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Let X be a complex algebraic or analytic variety. Its local topology
near a point x ∈ X is completely described by its link L(x ∈ X), which is
obtained as the intersection of X with a sphere of radius 0 < ε � 1 centered
at x. The intersection of X with the closed ball of radius ε centered at x is
homeomorphic to the cone over L(x ∈ X); cf. [GM88, p.41].

If x ∈ X is a smooth point then its link is a sphere of dimension
2 dimC X − 1. Conversely, if X is a normal surface and L(x ∈ X) is a sphere
then x is a smooth point [Mum61], but this fails in higher dimensions
[Bri66].

The aim of this survey is to study in some sense the opposite question:
we are interested in the “most complicated” links. In its general form, the
question is the following.

Problem 1. Which topological spaces can be links of complex algebraic
or analytic singularities?

If dimX = 1, then the possible links are disjoint unions of circles. The
answer is much more complicated in higher dimensions and we focus on
isolated singularities from now on, though many results hold for non-isolated
singularities as well. Thus the link L(x ∈ X) is a (differentiable) manifold
of (real) dimension 2 dimC X − 1.

Among the simplest singularities are the cones over smooth projective
varieties. Let Z ⊂ PN be a smooth projective variety and X := Cone(Z) ⊂
CN+1 the cone over Z with vertex at the origin. Then L(0 ∈ X) is a circle
bundle over Z whose first Chern class is the hyperplane class. Thus the link
of the vertex of Cone(Z) is completely described by the base Z and by the
hyperplane class [H] ∈ H2(Z, Z).

Note that a singularity 0 ∈ X ⊂ CN is a cone iff it can be defined
by homogeneous equations. One gets a much larger class of singularities if
we consider homogeneous equations where different variables have different
degree (or weight).

For a long time it was believed that links of isolated singularities are
“very similar” to links of cones and weighted cones. The best illustration of
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this is given by the complete description of links of surface singularities given
in [Neu81]. Cones give circle bundles over Riemann surfaces and weighted
cones give Seifert bundles over Riemann surfaces. General links are more
complicated but they are all obtained by gluing Seifert bundles over Rie-
mann surfaces with boundary. These are definitely more complicated than
Seifert bundles, but much simpler than general 3–manifolds. In particular,
hyperbolic 3–manifolds – which comprise the largest and most complicated
class – do not occur as links.

Important examples of the similarity of general links to smooth pro-
jective varieties are given by the local Lefschetz theorems, initiated by
Grothendieck [Gro68] and developed much further subsequently; see
[GM88] for a detailed treatment.

As another illustration, the weights of the mixed Hodge structure on the
cohomology groups of links also follow the same pattern for general links as
for links of cones, see [DH88] or [PS08, Sec.6.3].

These and many other examples led to a viewpoint that was best
summarized in [GM88, p.26]: “Philosophically, any statement about the
projective variety or its embedding really comes from a statement about
the singularity at the point of the cone. Theorems about projective varieties
should be consequences of more general theorems about singularities which
are no longer required to be conical.”

Recently this belief was called into question by [KK11] which proved
that fundamental groups of general links are very different from fundamental
groups of links of cones. The aim of this paper is to summarize the results,
present several new theorems and review the problems that arise.

Philosophically, the main long term question is to understand the limits
of the above principle. We know that it fails for the fundamental group but
it seems to apply to cohomology groups. It is unclear if it applies to simply
connected links or not.

The new results rely on a method, considered in [Kol11], to construct
singularities using their resolution. By Hironaka’s resolution theorem, for
every isolated singularity (x ∈ X) there is a proper, birational morphism
f : Y → X such that E := f−1(x) is a simple normal crossing divisor and
Y \ E → X \ {x} is an isomorphism. The method essentially reverses the
resolution process. That is, we start with a (usually reducible) simple normal
crossing variety E, embed E into a smooth variety Y and then contract
E ⊂ Y to a point to obtain (x ∈ X). If E is smooth, this is essentially the
cone construction.

This approach has been one of the standard ways to construct surface
singularities but it has not been investigated in higher dimensions until
recently. There were probably two reason for this. First, if dimX ≥ 3
then there is no “optimal” choice for the resolution f : Y → X. Thus
the exceptional set E = f−1(x) depends on many arbitrary choices and it
is not easy to extract any invariant of the singularity from E; see, however,
Definition 6. Thus any construction starting with E seemed rather arbitrary.
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Second, the above philosophy suggested that one should not get anything
substantially new this way.

The first indication that this method is worth exploring was given in
[Kol11] where it was used to construct new examples of terminal and log
canonical singularities that contradicted earlier expectations.

A much more significant application was given in [KK11]. Since in
higher dimensions a full answer to Problem 1 may well be impossible to give,
it is sensible to focus on some special aspects. A very interesting question
turned out to be the following.

Problem 2. Which groups occur as fundamental groups of links of
complex algebraic or analytic singularities?

Note that the fundamental groups of smooth projective varieties are
rather special; see [ABC+96] for a survey. Even the fundamental groups
of smooth quasi projective varieties are quite restricted [Mor78, KM98a,
CS08, DPS09]. By contrast fundamental groups of links are arbitrary.

Theorem 3. [KK11] For every finitely presented group G there is an
isolated, complex singularity

(
0 ∈ XG

)
with link LG such that π1

(
LG

) ∼= G.

Note that once such a singularity exists, a local Lefschetz–type theorem
(cf. [GM88, Sec.II.1.2]) implies that the link of a general 3-dimensional
hyperplane section has the same fundamental group.

There are two natural directions to further develop this result: one can
connect properties of the fundamental group of a link to algebraic or analytic
properties of a singularity and one can investigate further the topology of
the links or of the resolutions.

In the first direction, the following result answers a question of Wahl.

Theorem 4. For a finitely presented group G the following are equiva-
lent.

(1) G is Q-perfect, that is, its largest abelian quotient is finite.
(2) G is the fundamental group of the link of an isolated Cohen–

Macaulay singularity (46) of dimension ≥ 3.

One can study the local topology of X by choosing a resolution of
singularities π : Y → X such that Ex := π−1(x) ⊂ Y is a simple normal
crossing divisor and then relating the topology of Ex to the topology of the
link L(x ∈ X).

The topology of a simple normal crossing divisor E can in turn be
understood in 2 steps. First, the Ei are smooth projective varieties, and
their topology is much studied. A second layer of complexity comes from how
the components Ei are glued together. This gluing process can be naturally
encoded by a finite cell complex D(E), called the dual complex or dual graph
of E.
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Definition 5 (Dual complex). Let E be a variety with irreducible
components {Ei : i ∈ I}. We say that E is a simple normal crossing variety
(abbreviated as snc) if the Ei are smooth and every point p ∈ E has an
open (Euclidean) neighborhood p ∈ Up ⊂ E and an embedding Up ↪→ Cn+1

such that the image of Up is an open subset of the union of coordinate
hyperplanes (z1 · · · zn+1 = 0). A stratum of E is any irreducible component
of an intersection ∩i∈JEi for some J ⊂ I.

The combinatorics of E is encoded by a cell complex D(E) whose vertices
are labeled by the irreducible components of E and for every stratum
W ⊂ ∩i∈JEi we attach a (|J | − 1)-dimensional cell. Note that for any j ∈ J
there is a unique irreducible component of ∩i∈J\{j}Ei that contains W ; this
specifies the attaching map. D(E) is called the dual complex or dual graph of
E. (Although D(E) is not a simplicial complex in general, it is an unordered
Δ-complex in the terminology of [Hat02, p.534].)

Definition 6 (Dual complexes associated to a singularity). Let X be
a normal variety and x ∈ X a point. Choose a resolution of singularities
π : Y → X such that Ex := π−1(x) ⊂ Y is a simple normal crossing divisor.
Thus it has a dual complex D(Ex).

The dual graph of a normal surface singularity has a long history.
Higher dimensional versions appear in [Kul77, Per77, Gor80, FM83] but
systematic investigations were started only recently; see [Thu07, Ste08,
Pay09, Pay11].

It is proved in [Thu07, Ste08, ABW11] that the homotopy type of
D(Ex) is independent of the resolution Y → X. We denote it by DR(x ∈ X).

The proof of Theorem 3 gives singularities for which the fundamental
group of the link is isomorphic to the fundamental group of DR(x ∈ X).
In general, it seems easier to study DR(x ∈ X) than the link and the next
theorem shows that not just the fundamental group but the whole homotopy
type of DR(0 ∈ X) can be arbitrary. The additional properties (7.2–3) follow
from the construction as in [Kol11, KK11].

Theorem 7. Let T be a connected, finite cell complex. Then there is a
normal singularity (0 ∈ X) such that

(1) the complex DR(0 ∈ X) is homotopy equivalent to T ,
(2) π1

(
L(0 ∈ X)

) ∼= π1(T ) and

(3) if π : Y → X is any resolution then Riπ∗OY
∼= H i(T, C) for i > 0.

The fundamental groups of the dual complexes of rational singularities
(52) were determined in [KK11, Thm.42]. The next result extends this by
determining the possible homotopy types of DR(0 ∈ X).

Theorem 8. Let T be a connected, finite cell complex. Then there is a
rational singularity (0 ∈ X) whose dual complex DR(0 ∈ X) is homotopy
equivalent to T iff T is Q-acyclic, that is, H i(T, Q) = 0 for i > 0.

As noted in [Pay11], the dual complex DR(0 ∈ X) can be defined
even up-to simple-homotopy equivalence [Coh73]. The proofs given in
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[KK11] use Theorem 25, which in turn relies on some general theorems
of [Cai61, Hir62] that do not seem to give simple-homotopy equivalence.1

Content of the Sections.
Cones, weighted cones and the topology of the corresponding links are

discussed in Section 1.
The plan for the construction of singularities from their resolutions is

outlined in Section 2 and the rest of the paper essentially fleshes out the
details.

In Section 3 we show that every finite cell complex is homotopy equiva-
lent to a Voronoi complex. These Voronoi complexes are then used to con-
struct simple normal crossing varieties in Section 4.

The corresponding singularities are constructed in Section 5 where
we prove Theorem 7 except for an explicit resolution of the resulting
singularities which is accomplished in Section 6.

The proof of Theorem 4 is given in Section 7 where several other
equivalent conditions are also treated. Theorem 8 on rational singularities
is reviewed in Section 8.

Open questions and problems are discussed in Section 9.

Acknowledgments. I thank I. Dolgachev, T. de Fernex, T. Jarvis,
M. Kapovich, L. Maxim, A. Némethi, P. Ozsváth, S. Payne, P. Popescu-
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J. Wahl, and C. Xu for comments and corrections. Partial financial support
was provided by the NSF under grant number DMS-07-58275 and by the
Simons Foundation. Part of this paper was written while the author visited
the University of Utah.

1. Weighted homogeneous links

Definition 9 (Weighted homogeneous singularities). Assign positive
weights to the variables w(xi) ∈ Z, then the weight of a monomial

∏
i x

ai
i is

w
(∏

ix
ai
i

)
:=

∑
iaiw(xi).

