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1. Introduction

1.1. The k-Yamabe problem. The k-Yamabe problem is a higher
order extension of the celebrated Yamabe problem for scalar curvature. It
was initially proposed by Viaclovsky [72] and also arose in the study of
Q-curvatures in [11]. Viaclovsky found that in a conformal metric, the resul-
tant k-curvature equation can be expressed as an equation similar to the
k-Hessian equation, which has been studied by many authors [77].

The k-Yamabe problem can be formulated as follows. Let (Mn, g) be a
closed Riemannian manifold of dimension n ≥ 3. It is well-known that there
is an orthonormal decomposition of the Riemannian curvature tensor

Riem = W + Ag � g,

where W is the Weyl tensor and Ag is the Schouten tensor. The Weyl tensor
is conformally invariant and Schouten tensor is given by

Ag =
1

n − 2
(Ricg − Rg

2(n − 1)
g),

where Ricg and Rg are respectively the Ricci tensor and the scalar curva-
ture. For 1 ≤ k ≤ n, the k-Yamabe problem is to prove the existence of a
conformal metric g̃ such that

(1.1) σk(λ(Ag̃)) = 1 on M,

where λ = (λ1, ..., λn) are the eigenvalues of the Schouten tensor Ag̃ with
respect to g̃, σk(λ) is the k-th elementary symmetric polynomial,
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given by

(1.2) σk(λ1, ..., λn) =
∑

1≤i1<···<ik≤n

λi1λi2 · · ·λik .

For convenience we call σk(λ(Ag̃)) the k-scalar curvature, or simply
k-curvature, of (M, g̃).

Let

(1.3) g̃ = e−2wg = v
4

n−2 g, (v = e−
n−2

2
w).

By direct computation,

(1.4) Ag̃ = ∇2w + dw ⊗ dw − 1
2
|∇w|2g + Ag.

Hence the k-Yamabe problem is equivalent to solving the following PDE

(1.5) σk[λ(∇2w + dw ⊗ dw − 1
2
|∇w|2g + Ag)] = e−2kw.

When k ≥ 2, this is a fully nonlinear partial differential equation closely
related to the k-Hessian equation. Therefore techniques developed in the
study of the Yamabe problem and the k-Hessian equation may be applied
to the k-Yamabe problem.

1.2. The Yamabe problem. It is convenient to have a brief review
of the classical Yamabe problem and the k-Hessian equation. The Yamabe
problem, proposed by H. Yamabe in [80], is a higher dimensional extension of
the famous uniformization theorem, namely any two dimensional Riemann-
ian maniflod is conformally equivalent to one of constant Gauss curvature.
Yamabe’s paper [80] contains the following theorem on the existence of a
conformal metric with constant scalar curvature.

Theorem 1.1. Let (M, g) be a compact Riemannian manifold of dimen-
sion n ≥ 3 without boundary. Then there exists a conformal metric g̃ =
v4/(n−2)g of constant scalar curvature.

Yamabe’s proof is based on the variational approach. By direct compu-
tation, g̃ = v4/(n−2)g is a solution to the Yamabe problem if v satisfies the
equation

(1.6) −4(n − 1)
n − 2

Δgv + Rgv = v
n+2
n−2 ,

or equivalently v is a critical point of the functional

(1.7) F1(v) =

∫
M

(4(n−1)
n−2 |∇v|2g + Rv2

)
dvolg( ∫

M v
2n

n−2 dvolg
)n−2

n

.
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where Δg is the Laplace-Beltrami operator, Rg is the scalar curvature of g.
However, Yamabe’s proof is correct only when the Yamabe constant Y1 ≤ 0.
His proof contains a gap when Y1 > 0, due to the lack of compactness in
the Sobolev embedding W 1,2 → L2n/(n−2). The second author [63] found
the gap and fixed it when Y1 < ε for some constant ε, (depending on the
Sobolev constant). In [1, 2], Aubin proved the above theorem under the
condition

(1.8) Y1(g) < Y1(gSn),

where gSn denotes the standard metric of the n-sphere,

(1.9) Y1(g) = inf{F1(v) | v > 0, v ∈ C∞(M)}
is the Yamabe constant. Aubin also verified (1.8) when n ≥ 6 and (M, g) is
not locally conformally flat. Schoen [51] verified (1.8) for the remaining cases
by the positive mass theorem. The positive mass theorem implies a positive
lower order term in the expansion of the fundamental solution, which is the
key to verify the inequality (1.8). We refer the reader to [40, 3, 56] for a
detailed account.

The resolution of the Yamabe problem was a milestone in differential
geometry, and has stimulated great interest in the study of various prescrib-
ing curvature problems, including the k-Yamabe problem.

An interesting problem, raised by Schoen, is the compactness of the solu-
tion set when the manifold is not conformally equivalent to the unit sphere.
The compactness problem has drawn much attention in recent years. For the
1-Yamabe problem, this problem has been completely resolved. Schoen first
proved the compactness in the case when the manifold is locally conformally
flat. He also developed a series of local estimates and fine local analysis for
possible blow-ups of solutions to equation (1.6) [52, 53, 54, 57]. Some of his
estimates can be found in [35]. His estimates were used by many researchers
in the study of semilinear elliptic equations, including the compactness prob-
lem, and eventually led to the resolution of the compactness of the solution
set for dimensions n = 3 in [47], n = 4, 5 in [17], n = 6, 7 in [45, 49], and
also the compactness when n ≤ 11 under the assumption of positive mass
theorem in [46]. Recently, Khuri, Marques and Schoen [34] established the
compactness for dimensions n ≤ 24, and Brendle and Marques [6, 7] found
the compactness does not hold when the dimension n ≥ 25.

1.3. The k-Hessian equation. When 2 ≤ k ≤ n, (1.5) is a fully
nonlinear partial differential equation. It is closely related to the k-Hessian
equation,

(1.10) σk[λ(D2u)] = f in Ω,

where Ω is a bounded domain in R
n, D2u is the Hessian matrix of u, and λ

denotes the eigenvalues of D2u. When k = 1, (1.10) is the Poisson equation,
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when k = n it is the Monge-Ampere equation. For 2 ≤ k ≤ n, the k-Hessian
equation is elliptic when restricted to the space of admissible functions, just
like the Monge-Ampere equation when restricted to convex functions.

The k-Hessian equation has been studied by many authors. The regu-
larity of k-admissible solutions was established by Caffarelli, Nirenberg and
Spruck [10]. See also Ivochkina [33] for some special cases, and Trudinger
[65] for Hessian quotient equations. According to Caffarelli, Nirenberg and
Spruck [10], a function is k-admissible if the eigenvalues of the Hessian
matrix D2u lie in the convex cone

(1.11) Γ+
k = {x ∈ R

n | σj(x) > 0 for 1 ≤ j ≤ k},

and equation (1.10) is elliptic when u is k-admissible. For some k ≥ 2, R
n

contains other cones in which the equation (1.10) is elliptic but in these
cases the regularity is unclear at the moment.

The k-Hessian equation is of divergence form. A Sobolev type inequality
for k-admissible functions was proved by Wang [75], and a Moser-Trudinger
type inequality was proved by Tian and Wang [61]. The corresponding
variational solutions, based on gradient flow approach, were obtained by
Chou and Wang [16]. Furthermore, various potential theoretic results have
also been obtained for the k-Hessian equation by Trudinger and Wang
[66, 67, 68] and Labutin [39], just like those for the Laplacian operator.
See also [77] for details.

1.4. Admissibility of metrics. Following Caffarelli, Nirenberg and
Spruck [10], we say a metric g̃ ∈ [g] k-admissible (or simply admissible) if
λ(Ag̃) ∈ Γ+

k . Hence g̃ is 1-admissible iff
∑

λi > 0 and g̃ is n-admissibe iff
λi > 0 for all i. As in [10], one can show that equation (1.5) is elliptic if the
eigenvalues λ(Ag̃) ∈ Γ+

k . For simplicity we also call the functions u and w
k-admissible if the metric g̃ in (1.3) is k-admissible. Denote

[g] = {g̃ = v4/(n−2)g | v > 0, v ∈ C∞(M)},
[g]k = {g̃ ∈ [g] | g̃ is k-admissible},(1.12)

where [g] is the conformal class of [g] and [g]k is the set of k-admissible
metrics.

