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ABSTRACT. We discuss the optimal regularity of solutions to degener-
ate elliptic and parabolic fully nonlinear partial differential equations, in
particular the evolution of a hypersurface M in R"*! by powers of its
Gaussian curvature and other nonlinear functions of its principal curva-
tures. We will also discuss the regularity question related to the Weyl
problem with nonnegative curvature, which involves a fully-nonlinear
degenerate elliptic equation of Monge-Ampere type.

1. Introduction

We will survey works concerning the optimal regularity of solutions to
degenerate elliptic and parabolic fully nonlinear partial differential equations
that are motivated from geometric problems. These include the evolution of
a hypersurface in R"*! by powers of its Gaussian curvature and other non-
linear functions of its principal curvatures. We will also discuss a regularity
question related to the Weyl problem with nonnegative curvature, which in-
volves a fully-nonlinear degenerate elliptic equation of Monge-Ampere type.
Our point of view is to treat such problems by means of a geometric approach:
we use the intuition provided by simple geometric models to obtain sharp
regularity results in these classical nonlinear partial differential equations
and discover new phenomena. Some of the techniques that will be described
here were initiated from the author’s joint work with Richard Hamilton [32]
on the C*°-regularity of the free boundary for the porous medium equation
and they were later extended to a number of parabolic fully-nonlinear de-
generate geometric flows. The author would like to express her gratitude to
Richard Hamilton for years of fruitful collaboration and many happy hours
of stimulating mathematical discussions.

The results by the author presented in this article were partially supported by NSF
grants: 1266172, 0102252, 0604657 and the ESPRC at the Imperial College, London.
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One of the simplest models of nonlinear diffusion is the porous medium
equation

(1.1) up = Au™

for a nonnegative scalar function u(z, t) defined on z € R™. In spite of its sim-
plicity, this equation appears in a number of physical and geometric problems
and its rich analytical properties provide an intuition for many more complex
nonlinear models of diffusion, including fully nonlinear geometric problems.
It is well known that (1.1) with m > 1 describes the flow of an isotropic
gas through a porous medium [71]. Another application refers to heat radi-
ation in plasmas [90]. Written in divergence form u; = div(mu™ ! Du) we
see that the diffusion coefficient d(u) := mu™~! vanishes when u = 0, in
other words the equation becomes degenerate at points where the solution
vanishes. This results to finite speed of propagation a striking difference with
the heat equation. As a result, solutions are not necessarily smooth and in
fact C* is the optimal regularity of solutions [18]. However, the optimal
Holder exponent « is still an open question. When 0 < m < 1, equation
(1.1) becomes fast-diffusion [59] and arises in various physical applications,
in particular in models of gas-kinetics [21, 29], in diffusion in plasmas [11],
and in thin liquid film dynamics driven by Van der Waals forces [46, 47].
Also it arises in geometry; the case m = (n — 2)/(n + 2), in dimensions
n > 3 describes the evolution of a conformally flat metric by the Yamabe
flow [56, 89, 28, 79, 12, 13], and the case m = 0, n = 2 describes the Ricci
flow on surfaces [57, 30, 88]. When m < 0, equation (1.1) corresponds to
ultra-fast diffusion [82, 31]. In dimension n = 1, it describes a plane curve
shrinking along the normal vector with speed depending on the curvature
[45] and in higher dimensions resembles the equation satisfied by the mean
curvature in the Inverse mean curvature flow [65]. For more information on
works related to equation (1.1), we refer the interested reader to the books
(34, 83, 84].

Another quasi-linear model of a similar nature is the p-harmonic heat
flow
(1.2) u; = div(|Dul’~! Du)

for a nonnegative scalar function u(z,t) defined on x € R™ and exponents
p > 0. The case p > 1 corresponds to show diffusion and the case 0 < p < 1
to fast diffusion. We refer the reader to the book by DiBenedetto [41] for an
overview on this well studied model. There is a natural generalization of (1.2)
to p-harmonic maps between Riemannian manifolds, where the pioneering
work of K. Uhlenbeck [81] shed light on understanding the regularity of
solutions. We will see in section 2 that the Gauss curvature flow (2.1) with
exponent p > 0 may be viewed as a fully-nonlinear analogue to equations
(1.1) and (1.2).

Going back to the degenerate case when m > 1 in (1.1), it is well
known that if the initial data wu(-,0) is compactly supported in R™, then
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the solution u(-,t) will remain compactly supported for all time ¢. Hence the
boundary of the support of u(-,t), namely the surface I'y = 9{u(-,¢t) > 0}
behaves like a free-boundary propagating with finite speed which is given by
the gradient of the pressure function f := mu™"!. The optimal reqularity
of the free-boundary I' is closely related to the optimal regularity of the
pressure function f, and its understanding has been a long standing and
widely studied open problem. We refer the reader to the well known works
on the subject by S. Angenent, D. Aronson, L. Caffarelli, A. Friedman, H.
Koch, J-L. Vazquez and N. Wolanski [9, 10, 18, 20, 19, 20| (among others)
and their references. These works concern with the optimal regularity of the
free-boundary for large times.

In [32] the author, jointly with R. Hamilton, established the short time
C™ regularity of the pressure f := mu™ ! up to the free-boundary and the
free-boundary I' under the natural initial (t=0) non-degeneracy condition
|D fo| > ¢ > 0 that holds at the free-boundary and guarantees that the free-
boundary will instantly move. As a result, the diffusion (even degenerate)
will result to the smoothing of the free-boundary. Their approach was
different that in the previous regularity works mentioned above. It relies
on sharp a priori estimates on the linearized equation of the pressure f near
the free-boundary which are scaled according to a singular metric (distance
function) that is appropriate for this degenerate problem (c.f. in the next
section). A similar approach was introduced (independently to [32]) by H.
Koch [67] who established the short time W2? and C** regularity of the
solution as well as the C'™ regularity of the solution at large times. Recently,
it was further developed by C. Epstein and R. Mazzeo [43] in connection
to problems in mathematical biology involving degenerate equations on
domains with corners.

To shortly describe the main point of view in [32, 67], let us recall that
the pressure function f := mu™ ! satisfies the equation

fe=FAf+(m =17 Df.

Assuming the non-degeneracy condition |Df| > ¢ > 0 near the free-
boundary, it follows that around any free-boundary point P € I the
linearization of this equation (in an appropriate coordinate system that fixes
the free-boundary) can be modeled on the linear degenerate operator

L[h] :== hy — (x1 Ah 4+ 0 03, h) , onz; >0

with 8 > 0 and no boundary condition at x1 = 0. The diffusion is governed
by the cycloidal metric

1.3 ds* = =iz 97
(1.3) o
whose geodesics are cycloids. The corresponding distance function is given by

S(xl x2) _ D it |=7Czl - 1’3
b

Va2 + 0 el — a2
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with parabolic distance between two points P; = (x!,#;) and P? = (22,t5)
given by
5(PY, P?) = s(z!,2®) + /[t — ta].

