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Interior a priori estimates for the
Monge-Ampère equation

Jiakun Liu and Xu-Jia Wang

Abstract. In this paper we prove the strict convexity, the interior C1,α,
C2,α and W 2,p estimates for convex solutions to the Monge-Ampère
type equation. For the strict convexity and C1,α estimate, we assume
that the inhomogeneous term f satisfies a doubling condition. For the
C2,α and W 2,p estimates, we assume that f is Hölder continuous or
continuous. These estimates are mainly due to Caffarelli. We also give a
brief discussion on the regularity for more general Monge-Ampère type
equations arising in optimal transportation.

1. Introduction

In this paper we consider the regularity of solutions to the Monge-
Ampère equation

(1.1) detD2u = f in Ω,

where Ω is a domain in R
n, det D2u denotes the determinant of the Hessian

matrix D2u, and f is a given function. This is a fully nonlinear, second order
partial differential equation. It is elliptic when the Hessian matrix D2u is
positive definite, namely when u is locally uniformly convex. In this paper
we always assume that the solution is convex, and the inhomogeneous term
f is nonnegative.

When f = K(1 + |Du|2)(n+2)/2, equation (1.1) is the prescribed Gauss
curvature equation, with the Gauss curvature K. The Monge-Ampère equa-
tion also arises in a variety of applications, such as in affine geometry, isomet-
ric embedding, optimal transportation, and reflector design. It has been ex-
tensively studied in the last century. Significant contributions were made by
Aleksandrov, Calabi, Pogorelov, Heinz, Caffarelli-Nirenberg-Spruck, Cheng-
Yau, Krylov, and many others before 1990s. In particular Pogorelov proved
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an interior second derivative estimate for strictly convex solutions and Cal-
abi obtained an estimate for higher derivatives. Therefore a regularity theory
in the case when f is positive and smooth has been established. We refer
the reader to [7, 8, 9, 15, 16, 17, 29, 32, 33] for more details.

In this paper we address the interior a priori estimates for the Monge-
Ampère equation, mainly obtained by Caffarelli in 1990s [3, 4, 5]. But in
dimension two, these estimates were obtained earlier [17, 28, 30]. We will
discuss the following estimates:

a) Strict convexity of solutions;
b) C1,α regularity of solutions;
c) Continuity of the second derivatives;
d) Hölder continuity of the second derivatives;
e) W 2,p estimate for large p;
f) W 2,1+ε estimate for small ε > 0.

For part a), we assume that the solution vanishes on the boundary and
f satisfies a doubling condition. The strict convexity of solutions is assumed
in all the estimates b)-f). For estimate b), we assume that f satisfies a
doubling condition. For estimates c) and d), we assume that f is positive
and Dini or Hölder continuous. For estimate e), we assume that f is positive
and continuous. By an example in [35], the continuity is needed for the
W 2,p estimate for large p. But for small p > 1, it suffices to assume that
c0 < f < c1 for some positive constants c0 and c1, and that is the estimate
in f).

Among the above estimates, the main ones are the C2,α and W 2,p

estimate by Caffarelli [4]. However, the paper [4] is difficult to understand.
For example no details for the C2,α were given. Even for the uniformly elliptic
equation, the proof of the C2,α is quite complicated [2]. A simplified proof
for the C2,α estimate was later given in [19], using a perturbation argument
introduced in [37]. In [37] a simple proof for the C2,α estimate for elliptic
and parabolic equations, both linear and nonlinear, was presented. For the
W 2,p estimate, the proof in this paper is also simpler than that in [4], but the
basic idea is the same as that in [4]. The purpose of this article is to provide
simplified proof for Caffarelli’s work on the Monge-Ampère equation. The
presentation of this paper is based on the lectures given by the second author
at Tsinghua University in 2011. In this note we also provide a simple proof
for the existence and uniqueness of minimum ellipsoids of convex bodies.

This paper is organized as follows. In Section 2, we discuss the strict
convexity and C1,α regularity of solutions. In Section 3 we outline the proof
in [19] for a continuity estimate for the second derivatives of solutions. In
Section 4, following the lines of [4] with some simplification in [38], we give
a shorter proof of the W 2,p estimate, assuming f is continuous. When f is
not continuous but pinched by two positive constants, recently De Philippis-
Figalli-Savin [12] and Schmidt [30] proved u ∈ W 2,1+ε

loc for some small ε > 0.
We include the proof of the W 2,1+ε

loc estimate in Section 5. Finally in Section
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6 we briefly discuss the corresponding estimates for the more general Monge-
Ampère equation

(1.2) det [D2u − A(x, u, Du)] = f(x, u, Du).

This more general equation arises in reflector design and optimal transporta-
tion. The interior C2,α and W 2,p estimates for (1.2) have also been obtained
recently in [23, 24], respectively, under some appropriate assumptions on
the cost function.

2. Strict convexity and C1,α estimate

2.1 Minimum ellipsoid.
First we introduce a lemma, which is due to F. John, and is often used

in the study of convex bodies and the Monge-Ampère equation.

Lemma 2.1. Let Ω be a bounded, convex domain in R
n. Then among

all ellipsoids containing Ω, there is a unique ellipsoid E of smallest volume
such that

(2.1)
1
n

E ⊂ Ω ⊂ E.

In this paper we denote by αΩ the α-dilation of Ω with respect to the
center of its minimum ellipsoid. We call E the minimum ellipsoid of Ω. By
a rotation of the coordinates, we may assume that E is given by

E =
{∑n

i=1

(
xi − x0,i

ri

)2

< 1
}

,

where x0 = (x0,1, · · · , x0,n). By the unimodular linear transform T : x → y,

(2.2) yi =
r

ri
(xi − x0,i) + x0,i, i = 1, · · · , n,

where r = (r1 · · · rn)1/n, E becomes the ball Br(x0) with

Br/n(x0) ⊂ T (Ω) ⊂ Br(x0).

We say Ω is normalized if its minimum ellipsoid is a ball (namely when T is
the identity mapping).

Proof of Lemma 2.1. Let V0 = inf{|E| : E ∈ Φ}, where Φ is the
set of ellipsoids containing Ω. Let Ek be a sequence of ellipsoids in Φ with
|Ek| → V0. Since Ek contains Ω, it must be uniformly bounded and converges
in Hausdorff distance to an minimum ellipsoid E.

To show that E satisfies (2.1), we assume by a linear transform that E is
the unit sphere with center at the origin. If (2.1) is not true, let x0 ∈ ∂Ω such
that |x0| = infx∈∂Ω |x|. By a rotation of axes, we assume x0 = (0, · · · , 0,−t)
with t ≤ 1

n − ε for some ε > 0, such that the plane {xn = −t} is a tangent
plane of ∂Ω at x0. Then we have Ω ⊂ G =: B1(0) ∩ {xn > −t}. It suffices to
prove that the unit ball is not the minimum ellipsoid of G.
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The proof is very elementary. Let yi = xi/(1 + δ) for i = 1, · · · , n − 1,
and yn = xn(1 + δ)n−1, where δ = ε2. In the new coordinates, G is
strictly contained in the unit sphere with center at (0, · · · , 0, h) provided ε
is sufficiently small, where h = (1+ δ)n−1 −1+ δ2. We reach a contradiction
as E is a minimum ellipsoid.

Next, we prove the uniqueness. Suppose there exist two minimum el-
lipsoids E1 and E2. By a rescaling we assume E1 = {

∑
x2

i < 1} and
E2 = {

∑
(xi − ai)2/r2

i < 1} with
∏

ri = 1, where (a1, · · · , an) is the centre
of E2. Then for any x ∈ E1 ∩ E2, we have

∑
i

[
x2

i +
(x1 − ai)2

r2
i

]
< 2.