Based on the progress in the study of the k-Hessian equation, we wish
to prove related results for the k-Yamabe problem, such as the existence of
k-admissible solutions to the k-Yamabe problem when the initial metric g
is k-admissible, and related variational properties. However, we would also
like to draw the reader’s attention to various differences between these two
equations. See Remarks 3.1, 4.1 and 4.2.

1.5. Plan of this paper. Assuming the initial metric g is k-admissible
for some 2 ≤ k ≤ n, the k-Yamabe problem has been solved in the following
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cases:

• (M, g) is locally conformally flat, using the moment map of Schoen
and Yau;

• k = 2, by the variational structure of equation (1.5) in this case;
• k ≥ n

2 , in which case, the Ricci curvature is nonnegative.

Resolution of the k-Yamabe problem in these cases is built upon the a priori
estimates and the Liouville theorem. This paper is arranged as follows.

§2. Liouville theorem
The Liouville theorem for the case k = 1 was obtained in [9]. Under certain
asymptotic assumptions at infinity, the Liouville theorem was proved in [19]
and also follows from [50]. A. Li and Y. Li [41, 42] extended the Liouville
theorem to the cases 2 ≤ k ≤ n. The Liouville theorem was also obtained in
[13] for k = 2 in lower dimensions.

§3. A priori estimates
By the regularity theory of Evans and Krylov for fully nonlinear, uniformly
elliptic equations, it suffices to establish second derivative estimates for solu-
tions of (1.5). If the solution is uniformly bounded, the second derivative
estimate can be obtained by differentiating the equation (1.5) twice and
applying the maximum principle [73]. But as with the Yamabe problem, a
key issue is to establish the uniform estimate. For this purpose, one needs
to prove the local gradient and second derivative estimates.

For equation (1.5), the local second derivative estimate can be obtained
as in [28, 76]. Indeed after a proper change of the function w, the matrix
(1.4) corresponds to that in the equation arising in the reflector design prob-
lem. The interior gradient estimate for (1.5) was first obtained by P. Guan
and G. Wang [25]. Different proofs were later found in [14, 78, 44] and
they apply to more general equations.

§4. Existence and compactness
This section is the main body of the paper. We divide it into four sub-
sections.

§4.1. Existence on locally conformally flat manifolds.
Due to the characterization of locally conformally flat manifolds by Schoen
and Yau, and the invariance of the matrix (1.4) under the Kelvin transform,
one can apply the method of moving planes to get the uniform estimate.
Therefore the existence of solutions can be obtained by either the elliptic
method [41] or the parabolic method [26]. The existence of solutions has
also been obtained by a variational approach in [60].

§4.2. Existence when the k-Yamabe problem is variational.
It is known that equation (1.5) is variational when k = 2 or M is locally
conformally flat. In [60] we proved the existence of solutions when equation
(1.5) is variational, namely it is the Euler equation of a functional. Our
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result extended the one in [11, 12] where the existence was proved when
k = 2 and n = 4; and that in [26, 41] on locally conformally flat manifolds.
Note that our proof applies to the cases k ≥ 3 for any manifolds, provided
the equation (1.5) is variational. However, Branson and Gover [5] proved
that when k ≥ 3, equation (1.5) is variational if and only if the manifold M
is locally conformally flat.

§4.3. Existence for k > n/2.
When k > n/2, the existence of solutions was proved by Gursky and Via-
clovsky in [30]. They also proved the set of solutions is compact. However
in the cases k > n/2, much stronger results were proved by the authors in
[70]. It was proved in [70] that the set of admissible metrics, after normal-
ization such that the underlying manifold is of constant volume, is compact.
Therefore one can prove the existence of solutions for more general non-
linear right hand side term in (1.5). Some other interesting results on the
singularity profile for admissible functions were also established.

§4.4. Existence for k = n/2.
The cases k = 2 and k = n

2 are probably the most interesting cases for
the k-Yamabe problem (except k = 1). In the case k = n/2, we proved the
solution set is compact and so also the existence of solutions [71]. As in [70],
our proof is based on the analysis of a minimal radial function of the solution
and also relies on the Liouville theorem of A. Li and Y. Li. A key fact for
the cases k ≥ n/2 is that if g is k-admissible, then the Ricci curvature of
the manifolds is nonnegative, so that the Bishop′s volume growth theorem
is applicable.

For the compactness of the solution set of the k-Yamabe problem, when
k < n

2 , nothing has been proved, but we expect similar results as the 1-
Yamabe problem, namely the solution set is compact in lower dimensions
and not otherwise. But when k ≥ n

2 , the solution set is compact [30, 70, 71].
Unlike the case k = 1, the compactness for k ≥ n

2 is built upon the fact that
a k-admissible metric must have nonnegative Ricci curvature [24, 71].

§5. Remarks.
We include in §5.1 a result proved by the first author in [59], which says
that if a k-Yamabe constant is positive, then there is a k-admissible metric.
In §5.2 we explain that the results obtained for equation (1.5) apply to a
larger class of comformally invariant equations satisfying certain structural
conditions. Finally we mention some unsolved problems.

2. Liouville theorem

Let g̃ = v
4

n−2 g. Then the Schouten tensor of g̃ is given by

Ag̃ =
2

n − 2
∇2

cv

v
+ Ag
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and the k-Yamabe problem (1.1) becomes

(2.1) σk(λ(∇2
cv + n − 2

2
vAg)) = (n − 2

2
)kvk n+2

n−2 .

where

(2.2) ∇2
cv = −∇2v +

n

n − 2
dv ⊗ dv

v
− |∇v|2

v

g

n − 2

is the conformal Hessian matrix.
The following Liouville type theorem is due to Caffarelli, Gidas and

Spruck [9] (see also [35]) for k = 1 and by A. Li and Y. Y. Li [41, 42] for
k ≥ 2. The Liouville theorem has been used in the proof for the existence of
solutions to the k-Yamabe problem for k = n

2 [71]. It has also been used to
establish the local gradient estimate for the equation (2.1) [44, 78].

Theorem 2.1. Let v ∈ C2(Rn) be a positive, k-admissible solution of

(2.3) σk(λ(∇2
cv) = (

n − 2
2

)kvk n+2
n−2

−ε

in the entire space R
n, where n ≥ 3, 1 ≤ k ≤ n, and 0 ≤ ε < kn+2

n−2 . Then
ε = 0 and there exist a constant a > 0 and a point x ∈ R

n such that

(2.4) v(x) = c(n, k)(
a

1 + a2|x − x|2 )
n−2

2 ,

where c(n, k) = 2
n−2

4 (n
k)

n−2
4k .

When k = 1 and ε = 0, equation (2.3) becomes

(2.5) −Δv =
n − 2

2
v

n+2
n−2 on R

n.

The above Liouville theorem asserts that a positive C2 solution of (2.5) must
be of the form

(2.6) v(x) = (2n)
n−2

4 (
a

1 + a2|x − x|2 )
n−2

2 .

Under the decay hypothesis v(x) = O(|x|2−n), the result was proved in [19]
and also follows from Obata [50]. Obata proved the uniqueness of solu-
tions (up to conformal diffeomorphism) for the Yamabe problem on the unit
sphere.

Obata’s result was extended to k ≥ 2 by Viaclovsky [72, 74]. By the
stereographic projection, Viaclovsky’s uniqueness result implies the follow-
ing: If v is a k-admissible solution to (2.3) and if the function ṽ(x) :=
|x|2v( x

|x|2 ) is smooth and positive at the origin, then v must be given by
(2.4). This result can be proved by the method of moving planes as the equa-
tion (2.3) is invariant under Kelvin transform [74]. In the case k = 2 and
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n = 4, 5, Theorem 2.1 was also proved by Chang, Gursky and Yang [12, 13]
by different argument, where some further results were also obtained.

