A})

for AC U x G(m,n).

Let IV, (U) denote the space of integral m-varifolds on U.

We define the regular set regV of an m-varifold V on U to be the set
of points X € spt ||V|| N U such that there exists p € (0, dist (X,0U)) with
the property that spt ||V|| N clos B;}H(X) is a smooth, embedded, compact,
connected m-dimensional submanifold with boundary C 8B;”+1(X ). Here
and subsequently, Bj!(X) denotes the open ball in R with center X
and radius p, and clos denotes the closure in R**+1,

The singular set singV is the set of points X € spt|V| N U with
X & regV.

1.3. First variation of a varifold and stationarity. The first vari-
ation of an m-varifold V on U with respect to the area functional is the map

sV : CHU;R™) — R given by

(1.1) oV () 4

= gt VIIU)

t=0

where for a given vector field ¢ € CL(U; R™1), oy 4(-) is the map defined in
Section 1.1 (¢y+(X) = X +t(X) for t sufficiently small), and ¢y ; % is the
mapping induced on the space of m-varifolds on U by ¢y ; (see [[Sim83al],
Sec. 39]). By the same computation as in the case of m-dimensional C*
submanifolds, we then have the first variation formula which tells us that

(1.2) 5V (1) = divs (X)) dV (X, S)
UxG(m,n)

for every 1 € C}(U; R*™1). Here divg ¢ = > je1 i Dryp where {71, ..., T }

is any orthonormal basis for S, or, alternatively, divg 1y = Z;‘ill ej-ps Dy,
where {e1,es,...,ent1} is any orthonormal basis for R" ¢ = e; - 1
for j = 1,2,...,n 4+ 1, D denotes the gradient operator on U and for
S € G(m,n), ps denotes the orthogonal projection of R"*! onto S.

V' is stationary in U if

(1.3) 6V (1)) =0 for each o € CHU;R™).

1.4. The monotonicity formula. Let m, n, U be as above, and let
V' be an m-varifold on U. Suppose that V is stationary in U and let Y € U.
By taking ¢(X) = (X — Y)((p~ !X — Y|) in the identity (1.3) where, for
some 7 € (0,1), ¢ € CY(R) with ¢(t) = 1fort <7, ((t) =0 for t > 1 and
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¢'(t) <0, and letting 7 — 1, we deduce (see [[Sim83a], Secs. 17 & 40]) the
identity
d

- - DY (X —Y)P
— (p™™|V|(B* (Y :p2m/ S —_——_— e
dp( IVI(ByH(Y))) oty X V" IVII(X)

for a.e. p € (0,dist (z,0U)); in particular the function
prp M VIBLHH(Y))
is monotone non-deceasing for p € (0, dist (z,0U)) and hence the density
OVIL,Y) = lim, (™) HIVIH(BH(Y)
of V at Y exists, and is a non-negative real number, for every Y € U.

Furthermore, upon integration, the preceding differential identity yields
the monotonicity formula

(Wmp™) T IVIBH(Y) =0 (IVILY)

: DL (Y - X)P
1.4 :wml/ D~V = X)F vy X),
(1.4 e (o

valid for each Y € U and p € (0,dist (Y,0U)). This simple consequence of
stationarity plays an extremely crucial role in the regularity and singularity
theories of stationary varifolds.

1.5. The Allard—Almgren Compactness Theorem. If V; is an m-

varifold on U for j =1,2,3,... with
limsup ||V;||(K) < oo
j—00

for each compact set K C U, then it is a direct consequence of the Banach-
Alaoglu theorem that there exists a varifold V on U and a subsequence {j'}
of {j} such that Vj; converges to V as varifolds (i.e. as Radon measures on
U x G(m,n) in the weak* topology); a very important, more subtle result,
which follows from the Allard—Almgren integer varifold compactness theorem
([AIm65], [All72]; see also [[Sim83al, Theorem 42.7]), is the following,
which guarantees both stationarity and integrality of the limit varifold V
whenever the V; are integral and stationary:

THEOREM 1.1 (Almgren ([Alm65]); Allrad ([A1172])). Let V; € IV,,(U)
be as above, with V; stationary in U. Then there exists a subsequence {Vj}
of {V;} and a varifold V € IV, (U) stationary in U such that Vi — V as
varifolds on U.

1.6. Upper semi-continuity of density. The monotonicity of the
function
pr p " IVIBHY)),  p € (0,dist (Y,0U)),
whenever Y € U and V is a stationary m-varifold on U implies that
the density function (V,Y) — ©O(||V],Y) is upper-semicontinuous, i.e. if
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Y;,; Y ¢ U for j = 1,2,3,... with Y; — Y, and V;,V are stationary m-
varifolds on U with V; — V, then

O (VI Y) = limsup © ([|Vj]], ¥}).

Jj—o0
This in particular implies that if V' € IV,,,(U) is stationary, then
Yespt|V|NU <= O(|V],Y) > 1.

1.7. Tangent cones and the question of their uniqueness. An
important consequence of the monotonicity formula (1.4) and the integer
varifold compactness theorem (Theorem 1.1) is the existence of non-trivial
tangent cones to any stationary V € IV,,(U) at every point in spt ||V]].
More precisely, if V' € IV,,(U) is stationary then corresponding to each
Y € spt||[V||NU and each sequence of positive numbers {p;} with p; — 0
as j — oo, there exists a subsequence {p;} of {p;} and a non-trivial cone
C, ie. C € IV,,(R"™)\ {0} with 79,4 C = C for each p > 0, such that C
is stationary in R™*! and

WV — C
as j/ — oo, where the convergence is as varifolds on R"*! ([[Sim83a], Sec.
42]). Here and subsequently, for Y € R"*! and p > 0, ny,, : R"*1 — R**!

is the map defined by
X-Y

p

ny,p (X) =
We also have that
O (IVI,Y) =0 (|Cl[,0) = (wmp™) " IC||(B,(0))

for each p > 0.

If VelV,,(U) is stationary in U and Y is a point in spt ||V||NU where
the tangent plane Ty V exists (as it does for ||V ||-a.e. Y € spt ||V]), it follows
from Theorem 1.1 and the first variation formula (1.3) that © (||[V],Y) is
a positive integer and Ty V with constant multiplicity equal to © (||V]|,Y)
is the unique tangent cone to V' at Y. In particular, this is the case when
Y €regV. When Y is an arbitrary point in sing V' however, uniqueness of
tangent cone C at Y, i.e. the question whether C is independent of the
sequence {p;}, remains a major open question. (Examples of stationary
rectifiable but non-integral varifolds with non-unique tangent cones have
recently been constructed by Kolar ([JK]).)

We shall denote by VarTan (V,Y') the set of all tangent cones to V' at
Y espt|V]NU.

The answer to the above uniqueness question concerning tangent cones
C to stationary integral m-varifolds V' at singular points is known in the
affirmative in a few special cases including the following:

(i) when m =1, i.e. when V is 1-dimensional ([AA76]);
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(ii) when C is a multiplicity 1 cone with an isolated singularly, i.e
when O (||C||, X) =1 for each X € spt|C| \ {0} and sing C = {0}
([Sim83b]; see Theorem 2.2 below);

(iii) when C = Cy x L where Cy is the 1-dimensional multiplicity 1
stationary varifold corresponding to three half-lines meeting at a
point and L is an (m — 1)-dimensional subspace ([Sim93]);

(iv) when V' corresponds to a current in a codimension 1 multiplicity 1
class of currents (see Section 2.3 below) and C = Cy x L where L is
a 1-dimensional subspace, Cy is an (m — 1)-dimensional multiplic-
ity 1 strictly minimizing, strictly stable cone (in the sense described
in [HS85]) with an isolated singularity and Cj satisfies a certain
integrability condition on its Jacobi fields and an eigenvalue con-
dition on its Jacobi field operator ([Sim94]). These conditions are
satisfied by all codimension 1 area minimizing cones Cy whose in-
tersection ¥ with S™~! is a product of spheres except when ¥ is

358% x 18% or Jo8? x V28

(v) when V corresponds to a two dimensional area minimizing rectifi-
able current with no boundary ([Whi83));

(vi) when V' corresponds to a stable codimension 1 integral current
with no boundary and C is either a multiplicity 2 hyperplane or a
multiplicity 1 pair of transversely intersecting hyperplanes ([Wic]);

(vii) when V' corresponds to certain semi-calibrated currents (which in
some cases are stationary) ([CB14-a], [CB14-b));

(viii) when V' corresponds to a Lipschitz 2-valued graph over a domain in
R™, and C corresponds to a union of four distinct half-planes meet-
ing along a common (m — 1)-dimensional axis (which in particular
includes the case of a union of two transverse planes) ([Hug]).

1.8. Interior regularity of stationary varifolds: Allard’s theo-
rems. The celebrated regularity theorem of Allard ([All72], [[Sim83a],
Theorem 23.1]) implies the following:

THEOREM 1.2 (Allard ([AIl72])). For each given o € (0,1), there exists
a constant € = e(n,m,a) > 0 such that if V € IV, (BEtH(Y)) is stationary
in BE(Y), Y espt||[V],

(W R HIVI(BE(Y)) <2—a and

R / dist? (X, P)d||V|(X) < €
B (Y)

for some m-dimensional affine plane P with Y € P, then spt|V] N

BZE(Y) C regV. In fact spt||V] N Bg;rzl(Y) C graphu C regV where

u: PN Bg}'?l(Y) — Pt s of class CY* for some pu = p(n,m,a) € (0,1)
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and satisfies the estimate
-1
R SUP P (y) lul + SUPp g (v) | Dul|

|Du(X1) — Du(X2)|

+ R sup nil
Xl,XQEPﬂBR/Q (V),X1#X2 |X1 _X2|y,

1/2
<C (R‘”‘Q/ dist® (X, P)dHVH(X))
Br(Y)

where C' = C(n,m,a) € (0,00). In particular, any point Y € spt||V] at
which V' has a tangent cone equal to an m-dimensional multiplicity 1 plane
is a reqular point of V.

Remark: Since u is a weak solution to the minimal surface system on the
domain P N B?J; (Y), it follows from elliptic PDE theory that u is smooth
(in fact real analytic) and that for each k = 1,2,3,...,

1/2
REESUppp o 1DV < C (R / a0 P) dnvu(X))
R

for some constant C' = (n, m, a, k) € (0,00).
An equivalent version of the the above theorem, also due to Allard
([All72], [[Sim83a], Theorem 24.2]), asserts the following:

Theorem 1.2 (Allard ([A1172])). There exists a constant €1 = e1(n,m) €
(0,1) such that if V€ IV, (U) is stationary in U, Y € spt||V||NU and
O(|VI,Y)<1+4e€, thenY €regV.

Establishing equivalence of the statements in these two theorems is fairly
straightforward, with the arguments in both directions relying heavily on
the monotonicity formula. A simple argument based on the monotonicity
formula shows (see [[Sim83a], Theorem 24.2]) that one can choose ¢; =
e1(n,m) such that under the hypotheses of Theorem 1.2’, the varifold
suitably rescaled near Y is weak close to a multiplicity 1 plane. Conversely,
it is not difficult to see that one can choose € = ¢(n, m, «) such that under
the hypotheses of Theorem 1.2, the destiny function of V' is uniformly close

to 1 in spt ||V N ng/l4(Y) and hence by Theorem 1.27, V is regular in

BT (Y); the estimate in Theorem 1.2 (in fact a bound on the norm of the

R/2
Secc/)nd fundamental form) can then be obtained, by showing that a sequence
of smooth minimal submanifolds with mass ratios uniformly bounded by
some number A and second fundamental form blowing up along a sequence
of points can be rescaled by the norm of the second fundamental form at
appropriately chosen points to produce a complete, smooth submanifold M
stationary in all of R"*!, with density at infinity not larger then A, and with
the norm of the second fundamental form at one point equal to 1. Such M
by the monotonicity formula can easily be seen not to exist in case A is not
much larger than 1.
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It is an easy corollary of Theorem 1.2’ and the upper semi-continuity
of the density function © (||V]|,-) that if V € IV,,(U) is stationary in U,
then reg V' is non-empty, or, equivalently regV is a dense (open) subset of
spt ||[V|| N U. This is the best known general regularity result for stationary
integral varifolds of dimension > 2. In particular, it remains a fundamental
open question in case m > 2 whether H™ (singV) = 0 whenever V €
IV, (U) is stationary in U. This remains open even in the case m = n = 2.
If m = 1 then sing V' consists of isolated points ([AAT6]) and spt |V is
locally the union of finitely many straight line segments meeting at a point,
or geodesic arcs meeting smoothly at a point in the case of arbitrary smooth
Riemannian ambient spaces.

In remarkable recent work [Men13], Menne has established C? rectifia-
bility of a very general class of integral m-varifolds including stationary ones,
generalizing earlier similar results of Schétzle ([Sch04]) for codimension 1
integral varifolds satisfying stronger hypotheses on the first variation.

2. Singularities of stationary varifolds

Often in solutions to non-linear problems, and in particular in stationary
varifolds, singularities are unavoidable. Therefore studying the nature of
the singularities and the behavior of the solutions in the vicinity of their
singularities is a central part of the analysis of the solutions. Moreover,
understanding the completion of a space of smooth solutions and identifying
compact subclasses of solutions also often require knowledge of the nature
of singularities. However, singularity analysis remains one of the largely
open challenges in modern Geometric Analysis. There has been remarkable
progress in some cases, and with regard to stationary varifolds, among the
known results in this direction are:

(i) sharp dimension bounds on the interior singular sets of varifolds
belonging to some closed subclasses of stationary integral varifolds.
These subclasses include the varifolds corresponding to area mini-
mizing rectifiable currents both in codimension 1 (combined work
[DG61], [FF60], [SJ68], [Fed70]; see Theorem 3.2 below) and in
higher codimension ([Alm83]); stable codimension 1 integral var-
ifolds with no “classical singularities” ([Wicl4al; see Section 2.2
and Theorem 3.3 below—this class in fact subsumes the class of
codimension 1 area minimizers); certain stable codimension 1 in-
tegral varifolds admitting classical singularities (and hence also
branch points, see Section 2.2 below) ([SimWic], [Wic]);

(ii) regularity properties of the singular sets and the asymptotic behav-
ior on approach to the singular sets of varifolds belonging to certain
subclasses of stationary integral varifolds. These include one di-
mensional stationary integral varifolds ([AA76]); two dimensional
area minimizing currents ([SC88]); two dimensional area minimiz-
ing flat chains mod 3 in R? and two dimensional “soap film like”



REGULARITY OF STABLE MINIMAL HYPERSURFACES 251

surfaces in R? ([Tay73], [Tay76]); solutions to certain classes of
Plateau-type problems ([Whi85]); general “multiplicity 1 classes”
of stationary varifolds of any dimension and codimension ([Sim93],
[Sim95]; see Section 2.3 below) and, stable codimension 1 rectifi-
able currents near points of density < 3 ([KW2], [Wic]).

The questions concerning the local structure of the singular sets and asymp-
totics near singularities (as in (ii) above) are generally considerably more
subtle than the question of the Hausdorff dimension of the singular sets,
although establishing sharp dimension bounds, or, for that matter, even
showing almost everywhere regularity, remains a difficult unsolved prob-
lem in several important cases; these include stable hypersurfaces admitting
multiplicity > 3, stable varifolds in higher codimension (even subject to the
the condition that multiplicity is < 3) and of course the case of the largest
class, namely stationary integral varifolds (even those of dimension 2 and
codimension 1).

In this section and the next, we explain the key difficulties in general
with regard to these questions, and discuss in more detail a sample of the
known results referred to in (i) and (ii) above.

2.1. The Almgren—Federer Generalized Stratification. The key
difficulty in estimating the dimension of the singular set of a stationary
integral varifold of dimension m > 2 stems from the presence of higher
multiplicity; more precisely, the difficulty is in controlling the size of the
set of those singularities (branch points, see Section 2.2 below) at which
there is at least one tangent cone with support an m-dimensional plane and
multiplicity a constant integer (which by Allard’s regularity theorem must
be > 2). All other singularities form a set of Hausdorff dimension < m — 1,
a fact that follows from the case j = m — 1 of the following general result:

THEOREM 2.1 (Almgren-Federer Generalized Stratification; [Alm83]).
Let V € IV,,,(U) be stationary in U, and recall that VarTan (V, X) denotes
the set of tangent cones to V at X € spt||V| NU. For a given cone C in
Rt let S(C) denote the linear subspace of R" ! of directions along which
spt |C|| is translation invariant. Then for each j =0,1,2,...,m,

dimy ({X € singV : dimS(C) <j V C € VarTan (V, X)}) < j.

Federer first proved a special case of this theorem ([Fed70]; see also
[[Sim83a], Appendix A]) and applied it to area minimizing hypersurfaces.
The theorem in the generality given above is due to Almgren ([Alm83))
who deduced it by a clever argument as an elementary consequence of the
upper semi-continuity of the density function (VY) — © (||V]|,Y) and the
fact that © (||C|,0) = © (||V],Y) for each C € VarTan (V,Y).

