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Rigidity and minimizing properties
of quasi-local mass

Po-Ning Chen and Mu-Tao Wang

Abstract. In this article, we survey recent developments in defining
the quasi-local mass in general relativity. We discuss various approaches
and the properties and applications of the different definitions. Among
the expected properties, we focus on the rigidity property: for a surface in
the Minkowski spacetime, one expects that the mass should vanish. We
describe the Wang-Yau quasi-local mass whose definition is motivated
by this rigidity property and by the Hamilton-Jacobi analysis of the
Einstein-Hilbert action. In addition, we survey recent results on the
minimizing property the Wang-Yau quasi-local mass.

1. Introduction

One of the major unsolved problems in general relativity is the definition
of conserved quantities such as energy and linear momentum for a finitely
extended region in a spacetime [22]. Many important statements in general
relativity make sense only with the presence of a good notion of quasi-local
mass. For example, the hoop conjecture predicts the formation of black holes
due to the condensation of mass in a finite region. However, there are several
difficulties in finding a good notion of energy for a finite region. Firstly,
there is no mass density in general relativity due to Einstein’s equivalence
principle. Moreover, a generic spacetime does not have symmetry which is
important in defining conserved quantities using Noether’s principle. As a
result, mass can no longer be defined as a bulk integral of mass density.
However, it is conjectured that the mass and other conserved quantities can
be defined as integral on the boundary of the region. Such definitions are
referred to as quasi-local mass. Moreover, it is expected that a good notion
of quasi-local energy should satisfy the following properties [9, 23].
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• Positivity. Quasi-local energy should be positive under the domi-
nant energy condition.

• Rigidity. The quasi-local mass should be zero for 2-surfaces in the
Minkowski spacetime. However, the quasi local energy-momentum
could be null (thus quasi-local mass is zero) in a pure radiation
spacetime.

• Asymptotics. The large sphere limits should recover the ADM and
Bondi mass in spatial and null infinity, respectively. The small
sphere limits should recover matter density in non-vacuum and Bel-
Robinson tensor in vacuum.

• Monotonicity. The quasi-local mass should have some nice mono-
tonicity properties. However, it is not expected that straightfor-
ward additivity should hold because the gravitational binding en-
ergy could be negative.

In comparison to the ADM or Bondi total mass for an isolated system
where gravitation is weak at boundary (infinity), the notion of quasi-local
mass corresponds to a non-isolated system where gravitation could be strong.
There are four main approaches to define quasi-local mass based on different
expected properties. We give some brief remarks for each approach below.

• The variational method. This approach is based on quasi-localizing
the ADM mass [3]. While the approach guarantees the positivity
and monotonicity, it is generally very hard to evaluate such notion
of quasi-local mass.

• Hamilton-Jacobi method. This approach gives the energy as a flux
integral on the 2-surface using the Hamilton-Jacobi analysis of the
gravitational energy. The surface Hamiltonian is derived in [5, 6].
See also [13, 16].

• Hawking mass. The Hawking mass [12] is easy to compute and
is monotone under the inverse mean curvature flow. However, the
positivity does not always hold.

• Twistor and spinor method. The construction is motivated by the
energy-momentum integrals of linearized gravity and is based on
twistor ideas. See [29] for a survey on the twistor approach to quasi-
local mass.

Based on their properties, the above definitions of quasi-local mass
can be applied to studying different problems in general relativity and
differential geometry. For example, the Hawking mass has good asymptotics
and monotonicity properties. As a result, it plays a key role in the proof of
the Riemannian Penrose inequality of Huisken-Ilmanen [14]. However, the
lack of the rigidity property for the Hawking mass hinders the proof of the
Penrose inequality at null infinity, as we will describe in later section of this
article.

In this article, we survey some recent developments on quasi-local mass.
While we discuss several notions of quasi-local mass and their properties,
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the main focus is the Wang-Yau quasi-local mass defined in [30, 31]. This
approach is based on Hamilton-Jacobi analysis of energy in general relativity.
It is also based on the expectation of the rigidity property that the mass for
any surface in the Minkowski spacetime should be zero, which will be the
main focus of this survey.

2. Riemannian quasi-local energy

In this section, we survey several definitions of quasi-local mass and
describe their main properties.