The proof of Theorem 2.1 by A. Li and Y. Li [41, 42] is also based on
the Kelvin transform and the moving planes technique. But they need to
establish some local estimates, such as a Harnack type inequality of Schoen,
and prove an asymptotic behavior of the solution at infinity. Their initial
proof [41] used the local gradient estimate in [25] but later they were able
to avoid the a priori estimate by an observation on the behavior of isolated
singularities. The Liouville theorem was extended to weak entire solutions
in [43], which in turn can be used to establish the interior gradient estimate
[78, 44]. A. Li and Y. Li have also extended the Liouville theorem to much
more general fully nonlinear equations [42].

3. Local estimates

In this section we consider a priori estimates for k-admissible solutions
to the equation

(3.1) σk[λ(∇2w + dw ⊗ dw − 1
2
|∇w|2g + Ag)] = f(x)e−2kw.

Equation (3.1) is a fully nonlinear partial differential equation, analogous
to the k-Hessian equation (1.10). Assume that f > 0 and is C1,1 smooth. To
obtain the C3,α estimate for solutions to equation (3.1), by the regularity
theory of Evans [18] and Krylov [36] it suffices to prove the second derivative
estimate, so that the equations become uniformly elliptic.

The second derivative estimate on compact manifolds without boundary
can be obtained easily by differentiating equation (3.1) twice and using the
maximum principle [73]. For Yamabe type problems such as (3.1), the L∞
estimate is usually a key issue, and we need interior gradient and second
derivative estimates.

The interior second derivative estimate for (3.1) can be obtained sim-
ilarly as in [76, 28]. Indeed, in the case k = n, equation (3.1) on sphere
(with a different zero order term in the matrix) also arises in the reflector
design [76, 28]. The interior gradient estimate for (3.1) seems more compli-
cated and was first obtained in [25]. Different proofs for the interior gradient
estimate were later found in [14, 78, 44].

The proof by Guan and Wang [25] of the interior gradient estimate relies
on the algebraic structure of the operator σk. Chen’s proof [14] combines
the estimates for gradient and second derivatives in a single argument. The
proof in [78, 44] is based on the Liouville theorem [43]. (The third author
would like to point out that before his paper [78] was published in early
2006, he was not aware that Yanyan Li was trying to prove the regularity
by his Liouville theorem, as there was no indication of it in the early version
of [43]).
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As pointed out in [78], Chen’s proof is the favorable one. It is simpler
than those in [25, 78, 44]. The proofs in [14, 25] also apply to corresponding
parabolic equations. Below we adopt the proof of Chen [14].

Theorem 3.1. Let w ∈ C3(Mn) be a k-admissible solution to (3.1) in
the geodesic ball B(x0, r). Then there is a constant C such that

(3.2) max
B(x0,r/2)

(|∇w|2 + |∇2w|) ≤ C(1 + max
B(x0,r)

e−2w).

Proof. The proof also applies to more general equations of the form

F (W ) = f(x, w),

where

W = Ag + ∇2w + dw ⊗ dw − 1
2
|∇w|2g.

We assume that F = F (λ(W )) is a function of the eigenvalues λ of the
matrix W , satisfying the following conditions:

(i) F (λ) is symmetric in λ,
(ii) F is homogeneous of degree 1,
(iii) F is concave, and
(iv) F is positive in the cone {λ ∈ R

n | λ1 > 0, . . . , λn > 0}.
Note that the above conditions imply that F (λ(W )) is elliptic in w. In the
proof here we assume

F = [σk(λ(W ))]1/k.

First, since W ∈ Γ+
k , we have trgW > 0. Hence

trgAg + Δw − n − 2
2

|∇w|2 > 0.

Therefore we have

(3.3) |∇w|2 < C(Δw + 1).

This means Δw is bounded from below, and an upper bound of Δw implies
an upper bound of |∇w|2. Since k ≥ 2, we also have

0 < σ2(W ) =
1
2
((trgW )2 − |W |2),

i.e.,

(3.4) |∇2w|2 ≤ C((Δw)2 + 1).

Hence an upper bound of Δw implies an upper bound for |∇2w|2.
To prove the interior estimates, we introduce the auxiliary function

H = η(Δw + |∇w|2) =: ηL,
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where 0 ≤ η ≤ 1 is a cutoff function satisfying η = 1 in Br/2, η = 0 outside
Br, |∇η| < C(

√
η/r) and |∇2η| < C/r2. For simplicity we assume r = 1.

Suppose x0 is the maximal point of H. We may assume Δw is positive at
x0. Take a local coordinates such that gij(x0) = δij . Then at x0 we have

0 = ∇jH = ηj(Δw + |∇w|2) + η(wkkj + 2wkwkj),

0 ≥ ∇i∇jH = (ηij − 2ηiηj

η
)L + ηLij .

(3.5)

Hence

0 ≥ F ijHij = F ij((ηij − 2ηiηj

η
)L + ηLij)

≥ −C(ΣF ii)L + ηF ijLij ,(3.6)

where F ij = ∂F
∂rij

is positive definite. Now we compute

F ijLij = F ij(wkkij + 2wkiwkj + 2wkwkij)

≥ F ijwijkk + 2F ij(wkiwkj + wkwijk) − C(ΣF ii)(1 + |∇2w|3/2)

= I + II − C(ΣF ii)(1 + |∇2w|3/2).(3.7)

Notice that

Wij,kk = wijkk + 2(wikwjk + wikkwj) − (|∇2w|2 + wlwlkk)δij + Aij,kk.

We have by (3.5)

I = F ijwijkk

= F ij(Wij,kk − 2(wikwjk + wikkwj) + (|∇2w|2 + wlwlkk)δij − Aij,kk)

≥ F ijWij,kk − 2F ijwikwjk + 2F ijwj(
ηi

η
L + 2wkwki)

+ (ΣF ii)(|∇2w|2 − wl(
ηl

η
L + 2wkwkl)) − C(ΣF ii)(1 + |∇2w|3/2)

≥ F ijWij,kk + F ij(4wkwjwki − 2wikwjk + |∇2w|2δij − 2wkwlwklδij)

− Cη−1/2(ΣF ii)|∇w|L − C(ΣF ii)(1 + |∇2w|3/2).

Since
Wij,k = wijk + wikwj + wiwjk − wlkwlδij + Aij,k,

we have

II = 2F ijwkiwkj + 2wkF
ij(Wij,k − wikwj − wiwjk + wlkwlδij − Aij,k)

= 2wkF
ijWij,k + F ij(2wkiwkj − 4wiwkwkj + 2wkwlkwlδij)

− C(ΣF ii)(1 + |∇2w|3/2).
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Substituting I and II into (3.7) we have

F ijLij ≥ F ijWij,kk + 2wkF
ijWij,k + (ΣF ii)|∇2w|2

− Cη−1/2(ΣF ii)|∇w|L − C(ΣF ii)(1 + |∇2w|3/2).

Hence from (3.6) we get

0 ≥ ηF ijHij ≥ η2F ijWij,kk + 2η2wkF
ijWij,k + η2(ΣF ii)|∇2w|2

− C(ΣF ii)(1 + (η|∇2w|) + (η|∇2w|)3/2).(3.8)

By (3.3) and (3.4),

(3.9) C−1L ≤ |∇2w| ≤ C(L + 1)

for some constant C. Hence by (3.8),

0 ≥ η2F ijWij,kk + 2η2wkF
ijWij,k + (η/C)2(ΣF ii)L2

− C(ΣF ii)(1 + ηL + (ηL)3/2).(3.10)

By the concavity of F ,

ΔF (W ) = F ij,rsWij,kWrs,k + F ijWij,kk

≤ F ijWij,kk.