That is ∑
i

1 + r2
i

2r2
i

[(
xi − ai

1 + r2
i

)
+

a2
i r

2
i

(1 + r2
i )2

]
< 1,

namely,

(2.3)
∑

i

1 + r2
i

2r2
i

(
xi − ai

1 + r2
i

)2

< 1 −
∑

i

a2
i

2(1 + r2
i )

≤ 1.

Hence the domain Ω ⊂ E1 ∩ E2 is contained in the ellipsoid

(2.4) E =

{∑
i

1 + r2
i

2r2
i

(
xi − ai

1 + r2
i

)2

< 1 −
∑

i

a2
i

2(1 + r2
i )

}
.

Note that
∏

ri = 1. Hence

(2.5)
n∏

i=1

1 + r2
i

2r2
i

=
n∏

i=1

1
2
(1 + r2

i ) ≥ 1,

which implies that |E| ≤ |E1| and the equality achieves if and only if ai = 0
and ri = 1 for all i = 1, · · · , n. Therefore, we obtain the uniqueness. �

The above proof of the uniqueness seems new, and is much simpler than
the known ones. The uniqueness of the minimum ellipsoid is not needed
in our treatment below. We remark that there is also a unique ellipsoid
contained in Ω with maximal volume among all ellipsoids contained in Ω.

2.2 Uniform and Hölder estimates
The rest part of this section is devoted to the strict convexity and C1,α

estimate. The presentation is similar to that in [33]. Consider the Monge-
Ampère equation,

(2.6) detD2u = ν in Ω,

where Ω is a bounded, convex domain in R
n, ν is a finite measure.
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Theorem 2.1. (Uniform estimate) Let u be a bounded, convex solution
to (2.6) subject to the boundary condition u = 0 on ∂Ω. If

ν(Ω) ≤ bν(
1
2
Ω)

for some positive constant b, then

(2.7) C−1{|Ω|ν(Ω)
}1/n ≤ sup |u| ≤ C

{
|Ω|ν(Ω)

}1/n
,

where C is a constant depending only on n and b.
In particular if ν = f dx and c0 ≤ f ≤ c1 for positive constants c0, c1,

then

(2.8) C−1|Ω|2/n ≤ sup |u| ≤ C|Ω|2/n,

where C depends only on n, c0, c1.

Proof. Let E = {
∑

(xi − ai)2/r2
i < 1} be the minimum ellipsoid of

Ω. The Monge-Ampère equation is affine invariant and homogeneous, by
making the changes xi �→ xi−ai

ri
and u �→ u/h, where h = [(r1 · · · rn)ν(Ω)]1/n,

we may assume that
B1/n(0) ⊂ Ω ⊂ B1(0),

ν(Ω) = 1, ν(
1
2
Ω) ≥ b−1.

To prove (2.7), it suffices to prove that C−1 ≤ sup |u| ≤ C.
To prove sup |u| ≤ C, we use the assumption ν(Ω) = 1. Assume that

sup |u| attains at x̂ ∈ Ω. Let w be a convex function vanishing on ∂Ω
and its graph is a convex cone with vertex at (x̂, u(x̂)). By convexity,
Nw(Ω) ⊂ Nu(Ω) and Br(0) ⊂ Nw(Ω) for r = 1

2 sup |u| as Ω ⊂ B1(0), where
Nu is the normal mapping of u [33]. Hence sup |u|n ≤ C|Nw(Ω)| ≤ C.

To prove sup |u| ≥ C, we use the assumption ν(1
2Ω) ≥ b−1. For any

x ∈ 1
2Ω,

|Du(x)| ≤ − inf u

dist(x, ∂Ω)
≤ 2n sup |u|.

Hence ν(1
2Ω) = |Nu(1

2Ω)| ≤ C sup |u|n. �

Theorem 2.2. (Global Hölder estimate) Let u be a generalized solution
to

detD2u = ν in Ω,

u = ϕ on ∂Ω.

Suppose Ω is convex and contained in the unit ball B1, ϕ ∈ Cα(Ω) is convex,
and ν(Ω) ≤ c1 for a constant c1. Then

(2.9) |u(x) − u(y)| ≤ C|x − y|ᾱ ∀ x, y ∈ Ω,

where C depends on n, c1, and ‖ϕ‖Cᾱ(Ω), and ᾱ = min( 1
n , α).
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Proof. First consider the case u ≡ 0 on ∂Ω. We show that

|u(x0) − u(y0)| ≤ C|y0 − x0|1/n

for x0, y0 ∈ Ω. Since u is convex, it suffices to prove the inequality for
x0 ∈ Ω, y0 ∈ ∂Ω. For any point x0 ∈ Ω, by choosing proper coordinates,
we assume that x0 = den and Ω ⊂ {xn > 0}, where d = dist(x0, ∂Ω) and
en = (0, · · · , 0, 1). Then Ω ⊂ Ω̂ = {x ∈ R

n : |x′| < 2, 0 < xn < 4}. Let
v and w be convex functions such that their graphs are convex cones, with
vertex at (x0, u(x0)) and bases ∂Ω and ∂Ω̂, respectively. Then Nu(Ω) ⊃
Nv(Ω) = Nv(x0) ⊃ Nw(x0). Since w is a convex cone, one easily verifies that
|Nw(x0)| ≥ C

d |u(x0)|n, namely |u(x0)| ≤ C[dν(Ω)]1/n.
When u = ϕ on ∂Ω for a convex function ϕ ∈ Cα(Ω), we let u0 be

a solution of detD2u = ν in Ω which vanishes on ∂Ω. Then u0 + ϕ is a
sub-barrier and we also obtain (2.9). �

Corollary 2.1. Let u be a generalized solution to (2.6) which vanishes
on ∂Ω. Suppose ν(Ω) ≤ bν(1

2Ω) for some constant b > 0. Let 	 be a line
segment in Ω with two endpoints z′, z′′ ∈ ∂Ω. Let z be a point on 	 such that
u(z) ≤ 1

2 infΩ u. Then |z′ − z| ≥ C|z′′ − z′| for some C > 0 depending only
on n and b.

Note that the ratio |z′−z|
|z′′−z′| is invariant under linear transforms. Hence by

making a linear transform we may assume that |Ω| = 1 and Ω is normalized.
By Theorem 2.1 and the assumption ν(Ω) ≤ bν(1

2Ω), we may assume
furthermore that inf u = −1 and ν(Ω) ≤ C. Hence when u(z) ≤ −1

2 , by
Theorem 2.2 we have dist(z, ∂Ω) ≥ C0 > 0, and so Corollary 2.1 follows.

2.3 Strict convexity
We say a measure ν satisfies the doubling condition if there exists a

constant b > 0 such that for any convex set ω ⊂ Ω,

(2.10) ν(ω) ≤ bν(
1
2
ω).

This condition is invariant under affine transforms. We always assume that
ν(Ω) > 0. For x0 ∈ Ω, h > 0, denote

S0
h,u(x0) = {x ∈ Ω | u(x) < 	(x) + h},

where 	 is the supporting function of u at x0. Sometimes we drop the
subscript u if no confusion arises, and also write S0

h,u(x0) as S0
h if x0 is

the minimum point of u. First we consider the strict convexity of solutions.

Theorem 2.3. (Strict convexity) Let u be a generalized solution to (2.6).
Assume that ν satisfies the doubling condition (2.10). Then for any point
x0 ∈ Ω, either the contact set C = {x ∈ Ω : u(x) = 	(x)} is a single point,
where 	 is a supporting function of u at x0, or C has no extremal points in Ω.
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Proof. By subtracting the supporting function, we assume that C =
{u = 0}, u ≥ 0 in Ω. If the claim is not true, by contradiction we assume C
is not a single point and z ∈ Ω is an extremal point of C.

