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Hermitian-Yang-Mills connections and beyond

Jun Li

Abstract. This is a survey article on Donaldson-Uhlenbeck-Yau theo-
rem and some of its further developments.

1. Introduction

The work of Yang and Mills on a non-abelian version of the electro-
magnetic Lagrangian formed the seed of one of the greatest triumphs of
the twentieth century physics, the standard model. Its analogue over a
Riemannian four-manifold (M, g) rests on the Yang-Mills functional

YM(A) =
∫

M
|FA|2,

where FA are the curvature tensors of hermitian connections A on hermitian
vector bundles E (for the structure group G = U(r)). Yang-Mills connections
are connections satisfying the Euler-Lagrangian equations

d∗
AFA = dAFA = 0.

There is a class of connections that attain the minimum of the Yang-
Mills functional: the Anti-Self-Dual (in short ASD) connections, connections
whose curvature tensors FA are ASD:

∗gFA = −FA.

When the underlying manifold M are two-dimensional complex man-
ifolds (i.e. dimR M = 4) and the Riemannian metrics g are induced by
Kahler forms ω on M , U(r) ASD connections, viewed as hermitian connec-
tions on the associated rank r hermitian vector bundles E, are hermitian
connections of integrable complex structures on E satisfying an additional
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ω-traceless type conditions. The notion of ASD connections for Kahler man-
ifolds later was generalized to that of Hermitian-Yang-Mills (in short HYM)
connections. Kobayashi showed that the holomorphic vector bundle (E, ∂̄)
induced by an irreducible HYM connection on (E, h) is necessarily Mumford-
Takemoto stable [15], a notion introduced earlier in algebraic geometry. Re-
lying on the foundational work of Uhlenbeck on the removable singularity
for Yang-Mills connections on four-manifolds [32, 33], Donaldson showed
that a Mumford-Takemoto stable holomorphic structure ∂̄ on a vector bun-
dle E over an algebraic surface admits an irreducible Hermitian-Yang-Mills
connection [8].

Later, Uhlenbeck-Yau generalized this theorem to the existence of ir-
reducible Hermitian-Yang-Mills connections on slope stable holomorphic
vector bundles on compact Kahler manifolds of arbitrary dimensions [34].
This established the DUY (Donaldson-Uhlenbeck-Yau) correspondence that
a holomorphic bundle on a compact Kahler manifold admits an irreducible
HYM metric if and only if it is slope stable.

In the remainder of this article, we will briefly recall this theorem, this
correspondence, and its generalizations.

2. Hermitian-Yang-Mills connections

Let (X, ω) be a Kahler manifold. The space of Anti-Self-Dual 2-forms
Ω2,− is a pointwise orthogonal complement of ω in the space of real (1, 1)-
forms Ω1,1. Thus a connection A on a vector bundle is ASD if its curvature
FA obeys

(1) ΛFA = F 2,0
A = F 0,2

A = 0,

where Λ is the contraction with respect to ω:

ΛFA = (FA ∧ ωdim X−1)/ωdim X .

This leads to the notion of HYM connections. Let (E, h) be a Hermitian
vector bundle on a Kahler manifold (X, ω). A hermitian connection A on
(E, h) is called HYM if

(2) ΛFA = 2πiμIE , F 2,0
A = F 0,2

A = 0, μ ∈ R.

Note that F 0,2
A = (∂̄A)2, thus (2) implies that ∂̄A is integrable.

The constant μ is a topological invariant. By Chern-Weil theory,

d(E, ω) =
∫

X
c1(E) ∧ ωdim X−1 =

∫
X

i

2π
Tr FA ∧ ωdim X−1.

Integrating the first identity in (2), the constant μ takes the form:

n! μ · VolX = −μ(E, ω), μ(E, ω) =
d(E, ω)
rankE

.

From (1) and (2), we see that over Kahler surfaces degree zero HYM
connections are the same as ASD connections.
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HYM connections lead naturally to Mumford-Takemoto stable holomor-
phic vector bundles. A holomorphic vector bundle E is Mumford-Takemoto
stable (resp. semistable) if for every subsheaf F �= 0 of E with rankF <
rankE, we have

μ(F, ω) < μ(E, ω), (resp. ≤).

(For any sheaf F , d(F, ω) =
∫

c1(F )∧ωdim X−1.) Because this stability is on
the slope decreasing property after passing to subsheaves of smaller ranks,
it is also called slope-stable, and sometimes, μ-stable.