Hence by equation (3.1),

F ijWij,kk ≥ Δ[f(x)e−2w]

≥ −C(ΣF ii)(1 + e−2w)L.(3.11)

Here we used the property (ΣF ii) ≥ 1. Similarly from equation (3.1) we
have

wkF
ijWij,k = ∇kF (W )wk

= ∇k(f(x)e−2w)wk

≥ −C(ΣF ii)(1 + e−2w)L.(3.12)

Inserting (3.11) and (3.12) into (3.10), we get

H ≤ C(1 + max
Br

e−2w)

for x ∈ Br/2. �

Once the second derivative is bounded, equation (3.1) becomes uniformly
elliptic, and Evans-Krylov’s regularity theory implies higher order regularity
for equation (3.1).
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Remark 3.1.

(i) Equation (3.1) is also elliptic when the eigenvalues

(3.13) λ(Ag̃) ∈ −Γ+
k .

If w is a solution to (3.1) with eigenvalues λ(Ag̃) ∈ −Γ+
k , then

w̃ = −w satisfies the equation

(3.14) σk[λ(∇2w̃ − dw̃ ⊗ dw̃ +
1
2
|∇w̃|2g − Ag)] = e2kw̃.

However there is no second derivative estimate for solutions to
(3.14), a counterexample was given in [60]. See also the Heinz-
Lewy counter-example in [58], and [76, 48]. The difference is due
to the sign of the first derivative term |∇w|2 in the matrices in (3.1)
and (3.14).

(ii) For the k-Hessian equation (1.10), regularity for solutions u with
eigenvalues λ(D2u) ∈ Γk also hold for solutions with λ(D2u) ∈
(−Γk). But the pure interior second derivative estimate (3.2) does
not hold for equation (1.10). When the solution vanishes on the
boundary, a Pogorelov type estimate was proved in [16].

(iii) In addition to the convex cones Γk and −Γk, equations (1.10) and
(3.1) may have other elliptic branches, depending on k and n.
Namely there are (nonconvex) cones Γ ⊂ R

n such that equation
(1.10) (and also (3.1)) is elliptic if the corresponding eigenvalues
λ(D2u) ∈ Γ. In this case, the existence and continuity of viscosity
solutions have been proved by Harvey and Lawson [31], but the
regularity is unclear at the moment.

4. Existence and compactness

In this section we always assume

(a) (M, g) is a compact Riemannian manifold of dimension n ≥ 3, not
conformally equivalent to the unit sphere;

(b) the metric g is k-admissible, or equivalently the class [g]k is not
empty.

As mentioned in the introduction, the existence of solutions to the k-Yamabe
problem (1.1) for k ≥ 2 has been proved for

(i) locally conformally flat manifolds [26, 41, 60];
(ii) the case k = 2 [60];
(iii) the case k > n/2 [30, 70]; and
(iv) the case k = n/2 [71].

In the following we address the above four cases separately.
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4.1. Existence on locally conformally flat manifolds. The exis-
tence of solutions to the k-Yamabe problem on locally conformally flat man-
ifolds in [26, 41] is based on the characterization of locally conformally flat
manifolds by Schoen and Yau [55], and that in [60] relies on the variational
structure of the equation (2.1).

When M is locally conformally flat, there is a conformal immersion of the
universal covering of M into the unit sphere Sn. By the stereographic pro-
jection, the solution v satisfies equation (2.1) in a domain Ω in the Euclidean
space R

n. Moreover, if Ω �= R
n, then v(x) → +∞ as x → ∂Ω [55]. There-

fore by the moving plane argument, v is locally uniformly bounded in Ω,
which in turn implies that v is uniformly bounded on the manifold M. Once
the solution is proven uniformly bounded, the solution can be obtained by
a degree argument [41]. Instead of the degree argument, the existence can
also be obtained by a parabolic equation approach [26], just as in [81] for
the case k = 1. Note that once the solutions are proven uniformly bounded,
then the solution set is compact.

4.2. Existence when the k-Yamabe problem is variational. It
was verified that the k-Yamabe problem is variational when k = 2 or the
manifold M is locally conformally flat [72, 8, 60]. In [60] we proved the
existence of solutions to the k-Yamabe problem when equation (2.1) is varia-
tional. When k = 2 and n = 4, the existence was previously obtained in [12].
As with the 1-Yamabe problem, our proof consists of two steps. The first
one is to show that the Yamabe problem is solvable if a Yamabe constant
satisfies an inequality like (1.8). The second step is to verify the inequality
for manifolds not conformally equivalent to the unit sphere Sn.

Proposition 4.1. ([72, 8, 60]) The k-Yamabe problem is variational if
k = 2 or if the manifold M is locally conformally flat.

A more general result can be found in [60]. Indeed, an operator F [v] =
F [∇2v,∇v, v, x] is variational if and only if its linearized operator is self-
adjoint. If F is not homogeneous of degree −1, the functional is given by

F [v] =
∫
M

G[v],

where

G[v] =
∫ 1

0
vF [tv].

When F is homogeneous of degree −1, such as the case k = n
2 in (4.1), we

may consider v as a composite function v = φ(w) and consider the operator
F̃ [w] = φ′(w)F (φ(w)). Hence the corresponding functional is given by

Fn/2(w) =
∫
M

∫ 1

0
wF [tw].
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In particular if v = e−
n−2

2
w, then we obtain the functional in [8]

Fn/2(w) = −
∫
M

∫ 1

0
wσn/2(λ(Agt)),

where gt = e−2twg0.
When k = 2 and n = 4, by the Gauss-Bonnet-Chern formula,

8π2χ(M) =
∫
M

|W |2gdV olg + F2(g).

The Weyl tensor is invariant under conformal change of metrics. Hence F2(g)
is a conformal invariant [11]. For k = n/2 and n > 4, it is shown in [72]
that Fn/2 is also a constant in [g] when M is locally conformally flat.

Let (M, g0) be a Riemannian manifold. If g = v
4

n−2 g0 is a solution of the
k-Yamabe problem (1.1), then the Schouten tensor is given by Ag = 2

(n−2)vV ,
and v satisfies the equation

(4.1) L[v] := v(1−k) n+2
n−2 σk(λ(V )) = v

n+2
n−2 ,

where

(4.2) V = −∇2v +
n

n − 2
∇v ⊗∇v

v
− 1

n − 2
|∇v|2

v
g0 +

n − 2
2

vAg0 .

As with the Yamabe problem, we introduce the k-Yamabe constant for 2 ≤
k ≤ n

2 ,

(4.3) Yk(M) = inf{Fk(g) | g ∈ [g0]k, Vol(M, g) = 1},
where

Fk(g) =
∫
M

σk(λ(Ag))d volg

=
∫
M

v
2n

n−2
−k n+2

n−2 σk(λ(V )) d volg0 .

(4.4)

Note that we have ignored a coefficient ( 2
n−2)k in the second equality. We

have the following.

Theorem 4.1. ([60]) Assume 2 ≤ k ≤ n
2 , the set [g0] �= ∅, and the

operator L is variational. Then there is a k-admissible solution to the k-
Yamabe problem (1.1).

Remark 4.1.
(i) The condition [g0] �= ∅ is essential for the k-Yamabe problem. By

this condition we can work in the class of k-admissible functions,
such that the equation (4.1) is elliptic.



THE k-YAMABE PROBLEM 441

(ii) When a solution is k-admissible, we have the regularity of solu-
tions established in Section 3. When the eigenvalues lie in the neg-
ative cone −Γk, there is no interior regularity and no existence is
known.

(iii) A surprising result, proved by Branson and Gover [5], is that
equation (4.1) is variational if and only if k = 2 or M is locally
conformally flat. So if k ≥ 3, then (4.1) is variational only if M is
locally conformally flat.

Our proof follows the strategy of Aubin, which consists of two steps. In
the first step (Lemma 4.1) we show that if Yk(M) < Yk(Sn), then there is a
solution to (4.1). In the second step we verify the inequality Yk(M) < Yk(Sn)
(Lemma 4.2).

