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1. Introduction

This is partly a survey and partly a speculative article, concerning a
particular question about Fukaya categories of symplectic manifolds.
Namely, can we decompose a symplectic manifold into standard pieces, and
then reconstruct its Fukaya category by gluing together categories depending
only on the geometry of each piece, in a (loosely understood) sheaf-theoretic
way? For this to work, some degree of control over pseudo-holomorphic
curves is required, an issue which depends on the geometry of the decom-
position under consideration. Sheaf-theoretic ideas have been successfully
applied to the symplectic geometry of cotangent bundles, starting with the
work of Fukaya-Oh [17], and followed by Kasturirangan-Oh [26, 39] and
Nadler-Zaslow [35,36] (for a survey of the last-mentioned work and related
ideas of Fukaya-Smith, see [19]). Recently, Kontsevich [28] has proposed
a generalization to Stein manifolds whose Lagrangian skeleta have certain
singularities. However, that is not quite the direction we wish to take here.

Instead, we focus on situations inspired by homological mirror symme-
try [27]. In its most naive form, the construction of the mirror via SYZ
duality [31,48] is local. This leads to a sheaf-theoretic description of Fukaya
categories of Lagrangian torus fibrations, proposed and partially proved
by Kontsevich-Soibelman [29]; a closely related approach was pursued by
Fukaya [16]. However, whenever the SYZ fibration has singularities, instan-
ton corrections emanate from these and spread over the base [22,30], mod-
ifying the naive construction by non-local contributions. Our specific aim
here is to look at some other situations where instanton corrections may
be absent (as the word may indicates, this is strictly conjectural). In Sec-
tion 2 we consider two instances, namely hypersurfaces in (C∗)n and in an
abelian variety. In both cases, the pieces of our decomposition are higher-
dimensional pairs-of-pants [32], and the mirror description is in terms of
categories of Landau-Ginzburg branes [40] (see also [9, 15]). In Section 3
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we make an attempt to merge this with [29], which means passing from
algebraic to nonarchimedean analytic geometry. Actually, we will do so only
in the lowest-dimensional case, so the outcome is a new conjectural model
for the Fukaya categories of closed surfaces. This is obviously strongly influ-
enced by the proposed homological mirror symmetry for surfaces of genus
≥2, due to Kapustin-Katzarkov-Orlov-Yotov [24] (some cases have now been
proved [14,44]).

Acknowledgments. This paper owes a somewhat larger than usual debt
to others: Mohammed Abouzaid, Denis Auroux, Ludmil Katzarkov, and
Nick Sheridan. In particular, Sheridan explained his unpublished work on
signed affine structures [46] to me, which significantly influenced the mate-
rial in Section 3. NSF provided partial financial support through grant DMS-
0652620.

2. The Zariski topology

Hypersurfaces in the complex torus. We start by stating a ver-
sion of the homological mirror symmetry conjecture for hypersurfaces in
the complex torus (C∗)n. This amounts to using Mikhalkin’s pair-of-pants
decompositions [32] and the closely related theory of toric degenerations,
for which see for instance [37]. Besides that, it is strongly influenced by
other versions of mirror symmetry considered by Gross-Siebert [20,21] and
Abouzaid [1,2].

Suppose that we have a function φZ : Z
n → Z ∪ {∞} which is finite at

a finite nonempty set of points. To this and a choice of complex parameter
0< |ε|< 1 one associates the Laurent polynomial

(2.1) F (z1, . . . , zn) =
∑

φZ(v)<∞
εφZ(v)zv1

1 . . . zvn
n ,

which defines a hypersurface M = F−1(0) ⊂ (C∗)n. We will now make some
further assumptions. First of all, the set of points where φZ <∞ should be of
the form PZ = P∩Z

n, where P is a bounded integer polytope with nonempty
interior. Moreover, there should be a decomposition of P into simplices Pk

which are integral and of volume 1/n!, with the following properties. Extend
φZ to a function φ : P → R which is affine on each Pk. We ask that φ should
be convex, and not differentiable at any point which lies on more than one
Pk. Then, if we take ε small, M is smooth, and comes with a decomposition
into (2n− 2)-dimensional pairs-of-pants, one for each Pk [32, Theorem 4].