A polynomial f is called weighted homogeneous of weighted-degree w(f) iff
every monomial that occurs in f with nonzero coefficient has weight w(f).

Fix weights w :=
(
w(x1), . . . , w(xN )

)
and let {fi : i ∈ I} be weighted ho-

mogeneous polynomials. They define both a projective variety in a weighted
projective space

Z(fi : i ∈ I) ⊂ P(w)
and an affine weighted cone

C(fi : i ∈ I) ⊂ CN .

Somewhat loosely speaking, a singularity is called weighted homogeneous
if it is isomorphic to a singularity defined by a weighted cone for some weights

1This problem is settled in [Kol13a].
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w(xi). (In the literature these are frequently called quasi-homogeneous
singularities.)

In many cases the weights are uniquely determined by the singularity
(up to rescaling) but not always. For instance, the singularity (xy = zn) is
weighted homogeneous for any weights that satisfy w(x) + w(y) = n · w(z).

If C ⊂ CN is a weighted cone then it has a C∗-action given by

(x1, . . . , xN ) 	→
(
tm1x1, . . . , t

mN xN

)
where mi = 1

w(xi)
∏

jw(xj).

Conversely, let X be a variety with a C∗ action and x ∈ X a fixed point
that is attractive as t → 0. Linearizing the action shows that x ∈ X is a
weighted homogeneous singularity.

10 (Links of weighted homogeneous singularities). The C∗-action on
a weighted homogeneous singularity (x ∈ X) induces a fixed point free
S1-action on its link L. If we think of X as a weighted cone over the
corresponding projective variety Z ⊂ P(w) then we get a projection π :
L → Z whose fibers are exactly the orbits of the S1-action, that is, the link
of a weighted homogeneous singularity has a Seifert bundle structure. (For
our purposes we can think that a Seifert bundle is the same as a fixed point
free S1-action.) If (x ∈ X) is an isolated singularity then Z is an orbifold.

It is thus natural to study the topology of links of weighted homogeneous
singularities in two steps.

(1) Describe all 2n − 1-manifolds with a fixed point free S1-action.
(2) Describe which among them occur as links of weighted homoge-

neous singularities.

11 (Homology of a weighted homogeneous link). [OW75] Let π : L → Z
be the Seifert bundle structure. The cohomology of L is computed by a
spectral sequence

H i
(
Z, Rjπ∗QL

)
⇒ H i+j(L, Q). (11.1)

All the fibers are oriented circles, thus R0π∗QL
∼= R1π∗QL

∼= QZ and
Rjπ∗QL = 0 for j > 1. Thus the E2-term of the spectral sequence is

H0(Z, Q)

����������������������� H1(Z, Q)

�����������������������
H2(Z, Q) · · ·

H0(Z, Q) H1(Z, Q) H2(Z, Q) · · ·

(11.2)

where the differentials are cup product with the (weighted) hyperplane class

c1
(
OZ(1)

)
∪ : H i(Z, R1π∗QL) ∼= H i(Z, Q) → H i+2(Z, Q). (11.3)

Since Z is an orbifold, these are injective if i + 2 ≤ dim Z and surjective if
i ≥ dim Z. Thus we conclude that

hi(L, Q) = hi(Z, Q) − hi−2(Z, Q) if i ≤ dim Z and

hi+1(L, Q) = hi(Z, Q) − hi+2(Z, Q) if i ≥ dim Z
(11.4)
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where we set hi(Z, Q) = 0 for i < 0 or i > 2 dim Z. In particular we see
that L is a rational homology sphere iff Z is a rational homology complex
projective space.

By contrast, the spectral sequence computing the integral cohomology
of L is much more complicated. We have a natural injection R1π∗ZL ↪→ ZZ

which is, however, rarely an isomorphism. The computations were carried
out only for dimL ≤ 5 [Kol05].

12 (Weighted homogeneous surface singularities). This is the only case
that is fully understood.

The classification of fixed point free circle actions on 3–manifolds was
considered by Seifert [Sei32]. If M is a 3–manifold with a fixed point free
circle action then the quotient space F := M/S1 is a surface (without
boundary in the orientable case). The classification of these Seifert fibered
3–manifolds f : M → F is thus equivalent to the classification of fixed point
free circle actions. It should be noted that already in this classical case, it is
conceptually better to view the base surface F not as a 2–manifold but as a
2-dimensional orbifold, see [Sco83] for a detailed survey from this point of
view.

Descriptions of weighted homogeneous surface singularities are given in
[Pin77, Dol83, Dem88, FZ03].

Weighted homogeneous 3-fold singularities.
There is a quite clear picture about the simply connected case since

simply connected 5–manifolds are determined by their homology.
By a theorem of [Sma62, Bar65], a simply connected, compact 5–

manifold L is uniquely determined by H2(L, Z) and the second Stiefel–
Whitney class, which we view as a map w2 : H2(L, Z) → Z/2. Furthermore,
there is such a 5–manifold iff there is an integer k ≥ 0 and a finite Abelian
group A such that either H2(L, Z) ∼= Zk + A + A and w2 : H2(L, Z) → Z/2
is arbitrary, or H2(L, Z) ∼= Zk + A + A + Z/2 and w2 is projection on the
Z/2-summand.

The existence of Seifert bundles on simply connected compact 5–
manifolds was treated in [Kol06]. The answer mostly depends on the torsion
subgroup of H2(L, Z), but there is a subtle interplay with w2.

Definition 13. Let M be any manifold. Write its second homology as
a direct sum of cyclic groups of prime power order

H2(M, Z) = Zk +
∑

p,i

(
Z/piZ

)c(pi) (13.1)

for some k = dimH2(M, Q) and c(pi) = c(pi, M). The numbers k, c(pi)
are determined by H2(M, Z) but the subgroups (Z/pi)c(pi) ⊂ H2(M, Z) are
usually not unique. One can choose the decomposition (13.1) such that
w2 : H2(M, Z) → Z/2 is zero on all but one summand Z/2n. This value
n is unique and it is denoted by i(M) [Bar65]. This invariant can take up
any value n for which c(2n) 
= 0, besides 0 and ∞. Alternatively, i(M) is the
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smallest n such that there is an α ∈ H2(M, Z) such that w2(α) 
= 0 and α
has order 2n.

The existence of a fixed point free differentiable circle action puts strong
restrictions on H2 and on w2.

Theorem 14. [Kol06, Thm.3] Let L be a compact, simply connected
5–manifold. Then L admits a fixed point free differentiable circle action if
and only if H2(L, Z) and w2 satisfy the following conditions.

(1) For every p, we have at most dim H2(M, Q) + 1 nonzero c(pi) in
(13.1).

(2) One can arrange that w2 : H2(L, Z) → Z/2 is the zero map on

all but the Zk + (Z/2)c(2) summands in (13.1). That is, i(L) ∈
{0, 1,∞}.

(3) If i(L) = ∞ then #{i : c(2i) > 0} ≤ dim H2(M, Q).

Remark 15. Note that while Theorem 14 tells us which compact, simply
connected 5–manifolds admit a fixed point free differentiable circle action,
the proof does not classify all circle actions. In particular, the classification
of all circle actions on S5 is not known.

By contrast very little is known about which compact, simply connected
5–manifolds occur as links of weighted homogeneous singularities. It is
known that not every Seifert bundle occurs [Kol06, Lem.49] but a full
answer seems unlikely.

Nothing seems to be known in higher dimensions.

16 (Einstein metrics on weighted homogeneous links). By a result of
[Kob63], the link of a cone over a smooth projective variety Z ⊂ PN carries a
natural Einstein metric iff −KZ is a positive multiple of the hyperplane class
and Z carries a Kähler–Einstein metric. This was generalized by [BG00] to
weighted cones. Here one needs to work with an orbifold canonical class
KX + Δ and a suitable orbifold Kähler–Einstein metric on (X, Δ).

This approach was used to construct new Einstein metrics on spheres
and exotic spheres [BGK05, BGKT05] and on many 5-manifolds [Kol05,
Kol07a, Kol09].

See [BG08] for a comprehensive treatment.

2. Construction of singularities

The construction has 5 main steps, none of which is fully understood at
the moment. After summarizing them, we discuss the difficulties in more
detail. Although the steps can not be carried out in full generality, we
understand enough about them to obtain the main theorems.

17 (Main steps of the construction).
Step.17.1. For a simplicial complex C construct projective simple normal

crossing varieties V (C) such that D
(
V (C)

) ∼= C.



LINKS OF COMPLEX ANALYTIC SINGULARITIES 165

Step.17.2. For a projective simple normal crossing variety V construct a
smooth variety Y (V ) that contains V as a divisor.

Step.17.3. For a smooth variety Y containing a simple normal crossing
divisor D construct an isolated singularity (x ∈ X) such that (D ⊂ Y ) is a
resolution of (x ∈ X).

Step.17.4. Describe the link L(x ∈ X) in terms of the topology of D and
the Chern class of the normal bundle of D.

Step.17.5. Describe the relationship between the properties of the singu-
larity (x ∈ X) and the original simplicial complex C.

18 (Discussion of Step 17.1). I believe that for every simplicial complex
C there are many projective simple normal crossing varieties V (C) such that
D

(
V (C)

) ∼= C.2

There seem to be two main difficulties of a step-by-step approach.
First, topology would suggest that one should build up the skeleta of

V (C) one dimension at a time. It is easy to obtain the 1-skeleton by gluing
rational curves. The 2-skeleton is still straightforward since rational surfaces
do contain cycles of rational curves of arbitrary length. However, at the next
step we run into a problem similar to Step 17.2 and usually a 2-skeleton
can not be extended to a 3-skeleton. Our solution in [KK11] is to work
with triangulations of n-dimensional submanifolds with boundary in Rn.
The ambient Rn gives a rigidification and this makes it possible to have a
consistent choice for all the strata.

Second, even if we construct a simple normal crossing variety V , it is not
easy to decide whether it is projective. This is illustrated by the following
example of “triangular pillows” [KK11, Exmp.34].

Let us start with an example that is not simple normal crossing.
Take 2 copies P2

i := P2(xi : yi : zi) of CP2 and the triangles Ci :=
(xiyizi = 0) ⊂ P2

i . Given cx, cy, cz ∈ C∗, define φ(cx, cy, cz) : C1 → C2
by (0 : y1 : z1) 	→ (0 : y1 : czz1), (x1 : 0 : z1) 	→ (cxx1 : 0 : z1) and
(x1 : y1 : 0) 	→ (x1 : cyy1 : 0) and glue the 2 copies of P2 using φ(cx, cy, cz)
to get the surface S(cx, cy, cz).

We claim that S(cx, cy, cz) is projective iff the product cxcycz is a root
of unity.

To see this note that Pic0(Ci) ∼= C∗ and Picr(Ci) is a principal homo-
geneous space under C∗ for every r ∈ Z. We can identify Pic3(Ci) with C∗

using the restriction of the ample generator Li of Pic
(
P2

i

) ∼= Z as the base
point.