In the first step one needs to use a gradient flow. One should be cautious
with parabolic equations of the form

ut = F [u] + φ

[
u,

∫
g(D2u)

]
,

where F is an elliptic operator, g is a function of D2u, φ is a given function.
Under proper conditions one can establish the estimate |∂tu| + |∂2

xu| ≤ C.
The estimate implies that the function φ[u,

∫
g(D2u)] is bounded and mea-

surable in t, it does not mean φ[u,
∫

g(D2u)] is Lipschitz or Hölder continuous
in t. Hence one cannot conclude ‖u‖C2,1 ≤ C by Krylov’s regularity theory.
In the general case the higher regularity was recently obtained in [62].

Lemma 4.1. Under the assumptions of Theorem 4.2, if

(4.5) Yk(M) < Yk(Sn),

then there is a k-admissible solution to (4.1).

Proof. A solution of the k-Yamabe problem is a min-max type critical
point of the corresponding functional. As we need to restrict ourselves to
k-admissible functions, we cannot directly use variational theory (such as
the Ekeland variational principle). Instead we study a descent gradient flow
of the functional and investigate its convergence. We need to choose a special
gradient flow for which the a priori estimates can be established.

As with the original Yamabe paper [80], we first study the approximating
problems

(4.6) L(v) = vp,

where 1 < p ≤ n+2
n−2 . (4.6) is the Euler equation of the functional Jp(v) =

Jp(v;M),

(4.7) Jp(v) =
n − 2

2n − 4k

∫
(M,g0)

v
2n

n−2
−k n+2

n−2 σk(λ(V )) − 1
p + 1

∫
(M,g0)

vp+1.
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Let φ1 = ε and φ2 = ε−1, where ε > 0 is a small constant. Then when
k < n

2 , Jp(φ1) → 0 and Jp(φ2) → −∞ as ε → 0. Let P denote the set of
paths in Φk connecting φ1 and φ2, namely

(4.8) P = {γ ∈ C([0, 1], Φk) | γ(0) = φ1, γ(1) = φ2},

where Φk denote the set of k-admissible functions. Denote

(4.9) cp[M] = inf
γ∈P

sup
s∈[0,1]

Jp(γ(s);M).

Then (4.5) is equivalent to

(4.10) cp[M] < cp[Sn]

with p = n+2
n−2 . By (4.10) we can prove that Jp has a min-max critical point

vp with Jp(vp) = cp[M], in the sub-critical case p < n+2
n−2 . By a blow-up

argument, we can also prove that vp converges to a solution of (4.1) under
the assumption (4.10).

As in (1.3), let

(4.11) w = − 2
n − 2

log v.

Our gradient flow is then given by

(4.12) F [w] − wt = μ(f(x, w)),

where
F [w] := μ(σk(λ(Ag)))

and g = e−2wg0. When f(x, w) = e−2kw, a stationary solution of (4.12) is a
solution to the k-Yamabe problem. We choose

μ(t) =

{
t1/k t ≥ 10,

log t t ∈ (0, 1
10),

and
(t − s)(μ(t) − μ(s)) ≥ c0(t − s)(t1/k − s1/k)

for some constant c0 > 0 independent of t. We also assume that μ is mono-
tone increasing and satisfies

lim
t→0+

μ(t) = −∞.

This condition ensures the solution is k-admissible at any time t.
We say a solution w to the parabolic equation (4.12) is k-admissible if for

any fixed t, w is k-admissible as a function of x. Denote Qr = Br(0)×(0, r2].
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To prove Lemma 4.1, we establish the following interior a prori estimates
for w [60]:

|∇xw(0, r2)| ≤ C1,(4.13)

|∇2
xw(0, r2)| ≤ C2,(4.14)

|wt(0, r2)| ≤ C3,(4.15)

where C1 is independent of supw (if f = κ(x)e−pw for some constant p > 0
and smooth, positive function κ), C2 and C3 depend only on n, k, r, μ, inf w,
sup w, and ‖Ag0‖C2 .

Estimates (4.13)-(4.15) can be established similarly as for the elliptic
equation (3.1), using the arguments in [25] or [14]. For the parabolic equa-
tion (4.12), to prove the L∞ estimate we use a blow-up argument and we
need to show the estimates (4.13) and (4.14) also hold for the equation

1
a
μ(akσ(λ(W ))) − wt =

1
a
μ(akf),

where a > 0 is a constant, and the constants C1, C2 are independent of a if
a ≥ 1.

By estimates (4.13)–(4.15), equation (4.12) becomes locally uniformly
parabolic. By Krylov’s regularity theory, we obtain the C4,2 a priori esti-
mate and also the local existence. To prove Lemma 4.1, we first consider
the existence of k-admissible solutions for 2 ≤ k < n/2 to equation (4.6) in
the subcritical growth case 1 < p < n+2

n−2 . As a solution to (4.6) is a critical
point of the functional J = Jp, we write the parabolic equation (4.12) in
terms of v as

(4.16) F [v] +
vt

v
= μ(f(v)),

where f(v) = v
4k

n−2
−ε, F [v] = μ(σk(λ(V

v ))), and ε = n+2
n−2−p. Equation (4.16)

is a descent gradient flow of the functional J(v). By a blow-up argument and
the Liouville Theorem 2.1, we can prove that there is an initial function such
that the solution to (4.16) is uniformly bounded and converges to a solution
vp of (4.6) with

(4.17) Jp(vp) = cp > 0,

where cp is the min-max critical value given in (4.9). Moreover, the set of
solutions of (4.6) is compact.

Let p ↗ n+2
n−2 . By condition (4.5), the Liouville theorem 2.1, and (4.17),

we can prove that the solution vp is uniformly bounded. Hence by the a
priori estimates, vp converges smoothly along a subsequence to a solution of
(4.1). Hence Lemma 4.1 is proved for 2 ≤ k < n

2 .
For the case k = n

2 , we can verify that the functional Fn/2(g) is a con-
stant, and by (4.5), the constant is strictly smaller than Yn/2(Sn). Hence
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by the Liouville theorem in [41], one can prove that the set of solutions of
(4.1) is compact. The existence of the solutions can be obtained by a degree
argument. �

For the existence of min-max critical points of fully nonlinear elliptic
functionals, a logarithm gradient flow was first used by Chou [15]. More
general gradient flows were later used in [75] to prove the Sobolev type
inequality (4.20) below and in [16] to prove the existence of min-max critical
points of the functional corresponding to the k-Hessian equation (1.10). Our
argument above was inspired by the argument in [15, 75, 16].

Lemma 4.2. The critical inequality (4.5) holds for any compact manifold
not conformally equivalent to the unit sphere Sn.

Proof. We reduce the proof of the lemma for k ≥ 2 to the case k = 1,
namely (1.8). Let v0 be the solution to the classic Yamabe equation

−Δv +
n − 2

4(n − 1)
Rv = n(n − 2)v

n+2
n−2 .

Let vk be the solution of

σk(λ(V )) = Cn,kv
k n+2

n−2

0 on M,

where Cn,k = n!(n−2)k

k!(n−k)! . Then

−Δvk +
n − 2

4(n − 1)
Rvk ≥ n(n − 2)v

n+2
n−2

0 .

By comparison principle, vk ≥ v0. By direct computation, g = v
4/(n−2)
k g0

satisfies
Yk(M) ≤ Fk(g) < Yk(Sn).

This finishes the proof of Lemma 4.2. �
As a consequence of our argument, we have the following Sobolev type

inequality. For locally conformally flat manifolds, it was first proved in [27].

Corollary 4.1. Let 2 ≤ k < n
2 . Then there exists a constant C > 0

such that the inequality

(4.18) (V ol(Mg))
n−2
2n ≤ C

[∫
M

σk(λ(Ag))d volg

] n−2
2n−4k

holds for any conformal metric g = v
4

n−2 g0 ∈ [g0]k.