Despite its elementary nature, this theorem has been extremely useful
in a variety of situations, including in the regularity theory for stable
codimension 1 varifolds ([Wicl4a]); see the discussion in Section 6 below.
Being a consequence of very general principles, it holds in appropriate
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forms in various other contexts as well. For instance, Schoen and Uhlenbeck
adapted it in [SU82] to the setting of energy minimizing maps between
Riemannian manifolds; see [Sim96] for a nice, concise presentation of its
proof following [Alm83] in that context. In [Whi97], White established an
elegant version of it for integral Brakke flows.

2.2. Classical singularities and branch points. It is convenient at
this point to interrupt our discussion of the general singularity theory to
introduce the following two special types of singularities, which we shall
refer to heavily later in the article, in particular in the context of stable
codimension 1 integral varifolds.

Let V € IV,,(U).

(a) Classical singularities: A point Z € sing V' is said to be a classical singu-
larity of V if there exists p > 0 and « € (0, 1) such that spt [|V||NB,(Y) is the
finite union of three or more embedded, m-dimensional C'1* submanifolds-
with-boundary of B,(Y), having a common (m — 1)-dimensional C1® (free)
boundary I' containing Y, and meeting only along I.

(b) Branch points: A point Z € sing V' is said to be a branch point of V if: (i)
there is a tangent cone to V' at Z with support an m-dimensional plane and
(ii) near Z, spt ||V is not the union of (finitely many) smoothly embedded
m-dimensional submanifolds.

Remarks: (1) In case V is stationary and m = n (i.e. when V has
codimension 1), in the definition of classical singularity, the requirement
of O regularity up to I' can be replaced by real analyticity up to I' (in
the case of analytic ambient spaces) or smoothness up to I' (in the case of
smooth ambient spaces). This was shown by Kinderlehrer—Nirenberg—Spruck
([KNS78|) using a PDE theoretic argument in the case when the number
of sheets of spt ||[V|| N B,(Y) is three, and extended recently to the general
case of an arbitrary number of sheets by Krummel ([Krum?2]) whose proof
combines the main idea of [KINS78] with a more geometric view point.

(2) If Z € singV is a classical singularity, then of course V' has a unique
tangent cone at Z whose support is the union of three or more m-dimensional
half-planes meeting along a common (m — 1)-dimensional axis. The converse
to this is not true in general, but is known to be true in some interesting
special cases. For instance: (i) whenever V is stationary and O (||[V]|,Z) =
3/2 ([Sim93)); (ii) whenever V is a stationary hypersurface corresponding
to a rectifiable current with no boundary and the regular part of V' is stable
(see definition 3.1) and O (||V|,Z) = 2 ([Wic]) and (iii) whenever V is
the graph of a two-valued Lipschitz function u over a domain in R™ taking
values in the space of unordered pairs of elements in R~ with n > m,
and C is the multiplicity 1 cone supported on four distinct m-dimensional
half-planes meeting along a common axis, but not forming a pair of m-
dimensional planes ([Hug]).

Examples: (a) Area minimizers: If V' is the varifold corresponding to an
area minimizing rectifiable current with no boundary, then straightforward
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comparison surface constructions show that V' has no classical singularities.
It follows from De Giorgi’s work [DG61] that such area minimizers of
codimension 1 do not carry branch point singularities. In codimension > 2
on the other hand branch points exist in area minimizers, and a large family
of concrete examples is provided by complex analytic varieties with branch
points (e.g. M = {(z,w) : 22 = w3} N C x C) which are all calibrated and
hence locally area minimizing.

(b) Stable varifolds: Both classical singularities and branch points exist in
general in stable varifolds (see definition 3.1) in any dimension > 2 and
codimension. A pair of crossed hyperplanes is an obvious example of a
stable varifold with classical singularities, and in general, any stationary
codimension 1 varifold in a sufficiently small neighborhood about a classical
singularity is stable (in the sense of definition 3.1).

As for stable varifolds with branch points, since any area minimizing
surface is stable, there are plenty of such examples in codimension > 2.
Unlike in the case of area minimizers, they also exist in codimension 1. Simon
and the author ([SimWic07]) constructed a large family of such examples
as multi-valued codimension 1 graphs over the cylinder B?(0) x R"2
with prescribed multi-valued boundary data satisfying a mild symmetry
condition. Rosales [Ros10] constructed a different family of two dimensional
branched surfaces using a variant of the method introduced in [SimWic07],
and more recently, Krummel [Krum1] gave a direct PDE theoretic approach
to the results in [SimWic07], also extending the construction to higher
codimension under an additional necessary smallness hypothesis on the
boundary data.

A highly nontrivial fact is that in a stable codimension 1 varifold, branch

points cannot exist without classical singularities nearby ([Wicl4a]); that
is to say, every branch point is the limit point of classical singularities. This
follows from Theorem 6.1 below, which we shall discuss in detail in Part 2.
This statement is of course false in higher codimension, as shown by the
locally area minimizing example M = {(z,w) : 22> = w®} N C x C in which
the only singularity is the branch point at the origin.
(c) Stationary varifolds: All of the examples discussed above are of course
stationary. Whether every branch point of a stationary codimension 1 var-
ifold must be a limit point of classical singularities remains an extremely
interesting, highly nontrivial open problem. At the “opposite end” of this is
the well-known open question of whether there exists a stationary codimen-
sion 1 varifold with an isolated singularity that is a branch point.

2.3. Multiplicity 1 classes: Simon’s work. Let B = B}""'(0) be the
open unit ball in R"*! and let V; be a family of m-varifolds V on B with
0 € spt ||V]| satisfying the following hypotheses:

(i) each V' € V; is stationary in B;
(i) if V € V; then O (||V],Y) =1 for |V|-a.e. Y € spt [|V]|| N B;
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(iii) if Ve V1, Y €spt||[V]], p € (0,dist (Y,0 B)] and I is an orthogonal
transformation of R"*! then (Iyny,» V) LB € Vi;

(iv) if V; € Vi for j =1,2,3,..., V is a varifold on B and V; — V as
varifolds on B, then V' € V.

In view of property (ii), such a class V; is said to be a multiplicity 1 class.
Examples of multiplicity 1 classes include the set of varifolds associated
with codimension 1 locally area minimizing rectifiable currents 7" on B with
0T = 0in B and 0 € spt |7, and the set of multiplicity 1 varifolds
associated with mod 2 minimizing currents 7" on B with 0 € spt ||T]|.

By (iii) and (iv), every tangent cone C to a varifold V' € V; belongs
to V1 and hence inherits property (ii); in particular, branch points in
V' € V) are ruled out a priori. Consequently, by Allard’s Regularity Theorem
(Theorem 1.2),

singV ={z espt||V]] : dimS(C) <m—1 V C € VarTan (V,x)}.

Hence by the Almgren—Federer Generalized Stratification Theorem (Theo-
rem 2.1), we see that if V' € Vj, then there exists a non-negative integer
ky < m — 1 such that dimy (sing V') < ky. Let

ky, = maxyey, ky.

For example, for the class M of varifolds associated with n-dimensional
locally area minimizing rectifiable codimension 1 currents, it follows from
Theorem 2.1 and a theorem of J. Simons (Theorem 3.1 below) that this
number kpq, =n — 7.

In the seminal work [Sim83b], [Sim93], [Sim95], L. Simon developed
a powerful set of a priori estimates applicable to any stationary varifold V
near a point at which V has a multiplicity 1 tangent cone with an isolated
singularity, and to any stationary varifold V' in a given multiplicity 1 class
V1 near a point where V' has a tangent cone C with dim S(C) = ky,. Simon
used these estimates to deduce for a stationary varifold uniqueness of any
multiplicity 1 tangent cone with an isolated singularity, i.e. Theorem 2.2(a)
below ([Sim83b]; see [Sim96] for a simplification of the argument), and a
remarkably general structure theorem for singular sets of stationary varifolds
belonging to a multiplicity 1 class, i.e. Theorem 2.2(b) below ([Sim95]).

THEOREM 2.2 (Simon ([Sim83Db], [Sim95])).

(a) If V is a stationary integral m-varifold on B, Z € singV, C is a
multiplicity 1 tangent cone to V' at Z with sing C = {0}, then C is
the unique tangent cone to 'V at Z.

(b) Let V1 be a multiplicity 1 class of stationary integral m-varifolds
on B and let k = ky, be as defined above. If V € Vy, then for any
closed ball D C B, sing VN D consists of a finite number of pairwise
disjoint locally k-rectifiable sets.
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Simon’s work also provides an estimate giving the rate of asymptotic decay
of V upon rescaling to its unique tangent cone in case (a), and a similar
estimate at 7*-a.e. point along sing V' in case (b).

In Theorem 2.2(b), there is no hypothesis guaranteeing, near a given
singularity at which there is a tangent cone C with dim S(C) = ky,, the
existence of other singularities at all scales. Correspondingly, the conclusion
of the theorem allows for “gaps” in the singular set at arbitrarily small scales.
Whether such gaps ever exist in case ky, > 1 remains an important open
question however. Earlier work of Taylor ([Tay73], [Tay76]) and White
([Whi85]) established local C1® regularity for the singular sets in certain
cases where there are topological obstructions for existence of such gaps in
the singular sets.

Simon’s work [Sim93] proves Theorem 2.2(b) for multiplicity 1 classes
V1 whenever a certain additional integrability hypothesis on the cross-
sections of the cones C in V; with dimS(C) = ky, is satisfied, and
establishes for V' belonging to such a class V; a stronger result on asymptotic
decay of V to its tangent cone at H*i-a.e. singular point than in his
work [Sim95] (where the theorem is proved as stated above with no such
integrability hypothesis). In case this integrability hypothesis is satisfied by
C, Theorem 2.2(a) was known by earlier work of Allard—Almgren ([AA81)).
(See [Sim85] for a concise presentation of the Allard—Almgren proof.)

As it turns out, appropriate versions of Simon’s estimates in [Sim93]
play a crucial role in the regularity theory, established recently in [Wicl4a],
for the class S of stable codimension 1 integral varifolds with no classical
singularities, although S is not a multiplicity 1 class. (For V € S, the
validity of the key requirement (ii) in the definition of multiplicity 1 class
is a priori not clear at all—and is indeed literally not true—although a
posteriori one has that © (||V|, X) is constant on connected components
of spt ||V|| away from a lower dimensional singular set and hence (ii) holds
after normalization; the requirement (iv) fails for S as can easily be seen
by considering, for instance, V; € S consisting of two multiplicity 1 parallel
planes converging to a multiplicity 2 plane as j — oo.) We shall state the
main content of the regularity theory for § in Section 3 below, and describe
a sample of Simon’s estimates and their significance for § in Part 2 where we
describe the proof of the regularity results for S following [Wicl4a]. Here
we wish to make two points concerning these estimates in the context of
the work [Wicl4a]: (a) their role in [Wicl4a] is indirect in the sense that
they are established in contradiction arguments in order to rule out certain
possibilities for S (specifically, to show that the class of functions obtained by
“blowing up” sequences of varifolds in S converging to a hyperplane inherits
the no-classical-singularities property from S, and to show that the varifold
closure of § does not contain singular cones supported on half-hyperplanes
meeting along common axes); (b) since S is not a multiplicity 1 class, the
hypotheses under which these estimates are established in [Wicl4a] are
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different from those of [Sim93], and consequently their proofs require a
considerable amount of additional effort.

Besides the role played in [Wic14a], Simon’s groundbreaking ideas in his
work described above have had a profound impact on many other problems
concerning singularities of solutions to geometric variational problems and
geometric flows. Some of the most recent developments among the long list
of theorems inspired by his work are: (i) the deep work of Colding—Minicozzi
([CM1], [CM2]) and the work of Tonegawa and the author ([TW]) that
establish certain parabolic versions of Simon’s results to study asymptotics
near certain singularities for mean curvature flow of hypersurfaces and for 1-
dimensional integral Brakke flows respectively, and (ii) the work of Krummel
and the author ([KW1|, [KW2], [Krumz2|, [Wic]) on the structure of
branch points of certain classes of minimal submanifolds and associated
multiple valued harmonic functions, and the work of Hughes ([Hug]) on
the structure of singularities of stationary two-valued Lipschitz graphs in
arbitrary dimension and codimension.

3. Stable varifolds

We shall continue to denote by U an open subset of R"*!. Let V be a
stationary integral m-varifold on U.

3.1. Second variation and stability. We say that V is stable in U
if V' has non-negative second variation with respect to the area functional
for all C' deformations of U that leave a neighborhood of @ U Using V' fixed
and move reg V' in the normal direction. More precisely, V is stable if

d2

1 —
(3 ) dt2 i

ley.e4 VIU) =0
0
for any vector field ¢ € CH(U \ sing V;R"™) with ¢(X) € (Tx reg V)™ for
each X € reg V Nspt v, where (Tx reg V)J‘ is the orthogonal complement of
TxregV in R™™ and ¢y (X) = X + t¢(X) for sufficiently small ¢.

3.2. Stability inequality in codimension 1. Let V' be stable, m =n
(i.e. V be of codimension 1), and suppose that regV is orientable with
v a continuous choice of unit normal vector field on reg V. Then for any
given ( € CX(regV), we may take the vector field ¢ in (3.1) to be a
suitable extension to U of (v. This leads to the following simple inequality
([[Sim83a], Sec. 9]), known as the codimension 1 stability inequality:

(3.2) / yA2g2dH"§/ IVC¢[PdH™ V(¢ € CX(regV).
regV regV

Here A denotes the second fundamental form of the embedding reg V' C U,
|A| the length of A and V the gradient operator on reg V. Note that (3.2) is
equivalent to non-negativity of the Dirichlet eigenvalues of the self-adjoint
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linear differential operator £ (known as the stability operator, or the Jacobi
operator) given by £ = A{ + |A|*¢ for ¢ € C? (reg V).

Note also that (3.2) implies that freg v [Al? < oo for each compact set
K C U \ sing V. However, it is not at all clear whether it implies that reg V'
has locally finite total curvature in U in the sense that

/ |A|> < 0o for each compact K C U.
reg VNK

A potential obstruction to such local finiteness of total curvature in stable
codimension 1 integral varifolds is the presence of a “large” set of singular-
ities that are not classical singularities. How large the set of non-classical
singularities of a stable codimension 1 integral varifold V' is remains an open
question except in cases when V' satisfies one of the following two additional
conditions, each of which implies local finiteness of total curvature (in fact
a uniform local L? bound on |A|):

(i) all singularities of V' are non-classical,

(ii) O (|V],X) < 3 and O (|V, X) & {3/2,5/2} for each X € U (in
particular, © (||V|], X) < 3 for each X € U and V corresponds to
a rectifiable current with no boundary in U).

In case (i), the singular set of V' is in fact known to have codimension 7
(by Theorem 3.3 below).

Local finiteness of total curvature in case (ii) is particularly interesting
since in that case branch points can occur (unlike in case (i)), and when they
do, for topological reasons they always arise along a set with locally positive
(n — 2)-dimensional Hausdorff measure. However the branch locus of V' in
that case is locally the finite union of locally (n—2)-rectifiable sets (by [Wic]
and [KW2]), and in particular has 2 capacity zero, and the non-classical,
non-branch point singularities form a lower dimensional set.

3.3. Non-existence of singular stable hypercones in low dimen-
sions: Simons’ theorem. Any tangent cone to a stationary integral var-
ifold at a non branch point singularity is necessarily singular at the origin.
Moreover, if for a compact class C of m-dimensional stationary integral var-
ifolds on the open unit ball B = B}"™1(0) of R"*! branch point singularities
can be ruled out, then it follows from the Almgren—Federer Generalized
Stratification (Theorem 2.1) that the singular set of a varifold in that class
has Hausdorff dimension < m — k where k£ € {1,2,...,m} is the lowest
integer such that there is a stationary cone Cy € IV (R"H1—7+k) with
sing Cy = {0} and Cy x R™*_B € C. (Here Cy x R™* has the obvious
meaning: it is the varifold C with spt ||C|| = spt ||Cg|| x R™~* and density
given by © (|[CJ., (z,)) = © (|[Coll,z) for (z,y) € RF+1-m+k  Rm—k) For
this reason, the following result of J. Simons ([SJ68]) is of fundamental
importance for the regularity theory of stable codimension 1 varifolds:
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THEOREM 3.1 (Simons ([SJ68])). If 2 < k < 6 and Cy is a k-
dimensional stationary cone in R¥T! with sing Co C {0} and Co L_(RF+1\
{0}) stable, then sing Co = () and hence spt ||Co|| is a hyperplane in RF+L.

