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Calabi energies of extremal toric surfaces

Claude LeBrun

Abstract. We derive a formula for the L2 norm of the scalar curvature
of any extremal Kähler metric on a compact toric manifold, stated purely
in terms of the geometry of the corresponding moment polytope. The
main interest of this formula pertains to the case of complex dimension
2, where it plays a key role in construction of of Bach-flat metrics on
appropriate 4-manifolds.

1. Introduction

In an audacious attempt to endow complex algebraic varieties with
canonical Riemannian metrics, Eugenio Calabi [11] initiated a systematic
study of the squared L2-norm

(1.1) C(g) =
∫

M
s2 dμ

of the scalar curvature, considered as a functional on the space of Kähler
metrics g on a given compact complex manifold (M, J); here s and dμ of
course denote the scalar curvature and Riemannian volume form of the given
metric g. Given a Kähler class Ω ∈ H1,1(M, R) ⊂ H2(M, R), his aim was to
minimize the functional C(g) among all Kähler metrics g = ω(·, J ·) with
Kähler class [ω] = Ω. Calabi showed that the Euler-Lagrange equation
for this variational problem is equivalent to requiring that ∇1,0s be a
holomorphic vector field, and he introduced the terminology extremal Kähler
metrics for the solutions of this equation. It was later shown [13] that any
extremal Kähler metric on a compact complex manifold actually minimizes
the Calabi energy (1.1) in its Kähler class. Moreover, when such a minimizer
exists, it is actually unique in its Kähler class, modulo automorphisms of
the complex manifold [14, 20, 43]. Our knowledge of existence remains
imperfect, but considerable progress [2, 16, 21] has recently been made
in the toric case that is focus of the present paper. However, a relatively
elementary argument [39] shows that the set of Kähler classes represented
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by extremal Kähler metrics on a compact complex manifold (M, J) is
necessarily open in H1,1(M, R).

Rather than minimizing the squared L2-norm of the scalar curvature,
as in (1.1), one might be tempted to instead minimize the squared L2-norm
of, say, the Riemann curvature tensor or the Ricci tensor. However, Calabi
also observed [11] that, after appropriate normalization, such functionals
only differ from (1.1) by a constant depending on the Kähler class. In this
respect, real dimension four occupies a privileged position; not only does
(1.1) become scale invariant in this dimension, but the relevant constants
only depend on the topology of M4, and so are independent of the Kähler
class in question. For example, the Riemann curvature R and the Ricci
tensor r satisfy ∫

M
|R|2dμ = −8π2(χ + 3τ)(M) +

1
4
C(g)∫

M
|r|2dμ = −8π2(2χ + 3τ)(M) +

1
2
C(g)

for any compact Kähler manifold (M, g, J) of complex dimension 2, where
χ(M) and τ(M) are respectively the Euler characteristic and signature of
the compact oriented 4-manifold M . Similarly, the Weyl curvature W , which
is the conformally invariant part of the Riemann tensor R, satisfies

(1.2)
∫

M
|W |2dμ = −12π2τ(M) +

1
12

C(g)

for any compact Kähler surface (M, g, J). Thus, if a Kähler metric g on
M4 is a critical point of any of these Riemannian functionals, considered
as a function on the bigger space of all Riemannian metrics on M , it must,
in particular, be an extremal Kähler metric. In connection with (1.2), this
observation has interesting consequences, some of which will be touched on
in this article.

The primary goal of this article is to calculate the Calabi energy of
any extremal Kähler metric on any toric surface — that is, on any simply
connected compact complex manifold of complex dimension two which
carries a compatible effective action of the 2-torus T 2 = S1×S1. Any Kähler
class on a toric surface is represented by a T 2-invariant Kähler metric, and,
relative to such a metric, the action is generated by two periodic Hamiltonian
vector fields. This pair of Hamiltonians gives us an R2-valued moment map,
under which the image of our complex surface is a convex polygon P ⊂ R2.
Moreover, modulo translations and SL(2, Z) transformations, the moment
polygon P only depends on the given the Kähler class. Euclidean area
measure on the interior of P then allows us to define a barycenter for P
and a moment-of-inertia matrix Π of P relative to this barycenter. The
edges of P have rational slope, and are therefore endowed with preferred
rescalings dλ of 1-dimensional Lebesgue measure, chosen so that intervals of
unit length correspond to separation vectors which are indivisible elements
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of the integer lattice Z2. This allows us to also define a barycenter of the
perimeter of P , and hence also a vector �D ∈ R2 connecting the barycenter of
the interior to the barycenter of the perimeter. Combining these ingredients,
we then obtain a convenient formula for the Calabi energy of any extremal
toric surface:

Theorem A. Let (M, J,Ω) be a toric surface with fixed Kähler class,
and let P be the associated moment polygon. Then any Kähler metric g with
Kähler form ω ∈ Ω has scalar curvature s satisfying

1
32π2

∫
M

s2dμg ≥ |∂P |2
2

( 1
|P | + �D · Π−1�D

)
with equality iff g is an extremal Kähler metric. Here |P | denotes the area
of the interior of P , |∂P | is the λ-length of its boundary, Π is the moment-

of-inertia matrix of P , and �D is the vector joining the barycenter P to the
barycenter of ∂P .

We give two proofs of this result. Our first proof, which is specifically
adapted to complex dimension 2, can be found in §5 below. Then, in §6,
we prove a generalization, Theorem B, which holds for toric manifolds of
arbitrary complex dimension. However, both proofs crucially depend on a
detailed understanding of both the Futaki invariant and toric manifolds. We
have therefore found it useful to preface our main calculations with a careful
exploration of the underpinnings of these ideas. The article then concludes
with a discussion of examples that illustrate our current knowledge of Bach-
flat Kähler metrics.

2. The Futaki Invariant

If (M2m, J) is a compact complex m-manifold of Kähler type, and if

h = H0(M,O(T 1,0M))

is the associated Lie algebra of holomorphic fields on M , the Futaki invariant
assigns an element F(Ω) of the Lie coalgebra h∗ to every Kähler class Ω on
(M, J). To construct this element, let g be a Kähler metric, with Kähler
class [ω] = Ω, scalar curvature s, Green’s operator G , and volume form dμ.
We then define the Futaki invariant

F(Ω) : H0(M,O(T 1,0M)) −→ C

to be the linear functional

Ξ �−→ −2
∫

M
Ξ(Gs) dμ .

It is a remarkable fact, due to Futaki [24], Bando [6], and Calabi [12], that
F(Ω) only depends on the Kähler class Ω, and not on the particular metric
g chosen to represent it.

We will now assume henceforth that b1(M) = 0. Since (M, J) is of
Kähler type, the Hodge decomposition then tells us that H0,1(M) = 0, and
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it therefore follows [12, 40] that every holomorphic vector field Ξ on M can
be written as ∇1,0f for some smooth function f = fΞ, called a holomorphy
potential. This allows us to re-express the Futaki invariant as

(2.1) F(Ξ, Ω) := [F(Ω)] (Ξ) = −
∫

M
(s − s̄)fΞ dμ

where s̄ denotes the average value of the scalar curvature, which can be
computed by the topological formula

s̄ = 4πm
c1 · Ωm−1

Ωm
.

Of course, the negative sign appearing in (2.1) is strictly a matter of
convention, and is used here primarily to ensure consistency with [40]. Also
note that the s̄ term in (2.1) could be dropped if one required that the
holonomy potential fΞ be normalized to have integral zero; however, we will
find it useful to avoid systematically imposing such a normalization.

Let H now denote the identity component of the automorphism group of
(M, J), so that h is its Lie algebra. Because the assumption that b1(M) = 0
implies that H is a linear algebraic group [22], we can define its unipotent
radical Ru to consist of the unipotent elements of its maximal solvable
normal subgroup. If G ⊂ H is a maximal compact subgroup, and if GC ⊂ H
is its complexification, then GC projects isomorphically onto the quotient
group H/Ru. The Chevalley decomposition [17] moreover expresses H as a
semi-direct product

H = GC � Ru

and we have a corresponding split short exact sequence

0 → ru → h → gC → 0

of Lie algebras.
In their pioneering work on extremal Kähler vector fields [25], Futaki

and Mabuchi next restricted the Futaki invariant F to gC ⊂ h. However,
under mild hypotheses, this is not actually necessary:

Proposition 2.1. Let (M2m, J) be a compact complex m-manifold of
Kähler type for which h1,0 = h2,0 = 0. Then the Futaki invariant F(Ω) ∈ h∗

automatically annihilates the Lie algebra ru of the unipotent radical, and so
belongs to g∗

C
. Moreover, this element is automatically real, and so belongs

to g∗.

As we show in Appendix A, this is actually a straightforward conse-
quence of a theorem of Nakagawa [45].