2.1. Hawking mass. By studying the perturbation of the Friedmann-
Robertson-Walker (FRW) spacetimes, Hawking defined the following mass
which measures the perturbation of the energy from the FRW background
[12]. Let Σ be a spacelike 2-surface in a spacetime N and H be the mean
curvature vector of Σ in N . The Hawking mass of Σ is defined by

mH(Σ) =

√
|Σ|
16π

(1 − 1
16π

∫
Σ

|H|2dΣ).

For a time-symmetric initial data set, the Hawking mass is monotonic
increasing under the inverse mean curvature flow [10, 15]. Moreover, for
an asymptotically flat initial data, the Hawking mass on large coordinate
spheres approaches the ADM mass of the initial data. These properties
of the Hawking mass are instrumental in the Huisken-Ilmanen’s proof of
Riemannian Penrose conjecture for a single black hole [14] which states
that the area of the outermost minimal surface gives a lower bound for the
ADM mass of a time symmetric initial data.

Despite of the above nice properties, the positivity does not always hold
for the Hawking mass, even for surfaces in the Minkowski space. In fact,
from the Gauss equation and the Gauss-Bonnet theorem, it is easy to see
that for a surface in R

3 with spherical topology, its Hawking mass is always
non-positive. Moreover, the Hawking mass is zero if and only if it is the
round sphere.

On the other hand, the Hawking mass is non-negative for stable 2-spheres
on time-symmetric hypersurfaces by Christodoulou and Yau. The positivity
is obtained using the positivity of the second variation of the area functional
applied to the conformal mapping of the surface to the unit sphere [9].

2.2. Bartnik mass. Bartnik proposed a quasi-local mass definition by
quasi-localizing the ADM mass for asymptotically flat initial data [3]. For
simplicity, we focus on the time-symmetric case, namely for 3-manifolds with
non-negative scalar curvature.

Let (Ω, g) be a compact Riemannian 3-manifold of non-negative scalar
curvature and with boundary. An admissible extension of Ω is a complete
and asymptotically flat 3-manifold (M̃, g) of non-negative scalar curvature
in which Ω embeds isometrically and is not enclosed by any compact minimal
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surfaces. The Bartnik mass mB(Ω) is defined to be the infimum of the ADM
mass among all admissible extensions.

From the definition of Bartnik mass, the non-negativity property is
acquired for free, as a consequence of the positive mass theorem. It is
clear that the Bartnik mass of (Ω, g) is zero if the metric g is flat. The
converse is also true as a consequence of the proof of the Riemannian Penrose
inequality [14]. The Bartnik mass is monotonically increasing. Namely,
mB(Σ2) ≥ mB(Σ1) if Σ2 contains Σ1 isometrically. This follows from the
definition since the set of admissible extensions of Σ2 is a subset of those of
Σ1 if Σ2 contains Σ1.

Despite of the above nice properties, the definition is abstract for both
conceptual and computational reasons and one would like to know that the
infimum is actually realized by a natural extension of (Ω, g). This is the
content of the static minimization conjecture by Bartnik.

Static Minimization Conjecture. The infimum mB(Ω) is realized by

an admissible extension (M̃, g) which is smooth, vacuum, and static outside
Ω, is C0,1 across ∂Ω, and has nonnegative scalar curvature across ∂Ω (in
the distributional sense).

See [1] for discussion on the static minimization conjecture, in particular,
on the existence and uniqueness of static extension.

2.3. Brown-York mass. Let Σ be a spacelike 2-surface in N whose
induced metric has positive Gauss curvature. Assume further that Σ bounds
a spacelike hypersurface Ω. By the solution of the Weyl’s isometric embed-
ding problem by Nirenberg [21], there is a unique isometric embedding of Σ
into R

3. Suppose H0 is the mean curvature of the isometric embedding of Σ
into R

3 and H is the mean curvature of Σ in Ω. Brown and York define the
mass of Σ to be

(2.1) mBY (Σ) =
1
8π

∫
Σ
(H0 − H) dΣ

The expression is derived through the Hamilton-Jacobi analysis of Einstein’s
action with a choice of gauge adopted to the hypersurface Ω.