This theorem is obviously false in dimension n = 1 ( consider a pair of
lines in the plane crossing transversely). It is also false in dimensions n > 7.
For instance the cone over %83 X %83 C R8 can easily be seen to be stable
(a fact observed first by Simons in [SJ68]), by taking in the first variation
formula 1.3 the vector field ¥ (x) = |z|72¢(z)z for ¢ € CL(R®\ {0}) and
noting that norm of the second fundamental form of this cone is given by

[AX)] = V6| x|

3.4. Area minimizing hypersurfaces: the work of De Giorgi,
Federer—Fleming, Federer and Hardt—Simon.

The combined work of De Giorgi ([DG61]), Federer-Fleming ([FF60]),
Federer ([Fed70]) together with Simons’ theorem above (Theorem 3.1) lead
to the fundamental interior regularity result given below in Theorem 3.2(a)
for locally area minimizing hypersurfaces. This result was achieved over the
decade 1960-70 with the work of Reifenberg ([Rei60]), Fleming ([Fle62])
and Almgren ([Alm66]) contributing at various stages. The subsequent work
of Hardt—Simon ([HS79]) completed the theory for the Plateau problem by
establishing complete boundary regularity (Theorem 3.2(b)) whenever the
boundary is the multiplicity 1 current associated with an embedded C1®
submanifold.

THEOREM 3.2 (Regularity of area minimizing hypersurfaces). Let U be
an open subset of R"T1.

(a) (De Giorgi [DG61], Federer—Fleming [FF60], Federer [Fed70],
Simons [SJ68]) If T is an n-dimensional, locally area minimizing
rectifiable current in U with T = 0 in U, then singT = () in case
1 <n <6, singT is discrete in case n = 7 and dimy (singT') <
n—7 1t case n > 8.

(b) (Hardt—Simon [HS79]) If T is an n-dimensional rectifiable current
in U such that T is locally area minimizing in U away from 0T,
and 0T is equal to the multiplicity 1 current associated with a
connected, oriented embedded C1® submanifolds of U for some
a € (0,1), then there is an open subset V' containing spt 0T such
that V N sptT is a connected embedded C® hypersurface-with-
boundary.

3.5. The Bernstein Theorem. Codimension 1 minimal graphs are a
special class of oriented locally area minimizing (in fact calibrated) hyper-
surfaces. These are hypersurfaces G that are graphs over a domain 2 C R"”
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of functions u : Q — R solving the minimal surface equation

- D,u
Di| ——|=0 in Q.
; ! <\/1 - |Du\2) ’

The well-known Bernstein theorem asserts that if G is entire, that is
if @ = R™, then u is an affine function in case n < 7; this is a triviality
in case n = 1 and was first proved by Bernstein for n = 2 ([Berl5]).
Using an observation due to Fleming ([Fle62]) that showed that it suffices
to show that one tangent cone to the graph at infinity is a (multiplicity 1)
hyperplane, De Giorgi extended the theorem to the case n = 3 ([DG65]) and
Almgren to the case n = 4 ([Alm65]). De Giorgi in fact showed that in any
dimension, a tangent cone to the minimal graph at infinity splits a direction.
Subsequently, Simons’ classification theorem above (Theorem 3.1) extended
the Bernstein Theorem to dimensions n < 7. Bombieri-De Giorgi—-Giusti
([BDG69]) showed, remarkably, that the theorem is false in dimensions
n > 8, by explicitly exhibiting a construction producing a non-planar entire
minimal graph G,, asymptotic at infinity to the “vertical cylindrical cone”
C,—-1 X R in every even dimension n > 8 (which also of course gives such
a graph in every odd dimension n > 9 by taking, for instance, the product

n—1 n—1
Grn-1 X R), where C,, is the cone over %ST X %ST c Rt

3.6. Curvature estimates under a priori regularity hypotheses:
the work of Schoen, Schoen—Simon—Yau and Schoen—Simon.

Various local estimates have been established for low dimensional smooth
stable minimal hypersurfaces, which can be regarded as the local versions
of the Bernstein type global theorems. The first such result is due to Heinz
([Hei52]) who established a local curvature estimate for two dimensional
minimal graphs, i.e. for G = graph « with u a solution to the minimal surface
equation in a domain U C R?; Heinz’s estimate says that there exists a fixed
constant C independent of G such that the second fundamental form Ag of
G satisfies

|Ag|(z, u(2)) < CR™
whenever Br(z) C U. The (two dimensional) Bernstein Theorem follows
immediately from this since one can simply let R — oo in the estimate in
case U = R2.

Schoen ([Scho83]) generalized Heinz’s result to the parametric setting
by proving the beautiful result that there is a fixed constant C such that

|Ap|(X) < C (dist (X,0 M)
for every oriented properly immersed stable minimal surface M in R? and
X € M\ OM, where dist (X,0M) is the geodesic distance from X to
the boundary 0 M. This in particular implies the result that a complete

oriented immersed stable minimal surface without boundary in R® must
be a plane. This last result had been established earlier independently by
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do Carmo and Peng ([DP79]), by Fischer-Colbrie and Schoen ([FS80])
and by Pogorelev ([Pog81]), and is an extension to the parametric setting
of the two dimensional graphical Bernstein Theorem stated above. The
Catenoid shows that without the stability assumption such a global (and
hence also a local) result is false even if the surface has finite total curvature.
It remains a very interesting open question whether in any of the dimensions
n € {3,4,5,6}, Schoen’s local curvature estimate, or its global version
asserting non-existence of non-trivial complete stable minimal hypersurfaces
in R"*1 holds true. Such a result cannot hold if n > 7 (see below).

Allowing the constant C' to depend on the mass ratio with respect
to geodesic balls, the above curvature estimate was extended to properly
immersed stable hypersurfaces of dimension n < 5 by Schoen—Simon—Yau
in their highly influential work [SSY75]. The Schoen-Simon-Yau estimate
asserts that there exists a fixed constant C' (independent of mass ratio) such
that if n < 5 and if M is an oriented immersed stable minimal hypersurface
of R*"! then for each X € M \ O M and each R € (0, dist (X,d M)) (where
again dist (X, 0 M) is the geodesic distance from X to O M),

[ Ay (X)| < CRT"THM(DE (X))

where DM (X) is the geodesic ball in M of radius R and center X.

It remains open whether the Schoen—Simon—Yau estimate holds for uni-
formly mass bounded properly immersed stable hypersurfaces of dimension
n = 6. In the special case when M is a 6 dimensional immersed stable hyper-
surface satisfying the particular mass bound Hé(M N B%(X)) < (3 —8)we RE
for some § € (0,1), the estimate (in the form |Ay(X)] < CR™! with
C = (C(9)) is known to be true ([Wic08]).

A local curvature estimate of the above type cannot hold for area
minimizing hypersurfaces of dimension n > 7 since in these dimensions
there are non-planar complete locally area minimizing hypersurfaces; for
instance, it is known by the work of Hardt—Simon ([HS85]) that each of
the connected components of R**! \ C,,, where C,, is the cone over the
product of spheres mentioned above, can be foliated by smooth locally area
minimizing hypersurfaces. For n > 8, we also have the Bombieri-De Giorgi—
Giusti ([BDG69]) examples of non-planar entire minimal graphs over R”
mentioned above which are automatically locally area minimizing. These
graphical examples show that Heinz’ local curvature estimate stated above
does not hold for minimal graphs over domains in R™ for n > 8; it does
however hold if n < 7.

In their fundamental work [SS81], Schoen and Simon showed that
in arbitrary dimension n, the preceding curvature estimate in the form
|Ap(X)| < CR™! with C = C(n,A) where A is any upper bound for
R™™H"™ (M N BEH(X )) holds for embedded n-dimensional stable minimal
hypersurfaces M provided that M is sufficiently close (depending only on n
and A) in Hausdorff distance to a hyperplane. In fact they proved this result
allowing a small singular set (see Theorem 6.2 below and Remark 2 following
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it). From this result they deduced the curvature estimate |Ap(X)| <
CR™', C = C(A), for 6-dimensional oriented properly embedded stable
hypersurfaces M satisfying the volume growth bound R=H® (MNB%L(X)) <
A.

3.7. A general theory: stable codimension 1 varifolds with no
classical singularities.

The following recent theorem, which shall be the main focus of the
rest of the paper, says that a stable codimension 1 integral varifold with
no classical singularities has no branch points, and moreover, is smoothly
embedded away from a closed singular set of codimension > 7. In particular
the theorem implies that such a hypersurface is free of singularities if n < 6.

THEOREM 3.3 (Regularity and compactness for stable codimension 1
integral varifolds; [[Wicl4a], Theorem 3.1]). Let U be an open subset of
RV € IV, (U) and suppose that V has locally finite mass in U and that

(i) V is stationary in U;
(ii) V LB is stable in B for each open ball B C U with singV LB =10
in case 1 <n <6, singV L_B discrete in case n =7, or

dimg (singV LLB) <n—7

n case n > 8.

If V' has no classical singularities, then V' has no branch points (see defini-
tions in Section 2.2); in this case, singV =0 if 1 <n <6, singV is discreet
if n =7 and dimy singV < n — 7 if n > 8. Furthermore, for any A > 0, the
set

(V eV, (U) :
IVI(U) < A,V satisfies (i), (i) and has no classical singularities}

is compact in the topology of varifold convergence in U.

This result essentially completes the codimension 1 theory for stable
varifolds in the “embedded case” (which for varifolds it makes sense to take
as the case in which classical singularities are absent). It generalizes both the
classical theory for oriented area minimizing hypersurfaces (Theorem 3.2(a))
and the Schoen—Simon theory (described briefly in the last paragraph of
Section 3.6 above and in more detail in Section 6.1 below). Theorem 3.3 is
sharp with respect to all of its hypotheses and conclusions in ways that have
been discussed in the introduction.

We shall describe some applications of Theorem 3.3 in the next section,
and give in Part 2 below a description of the strategy and the main
ingredients of its proof.
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4. Some applications of the general theory

In this section we discuss three applications of Theorem 3.3. The first
two applications concern, respectively, the strong maximum principle and
the unique continuation property for stationary codimension 1 integral
varifolds, as established in [Wicl4b]. They only require the special case
of Theorem 3.3 with hypothesis H" ! (singV) = 0 in place of the no-
classical-singularities hypothesis. The third application discussed below is
to a class of semi-linear elliptic problems. It concerns regularity of the sharp
interface resulting in the limit as the perturbation parameter tends to zero
of a sequence of stable critical points of the Allen—-Cahn functionals, as
established in the work of Tonegawa and the author ([TW10]). This result
requires the full strength of Theorem 3.3.

4.1. Strong maximum principle for stationary codimension 1
varifolds. Let U be an open subset of R"*!, and let M;, M, be two
connected, smooth minimal hypersurfaces of U with no singularities in U
(thus (clos M; \ M;) N U = 0 for j = 1,2). Suppose, locally near every
common point of the hypersurfaces, one of them lies on one side of the other.
That is to say, for each y € My N My there is p > 0 such that B,(y) \ Mo
consists precisely of two connected components (as it must for sufficiently
small p > 0) and M; N B,(y) is contained in the closure of one of the
components of B,(y) \ Ms. (Interchanging M; and My in this statement of
course gives an equivalent condition.) Then it is an easy consequence of the
strong maximum principle for uniformly elliptic PDE that either M; = M>
or My N My = .

It is a natural question to ask to what extent this strong maximum
principle extends to pairs of stationary codimension 1 integral varifolds V7,
V5 on U with connected supports. This question is subtle since we do not
know much about the singular sets of stationary varifolds. Note that to make
the question precise, one has to define what it means for one varifold to lie
locally on one side of the other near a common point, and how to even do
this is not entirely obvious for it is not known in the presence of singularities
whether the support of a stationary codimension 1 integral varifold must
disconnect a sufficiently small ambient ball around a singularity; moreover,
even when it does, it obviously need not be into two components (take for
instance a pair of crossed planes in R3). A natural condition to assume is
that whenever the support of one varifold does disconnect a ball around
a common point into two components, the part of the support of the
other varifold in that ball is contained in the closure of one of the two
components. As it turns out, the weaker condition given below suffices for a
sharp theorem:

Hypothesis K(V1,Vs): If y € regVi N spt||[Vo| and p > 0 are such
that (i) singVy N By(y) = 0 and (ii) B,(y) \ spt||V1] consists of two
connected components (both of which hold for every y € regVy Nspt || Va|
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and sufficiently small p > 0), then spt ||V2||NB,(y) is contained in the closure
of one of the components of B,(y) \ spt || V1]|.

(Spoiler: our choice of terminology here is based on the fact that the letter
K consists of a regular piece and a singular piece with the singular piece
entirely on one side of the regular piece!)

Easy examples (see Remark 1 below) show that two stationary codimen-
sion 1 integral varifolds Vi, V5 satisfying Hypothesis K(Vj, Vo) may have
connected, intersecting, distinct supports, and hence need not satisfy the
strong maximum principle. However, this cannot happen if the singular set
of V7 is sufficiently small. The following result, which builds upon and sharp-
ens previous maximum principles due to Moschen [Mos77], Simon [Sim87],
Solomon-White [SW89] and Ilmanen [Ilm96], gives the sharp size hypoth-
esis on sing V; for the maximum principle to hold whenever K (V;, V3) holds,
and is obtained as a consequence of Theorem 3.3. (See Section 4.3 for some
comments on its proof.)

THEOREM 4.1 (Strong maximum principle; [Wicl4b)]). Let Vi, Vo be
stationary codimension 1 integral n-varifolds on a smooth Riemannian man-
ifold such that spt ||V} is connected for j =1,2. If

(i) spt||Va|l lies locally on one side of reg Vi in the sense that Hypoth-
esis K(V1,Va) above holds and
(i) H" ! (singV;) =0,
then either spt || Vi]| Nspt ||[Va|| = 0 or spt ||Vi|| = spt || Vz]].

Remarks: (1) The hypothesis (ii) cannot be weakened to H" ¢ (sing V})
= 0 for any € > 0; to see this, consider for instance four intersecting
planes in R3 with a common axis and with at least three of the planes
distinct, and let Vi be the union of an “inner” pair of planes and V5 be
the union of the corresponding “outer” pair (each with multiplicity 1). A
similar counterexample in which neither varifold is the sum of two non-trivial
stationary varifolds and their regular parts have non-empty intersection
is obtained by taking Vi, V5 to be the multiplicity 1 varifolds supported
on three and, respectively five, equally spaced half-planes meeting along a
common axis.

(2) The theorem is also sharp with respect to hypothesis (i) in the sense that
it is not enough to require merely that reg V5 lies locally on one side of reg V
(that is, to verify Hypothesis K(V1, V2) merely for points y € reg Vi Nreg V5);
to see this, let V5 be the multiplicity 1 varifold supported on the union of
three equally spaced half-planes in R? meeting along a common axis, and
V1 be the multiplicity 1 varifold supported on the plane containing one of
the three half-planes of V5.

(3) If Qi, Q9 are open subsets of the ambient manifold with Q; C Q9
and V; = [0[Q,]] for j = 1,2 (i.e. V} is the n-varifold corresponding to
the multiplicity 1 boundary of the (n + 1)-dimensional current defined by
the open set €2;), then spt ||V2|| lies locally on one side of regV;, and also
spt || V1|| lies locally on one side of reg V5, in the sense that both Hypothesis
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K(V4,V3) and Hypothesis K(V5,V;) hold. So in this case, if Vi, V5 are
stationary; spt ||V} is connected for j = 1,2; spt ||V1]| Nspt ||Va]| # @ and
either H" ! (sing V1) = 0 or H" ! (sing V2) = 0, then it follows (from the
theorem) that spt ||V1|| = spt ||Va]|.

(4) Allowed in Hypothesis K(V1, V3) is the possibility that reg ViNspt ||Va|| =
(), in which case, subject also to all other hypotheses of the theorem, the
conclusion is that spt ||[V1|| Nspt ||Va| = 0.

4.2. Unique continuation for stationary codimension 1
varifolds. The classical weak unique continuation property for solutions
to the minimal surface system implies that if M7, Ms are n-dimensional
connected, smoothly embedded minimal submanifolds of a Riemannian
manifold with sing M; = closM; \ M; = 0 for j = 1,2, and if M;, M>
intersect on a set of positive (n — 1 + «)-dimensional Hausdorff measure
for some v € (0,1], then M; = M,. For stationary integral varifolds
(with connected supports) this statement generally is false, even when the
codimension is 1, as can be seen by the simple example given in the remark
below. However, we have the following result:

THEOREM 4.2 (Unique continuation; [Wicl4b]). Let Vi, Va be station-
ary codimension 1 integral n-varifolds on a Riemannian manifold such that
spt ||V} s connected for j =1,2 and

H T (spt VAl Nspt [[Va]) > 0
for some v € (0,1]. If H* ! (sing V;) = 0 for j = 1,2, then
spt [[V1| = spt || Va]|.
Remark: The singular set hypothesis H" ! (singV;) = 0, j = 1,2, in
this theorem is sharp. To see that it is so, take for instance Vi to be
the multiplicity 1 varifold supported on a union of three half-planes in R3
meeting at 120° angles along a common axis, and V5 to be the multiplicity

1 varifold supported on the plane containing one of the three half-planes of
spt ||V41]. It is also clear that the theorem does not hold with v = 0.