In [32] the author and R. Hamilton obtained sharp a priori C2* estimates
for solutions to the equation L[h] = ¢ that are scaled according to the
cycloidal metric s. Similarly, sharp W?P estimates, a Harnack inequality and
CH estimates were established by H. Koch in [67]. These estimates lead to
the short-time C*°-regularity the pressure function f up to the interface I
and the interface itself [32, 67]. They also imply the C'*°-regularity of the
free-boundary for large times [67], improving the older results by Caffarelli,
Vazquez and Wolanski [19] which show that the free-boundary is of class
Ch. We will see in sections 2 and 3 that a similar approach leads to
the optimal regularity of solutions to the Gauss curvature flow and other
fully-nonlinear equations. We note that advancing free-boundaries may hit
each other creating singularities, hence one does not expect that the free-
boundary remains regular for all time ¢ > 0.

Degeneracies of the type described above often arise in various elliptic
and parabolic geometric equations, in particular in the evolution of a convex
hyper-surface M; embedded R™"! by a speed o which is a function of
its principal curvatures. Each point P € M,; moves in the inward normal
direction v by the flow

or _
8t = 0o V.

The most classical flow (1.4) is the Mean curvature flow, where o = H,
the mean curvature of the surface (c.f. [61]). This is a well known geometric
model of a quasilinear parabolic PDE that corresponds to the heat equation
on the evolving surface M;. As a result, weakly convex surfaces become
instantly strictly conver and smooth [61, 42]. It is widely studied, especially
due to its exotic singularity models that appear in the non-convex case. We
refer the reader to the fundamental works by G. Huisken and C. Sinestrari
[62, 63, 64] and their references.

A fully-nonlinear case of an equation (1.4) which is of particular interest
is the evolution of an n-dimensional compact convex hypersurface M; em-
bedded R™*! by a power p of its Gaussian curvature K = Ay - - - \,, namely
o(A1, -y An) = KP, p > 0in (1.4) and v the inward normal vector at P.
Among the different powers of exponents p those of special interest is the
classical case p = 1 and the affine flow p = 1/(n + 2) which appears to be
the simplest invariant flow in affine differential geometry; up to a suitable
re-parametrization it is the motion of a hypersurface in the direction of its
affine normal vector. This flow also appears of interest in image analysis.

(1.4)

The Gauss Curvature Flow serves as a geometric prototype for a par-
abolic fully-nonlinear equation of Monge-Ampere type. In addition to its
fully-nonlinear character, the complexity of this flow is related to the fact
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that the Gaussian curvature, the speed of the hypersurface, controls only
the product of the principal curvatures, leaving much freedom for degenera-
ctes and singularities that occur as one or more principal curvatures become
arbitrarily small and others arbitrarily large.

The Monge-Ampére equation on R™, in the elliptic setting, has been
extensively studied in the pioneering works by A.D. Alexandrov, L. Caf-
farelli, L..C. Evans, N.V. Krylov, L. Nirenberg, A. V. Pogorelov, J. Spruck,
N. Trudinger and S.T. Yau among many others. We refer the reader to a
survey by C. E. Gutiérrez [53] for references on this important equation.

The classical Gauss curvature flow with exponent p = 1 was first
introduced by W. Firey in [44] as a model for the wearing process of stones.
It follows from the works of B. Chow [26] and K.-S. Chou (K. Tso) [80] that
uniformly strictly convex hypersurfaces will become instantly C°*°-smooth
and will remain smooth up to their extinction time. However, weakly convex
surfaces which are not necessarily uniformly strictly convex, may lead to
degeneracies. This phenomenon was first observed by R. Hamilton [55] who
showed that if the initial surface is weakly convex with flat sides, then each
flat side will persist for some time. Other related phenomena were observed
by D. Chopp, L.C. Evans, and H. Ishii [25]. Since the equation remains
degenerate, at least for some time, the optimal regqularity of solutions poses
an interesting analytical problem. It will be further discussed in section 2.

It is apparent from the results in [26, 4, 7, 39] that the homogeneity of
the equation (1.4) plays an important role in the regularity of solutions. In
[3] B. Andrews studied the evolution of convex hypersurfaces by speeds o
which are homogeneous of degree one functions of the principal curvatures
of the surface. In particular, the equations considered in [3] include the
evolution by the n-th root of the Gaussian curvature which was previously
studied by B. Chow in [26] and also speeds that are quotients of successive
elementary symmetric polynomials of the principal curvatures. In section 3
we will discuss results concerning the optimal regularity of solutions in such
models. In particular, we will discuss a free-boundary problem associated
with these flows that appears to be of a different nature than in previously
studied cases such as the porous medium equation and the Gauss curvature
flow.

One of the most classical problems in differential geometry which is
closely related to the theory of the elliptic Monge-Ampere equation is the
Weyl problem with nonnegative curvature, posed in 1916 by Weyl himself:
Given a Riemannian metric g on the 2-sphere S? whose Gauss curvature
is everywhere positive, does there exist a global C? isometric embedding
X : (S?,9) — (R3,ds?), where ds® is the standard flat metric on R3?

H. Lewy [69] solved the problem under the assumption that the metric
g is analytic. The solution to the Weyl problem, under the regularity
assumption that g has continuous fourth order derivatives, was given in
1953 by L. Nirenberg [72].
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P. Guan and Y.Y. Li [49] considered the question: If the Gauss curvature
of the metric g is nonnegative instead of strictly positive and g is smooth, is
it still possible to have a smooth isometric embedding ¢

We will see in section 4 that the answer to this problem is related to
the local optimal regularity of solutions to the degenerate Monge-Ampére
equation

(1.5) det D?u = |z|? g(z), r € R?

with ¢ > 0 and we will discuss some recent progress related to this old
problem.

2. Gauss curvature flow

We consider in this section the motion of a convex n-dimensional hyper-
surface M; embedded in R™*! under the Gauss curvature flow with exponent
p, namely the equation

oP
YL _ P
(2.1) 5 = K'v

where each point P moves in the inward direction v to the surface with
velocity equal to the p-power of its Gaussian curvature K. We will address
the question of the optimal regularity of a viscosity solution M; to (2.1) and
we also discuss the free-boundary problem associated to surfaces M; with
flat sides.

The classical case p = 1 of the Gauss curvature flow (2.1) was first
introduced by W. Firey [44] in 1974 as a model for the wearing process of a
stone tumbling over a uniformly abrasive plane (the beach). Assuming that
the pebble occupies an open bounded and convex region in R at time t =
0, then the number of collisions with a region U of the stone is proportional
to the measure of the normal image v(U) = {vp: P € U} C S" of U that
is equal to fU K dH™. The rate at which the stone wears away at a point P
is given by p(vp) Kp for some positive function p on S™. In the case where
p is a constant, it follows that the surface of the pebble evolves by (2.1).

Assuming the existence, uniqueness and regularity of the solution, Firey
showed in [44] that compact surfaces which are symmetric about an origin
contract to round points. He also conjectured that the result should hold
without any symmetry assumption. The existence and uniqueness of a C'*°
solution to the Gauss curvature flow, under the assumption that the initial
surface is compact and uniformly convex, was established by K.-S. Chou (K.
Tso) [80]. In the same paper it was also proved that the Gauss curvature
flow contracts the initial convex hypersurface into a point in finite time.
However, Firey’s conjecture remained open for more than a decade, until B.
Andrews [6] showed that the normalized flow of a two-dimensional compact
surface in R3 converges to a round sphere, hence proving the conjecture of
Firey. Up to date, the conjecture remains open in higher dimensions and
poses a challenging open question. In a recent work by P. Guan and L. Ni
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[51], the C*° convergence of the n-dimensional normalized Gauss curvature
flow to a soliton was shown, shedding new light towards the solution of this
question.