For time-symmetric hypersurfaces with k = 0, the dominant energy
condition implies that the scalar curvature is non-negative. Shi and Tam
proved that the Brown-York mass is positive if the scalar curvature of
the enclosed regions is non-negative [27]. Their main idea is to solve the
prescribed scalar curvature equation on the exterior of the image of isometric
embedding in R

3 using the quasi-spherical method of Bartnik. On the
resulting manifold, the Brown-York mass decreases monotonically to the
ADM mass at infinity and the positivity of the Brown-York mass follows
from the positivity of the ADM mass. While the manifold is not smooth
across the boundary of Ω, the proof of the positive mass theorem by Witten
[33] can still be carried out in this setting.
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However, the Brown-York mass is gauge dependent. Liu and Yau define
a mass that is gauge independent by replacing the mean curvature H in
equation (2.1) by the norm of the mean curvature vector of Σ in N . The Liu-
Yau mass is gauge independent and is positive under the dominant energy
condition [17]. The proof is based on the idea from the above proof of Shi and
Tam and the Jang equation used in the proof of the positive mass theorem
by Schoen and Yau [26].

3. Rigidity property of quasi-local mass

The main motivation of our investigation is the rigidity property of quasi-
local mass. A physically meaningful mass should vanish on any Minkowskian
data, as there is no gravitation energy in the Minkowski spacetime.

Though the Liu-Yau mass satisfies the important positivity property,
there are 2-surfaces in the Minkowski spacetime with strictly positive Liu-
Yau mass. In fact, Ó Murchadha, Szabados, and Tod [19] found examples
of surfaces in the Minkowski spacetime with arbitrarily large Liu-Yau mass.
These examples are surfaces in the standard light cone of the Minskowski
spacetime. For such a surface, the Gauss curvature and the mean curvature
vector �H satisfies the following identity

4K = | �H|2.

Using the Gauss equation for surfaces in R
3, it is not hard to see that the

Liu-Yau mass can be arbitrarily large for such surfaces. The missing of the
momentum information is responsible for this inconsistency. For the Liu-Yau
mass, the reference is taken to be the isometric embedding into R

3 which
is a totally geodesics hypersurface. In order to capture the information of
the second fundamental form, we need to take the reference surface to be a
general isometric embedding into the Minkowski spacetime.

The Hawking mass is always negative for a 2-surface in R
3 unless it is

a metric round sphere. On the other hand, the Hawking mass is always
zero for surfaces in the standard light cone in R

3,1. For surfaces in the
standard light cone in the Schwarzschild spacetime, the Hawking mass is
always greater than the total mass of the Schwarzschild spacetime, unless
the surface also lies in the static hypersurface. Moreover, the Hawking mass
can be arbitrarily large. Such a drawback hinders the proof of the Penrose
inequality at null infinity using the Hawking mass, even though there is a
corresponding monotonicity formula along the null, see [4, 24].

There is a similar phenomenon for the Hawking mass for surfaces
in asymptotically Anti-de-Sitter (Ads) spacetimes. Namely, for surfaces
approaching the infinity, the Hawing mass can be arbitrarily large depending
on the shape of the surface. While this shows the lack of rigidity for
the Hawking mass, this ”drawback” of the Hawking mass is used as a
tool to prove insufficient convergence of inverse mean curvature flow in
asymptotically AdS spacetimes [20].
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4. Wang-Yau quasi-local energy

In this section, we review the definition of the quasi-local energy-
momentum in [30, 31]. The main motivation of this definition is the rigidity
property that surfaces in the Minkowski spacetime should have zero mass.
As a result, all possible isometric embeddings X of the surface into R

3,1

are used as references and an energy is assigned to each pair (X, T0) of an
isometric embedding X and a unit timelike vector T0 in R

3,1.
Let Σ be a closed embedded spacelike 2-surface in a spacetime with

spacelike mean curvature vector H. The data used in the definition of the
Wang-Yau quasi-local mass is the triple (σ, |H|, αH) where σ is the induced
metric on Σ, |H| is the norm of the mean curvature vector and αH is the
connection one form of the normal bundle with respect to the mean curvature
vector

αH(·) = 〈∇N
(·)

J

|H| ,
H

|H| 〉

where J is the reflection of H through the incoming light cone in the normal
bundle.