Because the Futaki invariant is invariant under biholomorphisms, it is
unchanged by the action of H on h. It follows that F(Ω) must vanish when
restricted to the derived subalgebra [h, h]. Thus, F(Ω) : h → C is actually a
Lie-algebra character. In particular, F(Ω) annihilates the derived subalgebra
[g, g] of the maximal compact. Since the compactness of G implies that it is a
reductive Lie group, g = [g, g]⊕z, where z is the center of g. We thus conclude
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that F(Ω) ∈ z∗ for any Kähler class Ω whenever M is as in Proposition A.3.
Since z is contained in the Lie algebra of any maximal torus T ⊂ G, we thus
deduce the following important fact:

Proposition 2.2. Let (M2m, J) be a compact complex m-manifold of
Kähler type for which h1,0 = h2,0 = 0. Let T be a maximal torus in
Aut(M, J), and let t be the Lie algebra of T. Then, for any Kähler class
Ω on M , the Futaki invariant F(Ω) naturally belongs to t∗. In particular,
F(Ω) is completely determined by its restriction to t.

Now, for a fixed G-invariant metric g, we have already noticed that
every Killing field ξ on (M, g) is represented by a unique Hamiltonian fξ

with
∫
M fξ dμ = 0, and that the Lie bracket on g is thereby transformed

into the Poisson bracket on (M, ω):

f[ξ,η] = {fξ, fη} = −ω−1(dfξ, dfη) .

Following Futaki and Mabuchi [25], we may therefore introduce a bilinear
form B on the real Lie algebra g by restricting the L2 norm of (M, g) to the
space of these Hamiltonians:

B(ξ, η) =
∫

M
fξfη dμg =

1
m!

∫
M

fξfη ωm .

Since a straightforward version of Moser stability shows that the Kähler
forms of any two G-invariant metrics in a fixed Kähler class are G-
equivariantly symplectomorphic, this inner product only depends on Ω
and the maximal compact G < H, not on the representative metric g.
Moreover, since any two maximal compacts are conjugate in H, one can
show [25] that the corresponding complex-bilinear form on gC = h/ru is
actually independent of the choice of maximal compact G.

Since B is positive-definite, and so defines an isomorphism g → g∗, it
also has a well-defined inverse which gives a positive-definite bilinear form

B−1 : g
∗ × g

∗ → R

on the Lie coalgebra of our maximal compact. On the other hand, assuming
that (M, J) is as in Proposition A.3, we have already seen that F(Ω) ∈ g∗

for any Kähler class Ω on M . Thus, the number

(2.2) ‖F(Ω)‖2 := B−1(F(Ω),F(Ω))

is independent of choices, and so is an invariant of (M, J,Ω).
To see why this number has an important differential-geometric signifi-

cance, let us first suppose that g is a G-invariant Kähler metric with Kähler
class Ω, and let � be orthogonal projection in the real Hilbert space L2(M, g)
to the subspace of normalized Hamiltonians representing the Lie algebra g

of Killing fields on (M, g). Restricting equation (2.1) to g ⊂ h, one observes
that F(Ω) : g → R is exactly given by the B-inner-product with the Killing
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field whose Hamiltonian is −�(s − s̄). We thus immediately have∫
M

[�(s − s̄)]2 dμg = ‖F(Ω)‖2

and, since the projection � is norm-decreasing, it follows that

(2.3)
∫

M
(s − s̄)2dμg ≥ ‖F(Ω)‖2

for any G-invariant Kähler metric with Kähler class Ω. It is a remarkable
fact, proved by Xiuxiong Chen [13], that inequality (2.3) actually holds even
if g is not assumed to be G-invariant. Moreover, equality holds in (2.3) if and
only if ∇1,0s is a holomorphic vector field, which is precisely the condition
[11, 12] for g to be an extremal Kähler metric.

The bilinear form B on g is bi-invariant. In particular, the center z of g

is B-orthogonal to the semi-simple factor [g, g] of g. Thus, a computation of
‖F(Ω)‖2 does not require a complete knowledge of the bilinear form B; only
a knowledge of its restriction to z is required. This observation allows us to
prove the following:

Corollary 2.3. Let (M, J) be as in Proposition 2.2, let T be a maximal
torus in the complex automorphism group of (M, J), and let t denote the Lie
algebra of T. If g is any T-invariant Kähler metric with Kähler class Ω, and
if

BT : t × t → R

is the g-induced L2-norm restricted to normalized Hamiltonians, then

‖F(Ω)‖2 = B−1
T

(
F(Ω) , F(Ω)

)
where B−1

T denotes the inner product on t∗ induced by BT.

Proof. Let G be a maximal compact subgroup of H containing T.
Then, by Proposition 2.2, the assertion certainly holds for any G-invariant
Kähler metric g̃ in Ω. However, by averaging, any T-invariant Kähler
metric with Kähler class Ω can be joined to g̃ by a path of such metrics,
and is therefore T-equivariantly symplectomorphic to g̃ by Moser stability.
The claim therefore follows, since F(Ω) ∈ t∗ is completely determined by
(M, J,Ω), while BT is completely determined by the symplectic form and
normalized Hamiltonians representing elements of t. �

3. Toric Manifolds

We now specialize our discussion to the toric case. For clarity, our
presentation will be self-contained, and will include idiosyncratic proofs of
various standard facts about toric geometry. For more orthodox expositions
of some of these fundamentals, the reader might do well to consult [23] and
[27].

We define a toric manifold to be a (connected) compact complex m-
manifold (M2m, J) of Kähler type which has non-zero Euler characteristic
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and which is equipped a group of automorphisms generated by m commut-
ing, periodic, J-preserving real vector fields which are linearly independent
in the space of vector fields on M . Thus, the relevant group of automor-
phisms T is required to be the image of the m-torus under some Lie group
homomorphism Tm → Aut(M, J) which induces an injection of Lie alge-
bras. Notice that our definition implies that there must be a fixed point
p ∈ M of this Tm-action. Indeed, the fixed point set of any circle action
on a smooth compact manifold is [32] a disjoint union of smooth compact
manifolds with total Euler characteristic equal to the Euler characteristic of
the ambient space; by induction on the number of circle factors, it follows
that the fixed-point set of any torus action on M therefore has total Euler
characteristic χ(M) 
= 0, and so, in particular, cannot be empty.

In light of this, let p ∈ M be a fixed point of the given Tm-action on
a toric manifold (M2m, J), and, by averaging, also choose a Kähler metric
g on M which is Tm-invariant. Then Tm acts on TpM ∼= Cm in a manner
preserving both g and J , giving us a unitary representation Tm → U(m).
Since the action of Tm on TpM completely determines the action on M
via the exponential map TpM → M of g, and since, by hypothesis, the
Lie algebra of Tm injects into the vector fields on M , it follows that
the above unitary representation gives rise to a faithful representation of
T < Aut(M, J). However, U(m) has rank m, so the image of Tm → U(m)
must be a maximal torus in U(m); thus, after a change of basis of Cm, T may
be identified with the standard maximal torus U(1) × · · · × U(1) ⊂ U(m)
consisting of diagonal matrices. In particular, T < Aut(M, J) is intrinsically
an m-torus, and has many free orbits. Since the origin in Cm is the only fixed
point of the diagonal torus in U(m), it also follows that p must be an isolated
fixed point of T. But since the same argument applies equally well to any
other fixed point, this shows that the fixed-point set MT of T is discrete,
and therefore finite. In particular, χ(M) must equal the cardinality of MT,
so the Euler characteristic of M is necessarily positive.

The above arguments in particular show that the toric condition can be
reformulated as follows: a toric m-manifold is a compact complex m-manifold
(M, J) of Kähler type, together with an m-torus T ⊂ Aut(M, J) that has
both a free orbit Q and a fixed point p. To check the equivalence, note that
this reformulation implies that the Euler characteristic χ(M) is positive,
because the fixed-point set MT is necessarily finite, and by hypothesis is
also non-empty.

Now let (M, J,T) be a toric m-manifold, and let j : Q ↪→ M be the
inclusion of a free T-orbit. Since T also has a fixed-point p, and since any
two T-orbits are homotopic, it follows that j is homotopic to a constant
map. Consequently, the induced homomorphism j∗ : Hk(M) → Hk(Q) must
be the zero map in all dimensions k > 0. However, the restriction of the
Kähler form ω = g(J ·, ·) to Q ≈ T is an invariant 2-form on T ≈ Tm.
Since every deRham class on Tm contains a unique invariant form, and since
j∗[ω] = 0 ∈ H2(Tm, R), it follows that j∗ω must vanish identically. Thus Q is
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a Lagrangian submanifold, which is to say that TQ is everywhere orthogonal
to J(TQ). In particular, if ξ1, . . . , ξm are the generators of the T-action, the
corresponding holomorphic vector fields Ξj = −(Jξj + iξj)/2 span T 1,0M in
a neighborhood of Q. Integrating the flows of the commuting vector fields
ξj and Jξj , we thus obtain a holomorphic action of the complexified torus
(C×)m which has both a fixed point and an open orbit U .

In particular, (M, J) carries m holomorphic vector fields Ξ1, . . . ,Ξm

which vanish at p, but which nonetheless span T 1,0(M) at a generic point. It
follows that M cannot carry a non-trivial holomorphic k-form α ∈ Hk,0(M)
for any k > 0, since, for any choice of j1, . . . , jk, the “component” functions
α(Ξj1 , . . . ,Ξjk

) would be holomorphic, and hence constant, and yet would
have to vanish at the fixed point p. In particular, we may invoke Kodaira’s
observation [33] that any Kähler manifold with H2,0 = 0 admits Hodge
metrics, and so is projective. This gives us the following result:

Lemma 3.1. Any toric manifold M is projective algebraic, and satisfies
Hk,0(M) = 0 for all k > 0.