Although K.-S. Chou’s work shows that compact and uniformly convex
surfaces becomes instantly C'*° smooth, in general convex surfaces that are
not necessarily uniformly strictly convex, may not become instantly strictly
convex and smooth (c.f. [55], [25]) and the optimal regularity of solutions
poses an interesting problem that will be further discussed in this section.

Equations of the form (2.1) for different powers of p > 0 were studied
by B. Andrews in [7] following previous works by B. Chow [26] for the
homogeneous of degree one case p = 1/n and by B. Andrews [4] for the
affine case p = 1/(n + 2). It was proven in [7, 26] that when p < 1/n,
then any compact and convex hyper-surface will become instantly strictly
convex and smooth. However, examples are given in [7] for flows (2.1) with
p > 1/n, where the hyper-surfaces do not immediately become smooth or
strictly convex.

In dimension n = 2, the regularity of solutions to the Gauss curvature
flow p = 1 is well understood. It follows from the work of B. Andrews in
[6] that, in this case, all compact surfaces become instantly of class C1:!
and remain so up to a time when they become strictly convex and therefore
smooth, before they contract to a point. Also, it follows from the works by
the author with R. Hamilton [33] and K. Lee [36], that C'! is the optimal
regularity in this case.

In what follows, the regularity of the Gauss curvature (2.1) flow in any
dimension n > 2 and for different exponents p > 0 will be discussed. We
will also discuss the optimal regularity of surfaces with flat sides and the
regularity of interfaces.

2.1. C% Regularity. We will discuss in this section an approach to
the CL regularity of viscosity solutions to the Gauss curvature flow (2.1),
for any power p > 0, which was given by the author and O. Savin in [39]. In
that work, the more general problem of the regularity of viscosity solutions
of the parabolic Monge-Ampére equation

(2.2) ug = bz, t) (det D?u)P, reQCR"

with exponent p > 0 was discussed. The coefficient b(x,t) is assumed to be
only bounded, measurable and to satisfy the ellipticity condition

(2.3) A< bz, t) <A

for some fixed constants A > 0 and A < oco. The function v is assumed to
be convex in x and increasing in .
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If we express a surface M; evolving by (2.1) locally as a graph z,+1 =
u(x,t), with x € Q C R™, then the function u satisfies the parabolic Monge-
Ampere type equation
(det D?u)P

(2.4) U = a1
(1+ [Duf2) ™2

Since any convex solution satisfies locally the bound |Du| < C, equation
(2.4) becomes of the form (2.2).

In addition to the regularity results for the Gauss curvature flow (2.1)
which were mentioned above the C® and W?P interior estimates for
equations similar to (2.2) were established by Q. Huang and G. Lu for the
case of exponent p = 1/n in [60] and by C.E. Gutiérrez and Q. Huang
for p = —1 in [54]. Let us remark that the equations (2.2) for negative and
positive powers are in some sense dual to each other. Indeed, if u is a solution
of (2.2) and u*(&,t) is the Legendre transform of u(-,¢) then

uf = —b(&,t)(det D*u*)7P, A< b(E,t) <A

If w is a solution to the Monge-Ampere equation
det D?w =1, reQCR?

then u(x,t) = w(x) + t solves equation (2.2) with b = 1 for any p. The
question of regularity for the Monge-Ampere equation is closely related to
the strict convexity of w. Strict convexity does not always hold in the interior
as it can be seen from a classical example due to Pogorelov [76]. However,
Caffarelli [16] showed that if the convex set D where w coincides with a
tangent plane contains at least a line segment then all extremal points of D
must lie on 0.

In [39] a parabolic version of Caffarelli’s result was shown by the author
and O. Savin, for a solution of (2.2). This result says: if at a time ¢ the convex
set D where u equals a tangent plane contains at least a line segment then,
either the extremal points of D lie on 09 or u(-,t) coincides with the initial
data on D. We refer the reader to Theorem 5.3 in [39]. The second behavior
occurs for example in those solutions with flat sides. In other words: a line
segment in the graph of u at time t either originates from the boundary data
at time t or from the initial data.

A similar result for angles instead of line segments was also established in
[39]. That result played a crucial role for deriving the C' and C%* estimates
that followed. More precisely, it was shown: if at a time t the solution u
admits a tangent angle from below, then either the set where u coincides
with the edge of the angle has all extremal points on OS2 or the initial data
has the same tangent angle from below. We refer the reader to Theorem 6.1
in [39].



REGULARITY IN DEGENERATE DIFFUSION 91

The O regularity of solutions to (2.2) is closely related to understand-
ing whether or not solutions separate instantly away from the edges of a tan-
gent angle of the initial data. It turns out that the exponent p :=1/(n — 2)
is critical in the following sense: (i) When p > 1/(n — 2) the set where u
coincides with the edge of the angle may persist for some time (Proposi-
tion 4.8 in [39]), hence C' regularity does not hold in this case without
further hypotheses. (ii) When p < 1/(n — 2), then at any time ¢ after the
initial time, solutions are C'%® in the interior of any section of u(-,t) which
is included in the considered domain © (Theorem 8.1 in [39]). (iii) For the
critical exponent p = 1/(n—2), solutions are C! with a logarithmic modulus
of continuity for the gradient (Theorem 8.2 in [39]).

In the case of any power p > 0, CH* estimates were shown in [39] at
all points (x,t) where u separates from the initial data (see Theorem 8.4).
Also, assuming that the initial data is C*® in some direction e it was shown
that the solution is C** in the same direction e for all later times (Theorem

8.3).

In particular, the methods in [39] can be applied for solutions with flat
sides. If the initial data has a flat side D C R™, then solutions are Cb* for
all later times in the interior of D. A similar statement holds for solutions
that contain edges of tangent angles: they are C™“ along the direction of
the edge for all later times.

We summarize some the results mentioned above in the following theo-
rem.

THEOREM 2.1 (C1* Regularity of solutions [39]). Let u be a viscosity
solution of (2.2) in Q x [0,T] with u(x,0) > 0 in Q, u(x,0) > 1 on 0.
Then, there exists a > 0 depending on n, \, A, p such that:

(i) u(x,t) is C¥* in x at all points (z,t) with x an interior point of the
set {u(x,0) =0} and u(z,t) < 1.

(ii) If u(x,0) > |z,| then u(x,t) is C1 in the x' variables at all points
((2/,0),t) with 2’ an interior point of the set {z’ : wu((z2,0),0) = 0} and
u(z,t) < 1.

For the proofs of the above results and further discussion we refer the
reader to [39].