By a transform of coordinates we may assume that z = (0, · · · , 0, δ) for
a small constant δ > 0, and G0 = C ∩{xn ≥ 0} is compactly contained in Ω.

Let Gε = {x ∈ Ω : u(x) ≤ εxn}, where ε > 0 is a constant. Denote
w(x) = u(x) − εxn. When ε is sufficiently small, we have ∂Gε ⊂ Ω. Hence
w vanishes on ∂Gε. Let z′ ∈ Gε such that the three points 0, z and z′ lie on
a straight line. Observing that Gε shrinks to the set G0 as ε → 0, we have
|z′−z| = o(|z′|) and moreover, infGε w ≥ 2w(z) = −2εδ. Applying Corollary
2.1 to w we reach a contradiction. �

Next we rule out the possibility that extremal points of C lie on the
boundary ∂Ω under some appropriate boundary assumptions.

Theorem 2.4. Let u be a generalized solution to (2.6) in a convex
domain Ω. Assume that ν satisfies the doubling condition (2.10). Suppose
that either

(i) u = 0 on ∂Ω; or

(ii) u = ϕ on ∂Ω for some ϕ ∈ C1,α and ∂Ω ∈ C1,α with α > 1 − 2
n ,

and ν ≥ c0 for a positive constant c0.

Then u is strictly convex in Ω.

The exponent α > 1 − 2
n in (ii) is optimal, as shown by Pogorelov’s

example

(2.11) u(x) = (1 + x2
n)|x′|2(1− 1

n
).

The function satisfies the equation

detD2u = 2βn−1(1 + x2
n)n−2(β − 1 − (β + 1)x2

n),

where β = 2−2/n. The right hand side is an analytic positive function when
|xn| < β−1

β+1 .

Proof of Theorem 2.4. Case (i): For any point x0 ∈ Ω, let 	 be a
supporting function of u at x0. If u is not strictly convex at x0, by Theorem
2.3 all extremal points of the contact set C = {u = 	} lie on the boundary
∂Ω. By convexity u = 0 in Ω, which is a contradiction to ν(Ω) > 0.

Case (ii): For any point x0 ∈ Ω, by subtracting a hyperplane we assume
that u ≥ 0 in Ω and u(x0) = 0. Let h0 = sup{h | S0

h � Ω} and let
h = h0 + δ, where the constant δ > 0 will be determined below. Choose
a point xb ∈ ∂Ω ∩ ∂S0

h0
. By a linear transform of the coordinates we

assume that x0 = 0 and xb = (0, · · · , 0, 1). By the conditions ϕ ∈ C1+α

ad ∂Ω ∈ C1+α, we have u = ϕ ≤ h on ∂Ω ∩ Br(xb), where r = δ1/(1+α). By
the convexity of u, we have u ≤ h in the cone C = {x ∈ Ω : xn ≥ 1

r |x′|}.
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Let v be the solution to detD2v = ν in S0
h and v = h on ∂S0

h. By the
first estimate in (2.7), we have

inf
S0

h

(v − h) ≤ −C|C|2/n ≤ −Cδ
2(n−1)
n(1+α) .

By the comparison principle, u ≤ v in S0
h. Hence

−h0 − δ = −h = inf
S0

h

(u − h) ≤ −Cδ
2(n−1)
n(1+α) .

When α > 1 − 2
n , 2(n−1)

n(1+α) < 1. Hence when δ > 0 is small, we obtain

h0 ≥ Cδ
2(n−1)
n(1+α) .

This inequality implies not only the strict convexity of u but also give an
estimate for the modulus of convexity for u. �

Remark 2.1. Combining the strict convexity with a normalisation
argument one can obtain the following estimate, which is dual to the C1,α

estimate in §2.5.

Corollary 2.2. [33] Under the hypotheses of Theorem 2.4, there exists
β > 0, depending on n and b, such that for any x0 ∈ Ω,

(2.12) u(x) ≥ C|x − x0|1+β + 	x0(x),

where 	x0 is a support function of u at x0, and C > 0 is a constant depending
on n, b, Ω, ν, and dist(x, ∂Ω).

Proof. The proof was given in [33]. We include it here for completeness.
By subtracting a linear function, we assume x0 = 0, u(0) = 0, u ≥ 0 in Ω.

By the strict convexity, S0
h is compactly contained in Ω if h > 0 is

small. Make a linear transform y = Tx and v(y) = u(x)/h such that
B1/n ⊂ T (S0

h) ⊂ B1. When h ≤ C0, v = 1 on T (∂S0
h). The doubling

condition (2.10) and the uniform estimate (Theorem 2.1) implies that
ν[T (S0

h)] ≤ C2. Hence by the Hölder continuity of v (Theorem 2.2), we have
dist(T (S0

h/2), T (∂S0
h)) ≥ C3, where C2, C3 depends only on n, b. Changing

back we obtain

(2.13) u(θx) ≥ 1
2
u(x)

for any x ∈ ∂S0
h, where θ = 1 − 1

2C3. As h is any small constant, it follows
that for any x near the origin,

u(x) ≥ 2−ku(θ−kx)

provided θ−kx ∈ Ω. Hence we obtain (2.12) with β given by θ1+β = 1/2. �

2.4. Strict convexity in dimension two
In dimension two, we have the following stronger result.
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Theorem 2.5. Let u be a convex function in B1(0) ⊂ R
2 satisfying

detD2u ≥ c0 > 0, where c0 is a positive constant. Then u is strictly convex
in Ω.

Proof. By subtracting a linear function we may suppose that u(1, 0) =
u(−1, 0) = 0, and infx∈∂B1 [u(x) + u(−x)] is attained at x = (1, 0). We need
only to show that u(0) ≤ −C.

By convexity we have 0 ≥ u(x1, 0) ≥ −2|u(0)| for x1 ∈ (−1, 1) and for
any x ∈ B3/4,

u(x1, x2) ≥ u(x1, 0) − C|x2| ≥ −2|u(0)| − C|x2|,
u(x1, x2) ≤ u(x1, 0) + C|x2| ≤ C|x2|.

It follows that for any x ∈ (−1
4 , 1

4) × (−1
4 , 1

4),

∂x1u(x) ≤ 8(u(
1
2
, x2) − u(x1, x2)) ≤ 16(|u(0)| + C|x2|).

Similarly we have ∂x1u(x) ≥ −16(|u(0)| + C|x2|).
Approximating by smooth functions, we may assume that u is smooth.

Hence we have u11u22 ≥ c0. Hence∫ 1/4

−1/4

1
u22(x)

dx1 ≤ c−1
0

∫ 1/4

−1/4
u11dx1 ≤ 32

c0
(|u(0)| + C|x2|).

We obtain∫ 1/4

−1/4
u22(x)dx1 ≥ 1

4
( ∫ 1/4

−1/4

1
u22(x)

dx1
)−1 ≥ c0

128
(|u(0)| + C|x2|)−1.

It follows that

C ≥
∫ 1/4

−1/4

[ ∫ 1/4

0
u22(x)dx2

]
dx1

=
∫ 1/4

0

[ ∫ 1/4

−1/4
u22(x)dx1

]
dx2

≥ c0

128

∫ 1/4

0
(|u(0)| + C|x2|)−1dx2.

Hence u(0) ≤ −ε0 for some ε0 > 0 depending only on c0 and the gradient of
u in B1. �

The above strict convexity was due to Aleksandrov, but the above proof
was first given in [33].