In particular, the identity component H = Aut0(M, J) of the automor-
phism group of our toric m-manifold is linear algebraic. Let T < H be the
m-torus associated with the toric structure of (M, J). Using the Chevalley
decomposition, we can then choose a maximal compact subgroup G < H
containing T. Also choose a G-invariant Kähler metric g on M and a fixed
point p of T. We will now study the centralizer Z(T) < G, consisting of
elements of G that commute with all elements of T. Observe that

a ∈ Z(T), b ∈ T =⇒ b(a(p)) = a(b(p)) = a(p),

so that Z(T) acts by permutation on the finite set MT of fixed points. In
particular, the identity component Z0(T) of Z(T) must send p to itself. Once
more invoking the exponential map of g, we thus obtain a faithful unitary
representation of Z0(T) by considering its induced action on TpM ∼= Cm.
However, the image of Z0(T) in U(m) must then be a subgroup of the
centralizer of the diagonal torus U(1) × · · · × U(1) in U(m). But since
the latter centralizer is just the diagonal torus itself, we conclude that
Z0(T) = T. It follows that T is a maximal torus in G, and hence also
in H = GC � Ru:

Lemma 3.2. Let (M2m, J) be a toric manifold, and let T < Aut(M, J)
be the associated m-torus. Then T is a maximal torus in Aut(M, J).

Combining this result with Lemma 3.1 and Proposition 2.2, we can thus
generalize [46, Theorem 1.9] to irrational Kähler classes:

Proposition 3.3. Let (M2m, J) be a toric manifold, let T be the given
m-torus in its automorphism group, and let t be the Lie algebra of T. Then,
for any Kähler class Ω on M , the Futaki invariant F(Ω) naturally belongs
to t∗. In particular, F(Ω) is completely determined by its restriction to t.
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However, we will not simply need to know where F(Ω) lives; our goal
will require us to calculate its norm with respect to the relevant bilinear
form. Fortunately, Lemma 3.2 and Corollary 2.3 together imply the following
result:

Proposition 3.4. Let (M2m, J) be a toric manifold, let T be the given
m-torus in its automorphism group, and let t be the Lie algebra of T. If g
is any T-invariant Kähler metric with Kähler class Ω, and if

BT : t × t → R

is the g-induced L2-norm restricted to normalized Hamiltonians, then

‖F(Ω)‖2 = B−1
T

(
F(Ω) , F(Ω)

)
where B−1

T denotes the inner product on t∗ induced by BT.

Of course, Lemma 3.1 has many other interesting applications. For
example, by Hodge symmetry, it implies the Todd genus is given by

χ(M,O) =
∑

k

(−1)kh0,k(M) = 1

for any toric manifold M . Since the same argument could also be applied to
any finite covering of M , whereas χ(M,O) is multiplicative under coverings,
one immediately sees that M cannot have non-trivial finite covering spaces.
In particular, this implies that H1(M, Z) = 0.

However, one can easily do much better. Choose a T-invariant Kähler
metric g with Kähler form ω. Because b1(M) = 0 by Lemma 3.1, the
symplectic vector fields ξ1, . . . , ξm must then have Hamiltonians, so that ξj =
J∇fj for suitable functions f1, . . . , fm. Let a1, . . . , am be real numbers which
are linearly independent over Q, and let f =

∑
j ajfj . The corresponding

symplectic vector field ξ =
∑

j ajξj is thus a Killing field for g, and its flow
is dense in the torus T < Aut(M, J). Consequently, ξ vanishes only at the
fixed points of T. Since ξ is Killing, with only isolated zeroes, it then follows
that ∇ξ is non-degenerate at each fixed point p of T, in the sense that it
defines an isomorphism Tp → Tp. Since ∇a∇bf = ωbc∇aξ

c, this implies that
the Hessian of f is non-degenerate at each zero of df ; that is, f is a Morse
function on M . However, since ξ is the real part of a holomorphic vector field,
∂̄∂#f = 0, and this is equivalent to saying that the Riemannian Hessian
∇∇f is everywhere J-invariant. Since the Riemannian Hessian coincides
with the näıve Hessian at a critical point, this shows that every critical point
of f must have even index. It follows [44] that M is homotopy equivalent to
a CW complex consisting entirely of even-dimensional cells. In particular,
we obtain the following:

Lemma 3.5. Any toric manifold is simply connected, and has trivial
homology in all odd dimensions.
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Finally, notice that Lemma 3.1 implies that the canonical line bundle
K = Λm,0 of a toric m-manifold has no non-trivial holomorphic sections.
However, essentially the same argument also shows that positive powers K�

cannot have non-trivial holomorphic sections either, since the pairing of such
a section with (Ξ1 ∧ · · · ∧ Ξm)⊗� would again result in a constant function
which would have to vanish at p. Thus, all the plurigenera p� = h0(O(K�))
of any toric manifold must vanish. In other words:

Lemma 3.6. Any toric manifold has Kodaira dimension −∞.

4. The Virtual Action

As previously discussed in connection with (2.3), a theorem of Chen [13]
says that any Kähler metric g on a compact complex manifold M satisfies

(4.1)
∫

M
(s − s̄)2dμg ≥ ‖F(Ω)‖2 ,

where Ω = [ω] is the Kähler class of g; moreover, equality holds iff g is an
extremal Kähler metric. On the other hand,

(4.2)
∫

M
s2dμg =

∫
M

(s − s̄)2dμg +
∫

M
s̄2dμg

as may be seen by applying the Pythagorean theorem to L2-norms. Since s
is the trace of the Ricci tensor with respect to the metric, and because the
Ricci form is essentially the curvature of the canonical line bundle, we also
know that

(4.3)
∫

M
s dμ =

4πc1 · Ωm−1

(m − 1)!

in complex dimension m; meanwhile, the volume of an m-dimensional Kähler
m-manifold is just given by ∫

M
dμ =

Ωm

m!
.

Hence ∫
M

s̄2dμ =

(∫
M s dμ

)2∫
M dμ

=
16π2m

(m − 1)!
(c1 · Ωm−1)2

Ωm

and (4.1) thus implies that

(4.4)
∫

M
s2dμg ≥ 16π2m

(m − 1)!
(c1 · Ωm−1)2

Ωm
+ ‖F(Ω)‖2

with equality iff g is an extremal Kähler metric on (M2m, J).
Now specializing to the case of complex dimension m = 2, we have∫

M
s2dμg ≥ 32π2 (c1 · Ω)2

Ω2 + ‖F(Ω)‖2
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for any Kähler metric g with Kähler class [ω] = Ω on a compact complex
surface (M4, J). In other words, if we define a function on the Kähler cone
by

A(Ω) :=
(c1 · Ω)2

Ω2 +
1

32π2 ‖F(Ω)‖2 ,

then

(4.5)
1

32π2

∫
M

s2
g dμg ≥ A(Ω)

for any Kähler metric g with Kähler class Ω, with equality iff g is an extremal
Kähler metric. The function A(Ω) will be called the virtual action. Our
normalization has been chosen so that A(Ω) ≥ c2

1(M), with equality iff
the Futaki invariant vanishes and Ω is a multiple of c1. (Incidentally, the
latter occurs iff Ω is the Kähler class of a Kähler-Einstein metric on (M4, J)
[4, 47, 52, 54].) The fact that the virtual action A(Ω) is homogeneous of
degree 0 in Ω corresponds to the fact that the Calabi energy C(g) is scale-
invariant in real dimension four.

In complex dimension m = 2, one important reason for studying the
Calabi energy C is the manner in which (1.2) relates it to the Weyl functional

W(g) =
∫

M
|W |2gdμg

where the Weyl curvature W is the conformally invariant piece of the
curvature tensor. It is easy to check that W is also conformally invariant,
and may therefore be considered as a functional on the space of conformal
classes of Riemannian metrics. Critical points of the Weyl functional are
characterized [5, 9] by the vanishing of the Bach tensor

Bab := (∇c∇d +
1
2
rcd)Wacbd

and so are said to be Bach-flat; obviously, this is a conformally invariant
condition. The Bianchi identities immediately imply that any Einstein
metric on a 4-manifold is Bach-flat, and it therefore follows that any
conformally Einstein metric is Bach-flat, too. The converse, however, is false;
for example, self-dual and anti-self-dual metrics are also Bach-flat, and such
metrics exist on many compact 4-manifolds [34, 35, 51] that do not admit
Einstein metrics.

When the Weyl functional W is restricted to the space of Kähler metrics,
equation (1.2) shows that it becomes equivalent to the Calabi energy C.
Nonetheless, the following result [15] may come as something of a surprise:

Proposition 4.1. Let g be a Kähler metric on a compact complex
surface. Then g is Bach-flat if and only if

• g is an extremal Kähler metric, and
• its Kähler class Ω is a critical point of the virtual action A.

