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Topics on Geometric Analysis

Shing-Tung Yau

I recall that about twenty years ago, Peter Li told me that the National
Science Foundation has a program called geometric analysis. I was curious
about what that was until Peter explained to me. I believe this is a real
contribution of NSF to mathematics, on top of the funding that we have
enjoyed all these years.

Just like any subject in mathematics, the roots of geometric analysis
dates to ancient times and also to the not so ancient contributions of many
modern mathematicians. And as many scientists like to say, we stood on the
shoulders of giants, who laid down the basic tools and concepts and made
important progress. But I believe only starting in the 1970s, did we see a sys-
tematic development based on analysis and nonlinear differential equations
to solve important problems in geometry and topology. This development is
vigorous and it has had strong feedback to the development of differential
equations and analysis in general.

I remember that as a graduate student, I read a great deal of Russian
literature on surface theory based on the Alexandrov school and works of
Pogorelov. I also noticed the great works of Morrey, Nash, Nirenberg, de
Giorgi and others. But they were more interested in analysis than geometry.
Problems in geometry are good testing grounds for developments of partial
differential equations. This is still so. But we started to develop into other
directions.

When I entered the subject, it seemed to me that Riemannian geome-
try could benefit from the introduction of techniques beyond the geodesic
methods which were almost exclusively used at that time. Indeed, the great
power of the Atiyah-Singer Index Theorem had shown prevailing influence
in the subject of geometry, topology and algebraic geometry already. On
the other direction, the deep insights offered by integration by part and
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by the maximum principle in partial differential equations work like magic,
once the right quantity is found.

I was convinced that there are much for geometers to learn from analysis
and partial differential equations. With many friends with great strengths
in both analysis and geometry, we started to look into various subjects such
as minimal submanifolds, harmonic maps, Monge-Ampére equations, and
Ricci flows.

I shall select a few of these topics and discuss their prospects. And I
should stress that the subject matter of geometric analysis covers much
more than the topics that I am going to discuss here.

Let me quote my good friend Hamilton: “The subject has just begun.”

It will be a pity if young bright geometers are misled by ignorant com-
ments that geometric analysis is dead. If we want to construct an interesting
and deep geometric structure over a manifold that is not known to us in any
concrete manner, differential equations seem to be the only way that I know
of. This was indeed the guiding principle to prove the Poincaré conjecture
or the geometrization conjecture using Ricci flow.

1. Hamilton’s Theory of Ricci Flow

I recall that I met Hamilton in Cornell in 1979, who told me that he
was working on the Ricci flow. At the same period, I was talking with Rick
Schoen then in a similar direction of adapting the ideas of harmonic maps
to study deformation of metrics. It was indeed a very natural concept. I may
also say that the physicist Friedan also had came up with the equation in
quantum gravity as a renormalization group flow. I recall that many analytic
approaches to the solution of the Poincaré conjecture were proposed by
geometers. But we all know that practically all of these other approaches
led to ashes.

Friedan never really thought in terms of using the flow for understanding
the structure of geometry or topology per say. The later claims of how string
theory or physics led to the break through in Ricci flow, is just a myth. It
did not really occur in that way.

In any case, the key to the development of Ricci flow is of course what we
can do with such equations. I thought that Hamilton was just toying around
with superficial claims until in 1980, he called me explaining what he could
do with the Ricci flow for three-manifolds with positive Ricci curvature [26].
Immediately I realized that to be a major breakthrough for the whole subject
of flows for geometric structures.

I had three of my graduate students to work on it. I instructed Bando [1]
to work on Kéhler-Ricci flow. He gave the first major result there: that
positivity of bisectional curvature is preserved in complex three dimensions.
Then I told Mok [51] to generalize it, which he did.

I told Cao and Chow [8] to use the flow to reprove the Frankel conjecture.
Unfortunately, despite many attempts by my later students who claimed to
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have success, the problem is still not solved - basically the flow proof of the
Frankel conjecture still depends on the argument that Siu and I [63] used
in 1979.