The key observation is that φ(cx, cy, cz)∗ : Pic3(C2) → Pic3(C1) is
multiplication by cxcycz. Thus if cxcycz is an rth root of unity then Lr

1
and Lr

2 glue together to an ample line bundle but otherwise S(cx, cy, cz)
carries only the trivial line bundle.

2This is now proved in [Kol13a].
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We can create a similar simple normal crossing example by smoothing
the triangles Ci. That is, we take 2 copies P2

i := P2(xi : yi : zi) of CP2 and
smooth elliptic curves Ei := (x3

i + y3
i + z3

i = 0) ⊂ P2
i .

Every automorphism τ ∈ Aut(x3 + y3 + z3 = 0) can be identified with
an isomorphism τ : E1 ∼= E2, giving a simple normal crossing surface S(τ).
The above argument then shows that S(τ) is projective iff τm = 1 for some
m > 0.

These examples are actually not surprising. One can think of the surfaces
S(cx, cy, cz) and S(τ) as degenerate K3 surfaces of degree 2 and K3 surfaces
have non-projective deformations. Similarly, S(cx, cy, cz) and S(τ) can be
non-projective. One somewhat unusual aspect is that while a smooth K3
surface is projective iff it is a scheme, the above singular examples are always
schemes yet many of them are non-projective.

19 (Discussion of Step 17.2). This is surprisingly subtle. First note that
not every projective simple normal crossing variety V can be realized as a
divisor on a smooth variety Y . A simple obstruction is the following.

Let Y be a smooth variety and D1 +D2 a simple normal crossing divisor
on Y . Set Z := D1 ∩ D2. Then NZ,D2

∼= ND1,Y |Z where NX,Y denotes the
normal bundle of X ⊂ Y .

Thus if V = V1∪V2 is a simple normal crossing variety with W := V1∩V2
such that NW,V2 is not the restriction of any line bundle from V1 then V is
not a simple normal crossing divisor in a nonsingular variety.

I originally hoped that such normal bundle considerations give necessary
and sufficient conditions, but recent examples of [Fuj12a, Fuj12b] show
that this is not the case.

For now, no necessary and sufficient conditions of embeddability are
known. In the original papers [Kol11, KK11] we went around this problem
by first embedding a simple normal crossing variety V into a singular variety
Y and then showing that for the purposes of computing the fundamental
group of the link the singularities of Y do not matter.

We improve on this in Section 6.

20 (Discussion of Step 17.3). By a result of [Art70], a compact divisor
contained in a smooth variety D = ∪iDi ⊂ Y can be contracted to a point
if there are positive integers mi such that OY (−

∑
i miDi)|Dj is ample for

every j.
It is known that this condition is not necessary and no necessary and

sufficient characterizations are known. However, it is easy to check the above
condition in our examples.

21 (Discussion of Step 17.4). This approach, initiated in [Mum61], has
been especially successful for surfaces.

In principle the method of [Mum61] leads to a complete description
of the link, but it seems rather difficult to perform explicit computations.
Computing the fundamental group of the links seems rather daunting in
general. Fortunately, we managed to find some simple conditions that ensure
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that the natural maps

π1
(
L(x ∈ X)

)
→ π1

(
R(X)

)
→ π1

(
DR(X)

)

are isomorphisms. However, these simple conditions force D to be more
complicated than necessary, in particular we seem to lose control of the
canonical class of X.

22 (Discussion of Step 17.5). For surfaces there is a very tight connection
between the topology of the link and the algebro-geometric properties of a
singularity. In higher dimension, one can obtain very little information from
the topology alone. As we noted, there are many examples where X is a
topological manifold yet very singular as a variety.

There is more reason to believe that algebro-geometric properties restrict
the topology. For example, the results of Section 7 rely on the observation
that if (x ∈ X) is a rational (or even just 1-rational) singularity then
H1

(
L(x ∈ X), Q

)
= 0.

3. Voronoi complexes

Definition 23. A (convex) Euclidean polyhedron is a subset P of Rn

given by a finite collection of linear inequalities (some of which may be strict
and some not). A face of P is a subset of P which is given by converting
some of these non-strict inequalities to equalities.

A Euclidean polyhedral complex in Rn is a collection of closed Euclidean
polyhedra C in Rn such that

(1) if P ∈ C then every face of P is in C and
(2) if P1, P2 ∈ C then P1 ∩ P2 is a face of both of the Pi (or empty).

The union of the faces of a Euclidean polyhedral complex C is denoted by
|C|.

For us the most important examples are the following.

Definition 24 (Voronoi complex). Let Y = {yi : i ∈ I} ⊂ Rn be a
finite subset. For each i ∈ I the corresponding Voronoi cell is the set of
points that are closer to yi than to any other yj , that is

Vi := {x ∈ Rn : d(x, yi) ≤ d(x, yj),∀j ∈ I}
where d(x, y) denotes the Euclidean distance. Each cell Vi is a closed
(possibly unbounded) polyhedron in Rn.

The Voronoi cells and their faces give a Euclidean polyhedral complex,
called the Voronoi complex or Voronoi tessellation associated to Y .

For a subset J ⊂ I let HJ denote the linear subspace

HJ := {x ∈ Rn : d(x, yi) = d(x, yj) ∀i, j ∈ J}.

The affine span of each face of the Voronoi complex is one of the HJ . If J
has 2 elements {i, j} then Hij is a hyperplane Hij = {x ∈ Rn : d(x, yi) =
d(x, yj)}.
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A Voronoi complex is called simple if for every k, every codimension k
face is contained in exactly k + 1 Voronoi cells. Not every Voronoi complex
is simple, but it is easy to see that among finite subsets Y ⊂ Rn those with
a simple Voronoi complex C(Y ) form an open and dense set.

Let C be a simple Voronoi complex. For each face F ∈ C, let Vi for i ∈ IF

be the Voronoi cells containing F . The vertices {yi : i ∈ IF } form a simplex
whose dimension equals the codimension of F . These simplices define the
Delaunay triangulation dual to C.

Theorem 25. [KK11, Cor.21] Let T be a finite simplicial complex
of dimension n. Then there is an embedding j : T ↪→ R2n+1, a simple
Voronoi complex C in R2n+1 and a subcomplex C(T ) ⊂ C of pure dimension
2n + 1 containing j(T ) such that the inclusion j(T ) ⊂ |C(T )| is a homotopy
equivalence.

Outline of the proof. First we embed T into R2n+1. This is where the
dimension increase comes from. (We do not need an actual embedding, only
an embedding up-to homotopy, which is usually easier to get.)

Then we first use a result of [Hir62] which says that if T is a finite
simplicial complex in a smooth manifold R then there exists a codimension
0 compact submanifold M ⊂ R with smooth boundary containing T such
that the inclusion T ⊂ M is a homotopy equivalence.

Finally we construct a Voronoi complex using M .
Let M ⊂ Rm be a compact subset, Y ⊂ Rm a finite set of points and

C(Y ) the corresponding Voronoi complex. Let Cm(Y, M) be the collection
of those m-cells in the Voronoi complex C(Y ) whose intersection with M
is not empty and C(Y, M) the polyhedral complex consisting of the cells in
Cm(Y, M) and their faces. Then M ⊂ |C(Y, M)|.

We conclude by using a theorem of [Cai61] that says that if M is a
C2-submanifold with C2-boundary then for a suitably fine mesh of points
Y ⊂ Rm the inclusion M ⊂ |C(Y, M)| is a homotopy equivalence. �

4. Simple normal crossing varieties

Let C be a purely m-dimensional, compact subcomplex of a simple
Voronoi complex in Rm. Our aim is to construct a projective simple normal
crossing variety V (C) whose dual complex naturally identifies with the
Delaunay triangulation of C.

26 (First attempt). For each m-polytope Pi ∈ C we associate a copy
Pm

(i) = CPm. For a subvariety W ⊂ CPm we let W(i) or W (i) denote the
corresponding subvariety of Pm

(i).
If Pi and Pj have a common face Fij of dimension m − 1 then the

complexification of the affine span of Fij gives hyperplanes H
(i)
ij ⊂ Pm

(i) and

H
(j)
ij ⊂ Pm

(j). Moreover, H
(i)
ij and H

(j)
ij come with a natural identification

σij : H
(i)
ij

∼= H
(j)
ij .
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We use σij to glue Pm
(i) and Pm

(j) together. The resulting variety is
isomorphic to the union of 2 hyperplanes in CPm+1.

It is harder to see what happens if we try to perform all these gluings
σij simultaneously.

Let �iP
m
(i) denote the disjoint union of all the Pm

(i). Each σij defines a

relation that identifies a point p(i) ∈ H
(i)
ij ⊂ Pm

(i) with its image p(j) =

σij(p(i)) ∈ H
(j)
ij ⊂ Pm

(j). Let Σ denote the equivalence relation generated by
all the σij .

It is easy to see (cf. [Kol12, Lem.17]) that there is a projective algebraic
variety

�iP
m
(i) −→

(
�iP

m
(i)

)
/Σ −→ CPm

whose points are exactly the equivalence classes of Σ.
This gives the correct simple normal crossing variety if m = 1 but already

for m = 2 we have problems. For instance, consider three 2-cells Pi, Pj , Pk

such that Pi and Pj have a common face Fij , Pj and Pk have a common
face Fjk but Pi ∩Pk = ∅. The problem is that while Fij and Fjk are disjoint,
their complexified spans are lines in CP2 hence they intersect at a point q.
Thus σij identifies q(i) ∈ P2

(i) with q(j) ∈ P2
(j) and σjk identifies q(j) ∈ P2

(j)
with q(k) ∈ P2

(k) thus the equivalence relation Σ identifies q(i) ∈ P2
(i) with

q(k) ∈ P2
(k). Thus in

(
�iP

m
(i)

)
/Σ the images of P2

(i) and of P2
(k) are not disjoint.

In order to get the correct simple normal crossing variety, we need to
remove these extra intersection points. In higher dimensions we need to
remove various linear subspaces as well.

Definition 27 (Essential and parasitic intersections). Let C be a
Voronoi complex on Rm defined by the points {yi : i ∈ I}. We have the
linear subspaces HJ defined in (24). Assume for simplicity that J1 
= J2
implies that HJ1 
= HJ2 .

Let P ⊂ Rm be a Voronoi cell. We say that HJ is essential for P if it is
the affine span of a face of P . Otherwise it is called parasitic for P .

Lemma 28. Let P ⊂ Rm be a simple Voronoi cell.

(1) Every essential subspace L of dimension ≤ m − 2 is contained in a
unique smallest parasitic subspace which has dimension dim L + 1.

(2) The intersection of two parasitic subspaces is again parasitic.

Proof. There is a point yp ∈ P and a subset J ⊂ I such that Hip are
spans of faces of P for i ∈ J and L = ∩i∈JHip. Thus the unique dimL + 1-
dimensional parasitic subspace containing L is HJ .