2.5 C1,α regularity
First we note that by the Legendre transform, if u is strictly convex at 0,

then u∗ is C1 smooth at any point in Nu(0). Moreover, if u satisfies (2.12),
then u∗ is C1,α with α = 1/β (see Lemma 3.1 in [23]).
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Theorem 2.6. Let u, Ω and ν be the same as in Theorem 2.4. Then
there exists α ∈ (0, 1], depending on n, b such that for any x0 ∈ Ω,

(2.14) u(x) ≤ C|x − x0|1+α + 	x0(x),

where 	x0 is a support function of u at x0, C is a constant depending on
n, b, Ω, ν, and dist(x0, ∂Ω).

Proof. By subtracting a linear function, we assume x0 = 0, u(0) = 0,
u ≥ 0 in Ω. By the strict convexity of u, the set S0

h = {u < h} � Ω if h > 0
is small. Suppose there exists σ > 0 depending only on n and b such that
for any small h > 0 and any x ∈ ∂S0

h,

(2.15) u(
1
2
x) <

1 − σ

2
u(x).

Define α by 1 − σ = 2−α. Then for any x ∈ ∂S0
h and any t ∈ ( 1

2k+1 , 1
2k ),

u(tx) ≤ 2−k(1 − σ)ku(x) = [2−k]1+αu(x) ≤ 2t1+αu(x).

Hence u ∈ C1,α.
Inequality (2.15) follows from (2.13) with σ = 1−θ

5 . Indeed, consider
the convex function g(t) = u(tx), t ∈ [−1, 1]. Replacing g by g/g(1), we
may assume that g(1) = 1. Let ψ(t) = g(t + 1

2) − g′(1
2)t − g(1

2). Then by
the convexity of g, ψ(0) = 0, ψ ≥ 0. If g(1

2) > 1−ε
2 , by convexity we have

1 + ε ≥ g′(1
2) ≥ 1 − ε and ψ(−1

2) ≤ ε. Applying (2.13) to ψ, we have
ψ(−1

2θ−1) ≤ 2ψ(−1
2) ≤ 2ε. Hence g(−1

2θ−1 + 1
2) < 0 when ε < 1−θ

5 , we
reach a contradiction as u ≥ 0. �

The C1,α regularity is not true if the measure ν does not satisfies the
doubling condition. See examples in [35]

3. C2,α estimate

3.1. Statement of the result. In order to state the main results,
let us first introduce some notations and terminologies. Let u be a convex
function in Ω. For any point y ∈ Ω and constant h > 0, denote

(3.1) S0
h,u(y) = {x ∈ Ω : u(x) < 	y(x) + h},

where 	y is a support function of u at y. The modulus of convexity of u is a
nonnegative function given by

ρu(r) = inf
y∈Ω

ρu,y(r), r > 0,

where
ρu,y(r) = sup{h ≥ 0 : S0

h,u(y) ⊂ Br(y)}
if there exists h ≥ 0 such that S0

h,u(y) ⊂ Br(y); or ρu,y(r) = 0 otherwise. A
convex function u is strictly convex if ρu(r) > 0 for all r > 0.

Denote
ωf (r) = sup{|f(x) − f(y)| : |x − y| < r}.
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For any r1, r2 > 0, apparently

ωf (r1) + ωf (r2) ≥ ωf (r1 + r2).

In particular, we have
ωf (Cr) ≤ Cωf (r).

We say f is Dini continuous if∫ 1

0

ωf (r)
r

dr < ∞.

Theorem 3.1. Let u ∈ C2 be a strictly convex solution of (1.1). Assume
that f satisfies

C1 ≤ f ≤ C2

for some constants C1, C2 > 0. Then for all x, y ∈ Ω′ � Ω, we have the
estimate

(3.2) |D2u(x) − D2u(y)| ≤ C

[
d +

∫ d

0

ωf (r)
r

+ d

∫ 1

d

ωf (r)
r2

]
,

where d = |x − y|, C > 0 depends only on n, ρu, Ω′ and C1, C2. It follows
that
(i) If f is Dini continuous, then (3.2) gives an estimate for the modulus of
continuity of D2u.
(ii) If f ∈ Cα(Ω) and α ∈ (0, 1), then

(3.3) ‖u‖C2,α(Ω′) ≤ C

[
1 +

‖f‖Cα(Ω)

α(1 − α)

]
.

(iii) If f ∈ C0,1(Ω), then

(3.4) |D2u(x) − D2u(y)| ≤ Cd
[
1 + ‖f‖C0,1 | log d|

]
.

Note that the constant C depends in the modulus of convexity of u,
which implies that C also depends on oscΩu. The C2 estimate in (i) and
the C2,α estimate in (ii) were proved in [19] and [4], respectively. Here, the
estimate of the form (3.2) is from the paper [19]. A similar type estimate for
the Laplacian and heat equations was previously obtained in [37]. The proof
is based on a perturbation argument, which was inspired by the original idea
of Caffarelli [4].

3.2. Proof of Theorem 3.1. Let us collect some relevant facts and
results [19] which will be needed in the subsequent proof.

Let Ω be a bounded convex domain and let T be a unimodular lin-
ear transformation such that T (Ω) is normalized. Choose an appropri-
ate coordinate system such that the minimum ellipsoid of Ω is given by
E = {

∑n
i=1

x2
i

a2
i

< 1} with a1 ≥ · · · ≥ an. Then

T (x) = (λ1x1, · · · , λnxn)
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with
λi =

1
ai

(a1 · · · an)1/n, i = 1, 2, · · · , n.

Note that λ1 and λn are the least and largest eigenvalues of T . For conve-
nience we say Ω has a good shape if

(3.5) λn ≤ c∗λ1

for some constant c∗ under control. If Ω has a good shape, then there exist
two concentric balls Br and BR with R ≤ nc∗r such that Br ⊂ Ω ⊂ BR.

Lemma 3.1. Let u be a convex solution of detD2u = 1 in Ω and u = 0
on ∂Ω. Suppose that u attains its minimum at the origin and D2u(0) is the
unit matrix (or uniformly bounded), then the domain Ω is of good shape.

In the following, we call the set S0
h,u(y) in (3.1) the sub-level set of u

at y with height h and denote Sh,u(y) = ∂S0
h,u(y) its boundary. When no

confusion arises we will sometimes drop the subscript u, and when y is the
minimum point of u, we will simply write the sub-level set as S0

h.

Lemma 3.2. Let ui, i = 1, 2, be two convex solutions of detD2u = 1
in S0

1,u1
. Suppose that ‖ui‖C4 ≤ C0, |u1 − u2| ≤ δ for some small constant

δ > 0, and B1/n ⊂ S0
1,u1

⊂ B1 is normalized. Then we have, for 1 ≤ k ≤ 3,

(3.6) |Dk(u1 − u2)| ≤ Cδ in S0
3/4,u1

,

where C depends only on n and C0.

We are now ready to present the proof of Theorem 3.1.

Proof of Theorem 3.1. By subtracting a linear function we suppose

u(0) = 0, Du(0) = 0,

so that the origin is the minimum point of u. Choose h > 0 small such that
the sub-level set S0

h is compactly contained in Ω. Let Th be a unimodular
linear transform such that Th(S0

h) is normalized. Hence by making the change
x → Thx/

√
h and u → u/h, we may suppose h = 1, S0

1 is normalized, and

(3.7)
∫ 1

0

ω(r)
r

≤ ε,

where ω(r) = ωf (r), ε can be as small as we want, provided h is sufficiently
small.

Let uk, k = 0, 1, · · · , be the solution of

detD2uk = f(0) in S0
4−k,u,

uk = u (= 4−k) on ∂S0
4−k,u.