The news media has created an image that Hamilton did not do any-
thing since the paper in 1983 until the work of Perelman [55, 56, 57]. This
is far from true. In fact, great progress was made in those 20 years. Creative
new techniques were introduced by Hamilton, most of which revolutionized
the subject of geometry. The deep understanding of Ricci soliton to under-
stand singularities was made by Hamilton [27]. The profound technology of
metric surgery was introduced by him [29]. He was able to give a deep and
precise description of the metric when it is close enough to the singularity
[28]. This includes statements on how a metric looks like when it starts to
break up or acquire a singularity. In particular, it includes a true under-
standing of the Mostow Rigidity Theorem when the metric is only close to
the hyperbolic space in a rough sense [30].

Hamilton [27] introduced a great deal of analysis beyond the classical
study of partial differential equations. He managed to generalize the work of
Li-Yau [43] on understanding the behavior of the heat equation. He adapted
the argument to the Ricci flow in an ingenious manner. Note that Perelman
[65] proved a noncollapsing estimate by proving Li-Yau’s inequality on back-
ward solutions to the adjoint heat equation, which he used to rule out the
cigar singularity, which was anticipated by Hamilton. The generalization by
Hamilton of the Li-Yau estimate is fundamental to several important points
for understanding the singularities of the Ricci flow. All of these works are
employed in the study of the Poincaré conjecture and the geometrization
conjecture.

Let me say that the great prowess of Ricci flow goes way beyond the
Poincaré conjecture, despite what some so-called experts said in the news
media, that the method of the proof has no other future directions. On the
contrary, I like to mention a few examples here.

We saw the success of Brendle-Schoen [3] using Ricci flow to prove the
quarter pinching conjecture of the differentiable sphere theorem: a conjecture
that seems to be far beyond what classical comparison theorems for geodesics
can achieve. One sees that new techniques in partial differential equations
are created and new problems are waiting to be solved.

There are natural open problems in metric geometry that should be able
to be solved by Ricci flow. I would like to encourage our young geometric
analysts to spend time on them:

A. A flow proof of the Gromoll-Meyer-Cheeger-Perelman [11, 54] soul
theorem of complete open manifolds with non-negative curvature.
Perhaps a flow argument can also be used to prove the converse:
that the total space of any vector bundle over a compact manifold
with positive curvature admits a complete metric with non-negative
curvature?
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B. A proof of Gromov’s theorem [24] of a bound on the Betti numbers

of manifolds with positive sectional curvature depending only on
dimension, settling the conjecture that the torus is the worst case.
It is known that this follows from the statement that the Betti num-
bers of the loop space of the manifold grow at most polynomially.
Perhaps it is instructive to compare the approach of Micallef-Moore
[50] on the proof of the topological pinching theorem by studying
the index of the Sacks-Uhlenbeck spheres. Can one use minimal
surface techniques to settle this problem?

Of course, one would like to go beyond what is known in the
area of metric geometry. For example, the following topics may be
interesting:

Prove that there is only a finite number of manifolds with posi-
tive sectional curvature for each dimension when the dimension are
greater than a large number. The number can be 25. In fact, would
all these be compact symmetric spaces? If so, Ricci flow should be
very useful as we are now trying to flow it to some canonical models.

The problem of understanding Hamilton’s flow on manifolds
of negative curvature has not been explored as much as it can
be. Perhaps some modifications are needed. The structure of the
fundamental group of such manifold needs to be understood. For
example:

. Thurston made the conjecture that each hyperbolic three dimen-

sional manifold is covered by another compact manifold which
admits an embedded incompressible surface with genus g > 1. Can
one prove this statement based on analysis?