Remark 4.2. Inequality (4.18) can be written in the form

(4.19) ‖v‖L2n/(n−2)(M) ≤ C [Fk[v]]
n−2

2n−4k .
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where Fk is given in (4.4). When k = 1, we recover the Sobolev inequality

‖v‖L2n/(n−2)(M) ≤ C

[∫
|Dv|2

]1/2

.

In [27], Guan and Wang also proved the following inequality for locally
conformally flat manifolds,[∫

M
σk(λ(Ag))d volg

] n−2
2n−4k

≤
[∫

M
σm(λ(Ag))d volg

] n−2
2n−4m

for 1 ≤ k < m ≤ n
2 (the opposite inequality was proved when n

2 ≤ k < m ≤ n
in [27]).

The above inequalities are similar to those for the k-Hessian equation,
proved in [75, 69]. Let Ω be a bounded, (k − 1)-convex domain in R

n, i.e.
for any point x ∈ ∂Ω, σk−1(κ(x)) > 0, where κ(x) = (κ1(x), . . . , κn−1(x))
are the principal curvatures of ∂Ω at x. Denote by Φk

0(Ω) the set of all
k-admissible functions vanishing on ∂Ω and

‖u‖Φk
0

=
[∫

Ω
(−u)σk[λ(D2u)]dx

] 1
k+1

One easily verifies that ‖ · ‖Φk
0

is a norm in Φk
0. The Sobolev type inequality

(4.20) ‖u‖Lp(Ω) ≤ C‖u‖Φk
0

was proved in [75], where u ∈ Φk
0(Ω), p ≤ k∗ := n(k+1)

n−2k and C = C(n, k,

p, |Ω|) if 1 ≤ k < n
2 ; p < ∞ and C = C(n, p, diam(Ω)) if k = n

2 ; and p = ∞
and C = C(n, k, diam(Ω)) if n

2 < k ≤ n. In [69] the following inequality was
proved,

‖u‖Φk
0
≤ C‖u‖Φm

0
,

where u ∈ Φm
0 (Ω), 1 ≤ k < m ≤ n. See also [77] for details.

If 1 ≤ k < n
2 , the exponent k∗ in (4.20) is optimal. In [75] it was proved

that the best constant in (4.20) is achieved by radially symmetric functions.
Therefore when p = k∗ and k < n

2 , by the classical Sobolev embedding, the
best constant C is attained when Ω = R

n by the function

u(x) = [1 + |x|2](2k−n)/2k.

When k = n
2 , a Moser-Trudinger type inequality has also been proved in [61].

The reader should note the different powers in inequalities (4.19) and (4.20).
In the case n

2 < k ≤ n, (4.20) can be strengthened. It was shown [67] that
a k-admissible function to the k-Hessian equation (1.10) is Hölder continuous
with exponent α = 2− n

k . This observation gives a guidance for us to prove
the results in the next two sub-sections.
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4.3. The cases for k > n/2. The existence of solutions and the com-
pactness of the solution set for the k-Yamabe problem have been proved
in [30] for k > n/2 and [70, 71] for k ≥ n/2. In the case k > n/2, much
stronger results were proved in [70], i.e., not only the solution set, but the
set of all k-admissible metrics with fixed volume, is compact. These results
are based on the following observation.

Proposition 4.2. If the metric g is k-admissible for some k ≥ n
2 , then

the Ricci curvature is positive if k > n
2 and nonnegative if k = n

2 .

Proposition 4.2 was first observed in the case k = 2, n = 4 in [11] and
proved in the general case in [24]. Our proof of Proposition 4.2 is based on
a simple inequality in [67]. Note that the Ricci curvature μ = (μ1, . . . , μn)
is given by

μi = (n − 2)λi +
∑

λj .

Hence the Ricci curvature μi ≥ 0 for all 1 ≤ i ≤ n if and only if P 1
n−2

(λ) ≥ 0,
where

Pδ(λ) = minλi + δ
∑

λi

is the Pucci operator. For any λ ∈ Γk, let f(x) = 1
2

∑
λkx

2
k. By direct

computation, Δpf ≥ 0 for p ≤ 2 + n(k−1)
n−k (this is the case l = 1 in Lemma

4.2 [67]). Hence ∑
λi +

n(k − 1)
n − k

λj ≥ 0

for every j. When k = n
2 , n(k−1)

n−k = n − 2. Hence Ricg ≥ 0 if λ(Ag) ∈ Γn/2,
and Ricg > 0 if λ(Ag) ∈ Γk for k > n

2 .
By Proposition 4.2, one can consider the existence of conformal metrics

such that the k-curvature is equal to a prescribed function, namely the
existence of conformal metrics g ∈ [g0] such that

(4.21) σk(λ(Ag)) = f,

where f is a given positive smooth function on M. As noted above, when
k > n/2, problem (4.21) was first solved by Gursky and Viaclovsky [30], who
proved the compactness of the solution set. Their proof involved a detailed
analysis of the growth rate of solutions at isolated singular points.

In [70], we prove a sharp Harnack inequality for k-admissible metrics
when (M, g0) is not conformally equivalent to the unit sphere Sn. As a con-
sequence we obtained the compactness of the set of all k-admissible metrics
with fixed volume. When (M, g0) is the unit sphere we prove there is a
unique admissible metric with singularity. As a consequence we prove an
existence theorem for the equation (4.21), thereby recovering Gursky and
Viaclovsky’s results [30].

Our proof needs to introduce the minimal radial function and also
involves nonsmooth k-admissible metrics, which are limit of smooth
k-admissible functions in Lp norm for some p > 0.
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Minimal radial function. A main new idea in our proof is the introduction
of the minimal (maximal, resp) radial function for lower (upper, resp) semi-
continuous functions. For any given lower semi-continuous function v in a
geodesic ball BR(x0) ⊂ M, (here x0 can be any fixed point and R > 0 can
be any constant), the maximal radial function of v, also defined in BR(x0),
is a rotationally symmetric function ṽ satisfying ṽ ≤ v, and ṽ ≥ φ for any
radial function φ satisfying φ ≤ v. Explicitly it can be given by

ṽ(x) = inf{v(y) | y ∈ ∂Br(x0), r = d(x, x0)}.
Obviously ṽ is also lower semi-continuous, and for any r ∈ (0, R), there is a
point xr ∈ ∂Br(x0) such that ṽ(xr) = v(xr). If v is superharmonic, then ṽ is
also superharmonic, and as a function of d(x, x0), is monotone decreasing.

Similarly for an upper semi-continuous function w, the maximal radial
function of w is given by

w̃(x) = sup{w(y) | y ∈ ∂Br(x0), r = d(x, x0)}.
When the function w is subharmonic (with respect to an elliptic operator),
w̃ is monotone increasing, and it can also be equivalently defined as follows.
For any h ∈ R, denote Ωh = {x ∈ M | w(x) < h}, which is open as w is
upper semi-continuous. For any given point x0, the minimal radial function
w̃ (with respect to x0) can also be given by

w̃(r) = inf{h | dist(x0, ∂Ωh) > r}.
Note that w̃ is radial, so it is a function of r = d(x, x0), and can be regarded
as a function of one variable. Obviously w̃ ≥ w and w̃ ≤ φ for any radial
function φ satisfying φ ≥ w.

Nonsmooth k-admissible metric. Our argument involve limit of
k-admissible metrics. Therefore we allow singular metrics and call a met-
ric g = χg0 k-admissible if χ : M → (0,∞], χ is lower semi-continuous,
|{x ∈ M | χ(x) = ∞}| = 0, and there exists a sequence of k-admissible
metrics gm = χmg0, χm ∈ C2(M), such that χm → χ almost everywhere in
M. If g is k-admissible, then the function v = χ(n−2)/4 is subharmonic with
respect to the operator

� := −Δg0 +
n − 2

4(n − 1)
Rg0

and hence by the weak Harnack inequality [20], the set {χ = ∞} has measure
zero.

We first prove the classification of the possible singularities of
k-admissible metrics on R

n.