2.2. Worn stones with flat sides. In his work titled as “worn stones
with flat sides” [55], R. Hamilton considered the evolution of a convex two-
dimensional surface M; in R3 under the Gauss curvature flow (2.1) with
p = 1, in the case where the initial surface has flat sides and as a consequence
the parabolic equation describing the motion of the hypersurface becomes
degenerate at points where the curvature becomes zero. He showed, that if
the initial surface My has a flat side, then a little later there will be a smaller
flat side and it takes some positive time for the surface to become strictly
convex. Hence, the junction I' between each flat side and the strictly convex
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part of the surface, where the equation becomes degenerate, behaves like a
free-boundary propagating with finite speed. This phenomenon is a result
of the degeneracy of the equation and it is of a very similar nature as to
the free-boundary occurring in the porous medium equation (1.1) that was
discussed in the introduction. We remark that similar phenomena hold in
any dimension n > 2 and for different exponents p in (2.1) (c.f. in [66]).

We will next discuss next the optimal regularity question in this free-
boundary problem. To simplify the exposition we will first restrict ourselves
to the simplest case where p = 1 and n = 2 in (2.1) (the case considered
in [55] and [33, 36]) and the surface M; has only one flat side. At the end
of this section we will discuss known results and open problems concerning
higher dimensions n > 3 and other exponents p.

In [33] the author, jointly with R. Hamilton, established the short time
solvability and the optimal regularity of the Gauss curvature flow with flat
sides, by viewing the flow as a free-boundary problem. Assume that the initial
weakly convex and compact surface My embedded in R3 has only one flat
side, namely

My = Mg U M
where M& is the flat side and Mg is the strictly convex part of the surface.
Since the equation is invariant under rotation, we may assume that

My C R} = {(z,y,2) e R®: 2>0}

and that the flat side M& is the closure of an open set and it is contained
in the z = 0 plane. By the results in [55], the flat side will persist for some
time, in other words

My = M} UM? C R
with M} contained in the z = 0 plane. We denote by I'; the free-boundary
Iy :=oM}! = M} n M?.

Let us denote by 7. the extinction time of the flat side M}. It is known
that T, strictly less than the time 7' at which the surface M; itself shrinks
to a point (c.f. in [6]). Then, for 0 < t < T, the lower part of the surface
M; can be written as the graph of a function

z=u(p,t)
on the set
(2.5) Q= {p:=(z,y) € R*: |Du|(p,t) < 0 }.

This is because the results in [6] guarantee that the lower part of the surface
will not turn vertical before the flat side shrinks to a point. Since M; solves
the Gauss curvature flow, the function u will satisfy the equation

det D?u

2.6 - 7 -
(2.6) ut (1 + | Dul2)3/2
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by a standard computation. On the flat side we will always have z = 0, while
on the strictly convex side we will have that z > 0.

Motivated by the theory for the porous medium equation, one introduces
the pressure function f := v/2u which satisfies the equation

f det D2f + f2f.,
(2.7) fi = 2 213/2
L+ f2Df12)¥
where 7 denotes the tangential direction to the level sets of f(-,t) and v
denotes the outward (increasing) normal direction. Our basic assumption on

the initial surface is that the initial pressure fy satisfies the non-degeneracy
condition

(2.8) Oufo> A and % _fo(p) > X Vp e Ty

for some positive number A > 0. Conditions (2.8) guarantee that the
interface I'g will start to move at any point at time ¢ = 0 making the Gauss
curvature flow to behave as a free-boundary problem.

To understand better the degeneracy of equation (2.7) one performs a
local coordinate change, near an interface point Py = (xq, yo, to) which fizes
the free-boundary: assume that the time tg is sufficiently close to zero, so
that the non-degeneracy condition (2.8) holds at ¢y, with a possibly smaller
constant A > 0. Also, we may assume (after rotating the coordinates) that
at Py the outward normal to the free-boundary I';, has the direction of the
e1 coordinate (the x-axis). Hence, we can solve around the point Py, the
equation z = f(x,y,t) with respect to x, yielding to a map

T = f(z’ y’ t)
defined for all (z,y,t) sufficiently close to Qo = (0,yo,to). The function f
evolves by the fully nonlinear degenerate equation
. —zdet D2f + f.f,

(2.9) o 2D fed )

(2 + [+ 2300
The free-boundary f = 0 has now been transformed into the fized boundary
z = 0. It shown in [33] that the linearized operator of equation (2.9) around
the initial data is of the form

(2.10) L[h] :=hy — (z a11hz, + 2\/2a12hzy + agahyy + bih. + bohy + ch)

where, under (2.8) and certain initial regularity conditions, the matrix (a;;)
(that depends on the initial data) is strictly positive and b; > 6 > 0, for
some 6 > 0.

Consider the model equation

(2.11) hi = zh., + hyy +0h,
with 8 > 0, on the half-space z > 0, and no extra boundary conditions on h
along z = 0. The diffusion is governed by the Riemannian metric ds where

d 2
(2.12) ds® = % + dy?.
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We remark that this is similar to the cycloidal metric (1.3) which appears
in the free-boundary problem for the porous medium equation, but simpler
in some way, as it becomes singular only in one direction. The distance
function between two points P! = (z1,%1) and P? = (22,12) in the metric s
is computed to be equivalent to

(2.13) s(P', P?) = |\/z1 — V2| + ly1 — 12

with parabolic distance between two points P! = (z1,91,t1) and P2 —
(22,92, t2) defined by

(2.14) s(P', P?) = |y/z1 = V| + Iy — y2| + VIt — tol.

We will denote by C¢, a € (0,1), the space of Hélder continuous functions
with respect to the metric s, and by C?T® the space of all functions h such
that

h7 hz: h‘yv ht7 thza \/ghzw hyy € C?

We will also say, in the sequel, that the pressure f € C2+® near the interface
I, if the transformed function f in the new coordinates which fix the free-
boundary satisfies f € C2+.

The following result concerning the short time existence and optimal
regularity of the Gauss curvature flow with flat sides was proven in [33].

THEOREM 2.2 (Short time existence and regularity [33]). Assume that at
t =0, the pressure function fo := /2ug is of class C**® up to the interface
z =0, for some 0 < a < 1, and satisfies the non-degeneracy condition (2.8).
Then, there exists a time T > 0 for which the Gauss curvature flow (2.7)
admits a solution My on 0 <t < 7 for which the pressure function f = \/2u
is C™°- smooth up to the interface z = 0. In particular the free-boundary 'y
will be a smooth curve for allt in 0 <t < T.

Discussion on the proof of Theorem 2.2. The proof of Theorem 2.2 is based
on Schauder a-priori estimates for solutions to degenerate equations of the
form L[h] = g (with L given by (2.10)) between the spaces C2*® and C2,
0 < a < 1. We refer the reader to Theorem 5.1 in [33]. The proof of
the Schauder estimate is based on local derivative estimates for the model
operator and the method of approximation by polynomials that was inspired
by the works M. Safonov [77, 78], L. Caffarelli [15] and L. Wang [85, 86].
It been observed in [33] that Schauder estimates between the above defined
weighted Holder spaces, according to the singular metric s, are optimal .