This gives rise to a remarkable method of constructing Einstein metrics,
courtesy of a beautiful result of Derdziński [19, Proposition 4]:
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Proposition 4.2. If the scalar curvature s of a Bach-flat Kähler metric
g on a complex surface (M4, J) is not identically zero, then the conformally
related metric h = s−2g is Einstein on the open set s 
= 0 where it is defined.

5. Toric Surfaces

We will now prove Theorem A by computing the virtual action A(Ω)
for any Kähler class on a toric surface. An important intermediate step in
this process involves an explicit computation of the Futaki invariant F(Ω).
Up to a universal constant, our answer agrees with that of various other
authors [21, 25, 41, 49], but determining the correct constant is crucial for
our purposes. For this reason, our first proof will be based on the author’s
formula [34] for the scalar curvature of a Kähler surface with isometric S1

action.
By a toric surface, we mean a toric manifold (M, J,T) of complex

dimension two. This is equivalent1 to saying that (M4, J) is a simply
connected compact complex surface equipped with a 2-torus T < Aut(M, J).
By Castelnuovo’s criterion [7, 26], Lemma 3.1 and Lemma 3.6, any toric
surface (M, J) can be obtained from either CP2 or a Hirzebruch surface by
blowing up points. Indeed, since the holomorphic vector fields generating
the torus action on M automatically descend to the minimal model, the
toric structure of (M, J) can be obtained from a toric structure on CP2
or a Hirzebruch surface by iteratively blowing up fixed points of the torus
action. For more direct proofs, using the toric machinery of fans or moment
polytopes, see [23, 27].

Let (M4, J,T, Ω) now be a toric surface with fixed Kähler class. By
averaging, we can then find a T-invariant Kähler metric g on (M, J) with
Kähler form ω ∈ Ω. Choose an isomorphism T ∼= R2/Z2, and denote
the corresponding generating vector fields of period 1 by ξ1 and ξ2. Since
b1(M) = 0, there are Hamiltonian functions x1 and x2 on M with ξj =
J gradxj , j = 1, 2. This makes (M, ω) into a Hamiltonian T 2-space in the
sense of [27]. In particular, the image of M under �x = (x1, x2) is [3, 28]
a convex polygon P ⊂ R2 whose area is exactly the volume of (M, g). The
map �x : M → R2 is called the moment map, and its image P = �x(M) will
be called the moment polygon. Of course, since we have not insisted that the
Hamiltonians xk have integral zero, our moment map is only determined up
to translations of R2. Modulo this ambiguity, however, the moment polygon
is uniquely determined by (M, ω,T), together with the chosen basis (ξ1, ξ2)
for the Lie algebra t of of T. Moreover, since a straightforward Moser-
stability argument shows that any two T-invariant Kähler forms in Ω are T-
equivariantly symplectomorphic, the moment polygon really only depends
on (M, J,Ω, (ξ1, ξ2)). However, outer automorphisms of T can be used to

1In one direction, this equivalence follows because any simply connected compact
complex surface is of Kähler type [10, 50] and has positive Euler characteristic. On the
other hand, the converse follows from Lemma 3.5.
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alter (ξ1, ξ2) by an SL(2, Z) transformation, and this in turn changes the
moment polygon by an SL(2, Z) transformation of R2. Moreover, since the
vertices of P correspond to the fixed points of T, and because the action of
T on the tangent space of any fixed point can be identified with that of the
diagonal torus U(1) × U(1) ⊂ U(2), a neighborhood of any corner of P can
be transformed into a neighborhood of the origin in the positive quadrant
of R2 by an element of SL(2, Z) and a translation [18]. Polygons with the
latter property are said to be Delzant, and any Delzant polygon arises from
a uniquely determined toric surface, equipped with a uniquely determined
Kähler class [27].

We now introduce a measure dλ on the boundary ∂P of our moment
polygon. To do this, first notice that each edge of P is the image of a rational
curve Cı

∼= CP1 in (M, J) which is fixed by an S1 subgroup of T 2, and hence
by a C× subgroup of the complexified torus C× × C×. We then define the
measure dλ along the edge 
ı = �x(Cı) to be the push-forward, via �x, of the
smooth area measure on Cı given by the restriction of the Kähler form ω.
Since a rational linear combination of the xk is a Hamiltonian for rotation
of Cı about two fixed points, dλ is a constant times 1-dimensional Lebesgue
measure on the line segment 
ı, with total length∫

�ı

dλ =
∫

Cı

ω =: Aı

equal to the area of corresponding holomorphic curve in M . Here the index
ı is understood to run over the edges of ∂P .

When an edge is parallel to either axis, dλ just becomes standard Eu-
clidean length measure. More generally, on an arbitrary edge, it must coin-
cide with the pull-back of Euclidean length via any SL(2, Z) transformation
which sends the edge to a segment parallel to an axis. Because P is a Delzant
polygon, this contains enough information to completely determine dλ, and
leads to a consistent definition of the measure because the stabilizer{

±
(

1 k
0 1

) ∣∣∣∣ k ∈ Z

}
of the x1-axis in SL(2, Z) preserves Euclidean length on this axis. However,
the Euclidean algorithm of elementary number theory implies that every pair
(p, q) of relatively prime non-zero integers belongs to the SL(2, Z)-orbit of
(1, 0). One can therefore compute edge-lengths with respect to dλ by means
of the following recipe: Given an edge of P which is not parallel to either
axis, its slope m is a non-zero rational number, and so can be expressed
in lowest terms as m = q/p, where p and q are relatively prime non-zero
integers. The displacement vector �v representing the difference between the
two endpoints of the edge can thus be written as �v = (up, uq) for some
u ∈ R − {0}. The length of the edge with respect to dλ then equals |u|.

We can now associate two different barycenters with our moment poly-
gon. First, there is the barycenter �̄x = (x̄1, x̄2) of the interior of P , as defined
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by

x̄k = 

∫
P

xk da =

∫
P xkda∫

P da

where da is standard 2-dimensional Lebesgue measure in R2. Second, there
is the barycenter 〈�x〉 = (〈x1〉, 〈x2〉) of the perimeter ∂P , defined by

〈xk〉 = 

∫
∂P

xk dλ =

∫
∂P xkdλ∫

∂P dλ

These two barycenters certainly need not coincide in general. It is therefore
natural to consider the displacement vector

�D = 〈�x〉 − �̄x

that measures their separation. Notice that �D is translation invariant — it
is unchanged if we alter the Hamiltonians (x1, x2) by adding constants.

Next, we introduce the moment-of-inertia matrix Π of P , which encodes
the moment of inertia of the polygon about an arbitrary axis in R2 passing
through its barycenter �̄x. Thus Π is the positive-definite symmetric 2 × 2
matrix with entries given by

Πjk =
∫

P
(xj − x̄j)(xk − x̄k)da

where da once again denotes the usual Euclidean area form on the interior
of P , and exactly equals the push-forward of the metric volume measure on
M . For our purposes, it is important to notice that Π is always an invertible
matrix.

Finally, let |∂P | =
∫
∂P dλ =

∑
ı Aı denote the perimeter of the moment

polygon with respect to the measure dλ introduced above, and let |P | =∫
P da denote the area of its interior in the usual sense. With these notational

conventions, we are now ready to state the main result of this section:

Theorem 5.1. If (M, J,Ω) is any toric surface with fixed Kähler class,
then

(5.1) A(Ω) =
|∂P |2

2

( 1
|P | + �D · Π−1�D

)
where P is the moment polygon determined by the given T 2-action.

The proof of Theorem 5.1 crucially depends on a computation of the
Futaki invariant, which, we recall, is a character on the Lie algebra of
holomorphic vector fields. Let us therefore consider the holomorphic vector
fields Ξk = ∇1,0xk whose holomorphy potentials are the Hamiltonians of the
periodic Killing fields ξk. These are explicitly given by

Ξk = −1
2

(Jξk + iξk) .
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Proposition 5.2. Suppose that (M, J,Ω) is a toric surface with fixed
Kähler class, and let Ξk be the generators of the associated complex torus
action, normalized as above. Let

Fk := F(Ξk, Ω)

be the corresponding components of the Futaki invariant of (M, J,Ω). Then

the vector �F = (F1,F2) is explicitly given by

�F = −4π |∂P | �D

where |∂P | again denotes the weighted perimeter of the moment polygon P ,

and �D is again the vector joining the barycenters of the interior and weighted
boundary of P .

Proof. More explicitly, the assertion is that

(5.2) Fk = −4π
∑

ı

(
〈xk〉ı − x̄k

)
Aı

where x̄k is once again the kth coordinate of the barycenter of the interior
of the moment polygon P , 〈xk〉ı is the kth coordinate of the center of the ıth

edge of P , and Aı is the weighted length of ıth edge.
We will now prove (5.2) using a method [31, 40] which is broadly

applicable to C×-actions, but which nicely simplifies in the toric case. We
thus make a choice of k = 1 or 2, and set Ξ = Ξk, ξ = ξk, and x = xk

for this choice of k. In order to facilitate comparison with [31, 34, 40],
set η = ξ/2π, so that η is a symplectic vector field of period 2π, with
Hamiltonian t = x/2π. Let Σ = M //C× be the stable quotient of (M, J) by
the action generated by Ξ, and observe that the following interesting special
properties hold in our toric setting:

• the stable quotient Σ has genus 0; and
• all the isolated C× fixed points project to just two points q1, q2 ∈ Σ.