4.3. Remarks on the proofs of the maximum principle and the
unique continuation theorem. The principal ingredient of the proofs of
both Theorem 4.1 and Theorem 4.2 is the following result, which may also
be of independent interest:

THEOREM 4.3 ([Wicld4b]). Let Vi, Vo be stationary codimension 1
integral n-varifolds on a smooth Riemannian manifold. If
H"H(spt VAl nspt [[Val]) = 0
then spt ||V1]| and spt ||Vz|| are disjoint.
Remark: A pair of transversely intersecting hyperplanes in a Euclidean

space shows that the hypothesis H"~! (spt ||V4]|| N spt ||V2]|) = 0 in Theo-
rem 4.3 is sharp.



REGULARITY OF STABLE MINIMAL HYPERSURFACES 265

In addition to Theorem 4.3, the proof of Theorem 4.1 also makes direct
use of the special case of Theorem 4.1 when singV; = (), which follows
from [[Whil0], Theorem 4] (which in turn is a consequence of the main
theorem in Solomon-White ([SW89]) and Ilmanen’s Lemma 10 in [Ilm96]).
Given these ingredients, the proofs of Theorem 4.1 and Theorem 4.2 are
fairly elementary, requiring only some basic facts about stationary varifolds,
and the strong maximum principle and the unique continuation property
for (smooth) solutions to the minimal surface equation. (See [Wic14b] for
details.)

The proof of Theorem 4.3 follows from a clever argument of Ilma-
nen ([Ilm96]), and uses Theorem 3.3 in an essential way. [lmanen ([Ilm96))
proved Theorem 4.3 subject to the stronger hypothesis that

H2 (spt [|[Va]| Nspt ||[Va]| N K) < o0

for every compact subset K of the ambient manifold (and used it to deduce
the special case of Theorem 4.1 when both varifolds have singular sets
of locally finite (n — 2)-dimensional Hausdorff measure). Ilmanen’s proof
builds on results and ideas from the work of Solomon-White [SW89] and
Simon [Sim87], and makes clever use of the Schoen—Simon version ([SS81])
of Theorem 3.3 (which requires, as mentioned before, that the singular sets
have locally finite (n — 2)-dimensional Hausdorff measure).

The first step of Ilmanen’s argument in [Ilm96] is to prove Theorem 4.3
assuming that Vi, V5 are stable with singular sets of locally finite (n —
2)-dimensional Hausdorff measure. This step uses a certain Jacobi field
argument from [Sim87] and the results of [SS81].

The second step is to interpose two distinct stable hypersurfaces Wiy,
Wy “between” the stationary varifolds Vi, Vo to obtain a contradiction
to the first step in case spt ||Vi]|, spt||Vz|| have non-empty intersection
satisfying the above size restriction. The construction of Wy, W in [Ilm96|
is carried out by solving a certain obstacle problem in the complement
of spt ||[Vi]| N apt||V||2. This procedure yields by construction that for
J = 1,2, singW;j \ spt ||[Vi| Nspt || V2] is empty if n < 6 and has hausdorff
dimension < n — 7 if n > 7, and that W} has Euclidean volume growth;
moreover, one has that spt |[|[V1|| N spt ||[V2]| C sing W7 N sing Wa. To check
stationarity of W; across spt||Vi]| N spt ||V2||, it therefore suffices to have
H" ! (spt || V1] Nspt Va||) = 0, but to ensure that sing W; has locally finite
(n — 2)-dimensional Hausdorff measure in order to appeal to the result of
the first step, the above size restriction on spt ||V1|| Nspt ||Va|| was needed.

Theorem 4.3 in the sharp form stated above follows from Ilmanen’s
argument, by using Theorem 3.3 at those places in the first step of the
argument where it depended on the results of [SS81]. Once the first step
is strengthened this way, the second step carries over with the assumption
that H"~ 1 (spt || V1] N spt ||V2]|) = 0 to produce Wy, Wy contradicting the
first step unless spt || V1| Nspt || Va|| = 0.
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4.4. Interface regularity for a class of phase transition prob-
lems. For € € (0, 1), consider the family of functionals E, given by

D 2
E(u) :/ ¢ Dyl + W) dx
Q 2 €
for u € H' (), where Q C R"*! is a bounded domain and
W :R—RTU{0}

is a “standard” C® double-well potential with non-degenerate minima pre-
cisely at £1 with W (1) =0 (e.g. W(t) = (1 — t?)?). Suppose

(i) €1,€2,€3,... are positive numbers with lim; . €; = 0.

(ii) ue, € H*(Q) and E,(uc,) + supq |u,| < ¢ for a fixed constant
c>1landeachj=1,2,3...

(iii) we, is a stable critical point of E, for each j = 1,2,3.... Thus
—€iAue; + e]-_lW’(qu) = 0 weakly on © and u,; satisfies
W// .
/ ;| Vol* + ﬂ& >0 for each ¢ € CH(Q),
Q €5

conditions that are equivalent, respectively, to

d

Fri E;(ug; +t¢) =0 and
a2 X
|, Ee,(ue, +t¢) >0 Y ¢ € CL().

THEOREM 4.4 (Tonegawa—Wickramasekera; [TW10)). If (i), (i), (iii)
hold, then either

(a) ue; — 1 or ue; — —1 locally uniformly in Q, or

(b) after passing to a subsequence of {€;} without changing notation,
for each fized s € (0,1), the interface regions {x € Q : |u, (v)| < s}
converge locally in Hausdorff distance to a “sharp interface” M
where M is a smooth, embedded stable minimal hypersurface of
with no removable singularities and sing M = (clos M\ M)NQ =0
if 2 < n < 6, singM (at most) a discrete set if n = 7 and
dimy sing M <n—7ifn > 8.

This extends earlier work in the energy minimizing setting (studying
the I' -limits of sequences E; for ¢; — 0%, see e.g. [MMT77], [Mod87],
[Ste88], [KS89]) in which case the limit-interface is locally area-minimizing.
Combined work of Hutchinson—Tonegawa [HTO00] and Tonegawa [Ton05]
had previously established that in the stable case, the limit interface is an
n-dimensional stable integral varifold V on 2 but gave little information
on the regularity of V except when n = 1, in which case it was shown in
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[Ton05] that spt V' locally consists of finitely many disjoint straight line
segments.

In the proof of Theorem 4.4 above, it is shown first that at each point
in the complement of a certain set Z C sptV with H" 1 (Z) = 0 (but Z
not known to be closed a priori), no tangent cone to V can be supported
on the union of 3 or more half-hyperplanes meeting along a common axis.
This suffices to apply very directly Theorem 3.3 above to V' because by the
definition of classical singularity, if V' has such a singularity then the set
of points where V has a tangent cone supported on a union of 3 or more
half-hyperplanes having a common axis must have positive H"~! measure.

Note that the full strength of Theorem 3.3 is used here. In particular,
because of the presence of the set Z about which we know nothing a
priori apart from the fact that H" ! (Z) = 0, it would not suffice for the
proof of Theorem 4.4 to have a version of Theorem 3.3 where in place of
the no-classical-singularities hypothesis, one assumes either the condition
H" (sing V) = 0, or the “asymptotic condition” that V has no tangent
cone supported on a union of 3 or more half-hyperplanes meeting long a
common axis.

5. Some questions arising from the recent work

(1) In view of the work [TW10], it is natural to ask if the Almgren—Pitts—
Schoen—Simon ([Alm65], [Pit77], [SS81]) existence theorem for embedded
minimal hypersurfaces in compact Riemannian manifolds can be obtained
via an approach based on the Cahn—Hilliard functional. Such an approach
raises the possibility of replacing Pitts’ construction of almost minimizing
varifolds ([Pit77]; see also the work of De Lellis-Tasnady [DT] for a stream-
lined version of Pitts” argument) with a construction of suitably controlled
critical points of the Cahn—Hilliard functionals with small perturbation pa-
rameter, i.e. a construction in a function space rather than in a varifold
space. Further encouragement for this approach is provided by a recent ar-
gument of Sharp ([Sha]) which, combined with the main regularity theorem
of [TW10] (Theorem 4.4 above), one expects would make it possible to re-
lax the stability hypothesis in Theorem 4.4 to a uniform bound on the index
for the sequence of critical points. An approach to the existence question
along these lines may also give additional information such as a bound on
the index of the minimal hypersurface obtained as the limit interface. Such
bounds are not known for the Almgren—Pitts—Schoen—Simon solutions in
general. (See however the work of Marques—Neves [MIN12], [MIN14] that
establishes index bounds in certain special cases.)

(2) Do the strong maximum principle and the unique continuation theorem
of [Wicl4b] (Theorem 4.1 and Theorem 4.2 above) extend to stationary
codimension 1 integral varifolds admitting no tangent cones supported on
three or more half-hyperplanes meeting along an axis? Note that the easy
examples given above illustrating sharpness of the size hypothesis on the
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singular sets in these theorems all have singularities of this type. A more
ambitious question is whether these results extend to stationary codimension
1 integral varifolds with no classical singularities. Even more ambitiously,
what can one say about the singular set of a stationary codimension 1
integral varifold with no classical singularities?

(3) In view of the standard terminology used in the corresponding PDE
results, the unique continuation result for stationary varifolds discussed
above (Theorem 4.2) might be termed a weak unique continuation theorem.
On the PDE side, it is well known ([GL86], [GL87]) that solutions to
second order homogeneous linear elliptic equations with Lipschitz leading
order coefficients and bounded lower order coefficients satisfy a strong
unique continuation property, in the sense that if the L? average of the
solution in small balls centered at a fixed point decays arbitrarily fast with
decreasing scale, then the solution is identically zero near that point. So
a natural question is whether a strong unique continuation property holds
for stationary varifolds. A special case of this question would be to ask if a
stationary integral n-varifold (say of codimension 1) near some point in its
support has height excess relative to an n-dimensional plane passing through
that point decaying arbitrarily fast upon rescaling, whether the varifold must
coincide with the plane in a neighborhood of that point. More generally, one
could ask the same question with the plane replaced by another stationary
integral n-varifold.

(4) Must the regular part of a stationary integral n-varifold in an open ball
in R™*! be orientable? Must the support of such a varifold disconnect a
sufficiently small open ball about a singularity?

(5) As mentioned in the introduction, in [CM14] Colding and Minicozzi
use Theorem 3.3 above to deduce that for 2 < n < 6, an n-dimensional
self-shrinker in R"*! with polynomial volume growth, F-stable regular part
and no classical singularities is either a round sphere or a hyperplane
(possibly with multiplicity > 2). In case n = 2, Ilmanen ([Ilm95]) showed
that any self-shrinker corresponding to a tangent flow at the first singular
time of a mean curvature flow starting at an embedded, compact surface
in R? has smoothly embedded support. For n > 3, can a self-shrinker
arising as a tangent flow at the first singular time of a mean curvature
flow starting at a compact, embedded n-dimensional hypersurface develop
classical singularities?

(6) Must every branch point of a stationary codimension 1 integral varifold
be the limit point of a sequence of classical singularities?

Part 2. AN OUTLINE OF THE PROOF OF THEOREM 3.3 (REGULARITY
AND COMPACTNESS FOR STABLE CODIMENSION 1 VARIFOLDS WITH NO
CLASSICAL SINGULARITIES)

In Sections 6-8 below we give a description of the main ideas involved in
the proof of the main regularity and compactness theorem for stable codi-
mension 1 varifolds, i.e. Theorem 3.3. Both the regularity and compactness
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conclusions of this theorem rely on the same set of estimates. Since these
estimates are local in nature, to explain the key ideas behind them it suf-
fices to consider the case where the ambient manifold is an open ball of the
Euclidean space R™1, say BSH(O); generalizing the results to the case of
arbitrary Riemannian ambient manifolds is just a matter of making appro-
priate technical modifications (to handle the lower order error terms) to the
estimates needed in the Euclidean setting. (See [[Wicl4a], Section 18] for
the full details of how this is done.)

It will be convenient to use the following notation throughout the
discussion:

Let S be the class of stationary, stable varifolds V € TV,,(B5*1(0)) with
no classical singularities and with 0 € spt ||V]|.

Let M be the collection of smoothly embedded hypersurfaces M of
BY(0) with (i) locally finite mass, i.e. H™(M N K) < oo for each compact
subset K of BY(0); (i) no removable singularities, i.e. the property that
ifY e Mn BSH(O) and M is smoothly embedded in a neighborhood of Y,
then Y € M; (iii) 0 € M; (iv) sing M = () if n < 6, sing M discrete if n =7
and dimy sing M < n—7 if n > 8, where sing M = (M \ M) N By™(0), and
(v) the multiplicity 1 varifold |M| associated with M stationary and stable
in BS(0).

It follows directly from the definitions that {|M| : M € M} C S.
Furthermore, if M € M, an easy cut-off function argument shows that each
connected component of M (= reg|M]) is stationary in By**(0). In view of
this fact and the Constancy Theorem [[Sim83a], Theorem 41.1], we see that
our Theorem 3.3 says that the two classes S and M are in fact the same
modulo multiplicity, i.e. that

VeSS < VelV,(BytH0)) and regV € M.

6. Basic strategy and main steps

6.1. The Sheeting Theorem and the Minimum Distance Theo-
rem. The following small-excess regularity result for V'€ S (Theorem 6.1)
and the disjointness property of the varifold closure of S from certain cones
(Theorem 6.3) are at the heart of the proof of Theorem 3.3:

THEOREM 6.1 (Sheeting Theorem; [[Wicl4a], Theorem 3.3']). Let q be
a positive integer. There exists € = €(n,q) € (0,1) such that if V € S,
(2 V(B 0)) < g+ 1/2, 4 1/2 < wp V]| (R x BY(0)) < g+ 1/2
and

/ S Rd|V]|[(X) < ¢ then
Rx B} (0)

q
Vi (R X BI‘/Q(O)) = ; |graph u;|
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1, : ~
where u; € CH° (B?/Q(O),R) with

1/2
Uil otagn <C / 22 AVIIX
llujllen (B,(0) S < ?(O)XR\ = d[|V]|(X)

for some fized constants o = a(n,q) € (0,1), C' = C(n,q) € (0,00) and each
j = 17 27 ctt q?’
up <up < ... < g

and uj solving the minimal surface equation weakly on By for each j =
1,2,...,q.

Remark: This theorem is sharp with respect to all of its hypotheses
corresponding to the requirement that V' € S. To see this, note that the
theorem is false in higher codimension even for area minimizers in view
of examples such as V; = {(z,w) € C x C : 22 = tw?® + tw} N B1(0)
which corresponds to an embedded surface in R?* lying close to the plane
{z = 0} N B1(0) for small real ¢, and as a complex curve corresponds to
a locally area minimizing surface. Rescalings of a standard Catenoid in R?
shows that the theorem is false in the absence of the stability hypothesis.
Pairs of transversely intersecting planes close to a plane shows that the
theorem is false without the no-classical-singularities hypothesis.

In the special case when V' = |M]| for some M € M, Theorem 6.1
was established by Schoen and Simon in [SS81], and this special case plays
a crucial role in the proof of Theorem 6.1. The Schoen—Simon version of
Theorem 6.1 in fact requires only that sing V' be of locally finite (n — 2)-
dimensional Hausdorff measure, but for our purposes it suffices to know that
it holds for V' = |M| with M € M, i.e. the validity of the following:

THEOREM 6.2 (Schoen—Simon; Special case of [[SS81], Theorem 2|). Let
q be a positive integer. There exists € = €(n,q) € (0,1) such that if V = | M|
for some M € M, q— 1/2 < wid [V] (B x BI(0)) < q + 172,

/ T2 AV (X) < e,
Rx B7(0)

then the conclusions of Theorem 6.1 hold. Equivalently, if in Theorem 6.1
we assume in place of the mo-classical-singularities hypothesis on V' that
sing V. =) in case n < 6, sing V' is discrete in case n = 6 or dimy (sing V') <
n—"71in casen < n—"7, and keep all other assumptions, then the conclusion
of Theorem 6.1 holds.

Remarks: (1) It takes a little thought to see the equivalence of the
two assertions in Theorem 6.2. The key point is the general fact that if
V € IV, (ByT1(0)) is stationary and H" ! (sing V') = 0, then the multiplicity
1 varifold |M| associated with any connected component M of regV is
stationary in BSH(O). This claim can easily be checked with the help of a
straightforward cut-off function argument based on: (i) the volume growth
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bounds implied by the monotonicity formula (1.4) and (ii) the fact that the
mean-curvature vanishes on reg V.

(2) The proof of Theorem 6.1 (to be sketched below) does not amount to
a direct reduction to Theorem 6.2. Instead, Theorem 6.2 is used, several
times, in the linear analysis needed for the proof of Theorem 6.1, as well as
in verifying, in an induction argument, the validity of Theorem 6.1 in the
absence of points of V' with density > ¢. In particular, a principal way in
which the stability hypothesis enters the proof of Theorem 6.1 is through
the use of Theorem 6.2 during the course of its proof.