. Given a compact manifold with negative curvature, can one find a

“canonical” embedding of its universal cover into an open subset
of some compact manifold with positive Ricci curvature so that all
the deck transformations can be extended to be homeomorphisms
of the larger manifold which may satisfy additional properties such
as quasi-conformality? Hopefully, this can be simpler if the man-
ifold is Kéhler and in that case, we like to have everything to be
holomorphic. The boundary of the open set could be complicated,
but can be understood by looking at the set of the domain of dis-
continuity of the group.

. For most structures that are canonically defined by the metric, it

should be compatible with the Ricci flow. In those cases, the Ricci
flow should give powerful information.

That was one of the reasons that I asked my former students
to work on Kéhler-Ricci flow. Unfortunately, besides the important
advances made by Donaldson [15], the progress has been slow, since
the thesis of Cao [5]. The most recent estimates of Perelman [55]
should shed more light on how to proceed. The major question is
how to understand the question of stability of the complex structure
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through the flow. After all, the conjecture that I [70] made on the
equivalence of manifold stability with the Einstein condition should
certainly show up in the study of the limit of the flow. One should
study the limit of the Kéhler-Ricci flow carefully to find the right
definition of stability of Fano manifolds.

. Kéhler-Ricci flow has been used to help answer my conjecture [69]
that a complete non-compact Kéhler manifold with positive bisec-
tional curvature is biholomorphic to C™. So far the best result on
this is by Chau-Tam [10], who proved the conjecture in the case
of bounded curvature and maximal volume growth. The work of
Chau-Tam and others that use Kéher-Ricci flow to address my
conjecture make use of the important Li-Yau-Hamilton inequal-
ity, which was proved to hold for Kéahler-Ricci flow by Cao [6,
7]. It should be possible to complete the program in the near
future.

. For manifolds with non-positive Chern classes, the problem of
metric singularities near base points of the canonical map is very
important for applications to algebraic geometry. The same ques-
tion applies to non-compact Kéhler-Einstein manifolds with non-
positive Chern class. One would like to study the structure of the
points that compactify the manifold, and we hope to find the ansatz
or structure of the metric at infinity. We also like to be able to
calculate the residue of Chern classes at the singular points or at
infinity. Hence a good description of the metric should include such
information. The first paper in this direction was described by me
in 1978 [71, 72, 73, 74, 75|, where I proved that for algebraic
manifold M with a divisor D, that M-D admits a canonical K&ahler-
Einstein metric if K + D > 0. The singularity of the metric near D
is well understood.

Once the structure of those singular metrics are understood, the

application to algebraic geometry should follow easily. This should
include the minimal model theory, the abundance conjecture and
the structure of the moduli space of algebraic manifolds. In my
original paper on the Calabi conjecture, I made the first attempt
to understand the singularity of metrics. But there was not enough
knowledge of algebraic geometry to help then and I hope our knowl-
edge is matured enough to tackle such problems now.
. The full theory of Ricci flow with boundary is not well developed
yet. It will be nice to see how to deform such manifolds to Einstein
manifolds whose boundary has constant mean curvature. We also
need to develop a theory of Ricci flow for complete non-compact
manifolds with no upper bound on curvature. In particular, prove
the theorem of Schoen-Yau [60] that every complete non-compact
three dimensional manifolds with positive Ricci curvature is diffeo-
morphic to Euclidean space.
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I. Many years ago, I [70] proposed to study the groups of exotic
spheres in the following way: An exotic spheres admit metrics with
positive scalar curvature iff it bounds a spin manifold. An exotic
spheres admit metrics with positive Ricci curvature iff it bounds
a parallelizable manifold. The first statement was proved by the
work of Stolz [64] based on the surgery result of Schoen-Yau [59]
and Gromov-Lawson [25]. The second assertion can be refined by
replacing parallelizable manifolds with manifolds where some of
their Pontryagin classes are zero, while we only require some of the
eigenvalue of the Ricci curvature to be positive. Perhaps we can
achieve this by flows on compact manifolds with boundary.