Theorem 4.2. Let g be k-admissible metric on R
n with n

2 < k ≤ n.
Then either

(4.22) g(x) =
C

|x − x0|4 g0(x)
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for some point x0 ∈ R
n and positive constant C, or the conformal factor

χ is Hölder continuous with exponent α = 2 − n
k , where g0 is the standard

metric on R
n.

Proof. Let g = e−2wg0. Let w̃ be the maximal radial function of
w with respect to a point x0, which we take as the origin 0. Then w̃ is
k-admissible in R

n\{0}. Since w̃ is radial, it satisfies an ode. When k > n/2,
by σk(λ(W )) ≥ 0 and from the ode we show that either w̃ is Hölder contin-
uous in R

n with exponent α = 2 − n
k , or

(4.23) w̃(x) = 2 log |x| + C

for some constant C.
In the latter case, observe that the function 2 log |x| + C is harmonic in

R
n\{0} and w̃ is subharmonic. But by our definition of w̃, w − w̃ contains

interior local maximum points. By the maximal principle, we conclude that
w(x) = 2 log |x| + C. �

By Theorem 4.2, we see that when k > n
2 , there is only a unique (up

to conformal diffeomorphism) singular k-admissible function in R
n and on

Sn. This result is analogous to Obata’s uniqueness result for the constant
scalar curvature. But note that our uniqueness is not just for metrics with
prescribed k-curvature, but for all k-admissible metrics with singularity. This
result implies the set of all k-admissible function is quite “small”. Theorem
4.2 has some other interesting consequences, see [70]. Next we prove the
following Harnack inequality.

Theorem 4.3. If (M, g0) is not conformally equivalent to the unit sphere
Sn and n

2 < k ≤ n, then [g0]k is compact in C0 and satisfies the following
Harnack inequality, namely for any g = χg0 ∈ [g0]k,

(4.24) max
x,y∈M

χ(x)
χ(y)

≤ exp(C|x − y|2−n
k )

for some fixed constant C depending only on n, k and (M, g0), where |x− y|
denotes the geodesic distance in the metric g0 between x and y.

Proof. First we note that if u is k-admissible to the k-Hessian equation
(1.10) and if k > n

2 , then u ∈ Cα with α = 2 − n
k [67]. For k-admissible

functions to the k-Yamabe problem, using the above Hölder continuity for
the k-Hessian equation (1.10), we can prove that

(4.25)
u(x) − u(y)
|x − y|α ≤ C

∫
M

u,

where α = 2 − n
k and C is independent of u.

Next, as in the proof of Theorem 4.2, the minimal radial function of w is
either Hölder continuous or satisfies (4.23). In the first case, we are through.
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In the latter case, noting that the function 2 log |x| + C is harmonic in
R

n\{0}, and w− w̃ contains interior local maximum points. By the maximal
principle, a blow-up limit of w − w̃ must be a constant. Hence we have

(4.26) w(x) = 2 log |x| + o(1).

By a similar blow-up argument we can prove the singularities are isolated.
Therefore there are at most finitely many singular points.

From the singularity behavior (4.26), as in [30] we can prove that w is
C∞ smooth away from the singular points. Therefore the manifold equipped
with the metric g = e−2wg0 is a complete manifold with nonnegative Ricci
curvature. By Bishop’s volume comparison theorem, the quantity

Q(r) =
V olg(Br(y))

rn

is monotone decreasing in r. So Q(r) ≤ limr→0 Q(r) = 1
n |Sn−1|, where |Sn−1|

is the volume of the standard unit (n−1)-sphere. By the asymptotic estimate
(4.26), we have

Q(r) → m

n
|Sn−1| as r → ∞,

where m is the number of singular points. Therefore we have either m = 0,
or m = 1 and Q(r) ≡ 1

n |Sn−1|. If m = 0, we are through. If m = 1, w has a
unique singularity {0}. One can show that Rg ≡ 0. Hence (M\{0}, g) is a
complete manifold with Ricg ≥ 0. So it is isometric to the Euclidean space
R

n, which in turn implies that (M, g0) is conformally equivalent to Sn. This
contradicts with the assumption in Theorem 4.3.

We have thus proved that there is no singularity in k-admissible metrics,
all conformal factors are Hölder continuous. One can furthermore prove that

sup
M

w − inf
M

w ≤ K,

|w(x) − w(y)| ≤ K|x − y|2−n
k

(4.27)

for some constant K > 0. The first estimate in (4.27) can be proved by
contradiction. If it is not true, there exists a sequence of k-admissible func-
tions wm such that supM wm = 0 and infM wm → −∞. Suppose that
wm(0) → −∞. By the Hölder continuity, we may assume that ewm con-
verges locally uniformly to ew in M\{0} and limx→0 w(x) = −∞. By a
weak Harnack inequality, the set {w = −∞} has measure zero. So w is
k-admissible. Hence by the above argument, 0 is the unique singular point
of w, w is C∞-smooth away from 0, and (M, g0) is conformally equivalent
to the unit sphere Sn, which contradicts with our assumption. The second
estimate in (4.27) follows from (4.25). �

From the Harnack inequality in Theorem 4.3 and by the Arzela-Ascoli
theorem, we have the following compactness.
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Corollary 4.1. Suppose (M, g0) is not conformally equivalent to the unit
sphere Sn. Then the set of all k-admissible metrics of fixed volume is
compact.

By the Harnack inequality in Theorem 4.3, we can not only prove the
existence of solutions to equation (4.21) for positive and smooth f , but to
more general equations. For simplicity we state the existence for a special
right hand side. We refer the reader to [70] for more general existence results.

Theorem 4.4. Let (M, g0) be a compact n-manifold not conformally
equivalent to the unit sphere Sn. Suppose n

2 < k ≤ n and [g0]k �= ∅. Then
for any smooth positive function f and any constant p �= k, there exists a
positive admissible solution to the equation

(4.28) σk(λ(V )) = f(x)vp.

The solution is unique if p < k. When p = k, then there exists a unique
constant θ > 0 such that

(4.29) σk(λ(V )) = θf(x)vk

has a solution, which is unique up to a constant multiplication.

The proof is by a degree argument as in [79]. In [79] the existence of
nontrivial solution to the Monge-Ampere equation was proved for very gen-
eral superlinear right hand side. The proof in [79] relies on the convexity of
solutions but for equation (4.29), the Hölder continuity of solutions, implied
by the Harnack inequality (4.24), is sufficient for the degree argument.

As a special case of Theorem 4.4, letting p = kn+2
n−2 , we obtain the exis-

tence of the solutions to (4.21) for n/2 < k ≤ n, which is the k-Yamabe
problem when f ≡ 1, proved in [30]. Note that the compactness of the set
of k-admissible functions automatically implies that the set of solutions is
compact.

4.4. The case k = n/2. When k = 2 and n = 4, the existence and
the compactness of the solution set for the n

2 -Yamabe problem on compact
Riemannian manifolds were proved by Chang, Gursky and Yang ([11, 12]).
The paper [11] also contains various geometric applications of the problem.
We have the following result for all even n ≥ 4 [71].

Theorem 4.5. Let (M, g0) be a compact Riemannian manifold of even
dimension n ≥ 4. Suppose g0 is n

2 -admissible and M is not conformally
equivalent to the unit sphere. Then the set of solutions to the n

2 -Yamabe
problem is compact. In particular, there is a n

2 -admissible solution to (4.1).

We point out that the compactness is true not only for the k-Yamabe
problem with k = n

2 , but also for the more general equation (4.21). About
the proof of Theorem 4.5, we cannot prove that the maximal radial function
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w̃ satisfies the asymptotic behavior (4.23) for any k-admissible function func-
tion w. But by the Liouville theorem 2.1, we can prove (4.23) if g = e−2wg0

is a solution to the k-Yamabe problem. Once (4.23) is proved, by the same
argument as in the case k > n

2 in §4.3, we can prove w has the asymptotic
behavior (4.26). Once (4.26) holds, the proof in §4.3 also applies to the case
k = n

2 and we are through.
Therefore in the case k = n

2 , it suffices to show that if g = e−2wg0 is a
solution to the k-Yamabe problem, then (4.23) holds.