Let a,b ∈ R, respectively, denote the minimum and maximum of the
Hamiltonian t, so that t(M) = [a,b]. If t−1({a}) or t−1({b}) is an isolated
fixed point, blow up M there to obtain M̂ , and pull the metric g back to M̂
as a degenerate metric; otherwise, let M̂ = M . We then have a holomorphic
quotient map � : M̂ → Σ. Let C+ and C− be the holormorphic curves in M̂
given by t−1(b) and t−1(a), respectively. Except when they are just artifacts
produced by blowing up, the curves C± number among the rational curves Cı

which project to the sides of the moment polygon P ; the others, after proper
transform if necessary, form a sub-collection {Ej} ⊂ {Cı} characterized by
�−1({q1, q2}) = ∪jEj for a preferred pair of distinct points q1, q2 ∈ Σ. Each
Ej is the closure of a C×-orbit, and we will let mj ∈ Z+ denote the order of
the isotropy of C× acting on the relevant orbit. Also let t−j and t+j denote
the minimum and maximum of t on Ej, so that t(Ej) = [t−j , t+j ], and observe
that

〈t〉j := (t−j + t+j )/2
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coincides with the average value of t on Ej with respect to g-area measure.
Let us now define ℘ : M̂ → Σ × [a,b] to be the map � × t. If p1, . . . , pm

are the images in Σ × (a,b) of the isolated fixed points, and if

X = [Σ × (a,b)] − {p1, . . . , pm},

then the open dense set Y = ℘−1(X) ⊂ M̂ map be viewed as an orbifold
S1-principal bundle over X, and comes equipped with a unique connection
1-form θ whose kernel is g-orthogonal to η and which satisfies θ(η) = 1. We
may now express the given Kähler metric g as

g = w ǧ(t) + w dt⊗2 + w−1θ⊗2 ,

for a positive functions w > 0 on X and a family orbifold metrics ǧ(t) on Σ.
Because g, w and dt are geometrically defined, ǧ(t) is an invariantly

defined, t-dependent orbifold Kähler metric on Σ for all regular values of t;
moreover, it is a smooth well-defined tensor field on all of (Σ − {q1, q2}) ×
(a,b). Now notice that the Kähler quotient of M associated with a regular
value of the Hamiltonian is manifestly (Σ, w ǧ(t)), and must therefore tend
to the restriction of g to C± as t → a or b. On the other hand, w−1 = g(η, η)
by construction, and since η is a Killing field of period 2π and Hamiltonian
t, we have g(η, η) = 2|t − a| + O(|t − a|2) near t = a, and similarly near
t = b. Thus [31, 40], letting ω̌(t) be the Kähler form of ǧ(t), we have

ω̌|t=a = ω̌|t=b = 0
d

dt
ω̌

∣∣∣∣
t=a

= 2ω|C−

d

dt
ω̌

∣∣∣∣
t=b

= −2ω|C+ .

More surprisingly, the calculations underlying the hyperbolic ansatz of [34]
show [40, equation (3.16)] that the scalar curvature density of g may be
globally expressed on Y ⊂ M as

s dμ =
[
2ρ̌ − d2

dt2
ω̌

]
∧ dt ∧ θ

where ρ̌(t) is the Ricci form of ǧ(t). However, for regular values of t ∈ (a,b),
the Gauss-Bonnet formula for orbifolds tells us that

1
2π

∫
Σ

ρ̌(t) = χ(Σ) −
∑

j

δj(t)(1 − 1
mj

)

= χ(S2) − 2 +
∑

j

1
mj

δj(t)

=
∑

j

1
mj

δj(t)
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where we have introduced the characteristic function

δj(t) =
{

1 t−j < t < t+j
0 otherwise

of (t−j , t+j ) in order to keep track of which two curves Ej meet a given regular
level-set of the Hamiltonian function t.

Now the Futaki invariant is defined in terms of the L2 inner product
of the scalar curvature s of g with normalized holomorphy potentials. It is
therefore pertinent to observe that∫

M
ts dμ =

∫
Y

ts dμ

=
∫

Y
t

[
2ρ̌ − d2

dt2
ω̌

]
∧ dt ∧ θ

= 4π

∫ b

a
t

[∫
Σ

ρ̌

]
dt − 2π

∫
Σ

[∫ b

a
t
d2

dt2
ω̌

]
dt

= 4π

∫ b

a
2π

[∑
j

1
mj

δj(t)

]
t dt − 2π

∫
Σ

([
t
d

dt
ω̌

]b

a
−

∫ b

a

dω̌

dt
dt

)

= 4π
∑

j

2π

mj

∫ t+j

t−j

t dt − 2π

∫
Σ

(
−2bω

∣∣∣
t=b

− 2aω
∣∣∣
t=a

− [ω̌]ba
)

= 4π
∑

j

2π(t+j − t−j )
mj

t+j + t−j
2

+ 4π
(
a [ω] · C− + b [ω] · C+

)
= 4π

∑
j

([ω] · Ej) 〈t〉j + 4π
(
a [ω] · C− + b [ω] · C+

)
= 4π

∑
ı

〈t〉ı Aı = 2
∑

ı

〈x〉ı Aı

where Aı = [ω] · Cı is once again the area of Cı. Since the holomorphy
potential of the holomorphic vector field Ξ is x = 2πt, we therefore have

−F(Ξ, [ω]) =
∫

M
s(x − x̄)dμ

= 2π

∫
M

st dμ − x̄

∫
M

s dμ

=
(
4π

∑
ı

〈x〉ı Aı

)
− x̄

(
4πc1 · [ω]

)
(5.3)

where x̄ again denotes the average value of x on M .
Next, notice that ∪ıCı is the zero locus of the holomorphic section Ξ1∧Ξ2

of the anti-conical line-bundle K−1 = ∧2T 1,0, and that, since the imaginary
parts of Ξ1 and Ξ2 are Killing fields, this section is transverse to the zero
section away from the intersection points Cı∩Cj. It follows that the homology
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class of ∪ıCı is Poincaré dual to c1(M, J) = c1(K−1). Hence

c1 · [ω] =
∑

ı

Cı · [ω] =
∑

ı

Aı

so that (5.3) simplifies to become

F(Ξ, [ω]) = −4π
∑

ı

(
〈x〉ı − x̄

)
Aı

and (5.2) therefore follows by setting Ξ = Ξk and x = xk. �
With this preparation, we can now calculate A(Ω) for any toric surface.

Proof of Theorem 5.1. Relative to the basis given by the normalized
holomorphy potentials {xk − x̄k | k = 1, 2}, Proposition 5.2 tells us that the
restriction of the Futaki invariant to t is given by

�F = (F1,F2) = −4π |∂P | �D.

Since the L2 inner product BT on t is given in this basis by the moment-of-
inertia matrix

Π =
[∫

P
(xj − x̄j)(xk − x̄k) da

]
=

[∫
M

(xj − x̄j)(xk − x̄k) dμ

]
,

the dual inner product B−1
T on t∗ is represented by the inverse matrix Π−1,

and Proposition 3.4 therefore tells us that

‖F‖2 = �F · Π−1�F = 16π2 |∂P |2 �D · Π−1�D.

Since the first Chern class is Poincaré dual to the homology class of ∪Cı,

c1 · [ω] =
∑

ı

Cı · [ω] =
∑

ı

Aı = |∂P |,

while M has volume |P | = [ω]2/2. Thus

A(Ω) =
(c1 · [ω])2

[ω]2
+

1
32π2 ‖F‖2 =

|∂P |2
2

(
1

|P | + �D · Π−1�D

)
exactly as claimed. �

By (4.5), Theorem A is now an immediately immediate corollary.

6. The Abreu Formalism

The proof of Theorem A given in §5 was based on the author’s formula
[34] for the scalar curvature of Kähler surfaces with isometric S1 actions.
This section will present a different proof, which is based on Abreu’s
beautiful formula [1] for the scalar curvature of a toric manifold, and
makes crucial use of an integration-by-parts trick due to Donaldson [21].
While this second proof is certainly more elegant and natural, there are
unfortunately many numerical factors involved in this formalism that are
typically misreported in the literature, and we will need to correct these
imprecisions in order to obtain our result. This will be well worth the effort,
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however, insofar as this second proof works equally well in all complex
dimensions. The reader should note, however, that the higher-dimensional
version of Theorem A is of much less differential-geometric interest than the
corresponding statement in complex dimension 2; it is only in real dimension
4 that the Calabi energy is intimately tied to the Weyl functional and
conformally Einstein metrics.