J. Can one find a reasonable canonical bounding manifold, similar
to those appear in AdS/CFT [68] theory where we require the
bounding manifold to admit an Einstein metric that is asymptotic
to hyperbolic space near the boundary?

K. Can one characterize those exotic spheres that admit metrics with
positive sectional curvature? Should they admit a fiber structure
where both fiber and base admit metrics with positive curvature
so that the fiber bounds a manifold with positive curvature in a
smooth fashion?

L. It is well known that an evolution equation very close to Hamil-
ton’s Ricci flow is the mean curvature flow, where several people,
starting from Gage [19], Hamilton [20], Grayson [23], and Huisken
[34, 35], made important contributions. It remains to be seen how
to use the mean curvature flow, or other submanifold flows, to han-
dle the famous problem of the Schoenflies conjecture [17], that any
smoothly embedded three-sphere in R* bounds a four-ball.

2. Manifolds with Special Holonomy Groups

Can flows generate manifolds with Gy or Spin(7) holonomy groups?
Compact manifolds of these types were constructed by Joyce [37, 38, 39].
But unfortunately, Joyce’s manifolds are based on singular perturbation
methods, and it is difficult to use the method to study the global moduli
problem, which is important for the M-theory linked to the manifold. It will
be great to find a flow or other global elliptic method to construct such
manifolds.

There are some obvious obstructions for a manifold to admit Go struc-
tures, in terms of nontriviality of the third cohomology and positive defi-
niteness of the quadratic form associated to the first Pontryagin form, as
can be found in the book of Joyce [40]. To the best of my knowledge, these
are the only known obstructions. Can one prove it?

Many construction of such manifolds are related to constructions of
Calabi-Yau manifolds, and there are proposals to relate them to a pair of
Calabi-Yau manifold plus a special lagrangian cycle in this manifold. It was
proposed that some total space of a circle fiber space over the manifold
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degenerate along the cycle may do the job. Such constructions work better
for non-compact manifolds and the technology is far from mature.

Special holonomy manifolds play an important chapter in differential
geometry and physics. However, there are other manifolds of interest that
do not have special holonomy group. The most notable of such manifolds are
Einstein manifolds. Major construction of such manifolds either come from
Kahler geometry, from reduction of dimension by group actions or from the
Wick rotation from Lorentzian Einstein manifolds [21]. It will be interesting
to see how general such constructions are.

This is especially true for the Wick rotation construction: it is possible
to start out from a singular Lorentzian manifold and obtain a non-singular
Einstein manifold. Under what conditions can we reverse this procedure to
produce interesting solutions to the Einstein equation which have physical
interest?

When we study cone singularities for manifolds with a special holonomy
group, we can find new structures, such as Sasaki-Einstein manifolds [4] or
nearly-Ké&hler manifolds [22]. They themselves do not have special holonomy
group and yet they are constructed from such manifolds by reduction of
dimension. If we look at the category of all manifolds generated by manifolds
with special holonomy group by doing reduction of this sort or manifolds
with a foliation whose leaves are given by special holonomy group, how big
a class of manifolds can we generate? How do we characterize them?

3. Four Manifolds

A very important problem regarding structures on manifolds relate to
four dimensional manifolds where few structures are known. But there is an
important one, besides the space of Einstein metrics. These are the self-dual
or anti-self-dual metrics. They are naturally defined for four-dimensional
manifolds and their existence says a lot about the manifolds. For one thing,
the twistor space of anti-self-dual manifolds admits an integrable complex
structure and the anti-self-dual bundles lift to holomorphic bundles. It there-
fore has a natural connection to the theme of complex geometry.

Hitchin [31] showed that the twistor space is not Kéahler except for a
couple of obvious examples. However, they can have a lot of meromorphic
functions and naturally the function field gives us natural invariants of the
manifolds. There is also the concept of Kodaira dimension of the complex
manifold that may give some understanding for the anti-self dual metrics.