Assume that L1, L2 are parasitic. If L1 ∩ L2 is essential then there
is a unique smallest parasitic subspace L′ ⊃ L1 ∩ L2. Then L′ ⊂ Li a
contradiction. �
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29 (Removing parasitic intersections). Let {Hs : s ∈ S} be a finite set
of hyperplanes of CPm. For Q ⊂ S set HQ := ∩s∈QHs. Let P ⊂ 2S be a
subset closed under unions.

Set π0 : P 0 ∼= CPm. If πr : P r → CPm is already defined then let
P r+1 → P r denote the blow-up of the union of birational transforms of all
the HQ such that Q ∈ P and dimHQ = r. Then πr+1 is the composite
P r+1 → P r → CPm.

Note that we blow up a disjoint union of smooth subvarieties since any
intersection of the r-dimensional HQ is lower dimensional, hence it was
removed by an earlier blow up. Finally set Π : P̃ := Pm−2 → CPm.

Let C be a pure dimensional subcomplex of a Voronoi complex as in (25).
For each cell Pi ∈ C we use (29) with

Pi := {parasitic intersections for Pi}
to obtain P̃(i). Note that if Pi and Pj have a common codimension 1 face

Fij then we perform the same blow-ups on the complexifications H
(i)
ij ⊂ Pm

(i)

and H
(j)
ij ⊂ Pm

(j). Thus σij : H
(i)
ij

∼= H
(j)
ij lifts to the birational transforms

σ̃ij : H̃
(i)
ij

∼= H̃
(j)
ij .

As before, the σ̃ij define an equivalence relation Σ̃ on �iP̃(i). With these
changes, the approach outlined in Paragraph 26 does work and we get the
following.

Theorem 30. [KK11, Prop.28] With the above notation there is a
projective, simple normal crossing variety

V (C) :=
(
�iP̃(i)

)
/Σ̃

with the following properties.

(1) There is a finite morphism �iP̃(i) −→ V (C) whose fibers are exactly

the equivalence classes of Σ̃.
(2) The dual complex D

(
V (C)

)
is naturally identified with the Delaunay

triangulation of C.

Comments on the proof. The existence of V (C) is relatively easy either
directly as in [KK11, Prop.31] or using the general theory of quotients by
finite equivalence relations as in [Kol12].

As we noted in Paragraph 18 the projectivity of such quotients is a rather
delicate question since the maps P̃(i) → CPm are not finite any more.

The main advantage we have here is that each P̃(i) comes with a specific
sequence of blow-ups Πi : P̃(i) → CPm and this enables us to write down
explicit, invertible, ample subsheaves Ai ⊂ Π∗

i OCPm(N) for some N � 1
that glue together to give an ample invertible sheaf on V (T ). For details see
[KK11, Par.32]. �

The culmination of the results of the last 2 sections is the following.
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Theorem 31. [KK11, Thm.29] Let T be a finite cell complex. Then
there is a projective simple normal crossing variety ZT such that

(1) D(ZT ) is homotopy equivalent to T ,
(2) π1(ZT ) ∼= π1(T ) and
(3) H i

(
ZT ,OZT

) ∼= H i(T, C) for every i ≥ 0.

Proof. We have already established (1) in (30), moreover the construction
yields a simple normal crossing variety ZT whose strata are all rational
varieties. In particular every stratum W ⊂ ZT is simply connected and
Hr

(
W, OW

)
= 0 for every r > 0. Thus (2–3) follow from Lemmas 32–33. �

The proof of the following lemma is essentially in [GS75, pp.68–72].
More explicit versions can be found in [FM83, pp.26–27] and [Ish85,
ABW09].

Lemma 32. Let X be a simple normal crossing variety over C with
irreducible components {Xi : i ∈ I}. Let T = D(X) be the dual complex
of X.

(1) There are natural injections Hr
(
T, C

)
↪→ Hr

(
X, OX

)
for every r.

(2) Assume that Hr
(
W, OW

)
= 0 for every r > 0 and for every stratum

W ⊂ X. Then Hr
(
X, OX

)
= Hr

(
T, C

)
for every r. �

The following comparison result is rather straightforward.

Lemma 33. [Cor92, Prop.3.1] Using the notation of (32) assume that
every stratum W ⊂ X is 1-connected. Then π1(X) ∼= π1

(
D(X)

)
. �

5. Generic embeddings of simple normal crossing varieties

The following is a summary of the construction of [Kol11]; see also
[Kol13b, Sec.3.4] for an improved version.

34. Let Z be a projective, local complete intersection variety of dimen-
sion n and choose any embedding Z ⊂ P into a smooth projective variety
of dimension N . (We can take P = PN for N � 1.) Let L be a sufficiently
ample line bundle on P . Let Z ⊂ Y1 ⊂ P be the complete intersection of
(N − n − 1) general sections of L(−Z). Set

Y := B(−Z)Y1 := ProjY1

∑∞
m=0OY1(mZ).

(Note that this is not the blow-up of Z but the blow-up of its inverse in the
class group.)

It is proved in [Kol11] that the birational transform of Z in Y is a
Cartier divisor isomorphic to Z and there is a contraction morphism

Z ⊂ Y
↓ ↓ π
0 ∈ X

(34.1)

such that Y \ Z ∼= X \ {0}. If Y is smooth then DR(0 ∈ X) = D(Z) and
we are done with Theorem 7. However, the construction of [Kol11] yields a
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smooth variety Y only if dimZ = 1 or Z is smooth. (By (19) this limitation
is not unexpected.)

In order to resolve singularities of Y we need a detailed description of
them. This is a local question, so we may assume that Z ⊂ CN

x is a complete
intersection defined by f1 = · · · = fN−n = 0. Let Z ⊂ Y1 ⊂ CN be a general
complete intersection defined by equations

hi,1f1 + · · · + hi,N−nfN−n = 0 for i = 1, . . . , N − n − 1.

Let H = (hij) be the (N −n−1)× (N −n) matrix of the system and Hi the
submatrix obtained by removing the ith column. By [Kol11] or [Kol13b,
Sec.3.2], an open neighborhood of Z ⊂ Y is defined by the equations

(
fi = (−1)i · t · det Hi : i = 1, . . . , N − n

)
⊂ CN

x × Ct. (34.2)

Assume now that Z has hypersurface singularities. Up-to permuting the fi

and passing to a smaller open set, we may assume that df2, . . . , dfN−n are
linearly independent everywhere along Z. Then the singularities of Y all
come from the equation

f1 = −t · det H1. (34.3)
Our aim is to write down local normal forms for Y along Z in the normal
crossing case.

On CN there is a stratification CN = R0 ⊃ R1 ⊃ · · · where Ri is the
set of points where rankH1 ≤ (N − n − 1) − i. Since the hij are general,
codimW Ri = i2 and we may assume that every stratum of Z is transversal
to each Ri \ Ri+1 (cf. Paragraph 37).

Let S ⊂ Z be any stratum and p ∈ S a point such that p ∈ Rm \ Rm+1.
We can choose local coordinates {x1, . . . , xd} and {yrs : 1 ≤ r, s ≤ m} such
that, in a neighborhood of p,

f1 = x1 · · ·xd and detH1 = det
(
yrs : 1 ≤ r, s ≤ m

)
.

Note that m2 ≤ dim S = n−d, thus we can add n−d−m2 further coordinates
yij to get a complete local coordinate system on S.

Then the n coordinates {xk, yij} determine a map

σ : CN × Ct → Cn × Ct

such that σ(Y ) is defined by the equation

x1 · · ·xd = t · det
(
yrs : 1 ≤ r, s ≤ m

)
.

Since df2, . . . , dfN−n are linearly independent along Z, we see that σ|Y is
étale along Z ⊂ Y .

We can summarize these considerations as follows.

Proposition 35. Let Z be a normal crossing variety of dimension n.
Then there is a normal singularity (0 ∈ X) of dimension n+1 and a proper,
birational morphism π : Y → X such that red π−1(0) ∼= Z and for every
point p ∈ π−1(0) we can choose local (étale or analytic) coordinates called
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{xi : i ∈ Ip} and {yrs : 1 ≤ r, s ≤ mp} (plus possibly other unnamed
coordinates) such that one can write the local equations of Z ⊂ Y as
(∏

i∈Ip
xi = t = 0

)
⊂

(∏
i∈Ip

xi = t · det
(
yrs : 1 ≤ r, s ≤ mp

))
⊂ Cn+2. �

36 (Proof of Theorem 7). Let T be a finite cell complex. By (31) there is
a projective simple normal crossing variety Z such that D(Z) is homotopy
equivalent to T , π1(Z) ∼= π1(T ) and H i(Z,OZ) ∼= H i(T, C) for every i ≥ 0.

Then Proposition 35 constructs a singularity (0 ∈ X) with a partial
resolution

Z ⊂ Y
↓ ↓ π
0 ∈ X

(36.1)

The hardest is to check that we can resolve the singularities of Y without
changing the homotopy type of the dual complex of the exceptional divisor.
This is done in Section 6.

In order to show (7.2–3) we need further information about the varieties
and maps in (36.1).

First, Y has rational singularities. This is easy to read off from their
equations. (For the purposes of Theorem 3, we only need the case dimY = 3
when the only singularities we have are ordinary double points with local
equation x1x2 = ty11.)

Second, we can arrange that Z has very negative normal bundle in Y . By
a general argument this implies that Riπ∗OY

∼= H i(Z,OZ), proving (7.3);
see [Kol11, Prop.9] for details.

Finally we need to compare π1(Z) with π1
(
L(0 ∈ X)

)
. There is always

a surjection
π1

(
L(0 ∈ X)

)
� π1(Z) (36.2)

but it can have a large kernel. We claim however, that with suitable choices
we can arrange that (36.2) is an isomorphism. It is easiest to work not on
Z ⊂ Y but on a resolution Z ′ ⊂ Y ′.

More generally, let W be a smooth variety, D = ∪iDi ⊂ W a simple
normal crossing divisor and T ⊃ D a regular neighborhood with boundary
M = ∂T . There is a natural (up to homotopy) retraction map T → D
which induces M → D hence a surjection π1(M) � π1(D) whose kernel is
generated (as a normal subgroup) by the simple loops γi around the Di.

In order to understand this kernel, assume first that D is smooth. Then
M → D is a circle bundle hence there is an exact sequence

π2(D) c1∩−→ Z ∼= π1(S1) → π1(M) → π1(D) → 1

where c1 is the Chern class of the normal bundle of D in X. Thus if c1∩α = 1
for some α ∈ π2(D) then π1(M) ∼= π1(D). In the general case, arguing as
above we see that π1(M) ∼= π1(D) if the following holds:

(3) For every i there is a class αi ∈ π2
(
D0

i

)
such that c1

(
NDi,X

)
∩αi = 1

where D0
i := Di \ {other components of D}.
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Condition (3) is typically very easy to achieve in our constructions.
Indeed, we obtain the D0

i by starting with CPm, blowing it up many
times and then removing a few divisors. Thus we end up with very large
H2

(
D0

i , Z
)

and typically the D0
i are even simply connected, hence π2

(
D0

i ) =
H2

(
D0

i , Z
)
. �

37 (Determinantal varieties). We have used the following basic proper-
ties of determinantal varieties. These are quite easy to prove directly; see
[Har95, 12.2 and 14.16] for a more general case.