Over smooth curves, HYM connections (of degree 0) leading to Mumford-
Takemoto stable bundle is a consequence of a theorem of Narasimhan-
Seshadri [24]. For Kahler manifolds, it is proved by Kobayashi [15].

This can be seen using the Chern-Weil forms of the Chern classes of
vector bundles. Since this argument is used in Uhlenbeck-Yau’s proof of the
existence of HYM connections, we will outline the argument.

Given a connection A on E, the splitting of forms decomposes the
connection

DA = ∂A ⊕ ∂̄A : Ω0(E) −→ Ω1,0(E) ⊕ Ω0,1(E)

and the curvature

F 2,0
A = ∂A ◦ ∂A, F 0,2 = ∂̄A ◦ ∂̄A, and F 1,1

A = ∂A ◦ ∂̄A + ∂̄A ◦ ∂A.

Suppose A is a HYM connection. Then F 0,2
A = ∂̄A ◦ ∂̄A = 0, which is the

integrability condition for the operator ∂̄A, or that (E, ∂̄A) is a holomorphic
vector bundle.

The holomorphic bundle (E, ∂̄A) is slope stable when A is an irreducible
HYM. To see this, we let L ⊂ (E, ∂̄A) be a holomorphic subbundle. By using
the Hermitian metric h, we can write E as a direct sum L ⊕ L⊥, where L⊥

is the orthogonal complement of L ⊂ E, a smooth subbundle of E. We next
decompose the restriction of DA to L as

DA|L = DL ⊕ B1 : Ω0(L) −→ Ω1(L) ⊕ Ω1(L⊥) = Ω1(E).

In this form, DL is a Hermitian connection of (L, h|L), and B1 is a tensor in
Ω1,0(L∨ ⊗ L⊥). (It is a (1, 0)-form since L ⊂ E is holomorphic.) Similarly,
by restricting DA to L⊥ ⊂ E, we get DA|L⊥ = DL⊥ ⊕ B2, with DL⊥ a
Hermitian connection on L⊥ and B2 a tensor in Ω0,1((L⊥)∨ ⊗ L).

There is a more intrinsic form of expressing B1. We let

Π : E −→ L ⊂ E

be the projection via the smooth isomorphism E ∼= L⊕L⊥. The projection Π
defines L as the image bundle of Π. Since L ⊂ E is a holomorphic subbundle,
Π⊥ ◦ ∂̄Π = 0. The other part,

Π⊥ ◦ ∂AΠ = B1,

is the second fundamental form of L ⊂ E.
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From the above decomposition, we obtain, in the matrix form,

DA =
(

DL B2
B1 DL⊥

)
,

and

FA ◦ Π =
[ (DL)2 + B2 ∧ B1 0

B1 ◦ DL + DL⊥ ◦ B1 0

]
.

We now estimate the degree d(L, ω) using the Chern-Weil theory. First,
(with n = dimX,) we have

(3) d(L, ω) =
∫

c1(L) ∧ ωn−1 =
∫

i

2π
Tr (DL)2 ∧ ωn−1.

Combined with the expression of FA ◦ Π, we have∫
i

2π
Tr (DL)2 ∧ ωn−1 =

∫
i

2π
Tr (ΛFA ◦ Π) ωn −

∫
i

2π
Tr (B2 ∧ B1) ∧ ωn−1.

Using that A is a hermitian connection,∫
i

2π
Tr (B2 ∧ B1) ∧ ωn−1 =

∫
1
2π

|Π⊥∂AΠ|2 ωn.

This proves that

(4) μ(L, ω) =
1

rankL

(∫
i

2π
Tr (ΛFA ◦ Π) ωn −

∫
1
2π

|Π⊥∂AΠ|2 ωn
)
.

Note that this holds for any hermitian connection A. Assume A is a
HYM connection, then ΛFA = 2πiμIE and

Tr (ΛFA ◦ Π) = μ(E, ω) · rankL.

Plugging into (2), we see that

μ(L, ω) ≤ μ(E, ω),

and the strict inequality holds when L⊥ is not a holomorphic subbundle,
which holds true if A is irreducible.

We remark that the same argument also works for L ⊂ E a subsheaf.
Since we can assume without lose of generality that away from a codimension
two subset the sheaf L is locally free and the inclusion L ⊂ E is a vector
sub-bundle, the preceding argument remains valid using the L2-version of
the Chern-Weil formula.