REMARK 2.1 (Global coordinate change). The local coordinate change
that was introduced above is not sufficient to give the existence of a
global solution. For this, an appropriate global change of coordinates that
transforms the free-boundary I'; to the fixed boundary 0D of the unit disc
D C R? is needed. We refer the reader to section 8 in [33] for further details.
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REMARK 2.2 (Comparison with previous results). Andrews in [6] proves
the existence of a unique convex viscosity solution M; of the two-dimensional
Gauss curvature flow with initial data any weakly convex compact surface
My. This solution exists up to the time T when the area of the surface
shrinks to zero. He also shows that M, is of class C1! for all 0 < ¢t < T
and becomes strictly convex and smooth at a time T, with T, < T. The
novelty of Theorem 2.2 is that it provides the C*° regularity of the pressure
function f and the strictly convex part of the surface M2 up to the interface
I';, as well as the smoothness of the interface itself. In particular, it shows
that in the two-dimensional case C'! is the optimal regularity for the whole
surface M! for as long as the fat side persists. Also, while Andrews’ result
in [6] is strictly two-dimensional, the result of Theorem 2.2 can be easily
generalized to the n-dimensional Gauss curvature flow, for any n > 3, to
provide the C'® regularity of the pressure f := u(""D/" up to the interface.
This in particular implies that the surface M; is of class C1Y/(=1) and that
this is the optimal.

Since Theorem 2.2 deals only with the short time regularity of the flow
the natural question is whether the C'°*° regularity of the pressure f continues
to hold up to the focusing time T, of the flat side, after which the surface
becomes strictly convex and smooth. This was answered by the author and
K. Lee in [36] and is summarized in the next theorem.

THEOREM 2.3 (Long time regularity [36]). Under the assumptions of
Theorem 2.2, the pressure function f = \/2u of the solution is C*- smooth
up to the interface z = 0 on 0 < t < T.. In particular the free-boundary
[y = MY N M? is C*®- smooth for all t in 0 <t <T,.

Discussion on the proof of Theorem 2.3. The basic step in the proof of
Theorem 2.3 is to show that for all ¢ < T, the transformed pressure function
f in the coordinates that fix the free-boundary belongs to the space (o} +h ,

for some 0 < 8 < 1, namely that fz, fy and ft € CP. Each derivative h of f

satisfies an equation of the form L[h] = 0 where L is an operator of the form
(2.10), with coefficients involving the first and second derivatives of f, hence
of f. To obtain the Holder continuity of h one needs to establish the analogue
of the well known result by Krylov and Safonov [68] on the Hélder regularity
of solutions to parabolic operators with bounded measurable coefficients, for
degenerate operators of the class (2.10). This is the main result in the work
by the author and Lee in [37].

However, to apply the results in [37], one needs to show that the matrix
[a;j] in (2.10) is uniformly elliptic and that all the coefficients of (2.10) are
bounded with by > 6, for some 6 > 0. Since all a;; and b; involve first and
second derivatives of f, and hence of the solution f of (2.7), one needs to
establish Pogorelov type a-priori bounds on the first and second derivatives
of f, holding on 0 <t < 7, for any 7 < T,. In particular one needs to prove
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that the non-degeneracy condition (2.8) continues to hold near the interface
forall0 <t <71 <T,..

REMARK 2.3 (Focusing behavior). Theorem 2.3 does not provide any
information as to the exact regularity of the surface ¥7, at the vanishing
time 7T, of the flat side. Indeed, most of the estimates established in [36]
hold for time 0 < t < T, and are violated at time T,. The results in [6] show
that the surface Y, is of class Cbl. In [35] the author and K. Lee showed
that Y7, cannot be more regular than of class C?9, for some § < 1. It has
been observed by the author and K. Lee that the flat side shrinks to a point
at time T.. However, the focusing shape of the free-boundary remains an
open equation: will the free-boundary I'y become circular as it shrinks to a
point ?

REMARK 2.4 (Higher dimensions and other exponents). The C1® regu-
larity of solutions to equations (2.1) that was shown in [39] and summarized
in Theorem 2.1 hold in any dimension n > 2 and for any power p > 0. We
will next briefly discuss the generalization of Theorems 2.2 and 2.3 to higher
dimensions and other exponents p.

The analogues of the results in Theorems 2.2 and 2.3 for the p-power
Gauss curvature flow (2.1) and 1/2 < p < 1 have been shown by L. Kim, K.
Lee and E. Rhee in [66]. We will next discusshigher dimensionsn > 3. When
p < 1/nin (2.1), then it follows from the results in [7, 26| that weakly convez
solutions become instantly strictly conver and therefore, by well known
regularity results, C°° smooth. When p > 1/n, then it can be easily seen from
radially symmetric examples that flat sides persist for some time. In fact, the
sort time existence and regularity result in Theorem 2.2 can be generalized
(using very similar techniques as in [33]) to give that that corresponding

pressure function f := upiflipil will become instantly C*° smooth, under the
assumption that the initial surface satisfies the appropriate non-degeneracy
condition, namely that the initial pressure fy satisfies the analogue of (2.8).
However, the long time regularity result in Theorem 2.3 is still an open
question. The main difficulty here is to show that the higher dimensional
analogue of the non-degeneracy condition (2.8) continues to hold near the
interface (boundary of the flat side) at all times, as long as the flat side exists.
The proof of such an estimate involves the appropriate uniform control of
the principal curvatures of the surface near the interface. Controlling the
eigenvalues of the hessian of solutions to Monge-Ampére type of equations,
both elliptic and parabolic, often poses a challenging task.

2.3. The fate of rolling stones. We will now briefly discuss the
progress that has been made towards establishing Firey’s conjecture [44]
in any dimension n: a strictly conver compact solution M; to the Gauss
curvature flow contracts the initial surface to a spherical point.

It is known by the work of K.-S. Chou [80] that the Gauss curvature
flow contracts the initial to a point. In 1999 B. Andrews [6] proved Firey’s
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conjecture in dimension n = 2, by showing that the normalized Gauss
curvature flow converges to the round sphere. His result is based on a
pinching curvature estimate, which unfortunately uses that the surface is
two-dimensional in a crucial way. Since then, many attempts have been
made to generalize Andrew’s result in higher dimensions but have failed.

Regarding the flow (2.1) with different exponents p > 0, it is known (c.f.
[80, 26, 7]) that convex and compact surfaces evolving by (2.1) contract to
a point. In addition, when p € (1/(n + 2),1/n] for n > 2 (and additionally
for p € [1/2, 1] when n = 2) the normalized flow (or equivalently the rescaled
flow) converges to a round sphere (c.f. [26, 7, 8]). This result is no longer
true in the case of the affine flow p = 1/(n + 2) where the rescaled flow
converges to an ellipsoid [7]. The answer to Firey’s conjecture remains open
in the range of exponents p > 1/n, and particular when p =1 and n > 3.

It follows from the arguments in [7, 5, 51] that the limit of the rescaled
flow satisfies the elliptic equation

(2.15) (P,v) =cKP, c>0

namely it is a compact and convex soliton. Hence, the problem reduces to
that of the classification of compact and convex solutions to equation (2.15).
This appears to be a rather complex question which has been open for the
past decade.