Given an isometric embedding X : Σ → R
3,1 and a constant future

timelike unit vector T0 ∈ R
3,1, we consider the projected embedding X̂ into

the orthogonal complement of T0. We denote the induced metric, the second
fundamental form, and the mean curvature of the image by σ̂ab, ĥab, and Ĥ,
respectively. The Wang-Yau quasi-local energy with respect to (X, T0) is

E(Σ, X, T0) =∫
̂Σ

ĤdΣ̂ −
∫

Σ

[√
1 + |∇τ |2 cosh θ|H| − ∇τ · ∇θ − αH(∇τ)

]
dΣ,

where θ = sinh−1( −Δτ

|H|
√

1+|∇τ |2
), ∇ and Δ are the gradient and Laplacian,

respectively, with respect to σ, and τ = −X · T0 is the time function.
In [30, 31], it is proved that, E(Σ, X, T0) ≥ 0 if Σ bounds a spacelike

hypersurface, the dominant energy condition holds in N and the pair (X, T0)
is admissible. The Wang-Yau quasi-local mass is defined to be the minimum
of the quasi-local energy E(Σ, X, T0) among all admissible pairs (X, T0). In
particular, for a surface in the Minkowski spacetime, its Wang-Yau mass
is zero. However, for surfaces in a generic spacetime, it is not clear which
isometric embedding would minimize the quasi-local energy. To find the
isometric embedding that minimizes the quasi-local energy, we study the
Euler-Lagrange equation for the critical point of the Wang-Yau energy as a
functional of τ . It is the following fourth order nonlinear elliptic equation

−(Ĥσ̂ab−σ̂acσ̂bdĥcd)
∇b∇aτ√
1 + |∇τ |2

+divσ(
∇τ√

1 + |∇τ |2
cosh θ|H|−∇θ−αH) = 0

coupled with the isometric embedding equation for X. It is referred to as
the optimal isometric embedding equation.
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The data for the image of the isometric embedding in the Minkowski
spacetime can be used to simplify the expression for the quasi-local energy
and the optimal isometric embedding equation. Denote the norm of the mean
curvature vector and the connection one-form in mean curvature gauge of
the image surface of X in R

3,1 by |H0| and αH0 , respectively. We have
the following identities relating the geometry of the image of the isometric
embedding X and the image surface Σ̂ of X̂ [8].√

1 + |∇τ |2Ĥ =
√

1 + |∇τ |2 cosh θ0|H0| − ∇τ · ∇θ0 − αH0(∇τ),

− (Ĥσ̂ab − σ̂acσ̂bdĥcd)
∇b∇aτ√
1 + |∇τ |2

+ divσ(
∇τ√

1 + |∇τ |2
cosh θ0|H0| − ∇θ0 − αH0) = 0.

The second identity simply states that a surface inside R
3,1 is a critical

point of the quasi-local energy with respect to other isometric embeddings
back to R

3,1. This can be proved by either the positivity of energy or a
direct computation. We substitute these relations into the expression for
E(Σ, X, T0) and the optimal isometric embedding equation, and rewrite
them in term of

ρ =

√
|H0|2 + (Δτ)2

1+|∇τ |2 −
√

|H|2 + (Δτ)2
1+|∇τ |2√

1 + |∇τ |2

ja = ρ∇aτ − ∇a[sinh−1(
ρΔτ

|H0||H|)] − (αH0)a + (αH)a.

In terms of these, the quasi-local energy is 1
8π

∫
Σ(ρ + ja∇aτ) and a pair

of an embedding X : Σ ↪→ R
3,1 and an observer T0 satisfies the optimal

isometric embedding equation if X is an isometric embedding and

divσj = 0.

5. Minimizing properties of the Wang-Yau quasi-local mass

In this section, we discuss the minimizing properties of the Wang-Yau
quasi-local mass. In general, the optimal embedding equation is a nonlinear
system and is rather difficult to solve. However, τ = 0 is a solution of the
optimal embedding equation if divαH = 0. This special case was studied
by Miao–Tam–Xie [18]. They estimate the second variation of quasi-local
energy around the critical point τ = 0 by linearizing the optimal embedding
equation nearby. It is shown that the second variation is

1
8π

∫
Σ

(Δf)2

H
+ (H0 − |H|)|∇f |2 − ĥ(∇f,∇f).