Denote

ν(t) = sup
z∈Ω

{|f(x) − f(y)| : x, y ∈ S0
t2,u(z)},

νk = ν(2−k),
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which is invariant under unimodular linear transformation of x. If S0
t2,u has

good shape, then we have ν(t) ≤ ω(Ct) ≤ Cω(t).
Since S0

1,u has a good shape, by the classical solvability of Dirichlet
problems [15], ‖u0‖C4(S0

3/4,u
) ≤ C. Note that

detD2(1 − Cν0)u ≤ detD2u0 ≤ detD2(1 + Cν0)u in S0
1,u,

for some constant C, and u = u0 = 1 on the boundary. By the comparison
principle, we have

(1 + Cν0)(u − 1) ≤ u0 − 1 ≤ (1 − Cν0)(u − 1).

It follows that |u − u0| ≤ Cν0. Similarly we have |u − u1| ≤ Cν1. Hence
we obtain |u1 − u0| ≤ Cν0. Since S0

1,u has a good shape, so does S0
4−1,u. It

follows ‖u1‖C4(S0
3/16,u1

) ≤ C. By Lemma 3.2 we obtain

|Dku0(x) − Dku1(x)| ≤ Cν0

for x ∈ S0
4−2,u1

, where 1 ≤ k ≤ 3. Lemma 3.1 then implies that S0
4−2,u1

has
a good shape.

By induction we assume that S0
4−k−1,u

has a good shape with the constant
c∗ in (3.5) independent of k. Applying the same argument to û0 := 4kuk( x

2k )
and û1 := 4kuk+1( x

2k ), we obtain, for x ∈ S0
4−k−2,uk+1

,

|Duk(x) − Duk+1(x)| ≤ C2−kνk,

|D2uk(x) − D2uk+1(x)| ≤ Cνk,(3.8)

|D3uk(x) − D3uk+1(x)| ≤ C2kνk,

where 2k in (3.9) is the scaling constant. Hence

|D2u0(x) − D2uk+1(x)| ≤ C

k∑
i=0

νi

≤ C

∫ 1

2−k

ω(r)
r

dr ≤ Cε

(3.9)

for x ∈ S0
4−k−2,uk+1

, where C > 0 is independent of k. Therefore, D2u(0)
is uniformly bounded. This implies that equation (1.1) is uniformly elliptic
and Theorem 3.1 follows from [37]. �

Remark 3.1. Instead of applying the estimate for uniformly elliptic
equation in [37], one can directly prove the estimate (3.2) as in [19]. For
any given point z near the origin,

|D2u(z) − D2u(0)| ≤ I1 + I2 + I3 =:

|D2uk(z) − D2uk(0)| + |D2uk(0) − D2u(0)| + |D2u(z) − D2uk(z)|.
(3.10)
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Choose k ≥ 1 such that 4−k−4 ≤ u(z) ≤ 4−k−3. Then by (3.8),

(3.11) I2 ≤ C

∞∑
j=k

νj ≤ C

∫ |z|

0

ω(r)
r

.

To estimate I3, we consider the sub-level sets S0
4−j ,u

(z) of u at z. Similarly
to (3.11) we have

(3.12) I3 = |D2u(z) − D2uk(z)| ≤ C

∫ |z|

0

ω(r)
r

.

To estimate I1, denote hj = uj − uj−1. By (3.8),

(3.13) |D2hj(z) − D2hj(0)| ≤ C2jνj |z|.

Hence

I1 ≤ |D2uk−1(z) − D2uk−1(0)| + |D2hk(z) − D2hk(0)|(3.14)

≤ |D2u0(z) − D2u0(0)| +
∑k

j=1
|D2hj(z) − D2hj(0)|

≤ C|z|
(
1 +

∑k

j=1
2jνj

)
≤ C|z|

(
1 +

∫ 1

|z|

ω(r)
r2

)
.

Hence we obtain (3.2). Note that (3.3) and (3.4) follows readily from (3.2).

4. W 2,p estimate

4.1. Statement of the result. In this section we prove the W 2,p

estimate by following Caffarelli’s approach [4] with some simplification. The
basic observation is that when f is continuous, the sub-level set S0

h is a
small perturbation of a ball (after normalization), and the solution is a
small perturbation of a quadratic function. It implies that in a sufficiently
dense set, the second derivative is close to that of the quadratic function.

The main result in this section is the following

Theorem 4.1. Let u be a strictly convex solution of

(4.1) detD2u = f in Ω.

Then for any p ≥ 1, there exists ε = ε(p) > 0 such that when

(4.2) 1 ≤ f ≤ 1 + ε,

we have D2u ∈ Lp(Ω′) and the estimate

(4.3) ‖u‖W 2,p(Ω′) ≤ C,

where Ω′ � Ω, C depends on n, p, ε, Ω, Ω′, and the modulus of convexity of
u.
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Corollary 4.1. Let u be a strictly convex solution of (4.1). If 0 <
C1 ≤ f ≤ C2 and f ∈ C0(Ω), then D2u ∈ Lp(Ω′) for any 1 ≤ p < ∞, and
we have the estimate (4.3), where C depends on n, p, Ω, Ω′, and the modulus
of convexity of u.

Note that the condition (4.2) cannot be removed. There exists a function
f satisfying C−1 ≤ f ≤ C such that u �∈ W 2,p for large p [35].

4.2. Proof of Theorem 4.1. We recall a Calderón-Zygmund type
decomposition from [4, 16] which is needed in our proof.
Covering Lemma: Let A, B � Ω be two subsets of Ω. Let F = {S0

hx,u(x) :
x ∈ B} be a family of sub-level sets such that A ⊂ ∪x∈BS0

hx,u(x). Then
there exists a sequence {Si, i = 1, 2, · · · } satisfying that A ⊂ ∪Si, where
Si = S0

hxi ,u
(xi), and there exists a constant K such that any two sub-level

sets in {S0
hi/K(xi)} are disjoint.

Moreover, we assume the following additional assumption, whose proof
is postponed to the next subsection.
Assumption H : For any N > 10 and δ > 0, there exists ε > 0 such that
for any convex solution u of (4.1) satisfying u(0) = 0, u ≥ 0 and S0

1 is
normalized, we have |D| ≥ (1 − δ)|S0

1 | where

D = {y ∈ S0
1 : u(x) ≥ 	y(x) +

1
N

|x − y|2 ∀x ∈ S0
1(y)}(4.4)

= {y ∈ S0
1 : S0

h(y) ⊂ B√
Nh(y) ∀h ∈ (0, 1)},

where 	y is the tangent plane of u at y.

Now, let u be a convex solution of (4.1) defined in BM (0) for a large
M > 1, with the properties that u(0) = 0, u ≥ 0, and the set S0

1 is
normalized. Denote

Dk = {x ∈ S0
1,u : D2u(x) > 2N−kI}

= {x ∈ S0
1,u : ∃ hx > 0 such that S0

h(x) ⊂ B√
Nkh

(x) ∀ h < hx},

Ak = S0
1,u − Dk, k = 1, 2, · · · ,

where hx depends on x. In the following lemma we show fast polynomial
decay of the measure of Ak, which implies an Lp estimate of D2u.

Lemma 4.1. For any q < ∞, there exists ε = ε(q) > 0 such that if
|f − 1| < ε, then

(4.5) |Ak ∩ Brk
(0)| ≤ N−qk,

where r1 = 1
n , rk+1 is given by

rk+1 = rk − N
− k

2(β−2) .

where β is the constant in (4.11) below.
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Proof. We divide the proof into three steps.
Step 1: For y ∈ Ak, let

(4.6) ĥy = inf{h > 0 : S0
h(y) ⊂ B√

Nkh
(y)}.

By our definition of Ak, we have ĥy > 0 for any y ∈ Ak.
Let

ū(x) =
1

ĥy

[u − 	y](Ty(x)),

where Ty is a linear transform such that ū satisfies the conditions in
Assumption H.