We finish this section by noting an interesting recent work by P. Guan
and L. Ni [51] where the authors establish wuniform regularity estimates
for the normalized Gauss curvature flow in higher dimensions n > 3. In
particular, the convergence to a soliton in the C'*° topology is obtained. The
estimates in [51] are established via the study of a new interesting entropy
functional for the flow. As a by-product of this new entropy functional, the
non-negativity of B. Chow’s entropy [27] as well as the nonnegativity of W.
Firey’s entropy [44], is deduced. Related to these results is an earlier work
by R. Hamilton [58] where he obtained upper bounds on the diameter and
the the Gauss curvature for the normalized flow.

3. Q) flow

We will briefly discuss in this section the optimal regularity of viscosity
solutions to other full-nonlinear curvature flows (1.4) where the speed o
is a homogeneous of degree one function of the principal curvatures of the
surface.

In [23] the author, jointly with C. Caputo and N. Sesum, studied the
regularity of weakly convex surfaces M; embedded in R"*! (n > 2) by the
Qr-flow for 1 < k < n, namely the equation

P
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where each point P € M; of the surface M; moves in the direction of its
inner normal vector v by a speed which is equal to the quotient
Si(A)
Qr(N) = Snki)\
ey
of successive elementary symmetric polynomials of the principal curvatures
A= (A1,..., ) of M;. We recall that

SEN = D A
1<ip < <ip<n
When k = 1, equation (3.1) corresponds to the well studied Mean curvature
flow and will not be considered here. Our attention will focus to the cases
k > 2 where equation (3.1) may become degenerate if the initial data fails to
be strictly convex. Notice that in dimension n = 2 the case k = 2 corresponds
to the Harmonic mean curvature flow.

The evolution of convex hypersurfaces by equations of type (3.1) was
previously studied by B. Andrews [7], where he showed that for any strictly
convex hypersurface M; in R"*! the solution to (3.1) exists up to some finite
time 7" at which it shrinks to a point in an asymptotically spherical manner.
In [40], S. Dieter considered the evolution of smooth weakly convex hyper-
surfaces in R™™! with S? (A\) > 0 under the Qj-flow. She showed that
because of the condition S}’ ;(A) > 0, the speed @} of the hypersurface
becomes instantly strictly positive at time ¢ > 0, and consequently she
established the short time existence of the flow in this case.

The work in [23] focusses on the evolution of C'1'! weakly convex surfaces
under the Qp-flow, with no other assumption on the initial data. Such
surfaces may have flat sides or other sets of degenerate points. Nevertheless,
it was shown in [23] the long time existence and uniqueness of a C'+! solution
of (3.1) in a certain viscosity sense. This is stated next.

THEOREM 3.1 (Existence and uniqueness [23]). Let My be a compact
weakly conver hyper-surface in R which is of class CY'. Then, there
exists a unique viscosity solution of the (3.1) flow which is of class C!,
The solution exists up to the time T < oo at which the enclosed volume
becomes zero.

REMARK 3.1 (Comparison with the Gauss curvature flow). It follows
from the previous theorem that the Qi-flow enjoys better regularity than
the Gauss curvature flow (2.1) with exponent p > 1/n. In the latter case,
it was shown in section 2.1 that the optimal regularity of solutions is C'1®
with a depending on p and the the dimension n.

In the same work [23], the special case were the initial surface My has flat
sides was considered. Assume for simplicity that My C R’}fl has only one
flat side, namely My = MO1 U MO2 with M& flat (i.e. it lies on a hyperplane in
R™*+1) and Mg strictly convex. Since the equation is invariant under rotation,
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we may assume that M{ lies on the z,11 = 0 plane and that that Mg lies
above this plane. Then, the lower part of the surface My can be written as
the graph of a function

Tp+1 = uo(z1,- -+, Tp)

over a compact domain 2 C R" containing the initial flat side M}. We
define the pressure function
f=+vu

Let Ty denote the boundary of the flat side M{}. Our main assumption on
the initial surface My is that it is of class C'b!, the function f is C? up to
the flat side and it satisfies the following non-degeneracy condition, which
we call non-degeneracy condition (3.2):

(3.2) IDfl > X and [07fo] > A, onTy

for some number A > 0.

For each 1 <4,57 <n—1, [622] fo] denote the hessian of f in the directions
given by the vectors 7; and 7;. For each 1 <i < n — 1, 7; is defined so that
the set Span [y, -+, 7,-1] is parallel to the tangent hyperplane to the level
sets of f.

DEFINITION 3.2. We define & to be the class of convex compact hyper-
surfaces M in R™"*! so that M = M'UM?, where M! is a surface contained
in the hyperplane 2,1 = 0 with smooth boundary I', and M? is a strictly
convex surface, smooth up to its boundary I" which lies above the hyperplane
Tpy1 = 0.

REMARK 3.2. Any initial surface My in the class & is in particular a
CY1 surface. Hence, by Theorem 3.1, there exists a unique C'! solution M;
of (3.1) with initial data M.

Assume that z,41 = u(z1, -, oy, t) defines the hypersurface M; near
the hyperplane x,11 = 0, with 0 < t < 7 for some short time 7 > 0. The
following result was shown in [23].

THEOREM 3.3 (C*° regularity of the pressure). Assume that at time
t =0, My is a compact weakly convex hypersurface in R™ T which belongs
to the class & so that the pressure function fo := /ug is smooth up to
the interface Ty and it satisfies the condition (3.2). Let My be the unique
viscosity solution of the Qx-flow (3.1) for 2 < k < n with initial data M.
Then, there exists a time T > 0 such that the pressure function [ := \/u
is smooth up to the interface x, 11 = 0 and satisfies condition (3.2) for all
t € [0,7). In particular, the interface T'y which is the intersection of the flat
and the strictly convex sides is a smooth hypersurface in R™, for all t in
0 <t <7 and it moves by the Qi _1-flow.

REMARK 3.3 (Comparison with other flows). Theorem 3.3 can be viewed
as the analogue of the free-boundary regularity results for the porous



100 P. DASKALOPOULOS

medium equation (discussed in the introduction) and the Gauss curvature
flow with flat sides (Theorem 2.2 in section 2.2). However, the striking
difference between the QQi-flow and the other cases, is that the boundary of
the flat side now doesn’t move freely but it obeys another geometric evolution
equation. This difference will be briefly explained during the discussion on
the proof of Theorem 3.3 that follows.

REMARK 3.4 (C"™7 regularity and further discussion). In the case of a
two-dimensional surface in R3 the Qo-flow (3.1) becomes the well studied
Harmonic mean curvature flow. In this case, Theorem 3.3 was previously
established by the author and C. Caputo in [22]. Following the result in
[22], one may consider a pressure function f = uP, for any number p € (0, 1),
and prove the short time existence of a solution to the QQo-flow which is of
class C™7 (with m,~ depending on p) so that the pressure function f is
still smooth up to the interface and the interface moves by the Qr_1 flow.
The fact that the solution M; remains in the class C"7, for t > 0 and does
not become instantly C'* smooth is another property that distinguishes this
flow from other, previously studied, degenerate free-boundary problems.