Let V be a smooth, affine variety, and L ⊂ OV a finite dimensional sub
vector space without common zeros. Let H =

(
hij

)
be an n×n matrix whose

entries are general elements in L. For a point p ∈ V set mp = corankH(p).
Then there are local analytic coordinates {yrs : 1 ≤ r, s ≤ mp} (plus possibly
other unnamed coordinates) such that, in a neighborhood of p,

det H = det
(
yrs : 1 ≤ r, s ≤ mp

)
.

In particular, multp(det H) = corankH(p), for every m the set of points
Rm ⊂ V where corank H(p) ≥ m is a subvariety of pure codimension m2

and Sing Rm = Rm+1.

6. Resolution of generic embeddings

In this section we start with the varieties constructed in Proposition 35
and resolve their singularities. Surprisingly, the resolution process described
in Paragraphs 39–44 leaves the dual complex unchanged and we get the
following.

Theorem 38. Let Z be a projective simple normal crossing variety of
dimension n. Then there is a normal singularity (0 ∈ X) of dimension (n+1)
and a resolution π : Y → X such that E := π−1(0) ⊂ Y is a simple normal
crossing divisor and its dual complex D(E) is naturally identified with D(Z).
(More precisely, there is a morphism E → Z that induces a birational map
on every stratum.)

39 (Inductive set-up for resolution). The object we try to resolve is a
triple

(Y, E, F ) :=
(
Y,

∑
i∈IEi,

∑
j∈JajFj

)
(39.1)

where Y is a variety over C, Ei, Fj are codimension 1 subvarieties and aj ∈ N.
(The construction (34) produces a triple

(
Y, E := Z, F := ∅

)
. The role of the

Fj is to keep track of the exceptional divisors as we resolve the singularities
of Y .)

We assume that E is a simple normal crossing variety and for every point
p ∈ E there is a (Euclidean) open neighborhood p ∈ Yp ⊂ Y , an embedding
σp : Yp ↪→ Cdim Y +1 whose image can be described as follows.

There are subsets Ip ⊂ I and Jp ⊂ J , a natural number mp ∈ N and
coordinates in Cdim Y +1 called

{xi : i ∈ Ip}, {yrs : 1 ≤ r, s ≤ mp}, {zj : j ∈ Jp} and t
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(plus possibly other unnamed coordinates) such that σp(Yp) ⊂ Cdim Y +1 is
an open subset of the hypersurface∏

i∈Ip
xi = t · det

(
yrs : 1 ≤ r, s ≤ mp

)
·
∏

j∈Jp
z

aj

j . (39.2)

Furthermore,

σp(Ei) = (t = xi = 0) ∩ σp(Yp) for i ∈ Ip and
σp(Fj) = (zj = 0) ∩ σp(Yp) for j ∈ Jp.

We do not impose any compatibility condition between the local equations
on overlapping charts.

We say that (Y, E, F ) is resolved at p if Y is smooth at p.

The key technical result of this section is the following.

Proposition 40. Let (Y, E, F ) be a triple as above. Then there is a
resolution of singularities π :

(
Y ′, E′, F ′) →

(
Y, E, F

)
such that

(1) Y ′ is smooth and E′ is a simple normal crossing divisor,
(2) E′ = π−1(E),
(3) every stratum of E′ is mapped birationally to a stratum of E and
(4) π induces an identification D(E′) = D(E).

Proof. The resolution will be a composite of explicit blow-ups of smooth
subvarieties (except at the last step). We use the local equations to describe
the blow-up centers locally. Thus we need to know which locally defined
subvarieties make sense globally. For example, choosing a divisor Fj1 specifies
the local divisor (zj1 = 0) at every point p ∈ Fj1 . Similarly, choosing two
divisors Ei1 , Ei2 gives the local subvarieties (t = xi1 = xi2 = 0) at every
point p ∈ Ei1 ∩ Ei2 . (Here it is quite important that the divisors Ei are
themselves smooth. The algorithm does not seem to work if the Ei have
self-intersections.) Note that by contrast (xi1 = xi2 = 0) ⊂ Y defines a local
divisor which has no global meaning. Similarly, the vanishing of any of the
coordinate functions yrs has no global meaning.

To a point p ∈ Sing E we associate the local invariant

Deg(p) :=
(
degx(p), degy(p), degz(p)

)
=

(
|Ip|, mp,

∑
j∈Jp

aj

)
.

It is clear that degx(p) and degz(p) do not depend on the local coordinates
chosen. We see in (42) that degy(p) is also well defined if p ∈ Sing E. The de-
grees degx(p), degy(p), degz(p) are constructible and upper semi continuous
functions on Sing E.

Note that Y is smooth at p iff either Deg(p) = (1, ∗, ∗) or Deg(p) =
(∗, 0, 0). If degx(p) = 1 then we can rewrite the equation (39.2) as

x′ = t ·
∏

jz
aj

j where x′ := x1 + t ·
(
1 − det(yrs)

)
·
∏

jz
aj

j ,

so if Y is smooth then
(
Y, E + F

)
has only simple normal crossings along E.

Thus the resolution constructed in Theorem 38 is a log resolution.
The usual method of Hironaka would start by blowing up the highest

multiplicity points. This introduces new and rather complicated exceptional
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divisors and I have not been able to understand how the dual complex
changes.

In our case, it turns out to be better to look at a locus where degy(p)
is maximal but instead of maximizing degx(p) or degz(p) we maximize the
dimension. Thus we blow up subvarieties along which Y is not equimultiple.
Usually this leads to a morass, but our equations separate the variables into
distinct groups which makes these blow-ups easy to compute.

One can think of this as mixing the main step of the Hironaka method
with the order reduction for monomial ideals (see, for instance, [Kol07b,
Step 3 of 3.111]).

After some preliminary remarks about blow-ups of simple normal cross-
ing varieties the proof of (40) is carried out in a series of steps (42–44).

We start with the locus where degy(p) is maximal and by a sequence of
blow-ups we eventually achieve that degy(p) ≤ 1 for every singular point p.
This, however, increases degz. Then in 3 similar steps we lower the maximum
of degz until we achieve that degz(p) ≤ 1 for every singular point p. Finally
we take care of the singular points where degy(p) + degz(p) ≥ 1. �

41 (Blowing up simple normal crossing varieties). Let Z be a simple
normal crossing variety and W ⊂ Z a subvariety. We say that W has simple
normal crossing with Z if for each point p ∈ Z there is an open neighborhood
Zp, an embedding Zp ↪→ Cn+1 and subsets Ip, Jp ⊂ {0, . . . , n} such that

Zp =
(∏

i∈Ip
xi = 0

)
and W ∩ Zp =

(
xj = 0 : j ∈ Jp

)
.

This implies that for every stratum ZJ ⊂ Z the intersection W ∩ ZJ is
smooth (even scheme theoretically).

If W has simple normal crossing with Z then the blow-up BW Z is again a
simple normal crossing variety. If W is one of the strata of Z, then D(BW Z)
is obtained from D(Z) by removing the cell corresponding to W and every
other cell whose closure contains it. Otherwise D(BW Z) = D(Z). (In the
terminology of [Kol13b, Sec.2.4], BW Z → Z is a thrifty modification.)

As an example, let Z = (x1x2x3 = 0) ⊂ C3. There are 7 strata and D(Z)
is the 2-simplex whose vertices correspond to the planes (xi = 0).

Let us blow up a point W = {p} ⊂ Z to get BpZ ⊂ BpC3. Note that
the exceptional divisor E ⊂ BpC3 is not a part of BpZ and BpZ still has 3
irreducible components.

If p is the origin, then the triple intersection is removed and D(BpZ) is
the boundary of the 2-simplex.

If p is not the origin, then BpZ still has 7 strata naturally corresponding
to the strata of Z and D(BpZ) is the 2-simplex.

We will be interested in situations where Y is a hypersurface in Cn+2

and Z ⊂ Y is a Cartier divisor that is a simple normal crossing variety. Let
W ⊂ Y be a smooth, irreducible subvariety, not contained in Z such that

(1) the scheme theoretic intersection W ∩Z has simple normal crossing
with Z
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(2) multZ∩W Z = multW Y . (Note that this holds if W ⊂ Sing Y and
multZ∩W Z = 2.)

Choose local coordinates (x0, . . . , xn, t) such that W = (x0 = · · ·xi = 0)
and Z = (t = 0) ⊂ Y . Let f(x0, . . . , xn, t) = 0 be the local equation of Y .

Blow up W to get π : BW Y → Y . Up to permuting the indices
0, . . . , i, the blow-up BW Y is covered by coordinate charts described by
the coordinate change

(
x0, x1, . . . , xi, xi+1, . . . , xn, t

)
=

(
x′

0, x
′
1x

′
0, . . . , x

′
ix

′
0, xi+1, . . . , xn, t

)
.

If multW Y = d then the local equation of BW Y in the above chart becomes

(x′
0)

−df
(
x′

0, x
′
1x

′
0, . . . , x

′
ix

′
0, xi+1, . . . , xn, t

)
= 0.

By assumption (2), (x′
0)

d is also the largest power that divides

f
(
x′

0, x
′
1x

′
0, . . . , x

′
ix

′
0, xi+1, . . . , xn, 0

)
,

hence π−1(Z) = BW∩ZZ.
Observe finally that the conditions (1–2) can not be fulfilled in any inter-

esting way if Y is smooth. Since we want Z ∩ W to be scheme theoretically
smooth, if Y is smooth then condition (1) implies that Z ∩ W is disjoint
from Sing Z.

(As an example, let Y = C3 and Z = (xyz = 0). Take W := (x = y = z).
Note that W is transversal to every irreducible component of Z but W ∩ Z
is a non-reduced point. The preimage of Z in BW Y does not have simple
normal crossings.)

There are, however, plenty of examples where Y is singular along Z ∩W
and these are exactly the singular points that we want to resolve.

42 (Resolving the determinantal part). Let m be the largest size of a
determinant occurring at a non-resolved point. Assume that m ≥ 2 and let
p ∈ Y be a non-resolved point with mp = m.

Away from E ∪ F the local equation of Y is
∏

i∈Ip
xi = det

(
yrs : 1 ≤ r, s ≤ m

)
.

Thus, the singular set of Yp \ (E ∪ F ) is
⋃

(i,i′)
(
rank(yrs) ≤ m − 2

)
∩

(
xi = xi′ = 0

)

where the union runs through all 2-element subsets {i, i′} ⊂ Ip. Thus
the irreducible components of Sing Y \ (E ∪ F ) are in natural one-to-one
correspondence with the irreducible components of Sing E and the value of
m = degy(p) is determined by the multiplicity of any of these irreducible
components at p.