This proves that when A is an irreducible HYM connection, then (E, ∂̄A)
is slope stable. By an induction on the rank of E, it also shows that the
holomorphic bundle induced by a HYM connection is necessarily a poly-
stable bundle. Here by a poly-stable vector bundle we mean that it is a
direct sum of stable bundles of identical slopes.
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3. Donaldson-Uhlenbeck-Yau theorem

Donaldson-Uhlenbeck-Yau theorem is the correspondence of HYM con-
nections and Mumford-Takemoto poly-stable holomorphic structures on vec-
tor bundles.

Let (E, ∂̄) be a slope stable vector bundle on a Kahler manifold (X, ω).
The Donaldson-Uhlenbeck-Yau theorem states that there is a hermitian
metric h on (E, ∂̄) such that its hermitian connection A satisfies the HYM
equation

ΛFA = 2πiμIE .

The technical part of this theorem is a milestone in geometric analysis,
demonstrating directly how the failure of the existence of HYM metrics on
a holomorphic bundle is caused by the existence of the destabilizing subsheaf
of the bundle.

Traditionally, one searches for a Yang-Mills connection by studying the
Yang-Mills flow initiating from a base connection A0:

∂A

∂t
= −d∗

AFA.

In case E is a holomorphic vector bundle with ∂̄ implicitly understood,
which we assume throughout this section, we can choose A0 to be a hermit-
ian connection of E. Then the solutions to the Yang-Mills flow is a family
of hermitian connections on E (conforming to the given holomorphic struc-
ture).

Expressing A as the hermitian connection of h, the Yang-Mills flow takes
the form

h−1 ∂h

∂t
= −2i

(
ΛF (h) − 2πiμIE

)
.

Here F (h) is the curvature of the hermitian connection of (E, ∂̄, h).
Donaldson’s insight is that these flows are gradient flows of an energy

functional V on the space of hermitian metrics. Assuming X is an algebraic
surface and the Kahler form ω is the first Chern form of an ample line bundle,
Donaldson proved that V is convex and bounded from below. (The proof
used the restriction property of slope stable bundles to an ample divisor in
an essential way.) The only critical points are HYM metrics (connection) up
to constant scalings.

Applying the standard technique in PDE associated to gradient flows of
a convex bounded energy functional, Donaldson showed that the solution ht

to the parabolic system exists for all t. Also, when ht converges to h∞, that
V is bounded and ht is its gradient flow infers that h∞ is a HYM metric
(connection).

To investigate the limiting behavior of ht when ht diverges, Donaldson
used Uhlenbeck’s weak Lp compactness of connections and removable sin-
gularity theorem. Because of the parabolic system ht satisfies, the curvature
F (ht) is bounded and the primitive part of F (ht), which is ΛF (h)−2πiμIE ,
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tends to zero. Using the weak limit of the hermitian connections At, Donald-
son constructed a HYM connection A′ on a possibly different vector bundle
E′ of slope identical to that of E, and a non-trivial holomorphic map between
them. Since E is slope stable and (E′, ∂̄A′) is semistable, this is possible only
if E ∼= E′. This proves that ht converges to h∞.

Theorem 3.1 (Donaldson [8]). A slope stable holomorphic vector bundle
on a projective surface admits a unique (up to scaling) HYM connection.

This theorem is generalized by Uhlenbeck-Yau to general Kahler mani-
folds.

Theorem 3.2 (Uhlenbeck-Yau [34]). A slope stable holomorphic vector
bundle on a smooth Kahler manifold admits a unique (up to scaling) HYM
connection.

Uhlenbeck-Yau proved the existence of HYM connections by using con-
tinuity argument. They introduced a family of elliptic systems Lε = 0 on
hermitian metrics; it has the property that solutions to L0 = 0 are HYM con-
nections; solutions to Lε = 0 exist for all ε > 0. They also proved that when
the logarithms of the solutions hε (to Lε = 0) have uniform L2 bounds, then
hε converges to a HYM connection as ε → 0. When the supremum norm of
hε tends to infinity, they proved that the normalized ρεhε converges weakly
to h∞, and the weak limit

Π := lim
s→0

(IE − hs
∞)

exists, is a projection, and its image is a holomorphic destabilizing subsheaf
of E.

Uhlenbeck-Yau’s proof inspired a new thinking for other geometric
problems in complex geometry. To familiar the readers with their proof,
we outline it briefly here, focusing on the derivation of the destabilizing
subsheaves via the failure of the convergence of hε.