(3) Theorem 6.2 is an a priori estimate for varifolds V' € S satisfying the
expected regularity. The fact that this a priori estimate, among other things,
can be used to establishing the sharp regularity result for varifolds in S can
be thought of as a geometric version of the principle, widely known in various
PDE settings, that a priori estimates imply regularity.

For V € S, Theorem 6.1 implies that a point Y € spt ||V| N By™1(0)
where one tangent cone is supported on an n-dimensional plane is a regular
point of V; it then follows from the Generalized Stratification Theorem
(Theorem 2.1) that dimy (sing V) < n — 1. To get closer towards the goal
of further reducing the dimension of sing V', one has to rule out next the
possibility that a tangent cone at a singularity of V' is supported on three or
more half-hyperplanes meeting along an (n — 1)-dimensional subspace. This
is achieved with the help of the following theorem:

THEOREM 6.3 (Minimum Distance Theorem; [[Wicl4a], Theorem 3.4]).
Let C € IV, (R™1Y) be a stationary cone in R"* such that spt ||C|| consists
of three or more n-dimensional half-hyperplanes meeting along a common
(n — 1)-dimensional subspace. There exists € = ¢(C) € (0,1) such that if
VeS8 and (w,2™) H|V|(BET(0) < ©(||C[,0) + 1/2 then

distr (spt | V| 1 BI1(0), spt|Cll 0 BIH(0)) > e.

Remark: Just like Theorem 6.1, this theorem is sharp with respect to all
of the hypotheses corresponding to the requirement V' € S. In particular it
is false in higher codimension since for instance we can perturb a pair of
two dimensional planes in R* intersecting along a line into a union of two
disjoint planes. It is also false without the stability hypothesis as seen by
appropriate rescalings of a Scherk’s second surface in R3.

6.2. Proof of Theorem 3.3 using the Sheeting Theorem and the
Minimum Distance Theorem. Let V be an n-varifold on By (0) arising
as the varifold limit of a sequence of varifolds in §. By the Allard—Almgren
compactness theorem (Theorem 1.1), it follows that V € IV,,(B5™1(0)) and
that V is stationary in By"1(0). By the Sheeting Theorem (Theorem 6.1),
it follows that V' is stable. And by the Minimum Distance Theorem (The-
orem 6.3), it follows that V' has no classical singularities. Thus, once The-
orems 6.1 and 6.3 are in place, the compactness conclusion of Theorem 3.3
follows. It is then straightforward to obtain the regularity conclusions of
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Theorem 3.3 with the help of a standard tangent cone analysis based on Si-
mons’ Theorem (Theorem 3.1) and the Almgren—Federer Generalized Strat-
ification, Theorem 2.1.

Thus the Sheeting Theorem and the Minimum Distance Theorem form
the back bone of Theorem 3.3.

6.3. Proof strategy for the Sheeting Theorem and the Min-
imum Distance Theorem: Induction. Before delving into any of the
details, let us first motivate the approach taken in [Wicl4a] to proving
the Sheeting Theorem and the Minimum Distance Theorem. To do so, con-
sider the case that V = |M| for some M € M, or more generally, the case
that V € S with sing V' having locally finite (n — 2)-dimensional Hausdorff
measure. In this case, Theorem 6.3 can be deduced from Theorem 6.1 in a
straightforward manner as follows:

First note that in this case, a standard argument shows that sing V' is
“removable for the stability inequality (3.2)” in the sense that the inequality
fregV|A|2C2 < fregv |V ¢|? holds for every ¢ € C}(U) (and not just for
¢ € Cl(regV) as (3.2) initially requires). In particular, we may take a
standard cut-off function ¢ in this improved stability inequality to deduce

that
/ ]2 < ©
MnNB*HH0)

3/4
for a fixed constant C' = C(n, A) independent of M, where A is any upper
bound for H™ (M N B?H(O)). This, the Cauchy—Schwarz inequality, and the
volume growth bounds for M (implied by the monotonicity formula (1.4))
imply that if L is an (n — 1)-dimensional subspace of R"! then for each
fixed A > 0,

(6.1) sup / Al — 0
MeMHm(MAB+(0)) <A Y MNByH(0)N(L)-

as 7 — 0.

On the other hand, if C is as in Theorem 6.3, L is the singular axis of C,
p : R™1 — L is the orthogonal projection, and if, contrary to Theorem 6.3,
there is a sequence M; € M with w;, "H"(M; N B}1(0)) < ©(||C||,0) +1/2

and disty (M; N B{L/ng (0),spt ||C|| N Bf/zl(O)) — 0, then for sufficiently large

4, p~Y(y) N M; N (L), is a non-empty finite collection of disjoint, smooth

embedded curves ’yf, 1 <k < for H" tae y € LN B?/'Zl(()), and by

Theorem 6.1, if v; denotes a choice of unit normal to M;, then

(6.2) 6 < inf yj(Pf»l)—uj(Pf’?)‘ <

< |A] dH*
1<k<¢;

/pl(y)ﬁM]ﬂ(L)T
where Pf’l, Pf’2 are the end points of 7]’-“ and 6 is a fixed positive constant

determined by spt ||C||. Integrating over y € L N B?/zl(O) and using the
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co-area formula, we see that this leads to a contradiction with (6.1) for
sufficiently large j.

Notice that this simple argument to deduce Theorem 6.3 from Theo-
rem 6.1 clearly breaks down if we only have the no-classical-singularities
hypothesis (as in Theorem 3.3) instead of the hypothesis that sing V' is suffi-
ciently low dimensional; indeed, even under the hypothesis H"~! (sing V) =
0 which is stronger than the no-classical-singularities hypothesis and which
together with Theorem 6.1 makes it possible to justify (6.2) for H" !-a.e.
yelLn B{L/Zl (0), the above argument breaks down because in this case, a
priori we do not know even whether fr g VN Bg/zl (O)N(
the statement (6.1). Thus, one is lead to look for an argument to prove The-
orem 6.3 that does not a priori require unconditional integral control of the
second fundamental form of reg V' in a whole neighborhood of the singular
axis of C.

Quite apart from this issue, what is also clear is that a result such as
Theorem 6.1 is likely to be necessary (or at least extremely useful) for
the proof of Theorem 6.3 since, in order to derive a contradiction from
the assumption that there exist V' € S arbitrarily close to C, we need a
way to control the singular set of V' in the region outside a small tubular
neighbourhood of the singular axis of C. Since the existence of a large set
of branch points in varifolds in & cannot a priori be ruled out, we cannot
argue that sing V' must concentrate near sing C without the help of a result
such as Theorem 6.1.

However, any attempt to prove Theorem 6.1 completely independently
of a result in the spirit of Theorem 6.3 does not have much chance of
success for the following reason: First, note that obvious examples such
as appropriate rescalings of the standard Catenoid show that the stability
hypothesis is necessary for Theorem 6.1. Due to the possible presence of a
large singular set, there is however no way to make direct use of the stability
inequality (unlike in the Schoen—Simon version, i.e. Theorem 6.2). Indeed,
without any information on the set of singularities where there is a tangent
cone supported on three or more half-spaces meeting along a common axis
(which singularities are completely ruled out by Theorem 6.3), under the
hypotheses of Theorem 6.1 one has at best regularity of V away from the
union of a set S of Hausdorff dimension < n — 1 and the set S, of points
with density > ¢, where ¢ is as in Theorem 6.1 (this follows by assuming by
induction the validity of Theorem 6.1 with any ¢’ € {1,2,...,¢—1} in place
of q); this, as pointed out before, is nowhere near the amount of control on
sing V' necessary to make good use of the stability hypothesis. If however
we had Theorem 6.3 at our disposal, then by the Generalised Stratification
Theorem (Theorem 2.1) together with Simons’ theorem (Theorem 3.1), we
may assume regularity of V' away from S; and away from a closed set of
Hausdorff dimension < n — 7. In particular, by Theorem 6.2, this would
yield Theorem 6.1 at least in case SN (R x By),) = 0.

- |A| < oo, let alone
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The two theorems are thus closely connected to each other, a fact
that appears to create an impasse. This naturally demands a strategy that
requires “elevating Theorem 6.3 to equal standing with Theorem 6.1” and
aims to prove both theorems simultaneously; this indeed is the approach
taken in [Wicl4a] where the two theorems are proved simultaneously
by an inductive argument, where induction for Theorem 6.1 is on ¢ and
for Theorem 6.3 is on the density © (||C||,0) of the cone C whose value
€ {q—1/2,q} for some integer q > 2.

Thus, let ¢ > 2 be an integer, and assume the following;:

INDUCTION HYPOTHESES:
(H1) Theorem 6.1 holds with any ¢’ € {1,...,¢ — 1} in place of q.
(H2) Theorem 6.3 holds whenever O (||C|[,0) € {3/2,...,¢ —1/2,q}.

Completion of induction is achieved by carrying out, assuming (H1),

(H2), the following three steps in the order they are listed:

(i) Prove Theorem 6.1;
(ii) prove Theorem 6.3 in case © (||C||,0) = q + 1/2;
(iii) prove Theorem 6.3 in case © (||C|,0) = ¢ + 1.

Note that the base case ¢ = 1 of Theorem 6.1 is a direct consequence of
Allard’s regularity theorem (Theorem 1.2), and the case O (|[C||,0) = 3/2
of Theorem 6.3 follows from a theorem of Simon ([Sim93], Theorem 4);
incidentally, neither of these requires the stability hypothesis, and they both
hold for stationary integral varifolds of arbitrary co-dimension. The case
O (||CJ|,0) = 2 of Theorem 6.3 follows by taking ¢ = 1 in the argument
for step (iii) above, and using the case ¢ = 1 of Theorem 6.1 and the case
O (||C]J|,0) = 3/2 of Theorem 6.3 in place of the induction hypotheses (H1),
(H2) respectively.

6.4. An elementary consequence of the induction hypotheses.

For V € S and g an integer > 2,let S, ={Z : O (|V|,Z) > ¢}. We shall
make use of the following direct consequence of the induction hypotheses
(H1), (H2) and Theorem 2.1 a number of times during the course of the
completion of induction for the Sheeting and Minimum Distance Theorems:

(%) If the induction hypotheses (H1), (H2) hold, Q2 is an open subset
of BYT(0), V€S and S;NQ =0, then singVNQ =0 if n <6,
sing VN Q is discrete if n = 7 and dimy (singV N Q) <n—7 of
n > 8.

In fact we can say more generally the following: For small 6 € (0,1), if we
let

Sps = {V €8 + (a2 VI(BIH(0)) < g — 6},
then as a consequence of the monotonicity formula (1.4), the induction
hypotheses (H1), (H2) and Theorems 2.1 and 3.1, the following compactness
property of S, s holds: There exists o = o(n,q,6) € (0,1) such that if
Vi1,Va,Va,... belong to S,s, then there exists V € IV, (By™1(0)) with
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regnyo.-14 V € M such that after passing to a subsequence, V; — V as
varifolds on BQH(O). In particular, regng 9,—14 V € M for each V' € S 5.
Consequently, if V' € S, then singV = S, U S where dimy (S) <n -7 (S
empty if n < 6 and discrete if n = 6), so that in particular we have (%)
above.

Let us now describe, by elaborating on each of the steps (i), (ii) and
(iii) listed above, how the proof strategy described in Section 6.3 above is
implemented. Most of the work required, by far, goes into competing step

(i).

7. Step (i): Induction for the Sheeting Theorem

7.1. Linear theory: proper blow-up classes. Fix an integer ¢ >
1. Following [[Wicl4a], Section 4], a collection B of functions v =
(vt v2,...,v9) : By — R? is said to be a proper blow-up class if it sat-
isfies the following properties for some fixed constant C' € (0, c0):

(B1) B C W22 (By;RY) N L2 (By; RY).
(B2) If v € B, then v! <v? < ... <9,

(B3) If v € B, then A, =0 in By where v, = ¢~' Y21_ 07

(B4) For each v € B and each z € By, either (B4 1) or (B41I) below is

true:
(B4 1) The Hardt-Simon inequality

2-n ((v7 —va(2))/R) i —n—2 _ 2
Z/p/2 R < OR, ) =Cr /B,,(z) o= .z

holds for each p € (0,2(1 — |z[)], where R.(z) = |z — z|
by, () = va(2) + Dvg(2) - (z — 2) and (v — £, ,) = (v}
fv’Z,UQ — Ly, 2y, 09— 4y ).

(B41I) There exists 0 = o(z) € (0,1—|z|] such that Av = 0 in B, (z).

(B5) (Invariances) If v € B, then

(B51) v, 0(-) = [Jv(z + a(-))||221(31(0))v(z +0(-)) € B for each z € By
and o € (0,2(1 — |2|)] whenever v # 0 in B,(z);
(B51I) vo~y € B for each orthogonal rotation v of R™ and
(B5III) ||v—€vHZQl(Bl(O)) (v —¥,) € B whenever v—/, # 0 in By, where
Ly(z) = v4(0) + Dvg(0) - for z € R™ and v —¥¢, is abbreviation
for (vl — £y, 0% — by, ..., 07 —1,).

(B6) (Compactness) If {v;}2°, C B then there exists a subsequence {k’}
of {k} and a function v € B such that vy — v locally in L?(By)
and locally weakly in W12(By).

(B7) (Minimum Distance property) If v € B is such that for each
7 =1,2,...,q, there exist linear functions L{, Lg : R™ — R with
Lj(0,y) = L}(0,y) for y € R"1, vi(a?,y) = Li(a?y) if 2 < 0
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and v (22,y) = L%(xQ,y) if 22 >0, then v! =02 = ... =v1 =L
for some linear function L : R" — R.

The role that proper blow-up classes play in completing step (i) will
become clear in the next section (see Theorem 7.2).

Note that in view of the compactness property (B6), the property (B7)
implies the following: Let H = (H', H%,..., H9) : R® — RY be such that
H' < H? < ... < HY, at least two of Hl,HQ,...,Hq are distinct, and for
each j = 1,2,...,q, there exist linear functions L7, L7 : R™ — R with
L1(0,y) = L}(0,y) for y € R*~" such that H7 (2% y) = L1(2*,y) if 2° > 0
and H7(2?,y) = L}(z?%,y) if 2 < 0. Then there exists ¢ = ¢(H,B) € (0,1)
such that ‘[Bl/Q |v— H|? > e for each v € B. This explains why property (B7)
is called the Minimum Distance property.

The following regularity theorem says that functions in a proper blow-up
class are nothing but harmonic functions.

THEOREM 7.1 (Sheeting theorem for proper blow-up classes; [[Wicl4a],
Theorem 4.1]). If B is a proper blow-up class for some C € (0,00), then each
v € B is harmonic in By. Furthermore, if v € B and there is a point z € By
such that (B4 1) is satisfied, then v' =v? = ... =04,

Note the significance of property (B7) for Theorem 7.1; an obvious
counterexample to the theorem in the absence of this property is the set
of all functions v = (v',v?) : By — R? such that v! = min{¢,¢'}
and v> = max{/ ¢’} for some affine functions ¢, ¢ : R® — R with
1l 2By 1] L2 By < 1

BRIEF SKETCH OF PROOF OF THEOREM 7.1. For v € B, let I';, denote
the set of points z € B; such that property (B4I) holds and yet there
is no neighborhood of z in which values of v!,v?,... v9 all agree almost
everywhere (and coincide with the harmonic function v,). Then T, is a
closed subset of By and by property (B4II), Av/ = 0 in By \ T, for each
j=1,2,...,q. Theorem 7.1 is then equivalent to the statement that I, = ().

If B ¢ C'(By), then Theorem 7.1 follows immediately; indeed in this
case, it is easy to see that at every point z € B; where (B4I) holds, we
have that v/(z) = v,(z) for each j = 1,2,...,¢ so in particular, I, # Bj.
If now I', # (), then we may choose a point y € B; \ I', such that
dist (y,T',) < dist (y,0 B1) and apply the Hopf boundary point lemma in
the ball By (y,r,) () to the function v/ —vi~for each j =1,2,...,q to get
a contradiction.

To prove that B C C! (By), in view of a general Campanato type lemma
([[Wicl4a], Lemma 4.3]), property (B4) and property (B5I), it suffices to
show that there are constants 8 = 3(B) € (0,00) and p = u(B) € (0,1) such
that for each z € I', N B3y and 0 < 0 < p/2 < 1/8,
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q w q
o "2 / W —C* < B (0) p e / v/ — €,
j; o(2) P ; By(2)

where £, is the affine function defined by £,(x) = v,(2) + Dvy(2) - (z — 2).
This estimate follows from a “hole-filling” argument based on the Hardt—
Simon inequality (see [[Wicl4a], Theorem 4.1]) provided we can show that
any homogeneous degree 1 element p = (p!,¢? ... ¢%) € B is given by a
single linear function in the sense that ¢! = p? = ... = ¢? = L for some
linear function L.