Discussion on the proof of Theorem 3.3. Following the ideas in [33] (c.f.
in the Discussion of the proof of Theorem 2.2 and the Remark 2.1) one
expresses the pressure function f in a global system of coordinates that
fixes the interface I';. Let us denote by f the transformed pressure in these
new coordinates. The function f satisfies a fully-nonlinear equation on the
parabolic cylinder D x (0, 7), for some 7 > 0, where D C R is the unit disc.
This equation becomes degenerate at the lateral boundary 0D x (0, 7). Its
linearized operator near a boundary point Py := (pg,to) € 0D x (0,7), and
after a further change of coordinates that maps pg to 0 € R™ and straightens
0D, mapping D near pg to part of the hyperplane xy = 0, is of the form

L[h] = hy — (I% aiihi1 + 2x1 ayhy; + (Iijhij + z1b1hy + b, h; + Ch),
xr1>04,7#1
defined on z; > 0. Here the summation convention of indices i,j = 2,--- ,n

is used. It follows from the non-degeneracy condition 3.2 that the matrix
[a;;] is positive definite. Consider the model operator

Lolh] = hy — (30% hi1 + Ap—1h + b1 21 hl)

which is defined on z; > 0 and with no boundary condition at x1 = 0. This
operator represents diffusion by the singular Riemannian metric

d5? = ds* + |dt|

where
d 2

(3.3) ds® = % +da3 + -+ dzl.
x

1
We notice that the distance (with respect to the singular metric ds) of
an interior point (x; > 0) from the boundary (z1 = 0) is infinite. The



REGULARITY IN DEGENERATE DIFFUSION 101

consequence of this property on the nonlinear problem (3.1) is that the
interface I'y does not move freely but satisfies another evolution equation
that is the singular limit of the Qi-flow as you approach this interface. In
fact it is shown in [23, 22| that the interface I'y evolves by the Qx_1-flow.
This distinguishes the Qp-flow from other, previously studied, degenerate
free-boundary problems, in particular the Gauss curvature flow with flat
sides discussed in section 2.2.

4. Monge-Ampere equations with homogenous right hand side

In 1916 H. Weyl posed the following question: Given a Riemannian
metric g on the 2-sphere S? whose Gauss curvature is everywhere positive,
does there exist a global C? isometric embedding X : (S?,g) — (R3,ds?),
where ds? is the standard flat metric on R3?

H. Lewy [69] solved the problem under the assumption that the metric
g is analytic. The solution to the Weyl problem, under the regularity as-
sumption that g has continuous fourth order derivatives, was given in 1953
by L. Nirenberg [72]. His result depends on a priori estimates for uniformly
elliptic equations in dimension two [73]. By means of a completely differ-
ent approach to the problem, A.D. Alexandroff [1] obtained a generalized
solution of Weyl’s problem as a limit of polyhedra. The regularity of this
generalized solution was proved by A.V. Pogorelov [74, 75]. The regularity
of solutions to the related n-dimensional Minkowski problem was considered
by S. Y. Cheng and S. T. Yau in [24].

P. Guan and Y.Y. Li [49] considered the question: If the Gauss curvature
of the metric g is nonnegative instead of strictly positive and g is smooth, is
it still possible to have a smooth isometric embedding ¢

It was shown in [49] that for any C*-Riemannian metric g on S?* with
nonnegative Gaussian curvature, there is always a C'! global isometric
embedding into (R?, ds?).

Examples show that for some analytic metrics with positive Gauss cur-
vature on S? except at one point, there exists only a C?! but not a C* global
isometric embedding into (R3,ds?). The phenomenon is global, since C.S.
Lin [70] has shown that for any smooth 2-dimensional Riemannian metric
with nonnegative Gauss curvature there exists a smooth local isometric em-
bedding into (R3, ds?). This leads to the following question, which was posed
by P. Guan and Y.Y. Li [49]: Under what conditions on a smooth metric
g on S? with nonnegative Gauss curvature, there is a C*® global isometric
embedding into (R3,ds?), for some o > 0, or even a C*>' 2 The problem can
be reduced to a partial differential equation of Monge-Ampere type that be-
comes degenerate at the points where the Gauss curvature vanishes. It is well
known that in general one may have solutions to degenerate Monge-Ampére
equations which are at most C'11.

One may consider a smooth Riemannian metric g on S? with nonnegative
Gauss curvature, which has only one non-degenerate zero. In this case, if we
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represent the C''! embedding as a graph, answering the above question
amounts to studying the regularity at the origin of the degenerate Monge-
Ampere equation

(4.1) det D%u = f, on By
in the case where the forcing term f vanishes quadratically at z = 0.
More precisely, it suffices to assume that f(z) = |z|?g(x), where g is a

positive Lipschitz function. Hence, the problem reduces to that of studying
the regularity of solutions to the model Monge-Ampere equation

det D?u = |z|?, x € By

near the origin where the equation becomes degenerate.

In addition to the results mentioned above, degenerate equations of the
form (4.1) on R? were also considered by P. Guan in [48] in the case where
f € C>®(B;) and

(4.2) A7 (@2 4+ Ba2™) < flxy,20) < A (22 + Bad™)

for some constants A > 0,B > 0 and positive integers I < m. The C*®
regularity of the solution u of (4.1) was shown in [48], under the additional
condition that ug,., > Co > 0. It was conjectured in [48] that the same
result must be true under the weaker condition that Au > Cy > 0. This was
shown later by P. Guan and I. Sawyer in [52].

In [38] the author and O. Savin studied the exact behavior at the origin
of solutions to the degenerate Monge-Ampére equation

(4.3) det D%u = |z|°, x € By
on the unit disc By = { |z| < 1} of R” and in the range of exponents ac > —2.

In addition to its connection with the Weyl problem discussed above,
equation (4.3) has also an interpretation in the language of optimal trans-
portation with quadratic cost c(x,y) = |z — y|2. In this setting the problem
consists in transporting the density |z|* dx from a domain 2, into the uni-
form density dy in the domain ), in such a way that we minimize the total
“transport cost”, namely

/ jy(e) — af? o] d.

Then, by a theorem of Y. Brenier [14], the optimal map x — y(z) is given
by the gradient of a solution of the Monge-Ampere equation (4.3). The
behavior of these solutions at the origin gives information on the geometry
of the optimal map near the singularity of the measure |z|* dx.

We will next discuss the main results in [38] concerning the optimal
regularity of solutions to (4.3) and their exact behavior near the origin. At
the end of the section, the higher dimensional case will be discussed. We
assume that u is a solution of equation (4.3). Then, u is C*°-smooth away
from the origin. As we will see in the sequel, the behavior of solutions in the
two cases a > 0 and « < 0 is different.
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We begin with describing the regularity of solutions and their behavior
at the origin the case of positive exponent a > 0.

THEOREM 4.1 (Regularity of solutions at the origin [38]). If o > 0, then
u € C%0 for a small & depending on o.

Theorem 4.1 is a consequence of Theorem 4.2 which shows that there
are exactly two types of behaviors near the origin.

THEOREM 4.2 (Behavior of solutions at the origin [38]). If a > 0, and
(4.4) w(0) =0, Du(0)=0

then, either there exist positive constants c(a), C(«) depending on o such
that u has the radial behavior

(4.5) c(@)e|**2 <u(z) < Cla)a*2
or, in an appropriate system of coordinates, u admits the non-radial behavior

a

(4.6)  u(x)= CEDCES))

1
21+ a3 + O (o[ + 23)+7)

for some a > 0.