The proof of (4.23) uses several results on subharmonic functions and
the Liouville Theorem 2.1, which we list as follows.
(a) Let v ≥ 0 and satisfy

(4.30) −Δv +
n − 2

4(n − 1)
Rg0v ≥ 0.

Then we have the weak Harnack inequality [20]

(4.31) ‖v‖Lp(M) ≤ C inf
M

v,

where 1 ≤ p < n
n−2 and C is a positive constant depending on n, p, and g0.

(b) If v ∈ B1(x0) satisfy (4.30) (in the weak sense), then v ∈ W 1,p(B1/2)
for 1 ≤ p < n

n−1 , and [32]

(4.32) ‖v‖W 1,p(B1/2) ≤ C‖v‖L1(B1),

where C is a positive constant depending on n, p, and g0.
From (4.31) and (4.32) it follows that

(4.33) ‖v‖W 1,p(M) ≤ C inf
M

v,

where 1 ≤ p < n
n−1 , and C depends on n, p, and g0. Therefore if vj is a

sequence of k-admissible functions satisfying infM vj = 1, then vj is uni-
formly bounded in W 1,p(M) for any p < n

n−1 , and vi subconverges to a
(generalized) k-admissible function. In particular, if v satisfies (4.30), then
the maximal radial function ṽ is locally uniformly Hölder continuous away
from 0, with Hölder exponent α ∈ (0, 1/n).
(c) Let v be a radially symmetric, super-harmonic function in B1(0) ⊂ R

n,
namely Δv ≤ 0 in B1(0). Then

(4.34) v(x) =
c0 + o(1)
|x|n−2

,

where c0 is a nonnegative constant.
(d) Suppose {vj} is a sequence of solutions with local maximum vj(0) → ∞.
Denote

wj(x) = − 2
n − 2

log
vj(x)
mj
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where mj = infM vj . Let w̃j be the maximal radial function of wj . Then
w̃j → w̃ and w̃ is a k-admissible function. By Liouville Theorem 2.1, the
corresponding radial function ṽ (by (4.11), ew̃ = ṽ−2/(n−2)) satisfies (4.34)
for some positive constant c0 > 0. Hence

w̃(r) ≤ 2 log r + C.

On the other hand, as ṽ is k-admissible for some k ≥ n/2, it satisfies an ode
and from which we have

w̃(r) ≥ 2 log r − C ′.

Therefore we have
w̃(r) = 2 log r + C + o(1).

namely (4.23) holds.

5. Remarks

5.1. Admissibility of the initial metric. In §4 we assume the initial
metric g is k-admissible, or equivalently the set [g]k �= ∅. This is a pointwise
condition. For the Yamabe problem (1.6), this condition can be replaced by
the Yamabe constant Y1 > 0, namely if Y1 > 0, then there exists a metric
g̃ ∈ [g] such that the scalar curvarture Rg̃ > 0.

In the case n = 4 and k = 2, Chang, Gursky and Yang [11] proved that
[g]2 �= ∅ if the Yamabe constants Y1 > 0 and Y2 > 0. See also [29] for a
different proof. The Yamabe constants Y1 and Y2 are defined as follows.

Y1 = inf
g̃∈[g]

vol(g̃)−
n−2

n

∫
M

σ1(g̃)dvolg̃,

Y2 = inf
g̃∈[g]

vol(g̃)−
n−4

n

∫
M

σ2(g̃−1Ag̃)dvolg̃.

By Chern-Gauss-Bonnet Formula, Y2 is a conformal invariant when n = 4.
Denote

(5.1) Ŷk([g]) =

{
inf{Fk(g̃) | g̃ ∈ [g]k−1, vol(M, g̃) = 1} if [g]k−1 �= ∅,
−∞, if [g]k−1 = ∅.

where Fk is given in (4.4). Then we have

Theorem 5.1. Let (M, g) be a compact n-dimensional manifold.
Assume that Ŷk([g]) > 0 for k ≥ 2. Then there exists a k-admissible confor-
mal metric g̃ ∈ [g].

This result was proved by the first author in [59]. For locally conformally
flat manifolds, it was proved by Guan, Lin and Wang [23].
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Proof. Consider a conformal metric g = e−2ug0 satisfying

(5.2) σ
1/k
k (g−1

0 At
g) = f(x)e2u,

where
At =

1
n − 2

(Ricg − t

2(n − 1)
Rg · g),

t ≤ 1, and f(x) > 0 is any smooth function. The idea of introducing the
family of equations is such that the equation becomes uniformly elliptic
when t < 1. This idea was used by Krylov [37] and Trudinger [64]. One
may easily show that the linearized operator of this equation is invertible.
Choosing a proper function f , we can establish the a priori estimates for
solutions of (5.2), and by the continuity method, there exists a solution of
(5.2) for t = 1. �

5.2. Existence of solutions for more general nonlinear curva-
ture functions. In the case when M is locally conformally flat, as explained
in §4.1, the proof is based on the a priori estimates and the moving plane
argument. Therefore it applies to more general nonlinear curvatures. Sim-
ilarly the compactness results in §4.3 and 4.4 relies essentially on the con-
dition k ≥ n

2 , and they can also be extended to more general curvature
functions. More specifically, these results can be extended to the following
more general equation

(5.3) σ(λ(Ag̃)) = φ,

where φ is a positive, smooth function on M, σ is a nonlinear function
defined on an open convex cone Γ ⊂ R

n. We assume that σ satisfies
(C1) σ > 0 in Γ and σ = 0 on ∂Γ;
(C2) σ is concave;
(C3) σ is invariant under exchange of variables;
(C4) σ is homogeneous of degree 1.

We also assume that Γ satisfies
(G1) If λ ∈ Γ, then any permutation of λ also lies in Γ;
(G2) Γn ⊂ Γ ⊂ Σ 1

n−2
, where Γn is the positive cone and

Σθ = {λ ∈ R
n | Pθ(λ) > 0},

and Pθ is the Pucci operator given after Proposition 4.2.
Then the existence results on locally conformally flat manifolds in §4.1 can
be extended to equation (5.3) if C1-C4 and G1 hold; and the existence and
compactness results in Theorem 4.5 holds in C1-C4 and G1-G2 hold.

Recently there have also been some interesting works on the singularity
analysis for k-admissible functions and on the a priori estimates and exis-
tence of solutions for the k-Yamabe problem on manifolds with boundary.
However, research in these directions are in progress and we will not discuss
these aspects in this work.
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5.3. Open problems. We finish this paper by mentioning a few
unsolved problems.

1. A natural question is the existence of solutions to the k-Yamabe
problem when 2 < k < n/2 and M is not locally conformally flat.

2. The compactness of the solution set to the k-Yamabe problem for
k = 1 and k ≥ n

2 has been completely solved. One would also like
to know the answer for the cases 2 ≤ k < n

2 , in particular the case
k = 2.

3. The full k-Yamabe problem [38]. In the introduction of the
k-Yamabe problem we have dropped the Weyl tensor in the decom-
position Riem = W +Ag�g. Labbi [38] proposed to study the exis-
tence of a conformal metric such that the quantity sk := c2kRiemk

is equal to a constant, where c is the standard contraction operator,
and Riemk denotes the Kulkarni-Nomizu product. When k = 1, sk

is exactly the scalar curvature of (M, g). When k = n
2 and n is

even, sk is the Lipschitz-Killing curvature. As shown by Labbi, this
quantity sk is always variational and if M is a hypersurface, sk

is the (2k)th mean curvature of M, namely the (2k)th elementary
symmetric polynomial of the principal curvatures of M. When M
is locally conformally flat, then the Weyl curvature vanishes, and
sk = σk(λ(Ag)) for k = 1, 2, . . . , [n

2 ] (up to a constant).
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