To classify homogeneous degree 1 elements in B, note first that the
directions of translation invariance of any such element ¢ € B form a linear
subspace T'(p) of R", and if dimT'(¢) € {n,n — 1} it follows (from (B7))
that ¢ is given by a linear function. To complete the classification, choose
a homogeneous degree 1 element ¢ € B with the largest value of dimT'(¢p)
subject to dimT'(¢) < n—2. If I'y, C T(yp), then ¢ is harmonic in R™ \ T'(p)
and since ¢ € VVI})C2 (R™) and translation invariant along T'(¢), it follows that
¢ is harmonic on R" and therefore that p! = ¢? = ... = ¢? = L for some
linear function L contrary to the assumption that dim7'(¢) < n — 2. If on
the other hand I', \ T'(¢) # 0, then we can use first the hole-filling argument
and the Campanato type lemma referred to above to show that ¢ is C* away
from T'(¢), and consequently the Hopf boundary point lemma as before to
obtain a contradiction. See [[Wicl4a], Proposition 4.2] for details. O

7.2. Coarse blow-ups of stationary varifolds. Let ¢ be a positive
integer. Let {V,} be a sequence of stationary integral n-varifolds on B *(0)
such that
(7.1)

(a2 VAlIBEFL0) < g+ 1/25 q—1/2 < w VAR x By) < g +1/2

for each k = 1,2,3,..., and E, — 0, where E), is the height-excess of Vj
relative the the plane {z! = 0}, defined by

B=Bh = [ lPavox).
Rx By

Let 0 € (0,1). By applying Almgren’s approximate graph decomposition
theorem ([[Alm83], Corollary 3.11]; see also [[Wicl4a], Theorem 5.1]),
we obtain for each sufficiently large k, Lipschitz functions ui, : B, — R,
j=1,2,...,¢ withu; <u} <...<u} and

Lipu], <1/2 for each j € {1,2,...,q}
and a measurable subset > of B, such that

(7.2)  spt|[Vill N (R x (By \ $)) = UL graphul, N (R x (B, \ Si))
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and

(7.3) IVl (R x k) +H" (%) < CE

where C = C(n,q,0) € (0,00). Set

(7.4) vl(2) = B uj (2)

for € B,, and write v, = (v}, 02, ..., v{). Then vy, is Lipschitz on Bgy; and

by (7.2) and (7.3),
(7.5) / w2 < C, C=C(n,g,0) € (0,00).

Furthermore, by taking X = z!¢'e! for a suitable choice of ¢ € C}(Rx By) in
the first variation formula (1.2) with Vj in place of V and a straightforward
computation, we also have

(7.6) / D2 < C, C=Cln,q,0) € (0,00).
In view of the arbitrariness of o € (0, 1), by (7.5), (7.6), Rellich’s theorem
and a diagonal sequence argument, we obtain a function v € I/Vl})f (B1;RY)N
L? (B1;R?) and a subsequence {k;} of {k} such that vy, — v as j — oo in
L? (B,;RY) and weakly in W12 (B,;RY) for every o € (0,1).
Definitions: (1) Coarse blow-ups: Let v € I/Vléf (B1;RY) N L? (By;RY)
correspond, in the manner described above, to (a subsequence of) a sequence
{Vi} of stationary integral n-varifolds on By"1(0) satisfying (7.1) and with
E), — 0, where Ej, is as in (7.2). We shall call v a coarse blow-up of the
sequence {V}}.
(2) The Class B,: Denote by B, the collection of all coarse blow-ups of
sequences of varifolds {V;,} C S satisfying (7.1) and for which Ej, — 0, where
Ey is as in (7.2).

A substantial part of [Wic14a] is devoted to proving the following:

THEOREM 7.2. If the induction hypotheses (H1), (H2) hold, then By is
a proper blow-up class.

We shall outline the proof of this claim in sections 7.3-7.6 below.

Note that in case ¢ = 1 (which corresponds to Allard’s regularity
theorem, Theorem 1.2, in codimension 1), given (7.2) and (7.3), it is not
difficult to see in view of the identity

/Vﬂ:l-VCdHVkH =0 V(e CLR x By),

which follows directly from the first variation formula (1.3), that v = lim vy,
is harmonic in By, where v, v; are as above (and are real valued). In this
case no stability hypothesis on Vj nor any information about the singular
sets sing V}, is required to draw this conclusion, and the blowing-up process
vy — v can be thought of as a linearizing procedure of the stationary
varifolds at the flat varifold |B;(0)|. Using standard regularity estimates
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for harmonic functions, (7.2) and (7.3), one can directly conclude from this
that there exist § = 0(n) € (0,1/4) and € = €(n) € (0,1) such that if
V € IV, (R x Bj) is stationary and the mass bounds (7.1) hold with V' in
place of V;, and ¢ = 1, and if Ey < e, then for a suitable choice of an affine
n-dimensional plane L,

1~
9—“—2/ dist? (X, L) d||V| < = FE%,
R By (0) 2

i.e. that the height-excess of V' at scale 6 relative a new reference plane L
improves by a factor 1/2 if it is sufficiently small relative to some plane at
scale 1. This fact, first established by De Giorgi in the setting of codimension
1 area minimizing boundaries, is at the heart of Allard’s regularity theorem,
and its iterative application (rotating V slightly at each stage) leads to
interior regularity of V' when Ey is sufficiently small.

Thus, having a suitable regularity theory for the linearized problem
is crucial to this scheme, and in the present case of varifolds V € S
satisfying the mass bounds (7.1) for some ¢ > 2 and having small excess By,
Theorem 7.1 and Theorem 7.2 provide this theory, subject to the induction
hypotheses (H1), (H2).

7.3. Elementary properties of coarse blow-ups. The discussion
above establishes properties (B1) and (B2) for B = B,. It is a straightforward
consequence of the first variation formula that property (B3) holds for
B,. Properties (B5) and (B6) for B, are elementary consequences of the
estimates (7.5) and (7.6) and the scaling, translation and rotation invariance
of stationary varifolds. See [[Wicl4a], Section 8] for details. In particular,
these properties are very general and do not require the stability hypothesis
nor the no-classical-singularities hypothesis on the varifolds giving rise to
coarse blow-ups.

To show that property (B4) holds for B, (with a constant C' depending
only on n and g), one argues as follows: Fix v € B, and z € By. If

v—"_y, = (v1 — EU,Z,UQ —ly oy 0T =4y ) =0
there is nothing further to prove, so assume v — ¢, . # 0. Then by (B5I11),
v=|v— KU:ZHZ%(Bl)(U —4y.2) € By. Let {Vi} C S be a sequence of varifolds

whose coarse blow-up is v. Consider the following two alternatives, one of
which must hold:
(1) there exists o > 0 such that for all sufficiently large k, Z €
R X B,(z) = O (|Vkl,Z) < ¢;
(2) there exists a subsequence {k'} of {k} and points Zy = (2}, 2},) €
spt HVk/H with
O ([[Vill, Zk) = q
such that z;, — z.

If (1) holds, then by (%) we have that for all sufficiently large k,
sing Vi, L (R x By(2)) = 0 if n < 6, sing Vi L (R X By(z)) is discrete if
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n = 6 and dimy (sing Vx L (R X By(2))) < n — 7 if n > 7. Thus in this
case, we may apply Theorem 6.2 to conclude that for all sufficiently large k,
Vi LL(RX B, 5(2)) is given by ¢ (weakly) ordered graphs of smooth functions
on B, /s(z) solving the minimal surface equation. Hence in this case we
conclude with the help of standard elliptic estimates that the alternative
(B41I) must hold.

If on the other hand (2) holds, we can use the following argument
due to Hardt-Simon ([HS79]): For any fixed p € (0,2(1 — |z[)] apply the
monotonicity formula (1.4) with nz,..p# Vir in place of V and 0 in place of
Y, and use the condition © (||Vi||, Zx) > ¢ to deduce that for all sufficiently
large values of &/,

n+2
i -
Z/p/Q(Zk/)\Ek/ u‘ljﬂl - Zk,) + R2
. 2
R2 " 8 ((U?{/ - Z]i/)/RZ;C,> dHn
o IR, (=)
<cpr [ a0

x B, zy,

where C' = C(n,q) € (0,00); ug, Xk are as in (7.2) and (7.2); for any fixed
y € R", Ry(xz) = |z — y| and % denotes the radial derivative xR—_j’ - D.
Dividing both sides of the above by E k, and passing to the limit yields the
Hardt—Simon inequality as in (B41). See [[Wic14a], Section 8] for details.

It takes substantially more effort to establish that B, satisfies the
remaining property (B87) (the Minimum Distance Property). We now outline
(in Sections 7.4-7.6 below) the key points of the argument needed to achieve
this.

7.4. Minimum Distance Property for coarse blow-ups: Part I.

7.4.1. Non-concentration of tilt-excess for stationary varifolds. The fol-
lowing lemma establishes a certain a priori estimate for stationary integral
n-varifolds V' on B;‘H(O) with small height-excess relative to a plane P.
This estimate is inspired by Simon’s estimates ([Sim93]; see Lemma 7.8
below) referred to in Section 2.3 above, and says that if the density ratio
of V' at unit scale is between ¢ — 1/2 and ¢ + 1/2 and if there are points
of spt ||V|| with density > ¢ “evenly distributed” in a certain precise sense
near an (n — 1)-dimensional subspace L, then the tilt-excess of V relative
to P in a small neighborhood of L is at most a small fraction of the total
tilt-excess of V. In [Wic14a], this result is used in the proof that B, satisfies
property (B7) and it may also be of independent interest. The precise claim,
assuming without loss of generality that P = {0}) x R", is as follows:
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LEMMA 7.3 ([Wicl4a], Theorem 7.1). Let q be a positive integer, T €
(0,1/16) and pu € (0,1). There exists a number e; = e1(n,q,7,1) € (0,1/2)
such that if V is a stationary integral n-varifold on By ™(0) with

(wa2") V(B3 H0)) < q+1/2, ¢=1/2 <w,'|[VI[(RxBy) < g+1/2 and

[P <,
RXBl

and if L is an (n — 1)-dimensional subspace of {0} x R™ such that

L0 B2 € (Zespt|V] 5 O(IV].2) 2 q}), . then
/ VPO ortr [ wat PV
(L)rN(RX By 2) RxBj3/4

and consequently,

VY S PV(X) < Crion / & 2| V]| ().

/(L)TO(RXBUQ) Rx By

Here C' = C(n,q,p) € (0,00), so in particular C is independent of T, and for
a subset A of R"1 we use the notation (A), = {X € R*" : dist (X, 4) <

T}

We refer the reader to [[Wicl4a], Section 7] for a proof of this lemma.
Remark: Note that no stability hypothesis is needed for the above result.
Although we have stated the result assuming that the codimension of V' is
one and the dimension of L is (n—1), it holds, with essentially the same proof
(see [[Wicl4a], Section 7]), for stationary integral n-varifolds of arbitrary
codimension and whenever dim L = m for any m € {0,1,2,...,n —1}. In
this generality, if the ambient space is the ball By (0) € R™**, the height-
excess term fRX& |zt |2 d||V||(X) and the tilt-excess terms

Va2 d|V][(X), / V! *d|[V][(X)

‘/(L)TO(RXBlﬂ) RxB3/4

take the form

k
2’| = ist 2 n
fog DRI (= [, o) v

and

k
/(L SOV 2 dlV|(X)

)rN(R* X By /5) =1

(:/ lpry v —P{o}an||2dHV||(X)> ,
(L)rN(R* x By /3)
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k
/R SOV 2P dV(X)

*xBsa =1

(:/ Iprs v —p{O}anllzdllVll(X)>
RkXB3/4

respectively, where pg denotes the orthogonal projection of R"** on to the
subspace S; moreover, one can take 7"~ # in place of 7'7* on the right
hand side of the inequalities in the conclusion.

7.4.2. To outline next the proof that B, satisfies property (B7) (the
Minimum Distance property), let v € B, and let L{, L% R - R, 1<5<q,
be linear functions such that
(7.7)

v (22 y) = L{(:EQ,y) if 22>0 and /(z%y) = Lg(:vQ,y) if 22<o0.

Note that then for 1 < j <¢—1, L] < L{H on {z? >0} and L} < L%H on
{x? < 0}. Assume without loss of generality that L7 (0,y) = L(0,y) = 0 for
1<j<gq

We wish to show that v is given by ¢ copies of a single linear function
everywhere, i.e. that there is a linear function L such that v/ = L for each
j=1,2,...,q. The proof involves two cases, described separately in the next
two sections.

7.5. Minimum Distance Property for coarse blow-ups: Part II.
Let v be as in 7.4.2. We first establish the easy case of the Minimum Distance
Property for B, namely, that if all ¢ linear functions defining v on one of
the two sides of the hyperplane {22 = 0} agree, then v is given by ¢ copies
of a single linear function everywhere, i.e. the following:

LEMMA 7.4 ([[Wicl4a], Lemma 9.1]). Let v = (v',v?,...,v9) be as in
7.4.2. If either L} = L2 = ... = L{ or L} = L3 = ... = L, then there exists
a linear function L such that v/ = L for each j = 1,2,....q.

PROOF. Assume without loss of generality that L1 = L? = ... = Li=o.
Note that in view of property (B3), it suffices to show that Ll = L3 = ... =
L% so assume, for a contradiction, that

(1) Lg#LgH for some je{l,2,...,q—1}.

Let {Vi} C S be a sequence of varifolds whose coarse blow-up is v and
let 7 € (0,1/8) be arbitrary. Assumption (f) implies, by the argument
establishing property (B4) for By, that for all sufficiently large k, Z €
(R x By)n{z? > 7} = O(||Vkll,2) < ¢, so by (x) and Theorem 6.2,
it follows that Vi, L_((R x By/16) N{z? > 7/4}) is given by ordered graphs of
smooth functions with small gradients solving the minimal surface equation
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over ({0} x Byj16) N {a? > 7/4}. Thus, if ui; are as in Section 7.2, then
(7.8)

Vi LL(Rx By 16)N{2? > 7/4}) = Z |graph u}| L ((Rx By 16)N{2* > 7/4})
=1

where ufc are C™ on By 15N {a? > 7/4}, solve the minimal surface equation
there and satisfy

(7.9) sup  |Dfuyl? < C,F?
B1/2m{I2>T/4}

for £ = 0,1,2, where C, is a constant depending only on n and 7, and D’
denotes the order ¢ differentiation. B

To derive the necessary contradiction, take now 1 (X) = ¢(X)e? in the
first variation formula (1.3) to deduce that

(7.10) /VVk 2? - VY C(X)d||Vi|(X) =

for each k 1, . and each Z“ € CHR x Bj). Choosing Zto agree
(z',2') =

= 1,2,.
with ¢’(z', 2") C( ) in a neighborhood of spt ||Vi|| N (R x By,4), where
(ecC! (Bl/4) arbitrary, this leads to the identity

q J J
. D D(C-D
(7.11) E / \/ 1+ |Du|? (DZC— 23, (D ; uk)) = F}y, where
T1YBia 1+ [Duy|?
Re=- [ VY a2 . 9V (X)) Vi ()
Rx(B1/4NZk)

q J J
: Dol (DC - D

+3 / V14 [Dul2 [ Dy — 2, (DC - Duy)
21 Bujansy, 1+ |Dul|?

with ¥j, as in Section 7.2. Since fB » Do¢ =0, it follows from (7.11) that

| Dul |2 Doul (D¢ - Dud)

q
(7.12) Z/ :
i=17/Bua 14 4/1+ |Dul|? \/1+ [Duy|?