Pick i1, i2 ∈ I and we work locally with a subvariety

W ′
p(i1, i2) :=

(
rank(yrs) ≤ m − 2

)
∩

(
xi1 = xi2 = 0

)
.
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Note that W ′
p(i1, i2) is singular if m > 2 and the subset of its highest

multiplicity points is given by rank(yrs) = 0. Therefore the locally defined
subvarieties

Wp(i1, i2) :=
(
yrs = 0 : 1 ≤ r, s ≤ m

)
∩

(
xi1 = xi2 = 0

)
.

glue together to a well defined global smooth subvariety W := W (i1, i2).
E is defined by (t = 0) thus E ∩ W has the same local equations as

Wp(i1, i2). In particular, E ∩ W has simple normal crossings with E and
E ∩W is not a stratum of E; its codimension in the stratum (xi1 = xi2 = 0)
is m2.

Furthermore, E has multiplicity 2 along E ∩ W , hence (41.2) also holds
and so

D
(
BE∩W

)
= D(E).

We blow up W ⊂ Y . We will check that the new triple is again of
the form (39). The local degree Deg(p) is unchanged over Y \ W . The key
assertion is that, over W , the maximum value of Deg(p) (with respect to
the lexicographic ordering) decreases. By repeating this procedure for every
irreducible components of Sing E, we decrease the maximum value of Deg(p).
We can repeat this until we reach degy(p) ≤ 1 for every non-resolved point
p ∈ Y .

(Note that this procedure requires an actual ordering of the irreducible
components of Sing E, which is a non-canonical choice. If a finite groups
acts on Y , our resolution usually can not be chosen equivariant.)

Now to the local computation of the blow-up. Fix a point p ∈ W and
set I∗

p := Ip \ {i1, i2}. We write the local equation of Y as

xi1xi2 · L = t · det(yrs) · R where L :=
∏

i∈I∗
p
xi and R :=

∏
j∈Jp

z
aj

j .

Since W =
(
xi1 = xi2 = yrs = 0 : 1 ≤ r, s ≤ m

)
there are two types of local

charts on the blow-up.

(1) There are two charts of the first type. Up to interchanging the
subscripts 1, 2, these are given by the coordinate change

(xi1 , xi2 , yrs : 1 ≤ r, s ≤ m) = (x′
i1 , x

′
i2x

′
i1 , y

′
rsx

′
i1 : 1 ≤ r, s ≤ m).

After setting zw := x′
i1

the new local equation is

x′
i2 · L = t · det(y′

rs) ·
(
zm2−2
w · R

)
.

The exceptional divisor is added to the F -divisors with coefficient
m2−2 and the new degree is

(
degx(p)−1, degy(p), degz(p)+m2−2

)
.

(2) There are m2 charts of the second type. Up to re-indexing the m2

pairs (r, s) these are given by the coordinate change

(xi1 , xi2 , yrs : 1 ≤ r, s ≤ m) = (x′
i1y

′′
mm, x′

i2y
′′
mm, y′

rsy
′′
mm : 1 ≤ r, s ≤ m)
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except when r = s = m where we set ymm = y′′
mm. It is convenient

to set y′
mm = 1 and zw := y′′

mm. Then the new local equation is

x′
i1x

′
i2 · L = t · det

(
y′

rs : 1 ≤ r, s ≤ m
)

·
(
zm2−2
w · R

)
.

Note that the (m, m) entry of (y′
rs) is 1. By row and column

operations we see that

det
(
y′

rs : 1 ≤ r, s,≤ m
)

= det
(
y′

rs − y′
rmy′

ms : 1 ≤ r, s,≤ m − 1
)
.

By setting y′′
rs := y′

rs − y′
rmy′

ms we have new local equations

x′
i1x

′
i2L = t · det

(
y′′

rs : 1 ≤ r, s,≤ m − 1
)

·
(
zm2−2
w · R

)

and the new degree is
(
degx(p), degy(p) − 1, degz(p) + m2 − 2

)
.

Outcome. After these blow ups we have a triple (Y, E, F ) such that at
non-resolved points the local equations are

∏
i∈Ip

xi = t · y ·
∏

j∈Jp
z

aj

j or
∏

i∈Ip
xi = t ·

∏
j∈Jp

z
aj

j . (42.3)

(Note that we can not just declare that y is also a z-variable. The zj are
local equations of the divisors Fj while (y = 0) has no global meaning.)

43 (Resolving the monomial part). Following (42.3), the local equations
are ∏

i∈Ip
xi = t · yc ·

∏
j∈Jp

z
aj

j where c ∈ {0, 1}.

We lower the degree of the z-monomial in 3 steps.
Step 1. Assume that there is a non-resolved point with aj1 ≥ 2.
The singular set of Fj1 is then

⋃
(i,i′)

(
zj1 = xi = xi′ = 0

)

where the union runs through all 2-element subsets {i, i′} ⊂ I. Pick an
irreducible component of it, call it W (i1, i2, j1) :=

(
zj1 = xi1 = xi2 = 0

)
.

Set I∗
p := Ip \ {i1, i2}, J∗

p := Jp \ {j1} and write the local equations as

xi1xi2 · L = tz
aj

j · R where L :=
∏

i∈I∗
p
xi and R := yc ·

∏
j∈J∗

p
z

aj

j .

There are 3 local charts on the blow-up:
(1) (xi1 , xi2 , zj) = (x′

i1
, x′

i2
x′

i1
, z′

jx
′
i1

) and, after setting zw := x′
i1

the
new local equation is

x′
i2 · L = t · z

aj−2
w z′

j
aj · R.

The new degree is
(
degx(p) − 1, degy(p), degz(p) + aj − 2

)
.

(2) Same as above with the subscripts 1, 2 interchanged.
(3) (xi1 , xi2 , zj) = (x′

i1
z′
j , x

′
i2

z′
j , z

′
j) with new local equation

x′
i1x

′
i2 · L = t · z′

j
aj−2 · R.

The new degree is
(
degx(p), degy(p), degz(p) − 2

)
.
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Step 2. Assume that there is a non-resolved point with aj1 = aj2 = 1.
The singular set of Fj1 ∩ Fj2 is then

⋃
(i,i′)

(
zj1 = zj2 = xi = xi′ = 0

)
.

where the union runs through all 2-element subsets {i, i′} ⊂ I. Pick an
irreducible component of it, call it W (i1, i2, j1, j2) :=

(
zj1 = zj2 = xi1 =

xi2 = 0
)
.

Set I∗
p := Ip \{i1, i2}, J∗

p := Jp \{j1, j2} and we write the local equations
as

xi1xi2 · L = tzj1zj2 · R where L :=
∏

i∈I∗
p
xi and R := yc ·

∏
j∈J∗

p
z

aj

j .

There are two types of local charts on the blow-up.
(1) In the chart (xi1 , xi2 , zj1 , zj2) = (x′

i1
, x′

i2
x′

i1
, z′

j1
x′

i1
, z′

j2
x′

i1
) the new

local equation is

x′
i2 · L = t · z′

j1z
′
j2 · R.

and the new degree is
(
degx(p) − 1, degy(p), degz(p)

)
. A similar

chart is obtained by interchanging the subscripts i1, i2.
(2) In the chart (xi1 , xi2 , zj1 , zj2) = (x′

i1
z′
j1

, x′
i2

z′
j1

, z′
j1

, z′
j2

z′
j1

). the new
local equation is

x′
i1x

′
i2 · L = t · z′

j2 · R.

The new degree is
(
degx(p), degy(p), degz(p) − 1

)
.

A similar chart is obtained by interchanging the subscripts
j1, j2.

By repeated application of these two steps we are reduced to the case
where degz(p) ≤ 1 at all non-resolved points.

Step 3. Assume that there is a non-resolved point with degy(p) =
degz(p) = 1.

The singular set of Y is
⋃

(i,i′)
(
y = z = xi = xi′ = 0

)
.

Pick an irreducible component of it, call it W (i1, i2) :=
(
y = z = xi1 =

xi2 = 0
)
. The blow up computation is the same as in Step 2.

As before we see that at each step the conditions (41.1–2) hold, hence
D(E) is unchanged.

Outcome. After these blow-ups we have a triple (Y, E, F ) such that at
non-resolved points the local equations are

∏
i∈Ip

xi = t · y,
∏

i∈Ip
xi = t · z1 or

∏
i∈Ip

xi = t. (43.4)

As before, the y and z variables have different meaning, but we can rename
z1 as y. Thus we have only one non-resolved local form left:

∏
xi = ty.
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44 (Resolving the multiplicity 2 part). Here we have a local equation
xi1 · · ·xid = ty where d ≥ 2. We would like to blow up (xi1 = y = 0), but, as
we noted, this subvariety is not globally defined. However, a rare occurrence
helps us out. Usually the blow-up of a smooth subvariety determines its
center uniquely. However, this is not the case for codimension 1 centers.
Thus we could get a globally well defined blow-up even from centers that
are not globally well defined.

Note that the inverse of (xi1 = y = 0) in the local Picard group of Y is
Ei1 = (xi1 = t = 0), which is globally defined. Thus

ProjY
∑

m≥0OY (mEi1)

is well defined, and locally it is isomorphic to the blow-up B(xi1=y=0)Y . (A
priori, we would need to take the normalization of B(xi1=y=0)Y , but it is
actually normal.) Thus we have 2 local charts.

(1) (xi1 , y) = (x′
i1

, y′x′
i1

) and the new local equation is
(
xi2 · · ·xid =

ty′). The new local degree is (d − 1, 1, 0).
(2) (xi1 , y) = (x′

i1
y′, y′) and the new local equation is

(
x′

i1
·xi2 · · ·xid =

t
)
. The new local degree is (d, 0, 0).

Outcome. After all these blow-ups we have a triple
(
Y,

∑
i∈IEi,∑

j∈JajFj

)
where

∑
i∈IEi is a simple normal crossing divisor and Y is

smooth along
∑

i∈IEi.

This completes the proof of Proposition 40. �

45 (Proof of Theorem 8). Assume that T is Q-acyclic. Then, by (31)
there is a simple normal crossing variety ZT such that H i

(
ZT ,OZT

)
= 0

for i > 0. Then [Kol11, Prop.9] shows that, for L sufficiently ample, the
singularity (0 ∈ XT ) constructed in (34) and (35) is rational. By (40) we
conclude that DR(0 ∈ XT ) ∼= D(ZT ) is homotopy equivalent to T .

7. Cohen–Macaulay singularities

Definition 46. Cohen–Macaulay singularities form the largest class
where Serre duality holds. That is, if X is a projective variety of pure
dimension n then X has Cohen–Macaulay singularities iff H i(X, L) is dual
to Hn−i(X, ωX ⊗ L−1) for every line bundle L. A pleasant property is that
if D ⊂ X is Cartier divisor in a scheme then D is Cohen–Macaulay iff X
is Cohen–Macaulay in a neighborhood of D. See [Har77, pp.184–186] or
[KM98b, Sec.5.5] for details.