Assuming H0 > |H|, it is shown that the integral is positive using a
generalization of Reilly’s formula. As a result, they obtained sufficient
conditions for the critical point τ = 0 to be a local minimum.
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To study the minimizing property of a general solution of the optimal
isometric embedding equation, a different method has to be devised to
deal with the fully nonlinear nature of the equation. In [8], we proved the
following result.

Theorem 1. Suppose Σ is a spacelike 2-surface and τ0 is a critical point
of the quasi-local energy functional E(Σ, τ). Assume further that

|Hτ0 | > |H| > 0

where Hτ0 is the mean curvature vector of the isometric embedding Xτ0 of
Σ into R

3,1 with time function τ0. Then, τ0 is a local minimum for E(Σ, τ).

The result is based on the following comparison theorem of quasi-local
energy.

Theorem 2. Suppose Σ is a spacelike 2-surface and τ0 is a critical point
of the quasi-local energy functional E(Σ, τ). Assume further that

|Hτ0 | > |H| > 0.

Then, for any time function τ such that σ + dτ ⊗ dτ has positive Gaussian
curvature, we have

(5.1) E(Σ, τ) ≥ E(Σ, τ0) + E(Στ0 , τ).

Moreover, equality holds if and only if τ − τ0 is a constant.

In the second term on the right hand side of (5.1), we view Στ0 in
the Minkowski spacetime as a physical surface and consider the isometric
embedding with time function τ as reference.

In view of Theorem 2, it suffices to show that E(Στ0 , τ) is non-negative
for τ close to τ0 in order to prove Theorem 1. In [8], this is achieved by
verifying the admissible condition directly. In the following, we present a
new result on the second variation of E(Στ0 , τ) around τ0.

Theorem 3. Consider a standard coordinate system (x0, x1, x2, x3) for
the Minkowski spacetime. Suppose Σ is a spacelike surface in the Minkowski
spacetime with embedding X. Assume further that the time function is τ and
the projection of Σ onto R

3 is convex. Then, for any function f on Σ, we
have

E(Σ, τ) =0

∂sE(Σ, τ + sf)|s=0 =0

∂2
sE(Σ, τ + sf)|s=0 ≥0

Moreover, equality holds in the last inequality if and only if f is the restric-
tion of a0 +

∑
aixi to Σ for some constants a0 and ai.

Proof. These results, except the equality cases, are proved in Theorem
2 and Lemma 1 of [8] where the positivity of E(Σ, τ + sf) is obtained by
the positivity of the Wang-Yau mass. In the following, we go over the proof



RIGIDITY AND MINIMIZING PROPERTIES OF QUASI-LOCAL MASS 57

of the positivity of quasi-local energy and extract the necessary information
for the equality case.

Let Ω be a spacelike hypersuface with boundary Σ. Let gij and pij be the
induced metric and the second fundamental form of Ω in R

3,1, respectively.
Let e3 be the unit outward normal of Σ in Ω and e4 be the future directed
unit normal of Ω in R

3,1. The Jang equation is used in both the proof of
positive mass theorem in [26] and the proof of the positivity of quasi-local
energy in [31]. We will use it here to study the equality case for the second
variation. In a local coordinate on Ω, the Jang equation takes the following
form:

3∑
i,j=1

(gij − f if j

1 + |Df |2 )(
DiDjf√
1 + |Df |2

− pij) = 0

where D is the covariant derivative with respect to the metric gij .
Let F be the solution to Dirichlet problem of Jang’s equation on Ω

with boundary value τ . Consider a variation of the time function by δτ . Let
F + δF be the solution to Dirichlet problem of Jang’s equation on Ω with
boundary value τ + δτ . Let Ω̃F+δF be the graph of F + δF over Ω in Ω × R.
Let RF+δF be the scalar curvature of Ω̃F+δF . By [26], there exists a vector
field VF+δF on Ω̃F+δF such that

(5.2) RF+δF + 2div(VF+δF ) − 2|VF+δF |2 ≥
∑
i,j

(hij − pij)2

where hij is the second fundamental form of Ω̃F+δF in Ω × R. Indeed,

hij =
DiDjf√
1 + |Df |2

.