REMARK 4.1 (Previous results on the non-radial behavior). The non-
radial behavior (4.6) was first shown by P. Guan [48], under the extra
condition that wz,z, > co > 0 near the origin, and was later generalized
P. Guan and E. Sawyer [52] to only assume that Au > ¢y > 0.

One may wonder whether the radial behavior is stable or unstable. The
next result shows that it is indeed unstable.

THEOREM 4.3. Suppose o > 0, let ug be the radial solution to (4.3),
up(z) = Ca|33|2+%
and consider the Dirichlet problem
det D*u = ||, u = ug — e cos(26) on 0B;.

Then v — u(0) has the nonradial behavior (4.6) for small €.

In the case —2 < a < 0, solutions to (4.3) have only the radial behavior.
Actually, a stronger result was shown in [38], which asserts that a solution
u converges to the radial solution ug in the following sense.

THEOREM 4.4. If =2 < a < 0 and (4.4) holds, then

_ u(z)
2 (@)
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In the analysis described above, a crucial role is played by entire ho-
mogenous solutions to the equation

det D*w(z) = |z|* in R?, o> =2
namely, solutions of the form
w(z) = r2t2g(9) = P ¢(0), B=2+a/2

Such solutions are related to the limiting behavior near the origin of rescal-
ings of solutions to (4.3). Indeed, subsequences of blow up solutions satisfying
(4.5) converge to homogenous solutions, as stated in the next result.

THEOREM 4.5 (Limiting behavior at the origin [38]). Under the assump-
tions of Theorem 4.2, if u satisfies (4.5), then for any sequence of r, — 0
the blow up solutions

_9_a
r. o Pu(rgx)

have a subsequence that converges uniformly on compact sets to a homoge-
nous solution of (4.3).

The following result on the periodicity of homogeneous solutions plays
an important role in the proof of Theorem 4.5.

PROPOSITION 4.6. Homogenous solutions to (4.3) are periodic on the
unit circle. More precisely, the following holds:

i. If =2 < a < 0, then the only homogenous solution is the radial one.
. If a > 0, then there exists a homogenous solution of principal period
2 [k if

e (

)

o | 3

T
V23

=13

with f =2+ /2.

Discussion on the proofs. The results in [38] are based on understanding the
geometry of the sections of the solution u. The basic argument is as follows:
assume that a section of u, say {u < 1}, is “much longer” in the x; direction
compared to the o direction. If v is an affine rescaling of u so that {v < 1}
is comparable to a ball, then v is an approximate solution of

det D*v(x) ~ c|z1|*.

Hence, the geometry of small sections of solutions of this new equation
provides information on the behavior of the small sections of u. For example,
if the sections of v are “much longer” in the z1 direction (case o > 0) then
the corresponding sections of u degenerate more and more in this direction,
producing the non-radial behavior (4.6). If the sections of v are longer in
the z2 direction (case a < 0) then the sections of u tend to become round
and we end up with a radial behavior near the origin.
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More precisely, in the case of non-radial behavior o > 0, it is shown in
[38] (section 3) that blow up limits of solutions to (4.3) with a > 0 near the
origin are of the form
(4.7) det D?u = h(x1)

where h(x1) depends only on the variable z;. These equations remain
invariant under affine transformations. Also, by taking derivatives along the
x9 direction one obtains the Pogorelov type estimate

uzy < C

in the interior of the sections of u.
Assume that u satisfies equation (4.7) in By C R™, in any dimension
n > 2 and perform the following partial Legendre transformation:
(4.8) y1=x1, yi=ui(r) i>2, u*(y) = 2"+ Dypu — u(x)
with 2/ = (x9, ..., 25,). The function u* is obtained by taking the Legendre
transform of u on each slice 1 = const. A simple computation shows that
u* (which is convex in 3 and concave in y;) satisfies
(4.9) uiy + h(y1) det D u* = 0.
It is shown in [38] (Lemma 2.4) that in the special case of dimension
n =2 and h(z1) = |z1]%, if w is a solution of the degenerate equation
w11 + |y1]0‘ wog = 0 in By C R2
with |w| <1, then
w(y) = ap + a1 -y + az y1 Y2+
(4.10) <1 ) 1 ot ) 2 2
+ a - - o _|_ O _|__ +a\146
3 2 Y2 (O[ + 2)(0[ + 1) |y1’ ((yQ ‘y1| ) )
in B/, with |a;| and O(-) bounded by a universal constant and § = 6(«a) > 0.
This analysis plays a crucial role in the proof of Theorem 4.2.

In the case —2 < a < 0 where solutions to (4.3) admit only the radial
behavior near the origin, the proof of Theorem 4.5 relies on understanding
the doubling properties of the measure dy := |z|*dz. It is inspired by the
work of L. Caffarelli [17] on the geometry of sections of Alexandrov solutions
to the Monge-Ampere equation

det D?u = p, on ) C R"

with 4 a doubling measure.

In the case of equations (4.3), the measure du := |z|*dx is doubling
with respect to ellipsoids in the case of exponents —1 < a < 0. In the
case —2 < « < 1 the measure du := |z|* dx is not doubling with respect to

ellipsoids but it is still doubling with respect to certain convex sets that have
the origin as the center of mass. In both cases one concludes that solutions
to (4.3) admit only the radial behavior at the origin.

We finish the section with some further discussion and open questions.



106 P. DASKALOPOULOS

REMARK 4.2 (Generalization to other right hand sides). From the proofs
one can see that the theorems above, with the exception of the instability
result, are still valid for the equation

det D*u = |z|%g(x)
with g € C9(By), g > 0.

REMARK 4.3 (Exact regularity of solutions). 4. It is shown in the proof
of Theorem 4.1 that solutions of (4.3), with o > 0, which satisfy the radial
behavior (4.5) at the origin are of class C*?2. 4i. Theorems 4.1, 4.2 and the
results of Guan in [48] and Guan and Sawyer in [52] imply that solutions of
(4.3), with « a positive integer, which satisfy the non-radial behavior (4.6)
at the origin are C°°-smooth.

REMARK 4.4 (Applications to other problems). Equations of the form
(4.11) det D*w = |Dwl|?, B=—-a

for which the set {Dw = 0} is compactly included in the domain of
definition, can be reduced to (4.3) by defining u to be the Legendre transform
of w. Hence, Theorem 4.4 establishes the sharp regularity of solutions w of
equation (4.11) when 0 < 5 < 2.

REMARK 4.5 (Generalization to higher dimensions). It is natural to
believe that the analogues of the results in the Theorems given above hold
in higher dimensions n > 3. In fact, many of the results in [38] can be easily
generalized to higher dimensions. What still needs to be understood is the
precise behavior at the origin y = 0 of solutions u* to degenerate equations
of the form (4.9) in the case that h(y;) = |yi1|* (the higher dimensional
analogue of (4.10)). Degeneracies of this form are of a similar nature to
those appearing in the parabolic case of the Gauss curvature flow with flat
sides (c.f. in section 2.2).
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