For local questions it is more convenient to use a characterization
using local cohomology due to [Gro67, Sec.3.3]: X is Cohen–Macaulay iff
H i

x(X, OX) = 0 for every x ∈ X and i < dim X.
Every normal surface is Cohen–Macaulay, so the topology of the links of

Cohen–Macaulay singularities starts to become interesting when dimX ≥ 3.
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Definition 47. Recall that a group G is called perfect if it has no
nontrivial abelian quotients. Equivalently, if G = [G, G] or if H1(G, Z) = 0.

We say that G is Q-perfect if every abelian quotient is torsion. Equiva-
lently, if H1(G, Q) = 0.

The following theorem describes the fundamental group of the link of
Cohen–Macaulay singularities. Note, however, that the most natural part is
the equivalence (48.1) ⇔ (48.5), relating the fundamental group of the link
to the vanishing of R1f∗OY for a resolution f : Y → X.

Theorem 48. For a finitely presented group G the following are equiv-
alent.

(1) G is Q-perfect (47).
(2) G is the fundamental group of the link of an isolated Cohen–

Macaulay singularity of dimension = 3.
(3) G is the fundamental group of the link of an isolated Cohen–

Macaulay singularity of dimension ≥ 3.
(4) G is the fundamental group of the link of a Cohen–Macaulay sin-

gularity whose singular set has codimension ≥ 3.
(5) G is the fundamental group of the link of a 1-rational singularity

(52).

Proof. It is clear that (2) ⇒ (3) ⇒ (4) and (49) shows that (4) ⇒ (5).
The implication (5) ⇒ (1) is proved in (51).
Let us prove (1) ⇒ (2). By (31) there is a simple normal crossing va-

riety Z such that π1(Z) ∼= G. By a singular version of the Lefschetz hy-
perplane theorem (see, for instance, [GM88, Sec.II.1.2]), by taking general
hyperplane sections we obtain a simple normal crossing surface S such that
π1(S) ∼= G. Thus H1(S, Q) = 0 and by Hodge theory this implies that
H1(S, OS) = 0.

By (35) there is a 3–dimensional isolated singularity (x ∈ X) with a
partial resolution f : Y → X whose exceptional divisor is E ∼= S and
R1f∗OY

∼= H1(E, OE) = 0. In this case the singularities of Y are the
simplest possible: we have only ordinary nodes with equation (x1x2 = ty11).
These are resolved in 1 step by blowing up (x1 = t = 0) and they have no
effect on our computations.

Thus X is Cohen–Macaulay by (50). �
Lemma 49. Let X be a normal variety with Cohen–Macaulay singular-

ities (S3 would be sufficient) and f : Y → X a resolution of singularities.
Then SuppR1f∗OY has pure codimension 2. Thus if Sing X has codimension
≥ 3 then R1f∗OY = 0.

Proof. By localizing at a generic point of SuppR1f∗OY (or by taking a
generic hyperplane section) we may assume that SuppR1f∗OY = {x} is a
closed point. Set E := f−1(x). There is a Leray spectral sequence

H i
x

(
X, Rjf∗OX

)
⇒ H i+j

E

(
Y,OY ). (49.1)



LINKS OF COMPLEX ANALYTIC SINGULARITIES 183

By a straightforward duality (see, e.g. [Kol13b, 10.44]) Hr
E

(
Y,OY ) is dual

to the stalk of Rn−rf∗ωY which is zero for r < n by [GR70]. Thus (49.1)
gives an exact sequence

H1
x

(
X, OX

)
→ H1

E

(
Y,OY ) → H0

x

(
X, R1f∗OX

)
→ H2

x

(
X, OX

)
.

If X is Cohen–Macaulay and dimX ≥ 3 then H1
x

(
X, OX

)
= H2

x

(
X, OX

)
=

0, thus (
R1f∗OX

)
x

∼= H0
x

(
X, R1f∗OX

) ∼= H1
E

(
Y,OY ) = 0. �

For isolated singularities, one has the following converse

Lemma 50. Let (x ∈ X) be a normal, isolated singularity with a
resolution f : Y → X. Then X is Cohen–Macaulay iff Rif∗OY = 0 for
0 < i < n − 1.

Proof. The spectral sequence (49.1) implies that we have isomorphisms

Rif∗OY
∼= H i

x(X, OX) for 0 < i < n − 1

and H1
x(X, OX) = 0 since X is normal. �

Lemma 51. Let X be a normal variety with 1-rational singularities (52)
and x ∈ X a point with link L := L(x ∈ X). Then H1(L, Q) = 0.

Proof. Let f : Y → X be a resolution such that E := f−1(x) is a simple
normal crossing divisor. By [Ste83, 2.14] the natural maps Rif∗OY →
H i(E, OE) are surjective, thus H1(E, OE) = 0 hence H1(E, Q) = 0 by
Hodge theory.

Next we prove that H1(E, Q) = H1(L, Q). Let x ∈ NX ⊂ X be
a neighborhood of x such that ∂NX = L and NY := f−1(NX) the
corresponding neighborhood of E with boundary ∂NY := LY . Since LY → L
has connected fibers, H1(L, Q) ↪→ H1(LY , Q) thus it is enough to prove that
H1(LY , Q) = 0. The exact cohomology sequence of the pair (NY , LY ) gives

0 = H1(E, Q) = H1(NY , Q) → H1(LY , Q) → H2(NY , LY , Q) α→ H2(NY , Q)

By Poincaré duality H2(NY , LY , Q) ∼= H2n−2(NY , Q). Since NY retracts to
E we see that H2n−2(NY , Q) is freely generated by the classes of exceptional
divisors E = ∪iEi. The map α sends

∑
mi[Ei] to c1

(
ONY

(
∑

miEi)
)

and
we need to show that the latter are nonzero. This follows from the Hodge
index theorem. �

8. Rational singularities

Definition 52. A quasi projective variety X has rational singularities
if for one (equivalently every) resolution of singularities p : Y → X and for
every algebraic (or holomorphic) vector bundle F on X, the natural maps
H i(X, F ) → H i(Y, p∗F ) are isomorphisms. Thus, for purposes of computing
cohomology of vector bundles, X behaves like a smooth variety. Rational
implies Cohen–Macaulay. See [KM98b, Sec.5.1] for details.
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A more frequently used equivalent definition is the following. X has
rational singularities iff the higher direct images Rif∗OY are zero for i > 0
for one (equivalently every) resolution of singularities p : Y → X.

We say that X has 1-rational singularities if R1f∗OY = 0 for one
(equivalently every) resolution of singularities p : Y → X.

53 (Proof of Theorem 8). Let p : Y → X be a resolution of singularities
such that Ex := p−1(x) is a simple normal crossing divisor. As we noted in
the proof of (51), Rif∗OY → H i(E, OE) is surjective, thus H i(E, OE) = 0
hence H i

(
DR(x ∈ X), Q

)
= 0 by (32). Thus DR(x ∈ X) is Q-acyclic.

Conversely, if T is Q-acyclic then Theorem 7 constructs a singularity
which is rational by (7.3). �

Let L be the link of a rational singularity (x ∈ X). Since X is Cohen–
Macaulay, we know that π1(L) is Q-perfect (48). It is not known what else
can one say about fundamental groups of links of rational singularities, but
the fundamental group of the dual complex can be completely described.

Definition 54. A group G is called superperfect if H1(G, Z) =
H2(G, Z) = 0; see [Ber02]. We say that G is Q-superperfect if H1(G, Q) =
H2(G, Q) = 0. Note that every finite group is Q-superperfect. Other exam-
ples are the infinite dihedral group or SL(2, Z).

Corollary 55. [KK11, Thm.42] Let (x ∈ X) be a rational singularity.
Then π1

(
DR(X)

)
is Q-superperfect. Conversely, for every finitely presented,

Q-superperfect group G there is a 6-dimensional rational singularity (x ∈ X)
such that

π1
(
DR(X)

)
= π1

(
R(X)

)
= π1

(
L(x ∈ X)

) ∼= G.

Proof. By a slight variant of the results of [Ker69, KM63], for ev-
ery finitely presented, Q-superperfect group G there is a Q-acyclic, 5-
dimensional manifold (with boundary) M whose fundamental group is iso-
morphic to G. Using this M in (8) we get a rational singularity (x ∈ X) as
desired.

Note that just applying the general construction would give 11 dimen-
sional examples. See [KK11, Sec.7] on how to lower the dimension to 6.3 �

9. Questions and problems

Questions about fundamental groups.
In principle, for any finitely presented group G one can follow the proof

of [KK11] and construct links L such that π1(L) ∼= G. However, in almost
all cases, the general methods lead to very complicated examples. It would
be useful to start with some interesting groups and obtain examples that
are understandable. For example, Higman’s group

H = 〈xi : xi[xi, xi+1], i ∈ Z/4Z〉
is perfect, infinite and contains no proper finite index subgroups [Hig51].

3A different construction giving 4 and 5 dimensional examples is in [Kol13a].
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Problem 56. Find an explicit link whose fundamental group is Hig-
man’s group. (It would be especially interesting to find examples that occur
“naturally” in algebraic geometry.)

Note that our results give links with a given fundamental group but,
as far as we can tell, these groups get killed in the larger quasi-projective
varieties. (In particular, we do not answer the question [Ser77, p.19] whether
Higman’s group can be the fundamental group of a smooth variety.) This
leads to the following.

Question 57. Let G be a finitely presented group. Is there a quasi-
projective variety X with an isolated singularity (x ∈ X) such that π1

(
L(x ∈

X)
) ∼= G and the natural map π1

(
L(x ∈ X)

)
→ π1

(
X \{x}

)
is an injection?

As Kapovich pointed out, it is not known if every finitely presented group
occurs as a subgroup of the fundamental group of a smooth projective or
quasi-projective variety.

We saw in (55) that Q-superperfect groups are exactly those that occur
as π1

(
DR(X)

)
for rational singularities. Moreover, every Q-superperfect

group can be the fundamental group of a link of a rational singularity.
However, there are rational singularities such that the fundamental group of
their link is not Q-superperfect. As an example, let S be a fake projective
quadric whose universal cover is the 2-disc D × D (cf. [Bea96, Ex.X.13.4]).
Let C(S) be a cone over S with link L(S). Then

H2(L(S), Q
) ∼= H2(S, Q

)
/Q ∼= Q

and the universal cover of L is an R-bundle over D × D hence contractible.
Thus

H2(π1(L(S)), Q
) ∼= H2(L(S), Q

) ∼= Q,

so π1(L(S)) is not Q-superperfect. This leads us to the following, possibly
very hard, question.

Problem 58. Characterize the fundamental groups of links of rational
singularities.

In this context it is worthwhile to mention the following.

Conjecture 59 (Carlson–Toledo). The fundamental group of a smooth
projective variety is not Q-superperfect (unless it is finite).