By Proposition 2.1 of [31],

E(Σ, τ + δτ) ≥
∫

̂Στ+δτ

Ĥτ+δτ −
∫

Σ
h(Σ, τ, e′

3),

where
e′
3 = cosh θe3 + sinh θe4

with

sinh θ =
−e3(F + δF )√
1 + |∇(τ + δτ)|2

and h(Σ, τ, e′
3) is the generalized mean curvature with respect to e′

3.
Consider the exterior region M1 of Σ̂τ+δτ in R

3, which is foliated by the
level set of the distance function to the surface. Using the foliation, one can
rewrite the flat metric of R

3 as

g = dr2 + g(r, ua)abduadub.

Consider a lapse function u and new metric of the form

g′ = u2dr2 + g(r, ua)abduadub
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on M1. Consider the equation

R(g′) = 0

with boundary condition

u =
Ĥτ+δτ

H̃ − 〈VF+δF , ν〉

where H̃ and ν are the mean curvature and unit normal vector of Σ̃τ+δτ in
Ω̃F+δF , respectively. The solution gives an asymptotically flat metric on M1
such that ∫

̂Στ+δτ

Ĥτ+δτ −
∫

Σ
h(Σ, τ, e′

3) ≥ mADM (M1, g
′).

To show the positivity of mADM (M1, g
′), consider the manifold M obtained

by glueing Ω̃F+δF and M1. Let D be the Dirac operator and ∇s be the spin
connection of the spinor bundle on M . Let Ψ be the solution to the Dirac
equation

DΨ = 0,

which approaches a constant spinor at infinity. Then, by section 5 of [31],

mADM (M1) =
∫

M1

|∇sΨ|2 +
∫

˜ΩF+δF

|∇sΨ|2 +
1
4
RF+δF |Ψ|2.

Moreover, for any vector field Y on ΩF+δF ,∫
˜ΩF+δF

|∇sΨ|2 +
1
4
RF+δF |Ψ|2

≥
∫

˜ΩF+δF

1
2
|∇sΨ|2 +

1
4
(RF+δF + 2divY − 2|Y |2)|Ψ|2.

If we apply the equation to Y = VF+δF and use equation (5.2), it follows
that∫

˜ΩF+δF

|∇sΨ|2 +
1
4
RF+δF |Ψ|2 ≥

∫
˜ΩF+δF

1
2
|∇sΨ|2 +

1
4

∑
i,j

(hij − pij)2|Ψ|2.

Combining these results, we have

E(Σ, τ + δτ) ≥
∫

˜ΩF+δF

1
2
|∇sΨ|2 +

1
4

∑
ij

(hij − pij)2|Ψ|2.

When δτ = 0, we have
E(Σ, τ) = 0.

Indeed, the Dirac spinor Ψ in this case is a constant spinor, ∇sΨ = 0, and
hij = pij . As a result, one has the following lower bound for the second
variation ∫

˜ΩF+δF

∑
ij

(δhij)2|Ψ0|2
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where Ψ0 is the constant spinor obtained when δτ = 0. Hence, the second
variation is strictly positive unless δhij = 0. On the other hand,

δhij =
DiDjδF√
1 + |DF |2

− DiDjF

(1 + |DF |2) 3
2
DF · DδF.

As a result, the second variation is positive unless δF satisfies
DiDjδF√
1 + |DF |2

− DiDjF

(1 + |DF |2) 3
2
DF · DδF = 0.

This is the same as

(5.3) DiDjδF = pij
DF · DδF√
1 + |DF |2

.

However, the covariant derivative, D, on hypersurface Ω and the covariant
derivative of R

3,1, ∇(4), are related by

DiDjf = ∇(4)
i ∇(4)

j f − pije4(f)

for any function f on R
3,1. As a result, if δF satisfies equation (5.3), we can

extend δF suitably such that

∇(4)
i ∇(4)

j δF = 0.

This shows that,
δF = (a0 +

∑
i

aiX
i)|Ω.

Thus, the second variation for E(Σ, τ + δτ) being zero implies that δτ is the
restriction of a0 +

∑
i aiX

i to Σ.
On the other hand, it is easy to show that if δτ is the restriction

of a0 +
∑

i aiX
i to Σ then the second variation is zero. Indeed, such δτ

corresponds to rotating the observer when the data remains unchanged.
As a result, the energy remains zero. In particular, the second variation is
zero. �
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