It is not difficult to check using (7.8), (7.9) and the definition of X, (see
[[Wicl4a], Theorem 5.1]) that

(7.13) BiaNEy, C By n{a? < 7/2},

C_

o

and also that for all sufficiently large k,
ViR x (B4 N Eg)) + H"(Byya N Zg)

(7.14) <C VY2t 2d] |Vl |(X)
(Rx By 2)N{z2<7}
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where C' € (0,00) is a fixed constant depending only on n and ¢. Moreover,
it follows from the fact that £} 'uy — 0 in L? on By 16N {a* < —7/2} that

A~

B ! || Vil (X) — 0

/(RXBg/w)ﬁ{xQﬁ—T/Q}
and consequently, by (1.3), that

(7.15) E? (VY 21 2d|| Vi || (X) — 0.
(Rx By o) {z2<~7}

Note also that by arguing by contradiction with the help of (x) and
Theorem 6.2, it follows from the assumption (T) that for all sufficiently large
k,

(7.16) ({0} xR"™) N Byyy € ({Z €spt|[Vill : ©(IVill, 2) > a}), .

and hence Lemma 7.3 is applicable to the V}’s. Inequality (7.14), Lemma 7.3
(with 4 = 1/2) and (7.15) then imply that
(7.17) E.%|Fy| < Csup |D¢|rY/?

for all sufficiently large k, where C'= C(n, q) € (0,00). ,
q |Duf€|2 Dyl — Dgui(DCDqu)
7= 141Du] 2 1+ Dug 2

Abbreviating wy = , note that

/ gl < C'sup |DC| 9V 2 2] Vi (X),
By /4 \Zpn{22<7} (R By 9)"{22<7}

and by (7.14),
/ ] < Csup | D] Ve 2 2| VA ()
By /4Ny, (Rx By ) {z2<7}

where C'= C(n), so that again by Lemma 7.3 with u = 1/2 and (7.15),

UNY) wrl+ [l ) < Coup DGl
By ,a\Zpn{z2<7} By /4N

for all sufficiently large k, where C' = C(n). Finally, by (7.9),

. 1 < _

(7.19) lim £ 2 wp=—5» / | Dov? |2 Do
k=00 Bija{z?>7} 2]—1 Bija{z?>7}

which also uses the fact that D;v/ = 0 for i = 3,...,(n + 1) and j =

1,2,...,q. Dividing (7.12) by E,f and first letting £k — oo and then letting
7 — 0 imply, in view of (7.17), (7.18) and (7.19), that

q
> D7 [2Da¢ = 0

21 Bujanfa?>0}
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for any ¢ € C}(By,4). Since v/ = Lg on {z? > 0}, this contradicts (for
any choice of ¢ € Ccl(Bl/4) with fBl/4ﬁ{m220} Dy( # 0) our assumption that

L%#Lj;rl for some j € {1,2,...,q—1}. O

7.6. Minimum Distance Property for coarse blow-ups: Part III.
Let v be as in 7.4.2. The second case of the proof that B, satisfies property
(B7) is to rule out the possibility that there are at least two distinct linear
functions defining v on either side, i.e. to establish the following:

LEMMA 7.5 ([Wicl4a], Corollary 14.2]). Letv = (vt,v?,... v9) be as in
7.4.2. There exist no indices i,j € {1,2,...,q— 1} such that L} # Lzl'H and
L} # L%H; consequently (in view of Lemma 7.4), vJ = L for some linear
function L and each j =1,2,...,q, and By satisfies property (BT7).

Remark: Lemma 7.5 is much more subtle than Lemma 7.4. It is false
if we drop either the stability hypothesis or the no-classical-singularities
hypothesis on the varifolds V} giving rise to v, as can be seen by considering
in the former case an appropriate sequence of minimal surfaces in the
Scherk’s family of surfaces and in the latter an appropriate sequence of
pairs of transverse planes. For Lemma 7.5, all one can deduce by applying

the argument for Lemma 7.4 above is the balancing condition 23:1 m? =

9_, €% where pi; = |[DLj| and ¢; = DL}, 1 < j < q. Indeed, Lemma 7.5
takes substantially more effort to prove than Lemma 7.4, and carrying out
its proof takes up more than one third of the length of the paper [Wicl4a].

To describe the basic idea of the proof of Lemma 7.5, let v € B, and
let the linear functions L{, Lé :R" - R, 1 <j <gq, be as defined in (7.7),

and assume, contrary to the assertion of Lemma 7.5, that we have for some
/I;’j e {]"27"’7Q}7

(7.20) LY # LY and LY # L

In view of properties (B83) and (B5), we may assume without loss of
generality that

q
(7.21) ZL?C =0 for k=1,2, and that
j=1
q . .
(7.22) 1001225,y | = D 1B A2z + 11 B A <oy | =1
j=1

Let {Vi} C S be a sequence of varifolds whose coarse blow-up is v. The
proof of Lemma 7.5 is accomplished by showing that under the hypotheses
(7.20) , (7.21), (7.22), one can find k sufficiently large such that there exists a
point Zj € sing Vj, with the property that a suitable sequence of re-scalings
followed by rotations of Vi about Zj converges to a cone supported on
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at least four distinct half-hyperplanes meeting along a common boundary,
contradicting directly the induction hypothesis (H2).

It will be convenient to use the following notation for the rest of this
discussion where we shall explain in more detail how this contradiction is
obtained.

(N1) Let C; denote the set of hypercones C of R"™! of the form C =
Z?:l |H;| + |G|, where for each j € {1,2,...,q}, H; is the half-hyperplane
defined by H; = {(z!,2%,y) e R"™! : 22 <0 and z' = \;2%}, G, the half-
hyperplane defined by G; = {(z!,2%,y) € R"™ : 22 > 0 and 2! = p;2?},
with Aj, pj constants, Ay > Ao > ... > Ajand g < pp < ... < pg. We do
not assume that the cones in C; are stationary in R+,

(N2) For V € S and C € C; define a height excess (“fine excess”) Qv (C)
of V relative to C by

Qv(C) = (/ dist®(X, spt [|V[|) d||C|(X)
Rx(By/2\{|2?|<1/16})

1/2
s [ asesichavien)
]RXBl
Let Cy, € C; be the cone corresponding to Evkv, ie.

q
Cr =Y _|graph Ey, Li| L{z® > 0} + |graph Ey, L}| L {2 < 0}.
j=1

It is possible to verify with the help of (x) and Theorem 6.2 that for
any given €, € (0,1), after passing to appropriate subsequences of {Vj}
and {Cy} without changing notation, there exist points Z, € spt || Vi || with
O (|Vkll, Zk) > q and Zj, — 0 such that for each k, Hypotheses 7.1 below are
satisfied with Vj, = N2,,2(1—|2,]) # Vi in place of V and Cy, in place of C. (See
the proof of [[Wicl4a], Corollary 14.2] for details.) Note that E‘N/k — 0, and

that the coarse blow-up of the sequence {V;} (relative to {C}}) is still v.

HypOTHESES 7.1 (Contradiction Hypotheses).
MV es OV = q @2 M VIBET0) < ¢+1/2,
W HIVI(R x By) < g+ 1/2.
2) Ced,.

(2)

(3) BL = frup, I PdIVII(X) <.
(4) {

(5)

2
1%
N {Z:0(V],2) = a} 0 (R x (Byp \ {|2?] < 1/16})) = 0.
5) QF(C) < vE}.
One can also check, in view of (7.21) and (7.22), that passing to a

subsequence of {f/k} without changing notation, the following hypothesis
is satisfied with M =1 and with V}, in place of V:
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Hypothesis (x):

. 3
EZ <M inf / dist? (X, P)d||V||(X).
2 {P={z'=xz2}eG, : AcR} Rx B
Thus, the lemma below can be applied iteratively starting with V' = XN/;C
and C = Cj for suitably large fixed k£ to produce a sequence of numbers
o; — 0, a sequence of rotations I'; of R"*! and a cone W supported on four

or more distinct half-hyperplanes meeting along a common axis and with
O (||[W][,0) = ¢ such that

(7.23) Moy #05#Vie = W

as varifolds as j — oo, directly contradicting the induction hypothesis (H2)
as desired. In this lemma and subsequently, My denotes a certain explicit
constant > 1 that depends only on n and q.

LEMMA 7.6 ([Wicl4a], Lemma 13.3). Let ¢ > 2 be an integer. For
J=1,2,...,2¢—3, let 0; € (0,1/4) be such that 61 > 86, > 64603 > ... >
82‘1_402(1,3. There exist numbers € = €(n,q,01,62,...,602-3) € (0,1/2),
v =v(n,q,601,02 ...,024-3) € (0,1/2) such that if the varifold V' and the
cone C satisfy Hypotheses 7.1 and Hypothesis (x) with M = My, and if
the induction hypotheses (H1), (H2) hold, then there exist an orthogonal
rotation T of R™! and a cone C' € C; satisfying

(a) Je1 —T(en)] < #@QV(C), |ej —T(es)| < wEy'Qu(C)

for each j=2,3,...,(n+1);

(b) distF (spt | C'|| N (R x By),spt |[C|| N (R x By)) < Co@t(C);
and the following for some j € {1,2,...,2q — 3} :

© 6"

; dist? (X, spt |V]) d||T s C'[|(X)

/FORX (Boy/2\l2103/16))

+ 9]-"2/ dist? (X, spt [|IT% C'[}) dl|V[|(X) < v65Q%(C);
F(RXBQ].)

1/2
(d) (9/12 / dist? (X, P) dHF#l V||(X)>
RXng
> (1 disty (Spt HCH N (R X Bl),P N (R X Bl)) — CQQV(C)
for any P € Gy, of the form P = {x! = \x?} for some X € (—1,1);
(€ {2 : 05 VI, 2) = a} 0 (R x (By, o N {Ia? < 0;/16})) = b
(F) (W) ITZ VIR x By,) < g +1/2.

Here C; = C4(n); the constants k,Cp,Co € (0,00) depend only on n
in case ¢ = 2 and only on n, q and 01,02,...,02,_4 n case ¢ > 3;
v1 = vi(n,q); and, in case ¢ > 3, v; = vj(n,q,01,...,0;_1) for each
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J = 2,3,...,2q — 3. In particular, v; is independent of 0;,0;41,...,024_3
for each j =1,2,...,2q — 3.

We shall give a brief description of the proof of this lemma after making

the following remarks.
Remarks: (1) An interesting feature of Lemma 7.6 is that its conclusions
guarantee improvement of the fine excess Qv (C) and the validity of the
starting hypotheses at one of finitely many possible fixed smaller scales
1,02, ...,024—4, unlike in similar excess improvement lemmas found in
earlier work such as that of De Giorgi [DG61], Allard [All72], Schoen—
Simon [SS81] and Simon [Sim93] where the conclusions always involve a
single fixed smaller scale.

Although in the present application of Lemma 7.6 we are not interested
in any C1® regularity conclusions (as it suffices at this stage of the argument
merely to produce a single singular cone W € C, to which a suitable sequence
of varifolds in § converges—as in (7.23)—in order to obtain a contradiction
to the induction hypothesis (H2) ), generally speaking, allowing multiple
scales in an excess decay lemma in this manner would actually still suffice for
such regularity conclusions. That this is so will be important later in carrying
out the induction step for the Minimum Distance Theorem where what we
shall have at our disposal is a similar lemma allowing multiple scales and
yet what we need is to make an appropriate C1® decay conclusion in order
to use (finally) the no-classical-singularities hypothesis non-inductively. See
Section 8 below.

Allowing multiple scales is a natural trick employed in [Wicl4a] to
overcome certain issues arising from the presence of higher multiplicity. See
the remark following Lemma 7.7 below.

(2) In view of the fact that for each j € {1,2,...,2¢ — 3} the constant v;
in the lemma is independent of the scales 0;,0;,1,...,602,—3, it is possible
to choose the scales 01,0y, ...,024—3 depending only on n and ¢ such that
1/]-9? < 471 for each j = 1,2,...,2¢ — 3. With such a choice and under
the hypotheses of the lemma, Part (c) of the conclusion of the lemma says
that the fine-excess of suitably rotated and rescaled V relative to a new
cone € C, improves by a factor 471 at each iteration of the lemma. Parts
(b), (d), (e), (f) of the conclusion imply that the original hypotheses (i.e.
Hypothesis 7.1 and Hypothesis (x)) are satisfied at the new scale, so the
lemma can be iterated indefinitely to produce scales o; — 0, rotations I';
and a non-planar cone W € C, such that the desired conclusion (7.23) holds.

7.6.1. Proof of Lemma 7.6. The first step in proving Lemma 7.6 is
to reduce it to a result (Lemma 7.7 below) in the same spirit but with
stronger hypotheses and stronger conclusions; specifically, to show that the
conclusions of Lemma 7.6 hold at an arbitrary single scale 6 € (0,1/4)
(instead of the finite set {61,602, ...,6024—3} of scales allowed in Lemma 7.6)
provided we make one additional hypothesis. To describe this hypothesis, it
is convenient to use the following notation:
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(N3) For p € {2,3,...,2q}, let Cy(p) denote the set of hypercones C =
1_11H;j| +1Gj| € Cq as defined in (N1) above such that the number of
distinct half-hyperplanes in the set

{Hy,...,H,,G,...,Gy}

is p. Then, of course, C; = Uff’:Q Cq(p).
(N4) For ¢ > 2 and p € {4,...,2q}, let
Ly = inf C
Qv (p) ceut e, Qv(C)
where Qv (C) is as defined in (N2) above.
With this notation, consider for small 3 € (0, 1) to be chosen depending

only on n and g and for V € S the following;:
Hypothesis (xx): Either
(i) CeCy(4) or
(ii) ¢ > 3, C € Cy(p) for some p € {5,...,2q}, Q%(C) <
B QY —1))>*.

The idea is that under Hypotheses 7.1 and Hypothesis (%) for suitably
small €, v and (3, the sheets of V away from a small tubular neighborhood
T of the singular axis of C organize themselves as sets of smooth embedded
ordered graphs over the distinct half-hyperplanes making up spt ||C||, with
the absolute value of the height function defining the graphs equal to the
distance to spt ||C||. (See conclusion (a) of Lemma 7.8 below). This prevents
in a strong way the possibility of concentration of the fine excess Qv (C) in
any small region outside T

With Hypothesis (xx) in place in addition to the other hypotheses as in
Lemma 7.6, the claim now is the following:

LEMMA 7.7 ([Wicl4a], Lemma 13.1). For any given 6 € (0,1/4), there
exists € = €(n,q,0) € (0,1/2), v = v(n,q,0) € (0,1/2), 8 = B(n,q,0) €
(0,1/2) such that if V € S, C € Cy satisfy Hypotheses 7.1, Hypothesis (%)
with M = Mg and Hypothesis (xx), and if the induction hypotheses (H1),
(H2) hold, then there exist an orthogonal rotation T of R"™! and a cone
C’ € C; such that the conclusions of Lemma 7.6 hold with 6 in place of 6;,
a fized constant v =v(n,q) in place of vj, and with Cy = C1(n) and k, Co,
Cy depending only on n, ¢ and 6.

Once Lemma 7.7 is in place it is not difficult to deduce Lemma 7.6; that
is to say to remove Hypothesis (x%) from Lemma 7.7, provided we do not
insist that the conclusions hold at a single smaller scale (unless ¢ = 2) and
instead allow ourselves the freedom of a fixed set of finitely many (in fact
2q — 3) scales 01, 6s,...,62,_3 at one of which the conclusions are required
to hold. This is done by inducting on the unique number p € {4,5,...,2q}
for which C € C4(p). See the proof of Lemmas 13.2 and 13.1 of [Wic14a]
for details.
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7.6.2. Proof of Lemma 7.7. We end this section with a very brief account
of the proof of Lemma 7.7. The method used—the so called blow-up
method—is inspired by the pioneering work of Simon ([Sim93]) where this
method was first used to prove asymptotic decay results near non-isolated
singularities for minimal submanifolds in certain multiplicity 1 classes (see
Section 2 above for the definition of multiplicity 1 class).

The main a priori estimates needed for the blow up argument in the
present context are collected in the lemma below.

LEMMA 7.8 ([Wicl4a], Theorem 10.1, Corollary 10.2 and Lemma 10.8).
Let q be an integer > 2, 7 € (0,1/8), 6 € (0,1/8) and pn € (0,1).
For each p € (0,1/4], there exist numbers ey = €ey(n,q,6,7,p) € (0,1),
Y = Y(n,q,6,7,p) € (0,1) and By = Bo(n,q,7,p) € (0,1) such that the
following is true: Let V € S, C € C, satisfy Hypotheses 7.1, Hypothesis (%)
and Hypothesis (xx) with M = Mg and €y,Y, Bo in place of €, v, B
respectively. Suppose also that the induction hypotheses (H1), (H2) hold.
Write C = 3%_, [Hj| +|Gj| where for each j € {1,2,...,q}, Hj is the half-
space defined by H; = {(z',2%,y) e R""! : 22 <0 and z' = )2}, G, the
half-space defined by Gj = {(z,2% y) € R : 22 >0 and z' = p;a?},
with A\j, puj constants, A\ > Xa > ... > Ay and p1 < po < ... < pg; for
(z%,y) € R" and j = 1,2,...,q, define hj(z%,y) = N\jz? and g;(z%y) =
,usz. Then, after possibly replacing C with another cone C' € C; with
spt ||C'|| = spt ||C|| and relabelling C' as C, the following must hold for
each Z = (C',¢*,m) € spt ||V N (R x Byg) with © (|V,2) > ¢:

(a) VLR x (By\ {|2°| <}))

q
= lgraph (h; + u;)| + |graph (g; + w;)|

—_

j=
where, for each 7 =1,2,...,q,
uj € c? (B3 N {xQ < —T});wj € Cc? (B3/q N {:E2 > T1});

hj +wj and g; +w; solve the minimal surface equation on their domains;
hi+ur <hsg+us <...<hg+ug gi+w <go+we < ... < gy + wy;
dist ((hy (2%, y) +u;(2%,y), 2%, ), spt [|C])) = (14 AF) 2 Ju; (2%, y)|

for (22,y) € B34 N {22 < -7}

dist ((g;(2%, ) + w;(2*,y),2%,y),5pt |C|)) = (1 + 1)~ *|w;(2?, y)|

Jor (z*,y) € By N{x? > 7}.

(b) [¢'P+EFICP <C s dist? (X, spt [|C|)) d||[V'[|(X);
X by
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dist? (X, spt [Tz 4 C|)

(©) W24 S g1v) )
BLL(Z) | X — Z|nt2m
< G / dist? (X, spt | T 4 C|)) d|V|(X).
RxB,(¢%,1n)

@ By (0,y)n{Z :0(|V[,2) = q} #0
for each point  (0,y) € {0} x R"In By js.