The Legendre transform of φ is the function ψ : R
n → R defined by

(2.2) ψ(v) = max
w∈P

v · w − φ(w) = max
w∈PZ

v · w − φZ(w).

This is again continuous and convex. There is a decomposition of R
n into

finitely many integer polytopes Qk, of which some will be noncompact, such
that ψ is affine on each Qk, and not differentiable at any point lying on
more than one Qk. One can use ψ to define a toric degeneration, whose
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generic fibres are isomorphic to (C∗)n, as follows. For any integer k ≥ 1, let
Rk be the complex vector space whose basis elements correspond to points
v ∈ 1

kZ
n+1 such that vn+1 ≥ ψ(v1, . . . , vn). These spaces form a commutative

graded ring R, where the product of generators v ∈ 1
kZ

n+1, w ∈ 1
l Z

n+1 is

(2.3)
kv + lw

k + l
∈ 1

k+lZ
n+1.

R is also naturally a free module over C[t], where t acts by mapping v ∈
1
kZ

n+1 to (v1, . . . , vn, vn+1 + 1
k ). Hence,

(2.4) X = Proj(R)

is a toric variety which comes with a flat morphismW : X → A
1 = Spec(C[t]).

Among the symmetries of that variety, we want to single out the C
∗-action

for which the monomial corresponding to v ∈ 1
kZ

n+1 has weight kvn+1. By
definition, W is homogeneous with respect to this action. While these prop-
erties would be true in greater generality, our assumptions ensure that X is
smooth, and covered by toric Zariski charts C

n+1 ↪→X , one for each simplex
in the original decomposition, such that W (z) = −z1 . . . zn+1 in each chart
(however, the weights of the C

∗-action can vary from one chart to the next).

Example 2.1. For n= 2, M is a curve whose genus is the number of
integer points in the interior of P . For instance, take the following φZ and
its associated triangulation:
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Then, M is a genus 2 curve with 6 points removed, decomposed into 8 pairs-
of-pants. The Legendre dual yields the following decomposition:
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Hence, the fibre X =W−1(0) ⊂X has eight irreducible components, of which
the two compact ones are isomorphic to CP 1 × CP 1 blown up in one point.
This can be considered as a degenerate version of the kind of pictures drawn
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in [24], and it also appears naturally when one applies a version of the SYZ
construction to obtain a mirror for (C∗)2 × C blown up at M × {0} [3].

We now turn to categorical aspects. M is an exact symplectic manifold
with a canonical (up to homotopy) trivialization of its canonical bundle.
Let F(M) be its Fukaya category. Here, we restrict the class of objects to
compact, exact, graded, and Spin Lagrangian submanifolds, so that F(M) is
a Z-gradedA∞-category defined over C. On the other hand, there is a natural
triangulated category DC∗

(W ) associated to W , the category of equivariant
Landau-Ginzburg branes [41, Section 3]. By using dg quotients à la [12],
one can also define an underlying differential graded category DC∗

(W ).

Conjecture 2.2. There is a cohomologically full and faithful embedding
F(M) ↪→DC∗

(W ).

The algebro-geometric object (X ,W ) on the right hand side is glued
together from pieces which follow an essentially unique standard model. In
a suitable abstract sense, the same can be said of the associated category
DC∗

(W ). One could therefore imagine an approach to Conjecture 2.2 where
the Fukaya category is viewed in the same way, and glued together from
standard pieces corresponding to pair-of-pants in our decomposition. A first
step towards constructing restriction functors which would govern the gluing
process was taken in [4]. For a partial analysis of the Fukaya category of a
single pair-of-pants, see [44] (for n= 1) and [45] (for all n).