By Assumption H, there exists a set D = Dū ⊂ S0
1,ū satisfying |D| ≥

(1 − δ)|S0
1,ū| and for any z ∈ D,

ū(x) ≥ 	̄z(x) +
1
N

|x − z|2 ∀x ∈ S0
1,ū(z),

where 	̄z is the tangent plane of ū at z.
Note that if x0 ∈ Dk−1, then after normalization, the sub-level set

S0
h,u(x0) cannot have a good shape, in the sense that

(4.7) S0
h,u(x0) �⊂ B√

Nh(x0)

when h is sufficiently small.
Scaling back to u in the set S0

ĥy ,u
(y), we see that there is a set Ey ⊂

S0
ĥy ,u

(y) with

(4.8)
|S0

ĥy ,u
(y) − Ey|

|S0
ĥy ,u

(y)| ≤ δ

and for any x ∈ Ey, there exists hx > 0 such that

S0
h,u(x) ⊂ B√

Nk+1h
(x) ∀ h ≤ hx.

Hence

(4.9) Ey ⊂ Dk+1, i.e. Ey ∩ Ak+1 = ∅.

Moreover by (4.7), if x ∈ Ey, then x �∈ Dk−1. Hence we also have

(4.10) Ey ⊂ Ak−1.

Step 2: Let y and ĥy be as in (4.6). Subtract a linear function such that
u(y) = 0, Du(y) = 0. By the strict convexity, there exists a constant β > 2
such that u(x) ≥ C|x|β near x = 0. Hence

ĥy ≥ C
[
Nkĥy

]β/2
,

that is,

ĥy ≤ C
−2

β−2 N
− kβ

β−2 .
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We obtain

(4.11) Nkĥy ≤ C
−2

β−2 N
− 2k

β−2 ≤ N
− k

β−2

when N is chosen large. That is

diam(S0
ĥy ,u

(y)) ≤ N
− k

2(β−2) .

By our choice of rk, we see that if y ∈ Ak+1 ∩ Brk+1(0), then

(4.12) S0
ĥy ,u

(y) ⊂ Brk
(0).

We point out that (4.12) can also be derived from the C1,α regularity of
generalized solutions [24].

Step 3: The set of all sub-level sets {S0
ĥy/K,u

(y), y ∈ Ak} is obviously

a covering of Ak ∩ Brk
(0), where ĥy is given by (4.6) and K is the constant

in the covering lemma. By the covering lemma, there exists a countable set
{yi} ⊂ Ak ∩ Brk

(0), i = 1, 2, · · · , such that
(P1), Ak ∩ Brk

(0) ⊂
⋃

S0
ĥyi ,u

(yi); and

(P2), any two sub-level sets in {S0
ĥyi/K

(yi)} are disjoint.

Denote Si = S0
ĥyi ,u

(yi) and S′
i = S0

ĥyi/K
(yi). From (4.7), there exists a

set Eyi ⊂ Si such that

(4.13)
|Si − Eyi |

|Si|
≤ δ,

and Eyi satisfies (4.9), (4.10).
Since Ak+1 ⊂ Ak, by the covering property (P1) we have

|Ak+1 ∩ Brk+1(0)| ≤ |Ak+1 ∩ (∪Si)| ≤
∑

i

|Ak+1 ∩ Si|.

By (4.13) we have

(4.14) |Ak+1 ∩ Si| ≤ δ|Si|.
By the convexity of u we have

|Si| ≤ Kn|S′
i|.

By (4.8)

|S′
i − Eyi | ≤ δ|Si| ≤ Knδ|S′

i|.
Writing S′

i = (S′
i − Eyi) ∪ (Eyi ∩ S′

i) we then have

|S′
i| ≤ 1

1 − Knδ
|Eyi ∩ S′

i| ≤ 2|Ŝi|

when Knδ < 1
2 , where Ŝi = S′

i ∩ Eyi . We therefore obtain

|Ak+1 ∩ Brk+1(0)| ≤ 2Knδ
∑

|Ŝi|.
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By (4.10), Eyi ⊂ Ak−1, and by (4.12), S′
i ⊂ Brk−1 . Hence Ŝi ⊂ (Ak−1∩Brk−1)

and so

|Ak+1 ∩ Brk+1(0)| ≤ 2Knδ
∑

|Ŝi ∩ (Ak−1 ∩ Brk−1)|.

By property (P2), Ŝi are mutually disjoint. Hence

|Ak+1 ∩ Brk+1(0)| ≤ 2Knδ|(∪Ŝi) ∩ (Ak−1 ∩ Brk−1)|.

But ∪Ŝi ⊂ Ak−1 ∩ Brk−1 . We finally obtain

|Ak+1 ∩ Brk+1(0)| ≤ 2Knδ|Ak−1 ∩ Brk−1 |.

Therefore for any given q < ∞, we can choose δ small enough such that
2δKn ≤ N−2q. We obtain the desired estimate (4.5). �

Theorem 4.1 now follows from Lemma 4.1 easily.

Proof of Theorem 4.1. It suffices to prove Theorem 4.1 on a sub-
level set which after proper rescaling satisfies the conditions in Assumption
H.

Denote A′
k = Ak −Ak+1. Then in A′

k, we have |D2u| ≤ CN (n−1)k. Hence∫
B1/2n(0)

|D2u|pdx ≤ C
∑

N (n−1)kp|A′
k|

≤ C
∑

N (n−1)kp N−kq.

Letting q > (n − 1)p, we obtain u ∈ W 2,p(Ω′). �

4.3. Proof of Assumption H. Given u ∈ C0(Ω), denote

(4.15) Γ[u] = sup v,

where the sup is taken in the set of all affine functions v satisfying v ≤ u in Ω.
Then Γ[u] is convex, and is called the convex envelope of u in Ω. Apparently

Γ[u] ≤ u.

Lemma 4.2. Let u ∈ C2(Ω) be a convex solution of (4.1) and v ∈ C2(Ω)
be a convex function. Suppose f < 1 + ε. Then for any Borel set E � Ω,

(4.16) μΓ(E) ≤
∫

C∩E

[
(1 + ε)1/n − det1/nD2v

]n
dx,

where Γ := Γ[u − v], μΓ is the Monge-Ampère measure associated with Γ
[4, 16, 33] and C = {x ∈ Ω : Γ[u − v](x) = (u − v)(x)} is the contact set.

Proof. From the smoothness of u, v, we have Γ ∈ C1,1 and μΓ =
det ∂2Γ dx, see for example Section 2 in [33]. For any point x ∈ C where
Γ is twice differentiable, we have

D2Γ(x) ≤ D2(u − v)(x).
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By the concavity of det1/n

det1/n[D2u − D2v] ≤ det1/nD2u − det1/nD2v

≤ (1 + ε)1/n − det1/nD2v.

Hence at x,

(4.17) detD2Γ ≤
[
(1 + ε)1/n − det1/nD2v

]n
.

Recall that μΓ = 0 in Ω − C [4, 16, 33]. We obtain (4.16). �
Lemma 4.3. Let u be a C2 solution of (4.1) such that S := S0

2,u � Ω.

Let w be a solution to detD2w = 1 in S such that w = u on ∂S. Suppose
1 < f < 1 + ε. Then

(4.18)
∣∣{Γ[u − 1

2
w] = u − 1

2
w

}
∩ S

∣∣ ≥ (1 − Cε)|S|,

where the constant C > 0 depends only on n.

Proof. By subtracting a constant we assume that u = w = 0 on ∂S.
By the comparison principle we have (1 + Cε)w ≤ u ≤ w. Hence

(
1
2

+ Cε)w ≤ u − 1
2
w ≤ 1

2
w.

Since w is convex, we have

(
1
2

+ Cε)w ≤ Γ ≤ 1
2
w,

where Γ = Γ[u − 1
2w]. As S is convex and u = w = 0, we also have Γ = 0 on

∂S. Hence
(
1
2

+ Cε)Dw(S) ⊃ DΓ(S) ⊃ 1
2
Dw(S).