© [ dist? (X, spt ) ] V| (X)
BY5 0)n{|(z",2?)| <o}

< Clal_“/ dist? (X, spt [C|) d|V[[(X) for cach o € [5,1/4).
]RXBl

Here Ty : R"™1 — R s the translation X — X + Z; C = C(n,q) €

(0100)7 C = C(na%:u) € (0,00) and Cl = Ol(na%:u) € (0,00) (]’fl

particular, C, C, Cy do not depend on p or T.)

In Simon’s work [Sim93], the analogs of the conclusions (a), (b), (c)
and (e) are established, under a different set of assumptions, for stationary
n-varifolds V of arbitrary dimension and codimension. In particular, neither
the stability condition nor the non-existence of classical singularities is
assumed therein, but crucially, V' is assumed to belong to a multiplicity 1
class V; and also V' is assumed to satisfy conclusion (d) (which is crucial for
conclusion (e)). Moreover, in place of Hypotheses 7.1(3), 7.1(5), Hypothesis
(%) and Hypotheses (%), it is assumed in [Sim93] that the cone C and the
varifold V' are close (as varifolds) to some fixed multiplicity 1 stationary
singular cone Cy € V; with dimS(Cy) = ky,, with ky, allowed to take any
value € {0,1,2,...,n — 1} (but in case ky, < n — 2, the cross-section of Cy
is assumed to satisfy a certain integrability condition on the homogeneous
degree 1 Jacobi fields over the cross-section). Simon’s proof of these estimates
uses Allard’s regularity theorem (Theorem 1.2) in a crucial way.

The key difference in [Wicl4a] that gives rise to substantial additional
technical difficulties in the proof of the above estimates is that the n-
varifold V' € § is allowed to have higher multiplicity on a set of positive
n-dimensional measure. Although ultimately for S an “Allard type” theorem
does hold, namely the Sheeting Theorem (Theorem 6.1), Lemma 7.8 is
needed during the course of the proof of the Sheeting Theorem! At the stage
at which Lemma 7.8 is needed, one has the inductive hypotheses (H1), (H2),
with (H1) providing a sheeting theorem but only subject to the restriction
that the density ratio of V is < ¢ —1/2.

For conclusion (a) of the lemma (which is a regularity statement for
V in a region a fixed distance away from the singular axis of the cone
C), it turns out that the argument is fairly direct based on the induction
hypotheses (H1), (H2). For the other conclusions however (which require
information on the part of V' very near the axis of C), a considerable amount
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of delicate additional technical arguments are needed to implement Simon’s
basic strategy. See [[Wicl4a], Section 10] for details.

With the help of Lemma 7.8, the blow up argument needed to establish
Lemma 7.7 proceeds as follows:

Let {ex},{7} and {8} be sequences of positive numbers such that

ekaﬁykaﬁk — 0.

Consider sequences of varifolds Vj, € S and cones C;, € C4 such that, for
each k =1,2,..., with Vj, Ci in place of V, C respectively, Hypotheses 7.1
hold with e, i in place of €, v; Hypothesis (x) holds with M = Mg and
Hypothesis (xx) holds with [ in place of 3.

Let {6k}, {7k} be sequences of decreasing positive numbers converging
to 0, and let

1/2
B = ( [ e <X,sptucku>duvku<x>) .
]RXBl

By passing to appropriate subsequences of {Vj}, {Ck}, and possibly re-
placing Cj, with a cone Cj € C, with spt||CL|| = spt|Cg| without
changing notation, we obtain functions u§k> € C? (33/4 N{z? < —Tk}) and
w§k) € C? (33/4 N {z? > Tk}), 1 < j < g, satisfying the conclusions of

Lemma 7.8 with V; in place of V, Cy in place of C, ug-k), w](k) in place

of uj, w; and with ¢y, 71, in place of ¢, 7 respectively. By Lemma 7.8(a) and
elliptic estimates, there exist harmonic functions ¢; € C? (B3 /a0 {2? < O})
and 1p; € C? (33/4 N{z? > 0}), 1 < j < g such that

Ek_lu§k) — ¢; and Ek_le(-k) — 1)

where the convergence is locally in C? in the respective domains. It also
follows from Lemma 7.8(e) that ¢; € L*(Byp N {z? < 0}) and ¢; €
L? (Byj N {2* > 0}), and that the convergence above is also in L*(B;/; N
{2? < 0}) and L? (B2 N {x? > 0}) respectively. Write ¢ = (@1, @2, ..., ¢q)
and ¥ = (1,2, ., )
Definition: Let B) be the (smaller) class of pairs of functions (¢, ) (the
fine blow-ups) arising as above corresponding to sequences Vj, Cy, satisfying
all of the hypotheses required as above but with M = Mg in Hypothesis (x).

What is required next in order to prove Lemma 7.7 is sufficiently strong
uniform regularity estimates for the functions ¢, 1 with (¢, ) € Bg in fixed
smaller regions in their domains, e.g. in By /4N {z* < 0} and By, N{z? > 0}
respectively, necessarily up to the boundary By, N {2? = 0}. For instance
a uniform C'M® estimate up to the boundary Byan {2? = 0} for some fixed
a € (0,1) suffices.

The first step in obtaining such regularly estimates is the following
uniform continuity estimate [[Wicl4a|, Lemma 12.1], which is essentially a
consequence of Lemma 7.8(c):
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There exist two functions k1, kg : Bs/16 N {2? =0} — R with
ki (V)] [k2(Y)| < C for Y € Bsp N {a? =0}
and numbers £;,m; (1 < j <q) with {4 > ... >4y, m; <...<myg,
c <max{|l],|l4]} < c1, ¢ <max{|mi|,|my|} <1 and
(7.24) min {|¢1 — {g], |m1 —my|} > 2¢
where C' = C(n,q), ¢ = c(n,q), c1 = c1(n,q), such that

! [pj(x) — (k1(Y) — £k2(Y))|?
n+3/2 dx
o/2(Y)N{a2 <0} lz Y|

j=1

+q/“ [95(@) = (51 (V) = myma (V)P

i1 By (V)n{a2>0} |z — Y| +3/2

<aw“WZ/ o1 — (51(Y) = Lra(Y)[?

ﬂ{x2<0}

“WZ/ 05— (51 (Y) = myha(¥))P
By(Y) ﬂ{x2>0}
where C1 = C1(n,q) € (0,00).

This estimate implies (see the proof of [Wicl4a], Lemma 12.1) that
¢, ¥ are respectively uniformly Hélder continuous in Bj/ N {22 < 0},
Bs 16 N {22 > 0} with a fixed Hélder exponent 3 = ((n,q) € (0,1). In
particular the functions ¢(Y) = (k1(Y) — ira(Y), ..., k1 (Y) — £gr2(Y)),
YY) = (k1Y) — mike(Y),...,k1(Y) — mgra(Y)) are respectively the
continuous boundary values of ¢, 1 on Bs /16N {2? = 0}.

In order to improve regularity of (¢,), it then suffices to show that
the boundary values ¢(Y), 1(Y) as functions of Y € Byq N {z* = 0} are
more regular. This is achieved by employing two separate first variation
arguments based on the fact that, since the varifolds V; giving rise to the
blow-up (¢,%) are stationary, the restrictions of the ambient coordinate
functions 71(X) = x' and m(X) = 22 to each V}, are weakly harmonic on
Vi Starting with this, it can be shown (see [[Wicl4a], Lemma 12.2]) that
the two linear combinations of k1, ko defined by

q
(V) =21 (Y) = | Y _(¢; +my) | 52(Y) and
j=1

q q
U(Y) = Z(fj +my) | k1(Y) — Z(@ +m3) | Ka(Y)
j=1 j=1
for Y € Bg 32 N {2? = 0} are smooth functions satisfying
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1@ llc3(By janiz2=0}) T 1¥lca (B s0niz2=0})

1/2
<c ( / o+ [ W)
By /2n{z2<0} By j2n{z2>0}

where C' = C(n, q) € (0,00). Since the Jacobian J associated with the above
linear system for k1, ko is given by

q q
Z Gmd) = | Do +my)
7=1 7=1
q q
=S ((m + (0 = £)* +2(6; — my)?)

i=1 j=1

2

N —

J satisfies, by (7.24), C > J > C > 0 for constants C = C(n,q),
C = C(n,q). It follows that x;, j = 1,2, and hence 90’39/320{352:0} and

7/’|Bg/32m{m2:0} , are C% on Bg)3 N {z? = 0}, and moreover

[ellcs(By sanizz=o0y) + 1V ll03(By 30 {a2=0})

1/2
<c ( / o+ [ W)
By /oN{z2<0} By jon{z2>0}

for a constant C' = C(n,q). By standard boundary regularity theory for
harmonic functions, this leads to the desired improved regularity for (¢, ),
specifically to the conclusion that ¢ € C? (B, N {z* < 0}), (NS
02 (31/4 N {.%'2 > 0}) with

lelle2 B, aniz2<op + 1¥llc2(B, aniz2>0p)

1/2
<c ( / o+ [ W)
By 2n{22<0} By 2n{z2>0}

where C' = C(n, q). Lemma 7.7 follows from this estimate in a fairly standard
way.

7.7. Sketch of the proof of Theorem 6.1 subject to the induc-
tion hypotheses. Once it is established that B, is a proper blow up class
(as defined in Section 7.1), it follows from Lemma 7.1 that each v € By is
given by a set of ¢ (classical) harmonic functions on B;. Moreover, given
v € By, a sequence of varifolds {V},} C S giving rise to v and any o € (0, 1),
we have the dichotomy that either © (||V||, Z) < ¢ for all k sufficiently large
and Z € R x B,(0), or (by Lemma 7.1 and the argument, described in Sec-
tion 7.3, establishing property (B4) for B,) that v! = v? = ... = v9 on B.
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Given this fact, it is fairly straightforward to establish, with the help of (x)
of Section 7.3 and Theorem 6.2, the following lemma:

LEMMA 7.9. Let q be an integer > 2, 0 € (0,1/4) and suppose that
the induction hypotheses (H1), (H2) hold. There exists a number By =
Bo(n,q,0) € (0,1/2) such that if V € S, (wn2™) Y|V |(BFT(0)) < ¢ +1/2,
q—1/2 < (w,) Y V|(B1 xR) < ¢+1/2, and

/ dist? (X, P) d|V|(X) < fo
RXBl

for some affine hyperplane P of R™! with dist3, (PN (By x R), By x {0}) <
Bo, then the following hold:

(a) Either VL (B x R) = ?:1 |graphu;| where u; € C? (B1/2;R)

Jorj=1,2,...,q withuy <wug <...<ug on By, uj, < ujo1 on

By for some jo € {1,2,...,q— 1}, and for each j € {1,2,...,q},

supp, , |uj —p*+ |Duj — Dp|* +|D? uj\Q

<C dist? (X, P) d||V]|(X)
RXBl
where C'= C(n,q) € (0,00) and p : R™ — R is the affine function
such that graph p = P; or, there exists an affine hyperplane P’ with

dist3, (P'N (R x B1),PN (R x By))
< Cl/ dist? (X, P)d||V|(X) and
RXBl

o [ dist (X P) AV ()
Rx By

50292/ dist® (X, P) d||V [ (X)
RXBl

where Cy = C1(n,q) € (0,00) and Cy = Ca(n,q) € (0,00).
(b) (wn(20)) ™" IVII(B3g(0)) < ¢ +1/2 and

q—1/2 < (™) V(R x By) < g+ 1/2.

For any given z € B/, we may apply this lemma iteratively starting
with 7 2),1/4# V in place of V', stopping the iteration when we reach a scale
at which the first alternative in (a) occurs. Notice that when this happens,
the lemma shows that V' [ (R x B,(z)) for some some o € (0,1/8) is the
union of embedded graphs of ¢ smooth functions over B,(z) C R™ each with
small gradient and solving the minimal surface equation. If the iteration
proceeds indefinitely, then spt ||V'|| contains precisely of one point above z,
and V at that point has a unique multiplicity ¢ tangent hyperplane that is
almost parallel to R™ x {0}, to which V' decays upon rescaling. With a little
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extra work, it is not difficult to see that these facts lead to Theorem 6.1 (see
[Wicl4a], Section 15 for details).

8. Steps (ii) and (iii): Induction for the Minimum Distance
Theorem (and the overall completion of induction)

The final part of our simultaneous proof of the Sheeting Theorem and the
Minimum Distance Theorem is the completion of induction for the Minimum
Distance Theorem, i.e. steps (ii) and (iiii) listed in Section 6.3 above. With
regard to this, the idea is to complete step (ii) first, using among other things
the result of step (i), and then use both step (i) and step (ii) to complete
step (iii). In both cases, the argument is by contradiction and uses a version
of the blow-up method described in the preceding section, the argument this
time being much closer to its original form used by Simon in [Sim93]. More
specifically, the goal is to show if there is a sequence of varifolds V; € &
converging to a cone C as in the Minimum Distance Theorem (with the
appropriate density at the origin, namely, © (||C||,0) = ¢ + 1/2 in step (ii)
and © (||C||,0) = ¢+ 1 in step (iii)), then for sufficiently large j, V; must
have a classical singularity, in direct contradiction to the definition of S.
It is in completing step (ii) and step (iii) that the no-classical-singularities
hypothesis is used non-inductively for the first and the only time in the
entire proof of Theorem 3.3.

To describe steps (ii) and (iii) in more detail, let C be as in the
Minimum Distance Theorem, i.e. Theorem 6.3. Then C = 7", q;|P|
for some m (> 3) distinct half-hyperplanes Pi, Ps, ..., P, meeting along
a common boundary L and for some positive integers qi, g2, ..., qm. If n; is
the unit vector along P; orthogonal to L, it is an easy exercise to show that
stationarity of C in R"*! is equivalent to the requirement that

m
> gm; =0,
j=1

and to show, using this fact, that
O (||C|[,0) e {g+1/2,q+1} = ¢q; <q foreach j=1,2,...,m.

Thus, in view of step (i), we have, whenever the induction hypotheses (H1),
(H2) hold and a cone C and a varifold V' are as in Theorem 6.3 with
O (||CJ|,0) € {¢g+1/2,q+1}, then V is regular away from any e-neighborhood
of the axis of C provided V is sufficiently close to C (depending on C and
€).

Consider now step (ii), namely, the case when © (||CJ/,0) = ¢ + 1/2.
In this case, the first task in preparation for the blow up argument is
to establish the analogues of Simon’s estimates (as in the conclusion of
Lemma 7.8 above) for V' € S satisfying the appropriate set of contradiction
hypotheses (analogous to the hypotheses of Lemma 7.8) corresponding to
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step (ii), including the hypothesis that V' is close as a varifold to C in the
unit ball BI(0).

Unlike in the case of Lemma 7.8 above, the estimates this time are es-
tablished following Simon’s argument in [Sim93] very closely; the reason
why it is possible to do so even though, strictly speaking, the “multiplicity
1 class” hypothesis needed in [Sim93] does not hold in the present situ-
ation is because by hypothesis (of the Minimum Distance Theorem with
O (||CJ|,0) = g+ 1/2), the density ratio of V' is not much more than ¢+ 1/2,
and that implies, by (H1) and step (i) (which provides the Sheeting Theo-
rem for multiplicity up to and including ¢q), complete regularity of V' in any
small toroidal region around and close to the axis of C whenever V is close
in distance to spt ||C|| in a slightly larger torus. This fact serves the purpose
that Allard’s regularity theorem served in the argument of [Sim93]. (See
[[Wicl4a], Theorem 16.2, Corollary 16.3 and Corollary 16.4].)

Note also that the crucial “no 6 gaps” condition, i.e. the analogue of
Lemma 7.8(d), holds in the present setting. For if not, then there is a ball
Bs = BITH(Y) of fixed size § about some point ¥ on the axis of C in
which all singularities of V' have density < ¢ + 1/2, implying, in view of
the Almgren-Federer Generalized Stratification Theorem (Theorem 2.1), the
induction hypotheses (H1), (H2) and Step (i), that V L_Bjs is regular up to
a singular set of codimension 7. Since a singular set that small is removable
for the stability inequality, the argument described in the first paragraph of
Section 6.3 leads to a contradiction whenever V in distance is sufficiently
close to C (depending on §).

Once Simon’s estimates are established, a blow up argument analogous
to the one described above in the context of Lemma 7.6 can be used to show
that when V € S is sufficiently close (as a varifold) to C in B}™(0), V
must contain a classical singularity somewhere near the origin, contradicting
directly the definition of S and thereby completing step (ii). (See [[Wicl4a],
Section 16] for details.)

Armed with step (ii), we can repeat the blow up argument, in an
identical fashion to how it is used in step (ii) but with the assumption
that © (||C|[,0) = ¢ + 1, to complete step (iii) and consequently the
overall induction for both the Sheeting Theorem and the Minimum Distance
Theorem.
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