We fix a holomorphic vector bundle E; fix a base hermitian metric
〈·, ·〉 on it. Then any other hermitian metric is given by a positive definite
hermitian symmetric matrix h via

〈·, ·〉h = 〈h·, ·〉.
Let A0 be the hermitian connection of the base hermitian metric, the
hermitian connection of h is

Ah = A0 + h−1∂0h;

the HYM equation for h (if μ = 0) is

ΛF0 − Λ∂̄(h−1∂0h) = 0.

The system Uhlenbeck-Yau considered is

(5) Lε(h) := ΛF0 − Λ∂̄(h−1∂0h) + ε log h = 0.
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(Since h is hermitian symmetric positive definite, log h is well-defined.) The
first part of Uhlenbeck-Yau’s proof is to show that the system is solvable for
all ε > 0.

To prove this, Uhlenbeck-Yau used a secondary continuity method by
further introducing

(6) Lε,σ(h) := ΛF0 − Λ∂̄(h−1∂0h) + ε log h − σh−1/2ΛF0h
1/2 = 0.

This system has the trivial solution h = id for σ = 1. Let

Tε = {σ ∈ [0, 1] | the system (6) is solvable};

it contains σ = 1, thus is non-empty.
The set Tε is both open and closed. The openness of Tε follows from

the invertibility of the linearization δLε,σ. The closedness follows from an a
priori estimate of the solutions hε,σ (to Lε,σ = 0). For ε sufficiently large,
Uhlenbeck-Yau developed a set of elaborate estimates sufficient for both the
openness and closeness of Tε.

Knowing that Lε = 0 is solvable for ε sufficiently large, refining their
estimate, they went on to show that it is solvable for all ε > 0.

At this stage, we pause for a moment and ask what could happen when
E is not slope stable. In this case, the prior argument provides us a family
hε for all ε > 0 that solves (5). Since E has no HYM metric, the family hε

must diverge.
The family hε diverges in a good way. An easy inspection of the system

(5) shows that we can arrange det hε = 1 for all ε. Also, an estimate
developed by Uhlenbeck-Yau guarantees that the L2 norm and the L∞ norm
of log hε are equivalent. Suppose hε diverges, Uhlenbeck-Yau showed that
the normalized family ρεhε–normalized so that the supremum norm is one,
converges weakly to a homomorphism h∞.

Uhlenbeck-Yau’s insight is that h∞ is a homomorphism of E whose
kernel is a destabilizing subsheaf of E. Along this line, they defined

Π := idE − lim
s→0

hs
∞.

They proved that Π exists as a weak limit, that Π is a projection almost
everywhere, and as distribution

|(idE − Π)∂̄Π|2 = 0.

This shows that the “image sheaf” L of Π is “weakly” holomorphic.
After a technical tour de force, Uhlenbeck-Yau proved that L is a

holomorphic subsheaf of E. Because det hε = 1 and ρε → ∞, h∞ is non-
trivial and deth∞ = 0. Thus L is a subsheaf of smaller rank.

It remains to show that this image sheaf L ⊂ E is a destabilizing subsheaf
of E. To prove this, we will mimic the subbundle case worked out earlier.
Since L is locally free away from a codimension two subset, we can use the
L2 Chern-Weil form of c1(L) to evaluate its degree. Like formula (4), we
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have

deg L =
∫

1
2πi

Tr F (h0|L)∧ωn−1 =
∫

1
2πi

Tr (F (h0)Π)∧ωn−1−
∫

|Π⊥∂0Π|2.

The term∫
1

2πi
Tr (F (h0)Π) ∧ ωn−1 =

∫
1

2πi
Tr ((ΛF (h0) + 2πiμIE)Π) · ωn

=
∫

1
2πi

Tr (ΛF (h0)) · ωn +
rankF

rankE
deg E.

By applying the system (5), Uhlenbeck-Yau proved that∫
1

2πi
Tr (ΛF (h0)) · ωn ≥

∫
|Π⊥∂0Π|2.

This implies μ(L, ω) ≥ μ(E, ω), contradicting to E being Mumford-
Takemoto stable.

“The most important development is the work of Uhlenbeck and Yau
who have proved (this theorem) in full generality, · · · their proof is probably
the most natural and display clearly the role of stability,” commented by
Donaldson [9, page 231]. In the same paper, he gave a simplified proof of
Uhlenbeck-Yau’t theorem for project manifolds.

4. Further developments

Along several directions, Uhlenbeck-Yau’s theorem has been generalized.
In the following we give an incomplete account of these developments.

The first direction is for more general complex manifolds. Buchdahl first
considered the case where M is a complex surface endowed with a hermitian
metric whose hermitian form ω satisfies ∂∂̄ω = 0 [3]. Because M is a surface
and ∂∂̄ω = 0, we can use Chern forms C1(E, h) of any hermitian bundle
(E, h) to represent its first Chern class and define its ω-degree

(7) deg E =
∫

C1(E, h) ∧ ω.