We thus begin by considering a toric manifold (M2m, J,T) of complex
dimension m, equipped with a Kähler metric g which is invariant under the
action of the m-torus T ∼= Tm. Choosing an isomorphism T ∼= Rm/Zm,
we then let (ξ1, . . . , ξm) be the m unit-period vector fields generating T
associated with this choice, and let (Ξ1, . . . ,Ξm) be the holomorphic vec-
tor fields defined by Ξj = ξ1,0

j . Let (x1, . . . , xm) be Hamiltonians for
(ξ1, . . . , ξm), and note that these are consequently also holomorphy poten-
tials for (Ξ1, . . . ,Ξm). The function �x : M → Rm given by (x1, . . . , xm)
is then a moment map for this Tm-action, and its image �x(M) is called
the associated moment polytope. Once again, the moment polytope has the
Delzant property: a neighborhood of any vertex ∈ P can be transformed into
a neighborhood of �0 ∈ [0,∞)m by an element of SL(m, Z) � Rm. The 2m-
dimensional volume measure on M now pushes forward, by integration on
the fibers, to the standard m-dimensional Euclidean measure on Rm, which
we will again denote by da to emphasize our special interest in the case of
m = 2. The boundary ∂P is the image of a union of toric complex hyper-
surfaces in M , and the push-forward of (2m − 2)-dimensional Riemannian
measure induces an (m − 1)-dimensional measure dλ on ∂P which, on each
face, is SL(n, Z)-equivalent to the standard (m − 1)-dimensional Euclidean
measure on the hyper-plane x1 = 0.

For consistency with [1, 21], it will be convenient to also consider the
vector fields ηj = ξj/2π of period 2π, and their Hamiltonians tj = xj/2π; the
corresponding moment map is then �t = (t1, . . . , tm), and its image P̃ = �t(M)
can then be transformed into P by dilating by a factor of 2π. Following
Donaldson, we will use dμ to denote m-dimensional Euclidean measure on
P̃ , and dσ to denote the (m−1)-dimensional measure on ∂P̃ which, on each
face, is SL(n, Z)-equivalent to (m − 1)-dimensional Euclidean measure on
the hyperplane t1 = 0. Identifying P̃ with P via the obvious homothety, we
thus have da = (2π)mdμ and dλ = (2π)m−1dσ.

On the open dense set �t−1(Int P̃ ) ⊂ M , Abreu observed that our Tm-
invariant Kähler metric can be expressed as

g = V,jkdtj ⊗ dtk + V ,jkdϑj ⊗ dϑk

where V : P̃ → R is a convex potential function, [V,jk] is the Hessian matrix
of V , [V ,jk] is its inverse matrix, and the ϑj are standard angle coordinates
on Tm = S1 × · · · × S1. The potential V is Legendre dual to a Kähler
potential for g; it is continuous on P̃ and smooth in its interior. Moreover,
it satisfies the so-called Guillemin-Abreu boundary condition: near a face
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given by L = 0, where the affine linear function L : Rm → R is non-negative
on P̃ and where dL is an indivisible element of the integer lattice (Zm)∗, V
differs from 1

2L log L by a smooth function. (Note that the factor of 1/2 is
missing from [21, p. 303], and will lead to a compensating correction below.)
The scalar curvature s of g is then expressible in terms of V via Abreu’s
beautiful formula [1, 21]

(6.1) s = −(V ,jk),jk := −
m∑

j,k=1

∂2V ,jk

∂tj∂tk
,

where we have followed Donaldson’s conventions in order to give s its
standard Riemannian value.

In this setting, Donaldson [21, Lemma 3.3.5] derives the integration-by-
parts formula

(6.2)
∫

P̃
V ,jkf,jk dμ =

∫
P̃
(V ,jk),jkf dμ + 2

∫
∂P̃

f dσ

for any convex function f . Note, however, that the factor of 2 in front of the
boundary term does not actually appear in [21], but is needed to compensate
for the factor of 1/2 in the corrected Abreu-Guillemin boundary conditions.
We also give the boundary term a different sign, because we are treating dσ
as a measure rather than as an exterior differential form.

Example Let (M, g) be the unit 2-sphere, with sectional curvature K = 1,
and hence with scalar curvature s = 2K = 2. Equip (M, g) with the S1

action given by period-2π rotation around the the z-axis, with Hamiltonian
t = z and moment polytope P̃ = [−1, 1]. In cylindrical coordinates, our
metric becomes

g =
dt2

1 − t2
+ (1 − t2)dϑ2

so that the potential V must satisfy V,11 = 1/(1 − t2) and V ,11 = 1 − t2. A
suitable choice of V is therefore

V =
1
2
(1 + t) log(1 + t) +

1
2
(1 − t) log(1 − t)

and we note that this satisfies the Guillemin-Abreu boundary conditions
discussed above. The Abreu formula (6.1) now correctly calculates the scalar
curvature

s = −(V ,11),11 = − d2

dt2
(1 − t2) = 2

of g. Also notice that integration by parts gives∫ 1

−1
(1 − t2)f ′′dt =

∫ 1

−1
(1 − t2)′′fdt + 2[f(−1) + f(1)]

as predicted by (6.2). ♦
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Example Let (M2m, g) be the Riemannian product S2 × · · · × S2 of m
copies of the unit 2-sphere, with equipped with the product Tm-action. The
moment polytope is now the m-cube P̃ = [−1, 1]m, and the metric is again
represented by a symplectic potential

V =
1
2

∑
j

[
(1 + tj) log(1 + tj) + (1 − tj) log(1 − tj)

]
which satisfies our corrected Guillemin-Abreu boundary conditions. The
Abreu formula (6.1) now predicts that the scalar curvature of g is

s = −(V ,ij),ij = −
∑

j

∂2

∂(tj)2
(1 − t2j ) = 2m ,

in agreement with the additivity of the scalar curvature under Riemannian
products. Integrating the jth term by parts twice in the jth variable, we have∫

P̃

⎡⎣∑
j

[1 − (tj)2]
∂2f

∂(tj)2

⎤⎦ dμ =
∫

P̃

⎡⎣∑
j

∂2[1 − (tj)2]
∂(tj)2

⎤⎦ f dμ + 2
∫

∂P̃
f dσ ,

for any smooth f , thereby double-checking (6.2) in complex dimen-
sion m. ♦

By linearity, (6.2) also holds [21, Corollary 3.3.10] if f is any difference
of convex functions. In particular, (6.2) applies to any affine linear function
f on Rm; and since any such f satisfies f,jk = 0, (6.1) and (6.2) tell us that

0 =
∫

P̃
(−s)f dμ + 2

∫
∂P̃

f dσ

for any affine-linear function. Applying the dilation that relates P̃ and P ,
we therefore obtain

(6.3)
∫

P
sf da = 4π

∫
∂P

f dλ

for any affine-linear f . In particular, if we take f = xk − x̄k, we obtain∫
P

xk(s − s̄) da =
∫

P
(xk − x̄k)s da = 4π

∫
∂P

(xk − x̄k) dλ

which in turn implies that∫
M

xk(s − s̄) dμ = 4π

∫
∂P

(xk − x̄k)dλ

because da is the push-forward of the volume measure of (M, g). However,
xk is a holomorphy potential for the holomorphic vector field Ξk, so (2.1)
tells us that the component

Fk := F(Ξk, Ω)
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of the Futaki invariant is given by

Fk = −4π

∫
∂P

(xk − x̄k) dλ .

On the other hand,
1

|∂P |

∫
∂P

(xk − x̄k)dλ = 〈xk − x̄k〉 = 〈xk〉 − x̄k = Dk

where |∂P | denotes the λ-measure of the boundary, 〈 〉 is the average with
respect to dλ, and where Dk is the kth component of the vector D which
points from the barycenter of P to the barycenter of ∂P . Thus the Futaki
invariant F(Ω) = �F = (F1, . . . ,Fm) is given by

(6.4) �F = −4π |∂P | �D

and we have thus reproved Proposition 5.2 in arbitrary complex dimension
m.

Now notice that, by taking normalized Hamiltonians, the Lie algebra t of
our maximal torus T is naturally identified with those affine-linear functions
Rm → R which send the barycenter �̄x of our moment polytope to 0. From
this view-point, it is now apparent that F(Ω) = −4π|∂P | �D actually belongs
to t∗, as it should. In these same terms, though, the “moment-of inertia”
matrix Π defined by

(6.5) Πjk =
∫

P
(xj − x̄j)(xk − x̄k) da

represents the L2 inner product

BT : t × t → R ,

while its inverse matrix Π−1 represents the dual inner product

B−1
T : t

∗ × t
∗ → R .

By Corollary 2.3 and (6.4), we thus have

‖F(Ω)‖2 = B−1
T

(
F(Ω) , F(Ω)

)
= 16π2|∂P |2 �D · Π−1�D .

Chen’s inequality (4.1) therefore tells us2 that any Kähler metric on a toric
manifold satisfies ∫

M
(s − s̄)2dμ ≥ 16π2|∂P |2 �D · Π−1�D

where the moment polytope P is determined solely by the toric manifold M
and the Kähler class Ω; moreover, equality holds iff g is extremal.