More generally, the original conjecture of Carlson and Toledo asserts
that the image

im
[
H2(π1(X), Q

)
→ H2(X, Q)

]
is nonzero and contains a (possibly degenerate) Kähler class, see [Kol95,
18.16]. For a partial solution see [Rez02].

Our examples show that for every finitely presented group G there is a
reducible simple normal crossing surface S such that π1(S) ∼= G. By [Sim10],
for every finitely presented group G there is a (very singular) irreducible
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variety Z such that π1(Z) ∼= G. It is natural to hope to combine these
results. [Kap12] proves that for every finitely presented group G there
is an irreducible surface S with normal crossing and Whitney umbrella
singularities (also called pinch points, given locally as x2 = y2z) such that
π1(S) ∼= G.

Problem 60. [Sim10] What can one say about the fundamental groups
of irreducible surfaces with normal crossing singularities?

Although closely related, the next question should have a quite different
answer.

Problem 61. What can one say about the fundamental groups of
normal, projective varieties or surfaces? Are these two classes of groups
the same?

Many of the known restrictions on fundamental groups of smooth va-
rieties also apply to normal varieties. For instance, the theory of Albanese
varieties implies that the rank of H2(X, Q) is even for normal, projective
varieties X. Another example is the following. By [Siu87] any surjection
π1(X) � π1(C) to the fundamental group of a curve C of genus ≥ 2 factors
as

π1(X)
g∗→ π1(C ′)�π1(C)

where g : X → C ′ is a morphism. (In general there is no morphism C ′ → C.)
We claim that this also holds for normal varieties Y . Indeed, let π : Y ′ →

Y be a resolution of singularities. Any surjection π1(Y ) � π1(C) induces
π1(Y ′) � π1(C), hence we get a morphism g′ : Y ′ → C ′. Let B ⊂ Y ′

be an irreducible curve that is contacted by π. Then π1(B) → π1(Y ) is
trivial and so is π1(B) → π1(C). If g′|B : B → C ′ is not constant then
the induced map π1(B) → π1(C ′) has finite index image. This is impossible
since the composite π1(B) → π1(C ′) → π1(C) is trivial. Thus g′ descends to
g : Y → C ′.

For further such results see [Gro89, GL91, Cat91, Cat96].

Algebraically one can think of the link as the punctured spectrum of
the Henselisation (or completion) of the local ring of x ∈ X. Although one
can not choose a base point, it should be possible to define an algebraic
fundamental group. All the examples in Theorem 3 can be realized on
varieties defined over Q. Thus they should have an algebraic fundamental
group πalg

1
(
L(0 ∈ XQ)

)
which is an extension of the profinite completion of

π1
(
L(0 ∈ X)

)
and of the Galois group Gal

(
Q̄/Q

)
.

Problem 62. Define and describe the possible groups πalg
1

(
L(0 ∈ XQ)

)
.

Questions about the topology of links.
We saw that the fundamental groups of links can be quite different from

fundamental groups of quasi-projective varieties. However, our results say
very little about the cohomology or other topological properties of links. It
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turns out that links have numerous restrictive topological properties. I thank
J. Shaneson and L. Maxim for bringing many of these to my attention.

63 (Which manifolds can be links?). Let M be a differentiable manifold
that is diffeomeorphic to the link L of an isolated complex singularity of
dimension n. Then M satisfies the following.

63.1. dimR M = 2n − 1 is odd and M is orientable. Resolution of
singularities shows that M is cobordant to 0.

63.2. The decomposition TX |L ∼= TL + NL,X shows that TM is stably
complex. In particular, its odd integral Stiefel–Whitney classes are zero
[Mas61]. (More generally, this holds for orientable real hypersurfaces in
complex manifolds.)

63.3. The cohomology groups H i(L, Q) carry a natural mixed Hodge
structure; see [PS08, Sec.6.3] for a detailed treatment and references.
Using these, [DH88] proves that the cup product H i(L, Q) × H i(L, Q) →
H i+j(L, Q) is zero if i, j < n and i + j ≥ n. In particular, the torus T2n−1

can not be a link. If X is a smooth projective variety then X × S1 can not
be a link. Further results along this direction are in [PP08].

63.4. By [CS91, p.548], the components of the Todd–Hirzebruch L-genus
of M vanish above the middle dimension. More generally, the purity of the
Chern classes and weight considerations as in (63.3) show that the ci

(
TX |L

)
are torsion above the middle dimension. Thus all Pontryagin classes of L
are torsion above the middle dimension. See also [CMS08a, CMS08b] for
further results on the topology of singular algebraic varieties which give
restrictions on links as special cases.

There is no reason to believe that this list is complete and it would
be useful to construct many different links to get some idea of what other
restrictions may hold.

Let (0 ∈ X) ⊂ (0 ∈ CN ) be an isolated singularity of dimension n and
L = X ∩ S2N−1(ε) its link. If X0 := X is smoothable in a family {Xt ⊂ CN}
then L bounds a Stein manifold Ut := Xt∩B2N (ε) and Ut is homotopic to an
n-dimensional compact simplicial complex. This imposes strong restrictions
on the topology of smoothable links; some of these were used in [PP08].
Interestingly, these restrictions use the integral structure of the cohomology
groups. This leads to the following intriguing possibility.

Question 64. Let L be a link of dimension 2n − 1. Does L bound a
Q-homology manifold U (of dimension 2n) that is Q-homotopic to an n-
dimensional, finite simplicial complex?

There is very little evidence to support the above speculation but it is
consistent with known restrictions on the topology of links and it would
explain many of them. On the other hand, I was unable to find such U
even in some simple cases. For instance, if (0 ∈ X) is a cone over an Abelian
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variety (or a product of curves of genus ≥ 2) of dimension ≥ 2 then algebraic
deformations of X do not produce such a U .

Restricting to the cohomology rings, here are two simple questions.

Question 65 (Cohomology of links). Is the sequence of Betti numbers of
a complex link arbitrary? Can one describe the possible algebras H∗(L, Q)?

Question 66 (Cohomology of links of weighted cones). We saw in (11)
that the first Betti number of the link of a weighted cone (of dimension > 1)
is even. One can ask if this is the only restriction on the Betti numbers of a
complex link of a weighted cone.

Philosophically, one of the main results on the topology of smooth
projective varieties, proved in [DGMS75, Sul77], says that for simply
connected varieties the integral cohomology ring and the Pontryagin classes
determine the differentiable structure up to finite ambiguity. It is natural to
ask what happens for links.

Question 67. To what extent is the diffeomorphism type of a simply
connected link L determined by the cohomology ring H∗(L, Z) plus some
characteristic classes?

A positive answer to (67) would imply that general links are indeed very
similar to weighted homogeneous links and to projective varieties.

Questions about DR(0 ∈ X).
The preprint version contained several questions about dual complexes

of dlt pairs; these are corrected and solved in [dFKX12].

Embeddings of simple normal crossing varieties.
In many contexts it has been a difficulty that not every variety with

simple normal crossing singularities can be realized as a hypersurface in a
smooth variety. See for instance [Fuj09, BM11, BP11, Kol13b] for such
examples and for various partial solutions.

As we discussed in (19), recent examples of [Fuj12a, Fuj12b] show that
the answer to the following may be quite complicated.

Question 68. Which proper, complex, simple normal crossing spaces
can be realized as hypersurfaces in a complex manifold?

Question 69. Which projective simple normal crossing varieties can be
realized as hypersurfaces in a smooth projective variety?

Note that, in principle it could happen that there is a projective simple
normal crossing variety that can be realized as a hypersurface in a complex
manifold but not in a smooth projective variety.

Let Y be a smooth variety and D ⊂ Y a compact divisor. Let D ⊂
N ⊂ Y be a regular neighborhood with smooth boundary ∂N . If D is
the exceptional divisor of a resolution of an isolated singularity x ∈ X
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then ∂N is homeomorphic to the link L(x ∈ X). It is clear that D and
c1

(
ND,X

)
∈ H2(D, Z) determine the boundary ∂N , but I found it very hard

to compute concrete examples.

Problem 70. Find an effective method to compute the cohomology or
the fundamental group of ∂N , at least when D is a simple normal crossing
divisor.
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Acad. Sci. Paris Sér. I Math. 308 (1989), no. 3, 67–70. MR 983460 (90i:53090)

[GS75] Phillip Griffiths and Wilfried Schmid, Recent developments in Hodge theory:
a discussion of techniques and results, Discrete subgroups of Lie groups and
applicatons to moduli (Internat. Colloq., Bombay, 1973), Oxford Univ. Press,
Bombay, 1975, pp. 31–127. MR 0419850 (54 #7868)

[Har77] Robin Hartshorne, Algebraic geometry, Springer-Verlag, New York, 1977,
Graduate Texts in Mathematics, No. 52. MR 0463157 (57 #3116)

[Har95] Joe Harris, Algebraic geometry, Graduate Texts in Mathematics, vol. 133,
Springer-Verlag, New York, 1995, A first course, Corrected reprint of the 1992
original. MR MR1416564 (97e:14001)

[Hat02] Allen Hatcher, Algebraic topology, Cambridge University Press, Cambridge,
2002. MR 1867354 (2002k:55001)

[Hig51] Graham Higman, A finitely generated infinite simple group, J. London Math.
Soc. 26 (1951), 61–64. MR 0038348 (12,390c)

[Hir62] Morris W. Hirsch, Smooth regular neighborhoods, Ann. of Math. (2) 76 (1962),
524–530. MR 0149492 (26 #6979)

[Ish85] Shihoko Ishii, On isolated Gorenstein singularities, Math. Ann. 270 (1985),
no. 4, 541–554. MR MR776171 (86j:32024)

[Kap12] M. Kapovich, Dirichlet fundamental domains and complex-projective varieties,
ArXiv e-prints (2012).

[Ker69] Michel A. Kervaire, Smooth homology spheres and their fundamental groups,
Trans. Amer. Math. Soc. 144 (1969), 67–72. MR 0253347 (40 #6562)

[KK11] Michael Kapovich and János Kollár, Fundamental groups of links of isolated
singularities, Journal AMS (to appear) ArXiv e-prints (2011).

[KM63] Michel A. Kervaire and John W. Milnor, Groups of homotopy spheres. I, Ann.
of Math. (2) 77 (1963), 504–537. MR 0148075 (26 #5584)

[KM98a] Michael Kapovich and John J. Millson, On representation varieties of Artin
groups, projective arrangements and the fundamental groups of smooth complex
algebraic varieties, Inst. Hautes Études Sci. Publ. Math. (1998), no. 88, 5–95
(1999). MR 1733326 (2001d:14024)

[KM98b] János Kollár and Shigefumi Mori, Birational geometry of algebraic varieties,
Cambridge Tracts in Mathematics, vol. 134, Cambridge University Press,
Cambridge, 1998, With the collaboration of C. H. Clemens and A. Corti,
Translated from the 1998 Japanese original. MR 1658959 (2000b:14018)

[Kob63] Shoshichi Kobayashi, Topology of positively pinched Kaehler manifolds,
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