By the transgression formula for Chern forms, the degree is well defined.
Using this, Buchdahl defined the notion of ω-slope stable and proved the
surface analogue of Donaldson’s existence theorem for ω-slope stable vector
bundles. Shortly after, Li-Yau generalized Buchdahl’s result to high dimen-
sional hermitian manifolds M with hermitian form ω satisfying ∂∂̄ωn−1 = 0,
for n = dimM [19]. Adopting the technique of Uhlenbeck-Yau, they proved
that Uhlenbeck-Yau theorem holds for this class of compact hermitian man-
ifolds. We mention that the existence of HYM-connections on hermitian
manifolds has been used to study class VII surfaces [20, 21, 31].

Donaldson-Uhlenbeck-Yau’s theorem has also been generalized to slope-
stable reflexive coherent sheaves, by Bando-Siu [2]. They first introduced the
notion of admissible metrics. An admissible metric on a torsion-free sheaf is
a Hermitian metric on its locally free part such that its curvature F is square
integrable and the contraction ΛF is uniformly bounded. They proved that
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any reflexive sheaf admits an admissible Hermitian metric, and any sequence
of HYM metrics converges to an admissible HYM metric. Applying blowing
up technique, they proved that any slope stable reflexive sheaves admits an
admissible HYM metric.

Built upon an earlier work of Hitchin [13], Simpson studied Higgs bundle
on a complex manifold M [28], which are pairs (E, θ) of holomorphic vector
bundles E and holomorphic maps (Higgs fields) θ : E → E ⊗Ω1

M , integrable
in that θ ∧ θ = 0. One defines the notion of slope stability by considering
sub-Higgs sheaves F ⊂ E. The analogous of the ∂̄-operator on a vector
bundle is the mixed operator D′′ = ∂̄ + θ; using a hermitian metric on E,
one defines θ̄ and thus define D′ = ∂ + θ̄. Finally, one defines the curvature
to be F (h) = D′ ◦ D′′ + D′′ ◦ D′, and call h a HYM metric if ΛF = λ · id.

Adopting the proof of Uhlenbeck-Yau, Simpson proved that every slope
stable Higgs bundle E has a HYM metric. If θ ∧ θ = 0, and c1(E) = 0
and c2(E) · [ω]n−2 = 0, then the connection is flat. One application of this
existence theorem is to give a criterion for uniformization.

The proof of Uhlenbeck-Yau offers more than the existence of HYM
metrics for stable objects. Over a Kahler manifold M , when E is not slope
stable, the non-convergence of the solutions hε (or rather the Yang-Mills
flow ht) gives rise to the Hardar-Narasimhan filtration of E. As E is not
slope stable, the direct sum of the graded pieces of the Hardar-Narasimhan
filtration forms gr(E). Let gr(E)∗∗ be the double dual of gr(E), which is
a direct sum of slope stable reflexive sheaves; let Zsing be the support of
gr(E)∗∗/gr(E). Then the works of Daskalopoulos, Jacob, R̊ade, Sibley, and
Wentworth [5, 6, 14, 25, 26, 27] shows that the Yang-Mills flow ht, up
to unitary gauge transformations, converges uniformly on every compact
subset of M − Zsing to an admissible metric on gr(E)∗∗ that is a direct sum
of admissible HYM metrics on each stable factor of gr(E)∗∗.

The last generalization we will mention is the existence of Supersymmet-
ric String theory with torsion. This is a system introduced by Strominger
[30] on a pair of hermitian metrics on the base complex manifold M and
an auxiliary complex vector bundle E on M satisfying c1(M) = c1(E) = 0
and c2(M) = c2(E). A trivial solution is when M is Kahler and E is slope
stable, then the solution is given by the Calabi-Yau metric on M and the
HYM metric on E. When M is not Kahler, the solution of this system con-
sists of a balanced hermitian metric on M plus a HYM metric on E that
satisfy a transgression on c2(M) = c2(E). This system is a generalization of
HYM metrics for not necessarily Kahler Calabi-Yau threefolds.

By a perturbation argument, Li-Yau produced a non-trivial solution on
a class of Kahler Calabi-Yau threefolds [18]. By a direct existence argument,
Fu-Yau constructed the first example of non-trivial solutions of such a system
over a non-Kahler Calabi-Yau base manifold [11].
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