While there are many constructions of self-dual manifolds, especially the
spectacular works of Taubes on the existence of such metrics after stabiliza-
tion by connected sums with complex projective plane, the general existence
theorem is still not known.

But in order to understand such metrics, we need to be able to give
direct proof of existence without using singular perturbation method (Per-
haps one can use flows or elliptic techniques). We need to understand the
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global moduli space of such metrics. In particular, do they have an infinite
number of components once we fix the diffeomorphic type of the manifold.
This is of course, very relevant to the question of the topology of four dimen-
sional manifolds.

Similar questions can be addressed for Einstein metrics. Our under-
standing on Einstein manifolds is also rather poor. We are not even sure
whether there can be more than two distinct Einstein metrics on the four
sphere.

4. Six Dimensional Manifolds

Six dimensional geometries motived by string theory have pointed to
new directions to look for geometric structures. The first important ques-
tion is to give a topological classification of all Calabi-Yau manifolds. But
it is also interesting to study the non-Ké&hler complex manifolds. I believed
that in six dimensions, any almost complex manifold admits an integrable
complex structure. If my conjecture is true, the problem will be very dif-
ferent from four dimensions. Twistor space of anti-self-dual four manifolds
already give plenty of such manifolds which may be considered as supporting
evidence.

An important class of examples come from Strominger’s [65] study of
the heterotic string where a hermitian metric is coupled with a stable holo-
morphic bundle: Given a complex manifold which admits a no-where zero
holomorphic three form, a balanced metric and a stable holomorphic bundle
whose first Chern class is zero, and whose second Chern form is equivalent
to the second Chern form of the manifold up to 99 class, then we study a
coupled system of elliptic equations. The system admits interesting parallel
spinors and was introduced by Strominger.

Examples were constructed by Li-Yau [42] and Fu-Yau [18]. For the
twistor space mentioned above, if the anticanonical divisor exists as an effec-
tive divisor with normal crossings, we can form a branched cover of the com-
plex manifold to kill the canonical divisor. The resulting manifold should
satisfy the conditions mentioned above. Hence we expect a close relation
between anti-self-dual four dimensional manifolds with such six dimensional
manifolds

5. Metric Cobordism

The famous works by physicists on the holographic principle [44] gave
the AdS/CFT correspondence, which says that if an Einstein manifold which
is asymptotic to the hyperbolic metric with conformal boundary given by
another manifold M with positive scalar curvature, the quantum gauge the-
ory on the boundary is isomorphic to the quantum theory of gravity in
the bulk.

It opens up many interesting questions for geometry. Which compact
manifold with positive scalar curvature can be written as the conformal
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boundary of hyperbolic Einstein manifolds? See [68]. How do we describe
the moduli space of such manifolds?

A remarkable holographic principle appears in classical general relativity
that is related to the positive mass conjecture and quasi-local mass. For a
space-like two dimensional surface in a spacetime which has space-like mean
curvature vector and satisfies the local energy condition, a suitably defined
quasilocal mass, which only depends on the boundary data attached to the
two dimensional surface, vanishes only if it bounds a space-like three dimen-
sional hypersurface that can be embedded into the Minkowski spacetime.

All these theories indicate that there should be interesting metric discus-
sion on cobordism theory. Many people, including Hopkins-Singer [33], Dan
Freed [16], Simons-Sullivan [62] and others have studied K-theory with con-
nections. Such a theory should be compatible with metric cobordism and the
AdS/CFT correspondence. A full understanding of this will be important
for the future of geometry.

6. Affine Metrics

This problem arose in studying the construction of Calabi -Yau metrics.
Suppose we have a compact manifold with a codimensional two subcom-
plex C such that outside C, there is an affine structure which means that it
is covered by coordinate charts whose coordinate transformations are affine
transformations with determinant equal to one. The affine structure has nat-
ural monodromy group around C. Suppose on each chart, we have a convex
function whose Hessian defines a global metric on the complement of C.