On the other hand, setting f = 1 in (6.3) yields∫
P

s da = 4π

∫
∂P

dλ ,

2Here it is worth reiterating that, while the inequality (4.1) is essentially elementary
when g is T-invariant, it is a deep and remarkable result that this same inequality in fact
holds for completely arbitrary Kähler metrics.
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so that ∫
M

s dμ = 4π |∂P | ,

a fact which the reader may enjoy comparing with (4.3). Since (M, g) has
volume |P |, we therefore see that∫

M
s̄2 dμ =

(∫
M s dμ

)2∫
M dμ

= 16π2 |∂P |2
|P |

and the Pythagorean theorem (4.2) therefore implies the following result:

Theorem B. Let (M2m, J,Ω,T) be a toric complex m-manifold with
fixed Kähler class, and let P ⊂ Rm be the associated moment polytope. Then
the scalar curvature s of any Kähler metric g with Kähler form ω ∈ Ω
satisfies

(6.6)
1

16π2

∫
M

s2dμg ≥ |∂P |2
( 1

|P | + �D · Π−1�D
)

,

with equality iff g is an extremal Kähler metric. Here |P | denotes the m-
volume of the interior of P , |∂P | is the λ-volume of its boundary, the

moment-of-inertia matrix Π of P is defined by (6.5), and �D is the vector
joining the barycenter P to the barycenter of ∂P .

Specializing to the case of m = 2 gives a second proof of Theorem A.
Notice that the sharp lower bound (6.6) is in fact independent of

dimension. However, this feature of the result actually depends on our
conventions regarding the moment polytope and the generators of the action.
For example, if we had instead chosen the periodicity of our generators to
be 2π instead of 1, we would have been led to instead use the polytope P̃ ,
and we would have then been forced to introduce an inconvenient scaling
factor, since

|∂P |2
|P | = (2π)m−2 |∂P̃ |2

|P̃ |
But it is also worth noticing that this awkward scaling factor magically
disappears when m = 2. This reflects the fact that the Calabi energy is
invariant under rescaling in real dimension four, and that rescaling a Kähler
class exactly results in a rescaling of the associated moment polytope.

In particular, for the purpose of calculating the virtual action A for
toric surfaces, we would have obtained exactly the same formula if we had
used the rescaled polygon P̃ instead of the polygon P emphasized by this
article. Nonetheless, the use of P has other practical advantages, even when
m = 2. For example, the λ-length of sides of P directly represents the areas
of holomorphic curves in M , unmediated by factors of 2π. In practice, this
avoids repeatedly having to cancel powers of 2π when calculating A(Ω) in
explicit examples. This will now become apparent, as we next illustrate
Theorem A by applying it to specific toric surfaces.
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Figure 1

7. Hirzebruch Surfaces

As a simple illustration of Theorem 5.1, we now compute A(Ω) for the
Hirzebruch surfaces. Recall [7, 26] that, for any non-negative integer k, the
kth Hirzebruch surface Fk is defined to be the CP1-bundle P(O(k) ⊕ O)
over CP1; that is, it is the complex surface obtained from line bundle
O(k) → CP1 of Chern class k by adding a section at infinity. Calabi [11]
explicitly constructed an extremal every Kähler metric in every Kähler class
on each Fk; his direct assault on the problem proved feasible because the
maximal compact subgroup U(2)/Zk of the automorphism group has orbits
of real codimension 1, thereby reducing the relevant equation for the Kähler
potential to an ODE. Because their automorphism groups all contain finite
quotients of U(2), the Hirzebruch surfaces all admit actions of the 2-torus
T 2, and so are toric surfaces. Normalizing the fibers of Fk → CP1 to have area
1, the associated moment polygon becomes the trapezoid shown in Figure 1
and since A(Ω) is unchanged by multiplying Ω by a positive constant, we
may impose this normalization without loss of generality.

We will now apply Theorem 5.1 to calculate the Calabi energy of Calabi’s
extremal Kähler metrics; since Hwang and Simanca [30] have previously
computed this quantity by other means, this exercise will, among other
things, provide us with another useful double-check of equation (5.1). The
area and λ-perimeter of the polygon are easily seen to be

|P | = α +
k

2
, |∂P | = 2 + 2α + k

and it is not difficult to calculate the barycenter of the interior

�̄x =

(
3α2 + 3kα + k2, 3α + k

)
6|P |
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or boundary

〈�x〉 =

(
α2 + α(k + 1) + 1

2k(k + 1), α + 1
)

|∂P |
by hand. The vector

�D = k(2α+k−1)
12|∂P ||P |

(
k,−2

)
thus joins these two barycenter, and without too much work one can also
check that the “moment-of inertia” matrix of P is given by

Π =
1

72|P |

[
6α4 + 12α3k + 12α2k2 + 6αk3 + k4 −k

2 (6α2 + 6αk + k2)
−k

2 (6α2 + 6αk + k2) 6α2 + 6αk + k2

]
The Futaki contribution to A is therefore encoded by the expression

�D · Π−1�D =
2k2(2α + k − 1)2

|P ||∂P |2(6α2 + 6αk + k2)

and the virtual action is thus given by

(7.1) A(Ω) =
2α3 + (4 + 3k)α2 + 2(1 + k)2α + k(k2 + 2)/2

α2 + αk + k2/6
.

After multiplication by an overall constant and the change of variables k = n,
α = (a−n)/2, this agrees with with the expression Hwang and Simanca [30,
equation (3.2)] obtained for their “potential energy” via a different method.

For k > 0, the function A(α) on the right-hand side of (7.1) extends
smoothly across α = 0, and satisfies

dA
dα

∣∣∣∣
α=0

= −6
(k − 2)2

k

so A(α) is a decreasing function for small α if k 
= 2. On the other hand,
A(α) ∼ 2α for α � 0, so A is increasing for large α. It follows that A(α) has
a minimum somewhere on R+ for any k 
= 2. Since Calabi’s construction [11]
moreover shows that each Kähler class on a Hirzebruch surface is represented
by an extremal Kähler metric, Proposition 4.1 tells us that, for k 
= 2, the
Calabi metric gk corresponding to the minimizing value of α is necessarily
Bach-flat.

On the other hand, since

A(Ω) − 3
4
k =

48α3 + (54k + 96)α2 + (30k2 + 96k + 48)α + 9k3 + 24k

4(6α2 + 6kα + k2)

is positive for all α > 0, it follows that

min
Ω

A(Ω) >
3
4
k,

and we conclude that the corresponding Bach-flat Kähler metric gk has

W(gk) > 2π2k
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Since the Hirzebruch surface Fk is diffeomorphic to S2 × S2 when k is
even, and is diffeomorphic to CP2#CP2 when k is odd, the metrics gk, first
discovered by Hwang and Simanca [30], immediately give us the following:

Proposition 7.1. The smooth 4-manifolds S2 ×S2 and CP2#CP2 both
admit sequences of Bach-flat conformal classes [gkj

] with W([gkj
]) → +∞.

Consequently, the moduli space of Bach-flat conformal metrics on either of
these manifolds has infinitely many connected components.

The metric g1 on F1 has scalar curvature s > 0 everywhere, and its
conformal rescaling s−2g1 was shown by Derdziński [19] to coincide with the
Einstein metric on CP2#CP2 discovered by Page [48]. For k ≥ 3, the scalar
curvature s of gk instead vanishes along a hypersurface, which becomes the
conformal infinity for the Einstein metric s−2gk; thus Fk is obtained from two
Poincaré-Einstein manifolds, glued along their conformal infinity. These two
Einstein metrics are in fact isometric, in an orientation-reversing manner.
Because of their U(2) symmetry, these Einstein metrics belong to the family
first discovered by Bérard-Bergery [8], and later rediscovered by physicists,
who call them AdS-Taub-bolt metrics [29].

8. The Two-Point Blow-Up of CP2

As a final illustration of Theorem 5.1, we now compute the virtual action
for Kähler classes on the blow-up of CP2 at two distinct points. The present
author has done this elsewhere by a more complicated method, and the
details of the answer played an important role in showing [15, 37] that
this manifold admits an Einstein metric, obtained by conformally rescaling
a Bach-flat Kähler metric. Thus, repeating the computation by means of
equation (5.1) provides yet another double-check of Theorem A.