From the second inclusion we have

μΓ(S) ≥ μ 1
2w(S).

On the other hand, by Lemma 4.2,

μΓ(S) ≤
∫

S∩C

[
(1 + ε)1/n − det1/nD2(

1
2
w)

]n

dx

=
∫

S∩C

[
(1 + ε)1/n − 1

2

]n

dx

≤ (2−n + Cε)|S ∩ C|
where C = {Γ = u − 1

2w}, and C depends only on n. Since detD2w = 1, we
have

μ 1
2w(S) = 2−n|S|.

It follows that
|S| ≤ (1 + Cε)|S ∩ C|.

Note that C ⊂ S. Hence |C| ≥ (1 − Cε)|S|. �
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Proof of Assumption H. Let u, w, C be as in Lemma 4.3. If S0
1,u is

normalized and u is a solution of (4.1) in Ω which encloses BM (0) for some
large M , then S0

2,u is compactly contained in BM (0) and ‖w‖C2(S0
1,u) ≤ C

for some C > 0 depending only on n.
For any point y ∈ C, let 	y be the support function of Γ at y. Then{

(u − 1
2w)(x) ≥ 	(x) in S0

2,u,

(u − 1
2w)(y) = 	(y).

That is

(4.19)
{

u(x) ≥ 	(x) + 1
2w(x) in S0

2,u,

u(y) = 	(y) + 1
2w(y).

Let D = C ∩ S0
1,u. Since w is smooth and uniformly convex, we obtain (4.4)

for some N > 0 depending only on ‖w‖C2(S0
1,u). �

Note that in the proof of Theorem 4.1 (§3.2), we used only the affine
invariance of the Monge-Ampère equation and the strict convexity of solu-
tions. The condition 1 ≤ f ≤ 1 + ε is used in the proof of Assumption H.
This condition can be weakened to the following VMO type condition, that
is,

1
|ω|

∫
ω

|f − 1|dx ≤ ε

for any convex subset ω ⊂ Ω with nonempty interior (see [18]).

5. W 2,1+ε estimate

5.1. Statement of the result. For strictly convex solution u of (1.1),
if f solely satisfies

(5.1) 0 < C1 ≤ f ≤ C2 < ∞ in Ω

for some constants C1 and C2, Caffarelli proved [5] that u ∈ C1,α
loc (Ω) for

some α ∈ (0, 1). For the regularity of the second derivatives of u under the
assumption (5.1), counterexamples in [35] show that u /∈ W 2,p for large
p > 1 depending on the ratio C2

C1
. By taking C2

C1
large enough, p can be

chosen as close to 1 as desired. Recently, De Philippis-Figalli-Savin [12] and
Schmidt [30] proved u ∈ W 2,1+ε

loc for some small ε depending on n, C1 and
C2. The main result can be stated as follows:

Theorem 5.1. Let u be a strictly convex solution of (1.1), where f
satisfies (5.1). Then we have the estimate

(5.2) ‖u‖W 2,1+ε(Ω′) ≤ C,

where Ω′ � Ω, ε, C > 0 depends on n, Ω′, C1, C2 and the modulus of convexity
of u.
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5.2. Proof of Theorem 5.1. The proof follows from some modifica-
tions of the strategy in §3. We divide the proof into four steps.
1. Let u be a strictly convex solution of (1.1) such that u(0) = 0, u ≥ 0, and
S0

1 � Ω is normalized. Denote by |D2u| the largest eigenvalue of the Hessian
matrix D2u. The W 2,1 estimate is straightforward by integration by parts

(5.3)
∫

S0
1

|D2u(x)| dx ≤
∫

S0
1

�u(x) dx ≤
∫

∂S0
1

∂νu ≤ C3,

where ν is the unit outer normal of ∂S0
1 , the first inequality holds since u is

convex and the last inequality follows from the interior estimate of Du.
Inequality (5.3) implies the following density estimate (comparing to

Assumption H in §3): there exists a large constant N > 0 depending only
on n, C1 and C2 such that

(5.4)
∣∣∣D = {x ∈ S0

1/K : D2u(x) > 2N−1I}
∣∣∣ ≥ 1

Nn−1

∫
S0

1

|D2u|,

where |·| denotes the Lebesgue measure and K is the constant in the covering
lemma.

To prove (5.4), note that at x ∈ D, by equation (1.1) and assumption
(5.1)

|D2u(x)| < C4N
n−1 for a constant C4 = C3(n, C1, C2).

Let A = S0
1/K − D = {x ∈ S0

1/K : |D2u(x)| ≥ C4N
n−1}. By contradiction, if

(5.4) is not true, then |A| > |S0
1/K | − 1

Nn−1

∫
S0

1
|D2u|. Since

C4N
n−1|A| ≤

∫
S0

1/K

|D2u(x)| dx,

from (5.3) we obtain

C4N
n−1|S0

1/K | <

∫
S0

1/K

|D2u(x)| dx + C4

∫
S0

1

|D2u(x)| dx ≤ (1 + C4)C3.

This gives a contradiction by choosing N large.
Choosing a larger constant N0 ≥ C4N

n−1, (5.4) implies that

(5.5)
∫

S0
1

|D2u(x)| dx ≤ N0

∣∣∣{x ∈ S0
1/K : N−1

0 I ≤ D2u(x) ≤ N0I}
∣∣∣ .

We remark that by subtracting a linear function, one can obtain (5.5) in
any normalized sub-level set S0

1,u(y) ⊂ Ω′ � Ω.
2. Recall the definitions of “good” sets Dk and “bad” sets Ak in §3.2. In
this section we write them in a slightly different form. For a large constant
M > 0 which will be determined later, define

Ak = {x ∈ S0
1 : |D2u(x)| ≥ Mk},(5.6)

Dk = S0
1 − Ak = {x ∈ S0

1 : |D2u(x)| < Mk},

where k = 1, 2, · · · . Note that when M = CNn−1 with N in Assumption H,
definition (5.6) is the same as in §3.2.
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Denote A′
k = Ak − Ak+1 for k = 1, 2, · · · . Observe that Mk ≤ |D2u| <

Mk+1 in A′
k. From the proof of Theorem 4.1 one can see that the polynomial

decay of measures

(5.7) Mk|A′
k| <

C

Mk(p−1)

implies u ∈ W 2,p′
for all p′ < p. Similarly, for some ε > 0

(5.8) Mk|A′
k| <

C

Mkε

implies u ∈ W 2,1+ε′
for all ε′ < ε. In fact,∫

S0
1

|D2u|1+ε′ ≤
∑

k

M (k+1)(1+ε′)|A′
k|

≤ CM1+ε′ ∑
k

Mk(ε′−ε) ≤ C ′.
(5.9)

3. We claim that (5.8) can be deduced from the following induction formula

(5.10)
∫

Ak+1

|D2u| ≤ τ

∫
Ak

|D2u| for a constant τ ∈ (0, 1).

To see this, by (5.3)
∫
A1

|D2u| ≤ C̃, thus (5.10) implies that∫
Ak

|D2u| ≤ C̃τ−1τk ≤ Cτk for k ≥ 1.

Let ε = log τ−1/ log M . Noting that Mk|A′
k| <

∫
Ak

|D2u|, then we obtain
the desired estimate (5.8) from (5.10).
4. Therefore, it suffices to prove (5.10). The proof is a modification of that
of Lemma 4.1. For each y ∈ Ak+1, let

(5.11) ĥy = inf{h > 0 : S0
h(y) ⊂ B√

N0Mkh
(y)},

where N0 is the constant in (5.5). By our definition of Ak+1, ĥy > 0 for any
y ∈ Ak+1. The family {S0

ĥy ,u
(y)} is obviously a covering of Ak+1. By the

covering lemma, there exists a sequence {yi ∈ Ak+1} such that Ak+1 ⊂
⋃

Si

and {S′
i} are mutually disjoint, where Si = S0

ĥyi ,u
(yi) and S′

i = S0
ĥyi/K,u

(yi).