We are interested in classifying those metrics, which Cheng and I [12]
called affine Kéahler metric, whose volume form is the given volume form
attached to the affine structure. The moduli of the affine structure and the
metrics and also the possible structure of C' and the monodromy group
around C needs to be classified.

This is a subject which is much related to the subject of affine spheres
in the theory of affine geometry. For two dimensional affine spheres in three
dimensional affine space, some of them are invariant under the affine group
and the quotient is a nice Riemann surface equipped with a holomorphic
cubic form. It is not clear whether there is a higher dimensional analogue of
such a construction.

In this regard, there is a study of Einstein’s equation in 2+ 1 formulation
by studying the constraint equations on Riemann surfaces. Since it satis-
fies the Einstein equation, the spacetime that evolves is flat due to dimen-
sional consideration. The universal cover of the surface can be embedded
into Minkowski spacetime as a hypersurface. The movement of the Riemann
surface due to the Einstein flow is not trivial. It moves the conformal struc-
ture along some direction in the Teichmiiller space. Moncrief and I tried
to prove that this movement will deform the conformal structure to the
Thurston boundary.
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7. Isometric Embeddings

The question of local or global isometric embeddings of a Riemannian
manifold to Euclidean space is still far away from being answered. Most of
the interesting progress has been made for two dimensional surfaces, where
existence and uniqueness are relatively easier to understand. The uniqueness
is a big mess in higher dimension because the optimal embedding dimension
is n(n+1)/2 and this makes the codimension too high for uniqueness, as long
as the present technology is concerned. When n > 3, the local embedding
problem is a hyperbolic system. But little is known about them.

Perhaps we can try some more restricted question:

Assume a closed manifold can be conformally embedded into Euclidean
space as a hypersurface, can it be deformed to be an isometric embedding?
And can we prove it is unique? Perhaps some assumption such as the posi-
tivity of scalar curvature or other stronger curvature assumption should be
made?

Isometric embedding into Lorentizian space time can be easier and
interesting due to applications for general relativity. In many cases, we are
interested to isometrically embed a spacelike hypersurface into Minkowski
spacetime or some other homogenous spacetime as codimensional two space-
like hypersurface.

In the works that I did with Mu-Tao Wang, we can minimize energy
among such embeddings to find some canonical one. And they can exhibit
beautiful properties. Problems in higher dimensions need to be overcome.

A simple question that I encountered about thirty years ago is the fol-
lowing:

Is it true that a complete manifold with Ricci curvature bounded from
below can be isometrically embedded into Euclidean space with bounded
mean curvature?

The problem of isometric deformation of manifolds is still far from being
solved. I remember I gave lectures on this subject in Berkeley in 1977.
Besides the surfaces with nonnegative curvature and some surfaces with rota-
tional symmetry, really not much is known about the problem. But even for
surfaces of rotation, it is interesting enough. For in some very special cases,
the problem is related to the problem of the spectrum of operators.

8. Minimal Submanifolds

The subject of minimal submanifolds should be considered as one of the
major foundation of non-linear elliptic theory, where major techniques were
developed.

In two dimensions, conformal geometry brought in beautiful technology.
I am glad to see great developments led by Meeks [46], Colding and Minicozzi
[13], Hoffman [32] and Rosenberg [49], and others. Under their hands, we see
an almost complete picture of complete minimal surface theory in Euclidean
space.
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There are still open problems that need to be solved though. A notable
one is what some people call the Embedded Calabi-Yau Problem. The major
contributors are Meeks [47, 48], Martin [45], Nadirashvilli [53], Perez and
Ros. It says that for a surface to admit a complete bounded minimal embed-
ding into the Euclidean three space, it is necessary and sufficient that every
end of it has infinite genus.