Blowing up CP2 in two distinct points results in exactly the same
complex surface as blowing CP1 × CP1 in a single point [7, 26]. The latter
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picture is actually useful in choosing a pair of generators for the torus action
which makes the needed computations as simple as possible. The resulting
moment polygon P then takes the form shown in Figure 2 after rescaling to
give the blow-up divisor area 1. It is then easy to see that the area of the
polygon and the λ-length of its boundary are given by

|P | =
1
2

+ α + β + αβ, |∂P | = 3 + 2α + 2β

while the barycenter of the boundary

〈�x〉 =

(
(1 + α)(2 + α + β), (1 + β)(2 + α + β)

)
|∂P |

and of the interior

�̄x =

(
3(1 + α)2(1 + β) − 1, 3(1 + α)(1 + β)2 − 1

)
6 |P |

are not difficult to compute by hand. The vector joining these two barycen-
ters is thus given by

�D =

(
− α + 2β + 3αβ + 3α2β, −β + 2α + 3αβ + 3αβ2

)
6|P | |∂P |

and the moment-of-inertia matrix

Π =
1
24

[
8(1 + α)3(1 + β) − 2 6(1 + α)2(1 + β)2 − 1
6(1 + α)2(1 + β)2 − 1 8(1 + α)(1 + β)3 − 2

]
− |P |

[
x̄2

1 x̄1x̄2
x̄1x̄2 x̄2

1

]
are also easily obtained without the use of a computer. According to (5.1),
A(Ω) is therefore given by

3
[
3 + 28β + 96β2 + 168β3 + 164β4 + 80β5 + 16β6 + 16α6(1 + β)4 + 16α5(5 + 24β +

43β2 +37β3 +15β4 +2β5)+4α4(41+228β +478β2 +496β3 +263β4 +60β5 +4β6)+
8α3(21+135β+326β2+392β3+248β4+74β5+8β6)+4α(7+58β+176β2+270β3+
228β4 +96β5 +16β6)+4α2(24+176β +479β2 +652β3 +478β4 +172β5 +24β6)

]/
[
1 + 10β + 36β2 + 64β3 + 60β4 + 24β5 + 24α5(1 + β)5 + 12α4(1 + β)2(5 + 20β +

23β2 +10β3)+16α3(4+28β +72β2 +90β3 +57β4 +15β5)+12α2(3+24β +69β2 +
96β3 + 68β4 + 20β5) + 2α(5 + 45β + 144β2 + 224β3 + 180β4 + 60β5)

]
as is most easily checked at this point using Mathematica or a similar
program. After the substitution γ = α, this agrees exactly with the answer
obtained in [38, §2], where this explicit formula plays a key role in classifying
compact Einstein 4-manifolds for which the metric is Hermitian with respect
to some complex structure.

When α = β, the above expression simplifies to become

9 + 96α + 396α2 + 840α3 + 954α4 + 528α5 + 96α6

1 + 12α + 54α2 + 120α3 + 138α4 + 72α5 + 12α6
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which, after dividing by 3 and making the substitution α = 1/y, coincides
with the expression [36] first used to show that A has a critical point, and
later used again [15] to prove the existence of a conformally Einstein, Kähler
metric on CP2#2CP2. For a second, conceptually simpler proof of this last
fact, see [37].

Appendix A. Restricting the Futaki Invariant

In this appendix, we will prove Proposition 2.1. The key ingredient used
in the proof is the following result of Nakagawa [45]:

Proposition A.1 (Nakagawa). Let (M, J) be a projective algebraic com-
plex manifold, let H be the identity component of its complex automorphism
group, and suppose that the Jacobi homomorphism from H to the Albanese
torus of M is trivial. Let L → M be an ample line bundle for which the
action of H on M lifts to an action on L → M , and let Ω be the Kähler
class defined by Ω = c1(L). Then the Futaki invariant F(Ω) ∈ h∗ annihilates
the Lie algebra ru of the unipotent radical of H.

This generalizes a previous result of Mabuchi [42] concerning the case
when L is the anti-canonical line bundle. Both of these results are proved
using Tian’s localization formula [53] for the Futaki invariant of a Hodge
metric.

We will now extend Proposition A.1 to irrational Kähler classes on
certain complex manifolds. In order to do this, we will first need the following
observation:

Lemma A.2. Let (M, J) be a compact complex manifold with b1(M) = 0,
and let H be the identity component of its complex automorphism group. If
L → M is a positive line bundle, then the action of H on M lifts to an
action on Lk → M for some positive integer k.

Proof. By the Kodaira embedding theorem [26], L has a positive power
L� for which there is a canonical holomorphic embedding j : M ↪→ P(V) such
that j∗O(−1) = L−�, where V := [H0(M,O(L�))]∗.

Now since (M, J) is of Kähler type and H1(M, C) = 0, the Hodge
decomposition tells us that H0,1(M) = H1(M,O) = 0, and the long exact
sequence

· · · → H1(M,O) → H1(M,O×) → H2(M, Z) → · · ·
therefore implies that holomorphic line bundles on M are classified by
their first Chern classes. On the other hand, since H is connected, each
automorphism Φ : M → M , Φ ∈ H, is homotopic to the identity; and since
Chern classes are homotopy invariants, we deduce that that c1(Φ∗L) = c1(L)
for all Φ ∈ H. Consequently, Φ∗L ∼= L as a holomorphic line bundle for
any Φ ∈ H. While the resulting isomorphism Φ∗L ∼= L is not unique, any
two such isomorphisms merely differ by an overall multiplicative constant,
and the associated linear map H0(M,O(L�)) → H0(M,O(L�)) induced by
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Φ∗ is therefore completely determined up to an overall scale factor. Thus,
for every Φ ∈ H, there is a uniquely determined projective transformation
P(V) → P(V), where again V := [H0(M,O(L�))]∗. This gives us a faithful
projective representation H ↪→ PSL(V) which acts on M ⊂ P(V) via the
original action of H.

Now consider the group SL(V) of unit-determinant linear endomor-
phisms of V, and observe that there is a short exact sequence

0 → Zn → SL(V) → PSL(V) → 1

where n = dim V; that is, every projective transformation of P(V) arises from
n different linear unit-determinant linear endomorphisms of V, differing from
each other merely by multiplication by an nth root of unity. If H̃ < SL(V)
is the inverse image of H < PSL(V), then H̃ acts on V, and so also acts on
the tautological line bundle O(−1) over P(V). Restricting O(−1) to M then
gives us an action of H̃ on L−� which lifts the action of H on M , in such a
manner that any two lifts of a given element only differ by multiplication of
an nth root of unity. The induced action of H̃ on L−n� therefore descends
to an action of H, and passing to the dual line bundle Ln� thus shows that
the action of H on M can be lifted to an action on Lk → M for k = n
. �

Proposition A.3. Let (M, J) be a compact complex manifold of Kähler
type, and suppose that M does not carry any non-trivial holomorphic 1- or
2-forms. Then, for any Kähler class Ω on M , the Futaki invariant F(Ω) ∈ h∗

annihilates the unipotent radical ru ⊂ h.

Proof. By hypothesis, H1,0(M) = H2,0(M) = 0. The Hodge decompo-
sition therefore tells us that b1(M) = 0 and that H1,1(M, R) = H2(M, R).
Consequently, the Kähler cone K ⊂ H1,1(M, R) is open in H2(M, R). Since
H2(M, Q) is dense in H2(M, R), it follows that H2(M, Q) ∩ K is dense in
K . In particular, H2(M, Q) ∩ K is non-empty, and so, clearing denomina-
tors, we conclude that the Kähler cone K must meet the the integer lattice
H2(M, Z)/torsion ⊂ H2(M, R). This argument, due to Kodaira [33], shows
that (M, J) carries Kähler metrics of Hodge type, and is therefore projective
algebraic.

Pursuing this idea in the opposite direction, let Ψ now be an integral
Kähler class, so that Ψ = c1(L) for some positive line bundle L → M . By
Lemma A.2, the action of H on M then lifts to some positive power Lk

of L. Since our hypotheses also imply that the Albanese torus is trivial,
Proposition A.1 therefore implies that F(kΨ) ∈ h∗ annihilates ru. However,
our expression (2.1) for the Futaki invariant implies that

F(Ξ, λΩ) = λm
F(Ξ, Ω)

for any λ ∈ R+, where m is the complex dimension, since rescaling a Kähler
metric by g � λg results in ω � λω, s � λ−1s, f � λf , and dμ � λmdμ.
By taking λ to be an arbitrary positive rational, we therefore see that
F(Ξ, Ω) = 0 whenever Ξ ∈ ru and Ω ∈ H2(M, Q) ∩ K , where K once again



224 CLAUDE LEBRUN

denotes the Kähler cone. However, for any fixed Ξ, the right-hand-side of
(2.1) clearly depends smoothly on the Kähler metric g, and F(Ξ, Ω) therefore
is a smooth function of the Kähler class Ω. But h2,0(M) = 0 implies that
H2(M, Q) ∩ K is dense in K . Thus, for any Ξ ∈ ru, we have shown that
F(Ξ, Ω) = 0 for a dense set of Ω ∈ K . Continuity therefore implies that
F(Ξ, Ω) = 0 for all Ω ∈ K . Hence F(Ω) ∈ h∗ annihilates ru for any Kähler
class Ω on M . �

Under the hypotheses of Proposition A.3, we can thus view F(Ω) as
belonging to the complexified Lie coalgebra g∗

C
= g∗ ⊗ C of a maximal

compact subgroup G ⊂ H. By averaging, let us now represent our given
Kähler class Ω by a G-invariant Kähler metric g. The Lie algebra of Killing
fields of g then can be identified with the real holomorphy potentials of
integral 0, which are their Hamiltonians; the Lie bracket on g then becomes
the Poisson bracket {·, ·} on Hamiltonians. Since the scalar curvature s of g
is also a real function, formula (2.1) thus tells us that F(Ω) is actually a real
linear functional on g; that is, F(Ω) ∈ g∗. This proves Proposition 2.1.
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