For each i, make a normalization

x̃ =
1

ĥ
1/2
yi

Tx, ũ =
1

ĥyi

u,

where T is an n × n matrix such that S0
1,ũ = ĥ

−1/2
yi T (Si) is normalized. By

(5.11), |T | ≤
√

N0Mk. Since D2u = T t◦D2ũ◦T , we have |D2u| ≤ |T |2|D2ũ|
and

(5.12) Mk ≤ |D2u(x)| ≤ N2
0 Mk, if N−1

0 I ≤ D2ũ(x̃) ≤ N0I.
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Applying (5.5) to ũ in S0
1,ũ,∫

S0
1,ũ

|D2ũ(x̃)| dx̃ ≤ N0

∣∣∣x̃ ∈ S0
1/K,ũ : N−1

0 I ≤ D2ũ(x̃) ≤ N0I
∣∣∣ .

By rescaling back,

1
N0Mk

|detT |
ĥ

n/2
i

∫
Si

|D2u(x)| dx

≤ N0
|detT |
ĥ

n/2
i

∣∣∣{x ∈ S′
i : Mk ≤ |D2u(x)| ≤ N2

0 Mk}
∣∣∣ ,

thus we obtain

(5.13)
∫

Si

|D2u(x)| dx ≤ N2
0 Mk

∣∣∣{x ∈ S′
i : Mk ≤ |D2u(x)| ≤ N2

0 Mk}
∣∣∣ ,

Since Ak+1 ⊂
⋃

Si and {S′
i} are mutually disjoint, setting M = N2

0 and
summing over i we have∫

Ak+1

|D2u(x)| dx ≤ N2
0 Mk

∣∣∣{x ∈ S0
1 : Mk ≤ |D2u(x)| ≤ Mk+1}

∣∣∣
≤ N2

0

∫
Ak\Ak+1

|D2u(x)| dx.

(5.14)

Adding N2
0

∫
Ak+1

|D2u| to both sides, we finally obtain

(5.15)
∫

Ak+1

|D2u| ≤ N2
0

1 + N2
0

∫
Ak

|D2u|.

Therefore, (5.10) is proved for the constant τ = N2
0

1+N2
0

< 1. Theorem 5.1 is
then proved by a standard covering argument.

6. Monge-Ampère equations of general form

In this section we consider the Monge-Ampère equation

(6.1) det [D2u − A(x, u, Du)] = f(x, u, Du)

arising in optimal transportation [27] and reflector antenna design [36, 20].
It is known that the optimal mapping T = Tu(x) is determined by a potential
function u by

Du(x) = Dxc(x, T ),

where c(x, y) is the cost function. Differentiating the above formula gives

D2u(x) = D2
xc(x, T ) + D2

xyc · DT.

Hence

det [D2u − D2
xc] = |det D2

xyc||det DT | = |det D2
xyc|

ρ

ρ∗(T )
,
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where ρ, ρ∗ are two probability densities over the initial domain Ω and
the target domain Ω∗, respectively. Hence the potential function u satisfies
equation (6.1) with the matrix A and the right hand side f given by

A(x, Du) = D2
xc(x, Tu(x)),(6.2)

f = |det D2
xyc|

ρ(x)
ρ∗(T )

.(6.3)

We say a solution u of (6.1) is elliptic if the matrix {D2u − A} is positive
definite. The potential function is an elliptic solution due to its c-convexity,
namely at each point x0 ∈ Ω there exists a c-support of u of the form

ϕ(x) = c(x, y0) + a0,

where a0 is a constant and y0 ∈ R
n such that

u(x0) = ϕ(x0), u(x) ≥ ϕ(x), ∀x ∈ Ω.

A notion of c-convexity of domains was introduced in [27]: a set U ⊂ R
n

is c-convex with respect to another set V ⊂ R
n if the image Dyc(U, y) is

convex for any y ∈ V . Similarly, V is called c∗-convex with respect to U if
Dxc(x, V ) is convex for any x ∈ U .

In the special case when c(x, y) = x · y, the matrix A ≡ 0, equation
(6.1) reduces to the standard Monge-Ampère equation (1.1), the notion of
c-convexity coincides with that of convexity, and a c-support is just a support
hyperplane.

When ρ, ρ∗ > 0, ρ ∈ C1,1(Ω), ρ∗ ∈ C1,1(Ω∗), and Ω∗ is c∗-convex with
respect to Ω, the C3 regularity of potentials has been established in [27]
under the following assumptions:

(A1) For any x, p ∈ R
n, there is a unique y ∈ R

n such that Dxc(x, y) = p;
and for any y, q ∈ R

n, there is a unique x ∈ R
n such that

Dyc(x, y) = q.
(A2) For any (x, y) ∈ R

n × R
n, det{D2

xyc(x, y)} �= 0.
(A3) For any x, p ∈ R

n, and any ξ, η ∈ R
n with ξ ⊥ η,

(6.4) Aij,kl(x, p)ξiξjηkηl > 0,

where Aij,kl = D2
pkpl

Aij and A is given by (6.2).

If the C1,1 smoothness of ρ, ρ∗ is removed, the C1 regularity and strict
c-convexity of u has also been obtained in [34]; and the C1,α regularity
obtained in [22, 25]. Hence one can define the sub-level set S0

h,u of u, namely

S0
h,u(x0) = {x ∈ Ω : u(x) < ϕ(x) + h},

where h > 0 is a constant, ϕ is a c-support of u at x0. Under assumptions
(A1)–(A3), it was proved [22] that S0

h = S0
h,u(x0) is c-convex with respect to

y0, where y0 = Tu(x0), see also [14]. Therefore, by the coordinate transform
x �→ Dyc(x, y0) we can make S0

h convex. By the techniques in Sections 2 and
3 as well as some new estimates, the following results have been obtained.
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Theorem 6.1 ([23]). Let u ∈ C2(Ω) be an elliptic solution of (6.1) with
A and f given by (6.2) and (6.3), respectively. Assume that (A1)–(A3), f
is Dini continuous and satisfies C1 ≤ f ≤ C2 for some positive constants
C1, C2. Then for all x, y ∈ Ω′ � Ω, we have the estimate (3.2). Furthermore,
if f ∈ Cα or C0,1, we have (3.3) or (3.4), respectively.

Theorem 6.2 ([24]). In the hypotheses of Theorem 6.1, if f is only
continuous and C1 ≤ f ≤ C2 for some positive constants C1, C2, then
D2u ∈ Lp(Ω′) for any 1 ≤ p < ∞, Ω′ � Ω, and we have the estimate
(4.3).

The proof of Theorem 6.1 is similar to that of Theorem 3.1. However,
one needs to deal with c-convex functions instead of convex functions, and
to establish an interior C2 estimate of Pogorelov type for solutions of (6.1).
We refer the readers to [23] for more details.

Theorem 6.2 can be proved using the steps in Section 4, but is more
complicated. A crucial part is to understand the local geometry of the
potential function and the cost function, in a blow-up process. Namely we
show that they converges to quadratic functions in the blowing-up, and that
means locally equation (6.1) is very close to the standard Monge-Ampère
equation. In other words, we show that equation (6.1) behaves very like the
standard Monge-Ampère equation locally. We stress that these properties
are established under assumption (A3), or a weak form of it. In general they
may not be true. See [24] for a detailed proof.
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