Also, much more need to be said about minimal surfaces with constant
mean curvature in other simply connected homogeneous three manifolds. For
example, it will be useful to know whether there are only a finite number
of closed embedded minimal surfaces with a fixed genus in the three sphere.
(Due to the work of Choi-Schoen [9], we know the space is compact. The
question is whether a continuous family of minimal surfaces exists or not.)
I believe that it may be finite. And in that case, what is the number of
such embedded minimal surfaces for each genus. It looks like the spectrum
of Laplacian of these surfaces is very special. But concrete computations are
needed before one can make any sensible statements.

There are plenty of works on minimal surfaces in general three dimen-
sional manifolds. The most notable development starts from Morrey [52],
and then Sacks-Uhlenbeck [58]. The bubbling of spheres and its applica-
tions to geometry are tremendous. The argument was made precise in the
proof by Siu-Yau [63] of the Frankel conjecture. The proof of the topological
theorem of Micallef-Moore [50] also depends on this argument. The devel-
opments of J-holomorphic curves in symplectic geometry owed a great deal
to the work of Sacks-Uhlenbeck beyond what some authors would like to
acknowledge.

There is also the great achievement of Simon-Smith [61] on the existence
of embedded spheres with index less than one. Jost [36] generalized the work
of Simon-Smith to the existence of two spheres in any manifold diffeomorphic
to the three sphere. Colding-Minicozzi [14] studied such minimal surfaces
and gave a very important application to the extinction time theorem for
Hamilton’s flow on simply connected three manifolds.

There is still much to be learned about how minimal surfaces are created
and disappear when the metric of the three manifold changes. This is related
to the appearance of black holes in general relativity.

As for higher dimensional minimal submanifolds, regularity theory has
been a central problem, mostly related to geometric measure theory.

For minimal submanifolds of manifolds with special holonomy group,
there are many special submanifolds that are of great interest. They are
part of the calibrated submanifolds discussed by Harvey-Lawson. In many
ways, they are analogues of complex submanifolds of Kédhler manifolds where
the restrictions of the Kéahler form raised to a suitable power becomes the
volume form. For manifolds with special holonomy groups, there are such
forms that are parallel. The most notable is the holomorphic n-form of
the Calabi-Yau manifolds. They define a special class of submanifolds that
minimize volume in their homology class.
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Such calibrated submanifolds were rediscovered by Becker-Becker-
Strominger [2] in their study of cycles that preserve some supersymmetry of
the ambient manifolds. They are special cases of branes in string theory. As
such, they play important roles in the consideration of supersymmetry, which
gives beautiful duality with holomorphic bundles. Many analogues with holo-
morphic bundles can be drawn.

Richard Thomas and I [67] looked into various properties of such cycles.
We conjectured that classes of lagrangian cycles with zero Maslov index
should admit special lagrangian cycles and that they can be obtained by
the mean curvature flow where long time existence should hold. And if some
stability condition holds, it will converge to special lagrangian cycles. It
is important to check that special lagrangian cycles automatically satisfies
such stability conditions. The mirror symmetry between these cycles with
Hermitian-Yang-Mills bundles is really fascinating.

An important question that I raised many years ago, is the mirror of
the Hodge conjecture. The question here is that every middle dimensional
cycles of the odd dimensional Calabi-Yau manifold should be written as a
(rational) linear combination of special lagrangian cycles. Note that special
lagrangian cycles mean cycles that can be calibrated by possibly different
choices of (n,0)-forms with norm one, and also the coefficients can have
different signs.

If we insist that the coefficients be positive, then there is an interesting
question: When will a homology class be representable by an irreducible
special lagrangian cycle?

Once we have obtained a special lagrangian cycle, we would like to know
its topology. For a Calabi-Yau manifold, what kind of topology can a special
lagrangian cycle admit? Can a real hyperbolic manifold occur? When will
it be a torus? When it is a torus, what is its deformation space? Can we fill
in the Calabi-Yau manifold with special lagrangian tori so that the moduli
space can be identified with some three-manifold with an affine structure
that has singularity along some codimensional two set. This is related to
what is called the Strominger-Yau-Zaslow [66] fibration and the mirror con-
jecture.
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