Remark 2.3. Let P be the fan in R
n+1 consisting of the cones Pk =⋃

t∈R+{t} × tPk. The associated toric variety is canonically isomorphic to
X . Projection to R

+ yields a toric map X → A
1, which is the same as our

previously defined W . This description (for which see [37, Section 3] or [23,
Section 1.2]) shows that W : X → C depends only on the decomposition P =⋃

k Pk, and not on the function φ inducing that decomposition (the additional
information provided by φ amounts to fixing an ample line bundle on X ).
Correspondingly, a construction of M which uses only the Pk is given in
[32, Corollary 5.1 and Remark 5.2] (in this framework, φ determines an
automorphism of M , namely the monodromy map obtained by moving the
parameter ε around a small circle).

Remark 2.4. One can change the C
∗-action on X by composing it with

any one-parameter subgroup of the natural torus which leaves W invariant
(which gives roughly a Z

n worth of choices), and such a modification would
affect DC∗

(W ). There are corresponding variations of F(M), obtained by
changing the homotopy class of the trivialization of the canonical bundle.

Remark 2.5. The embedding from Conjecture 2.2 can’t be an equiv-
alence, for two different reasons. First, DC∗

(W ) is triangulated, and sec-
ondly (which is more important from a geometric perspective), it contains
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objects whose endomorphism spaces are infinite-dimensional. To improve
the situation, one can enlarge F(M) to the so-called wrapped Fukaya cate-
gory [4,19], which includes some noncompact Lagrangian submanifolds, and
then pass to its triangulated closure. It is a possible, if somewhat hazardous,
notion that the outcome might be actually equivalent to DC∗

(W ).

Hypersurfaces in abelian varieties. There is a variant of the pre-
vious picture in which one considers infinite periodic triangulations. The
objects encountered in this way are a little more interesting. In particular,
on the symplectic geometry side, one gets closed (but nonsimply connected)
manifolds.

Our starting point, in the viewpoint of [33, Section 5], is a polarized
tropical abelian variety. Concretely, this will be given by specifying an integer
lattice Γ ⊂ Z

n and a positive definite integral symmetric matrix g of size n,
such that γ · gγ ∈ 2Z for γ ∈ Γ. In addition, suppose that we have a function
φZ: Z

n → Z such that φZ(v) − 1
2v · gv is Γ-periodic; equivalently,

(2.5) φZ(v + γ) = φZ(v) + v · gγ + 1
2γ · gγ

for v ∈ Z
n, γ ∈ Γ. Consider the entire function on C

n defined, for some ε > 0,
by

(2.6) F (z) =
∑
v∈Zn

ε−2πiv·z+2πφZ(v).

Because it’s a Fourier series, this is log(ε)−1
Z

n-periodic, and by (2.5) it also
satisfies

(2.7) F (z + igγ) = F (z)ε2πiz·γ−πγ·gγ .

Hence, its zero set descends to a hypersurface M in the torus T = C
n/

log(ε)−1
Z

n ⊕ ig(Γ). If we equip M with the constant Kähler form

(2.8) ω = log(ε) dre(z) · g−1 dim(z)

then the homology class of M is Poincaré dual to [ω] (since (2.6) is a linear
combination of theta-functions for the factor of automorphy (2.7), see for
instance [6, Chapter 2]). We will now impose further conditions. Namely,
there should be a Γ-periodic tiling of R

n by integer simplices Pk with volume
1/n!, with the following property. Let φ : R

n → R be the unique extension
of φZ to a function which is continuous, and affine on each Pk. We ask that
φ must be convex, and not differentiable at any point lying on two different
simplices. Then, M will be smooth for sufficiently small values of ε.

Take the Legendre transform of φ, but where the standard scalar product
in (2.2) is replaced by g. The resulting function ψ is convex, takes on integer
values at integer points, and has the same periodicity property as φ. We
associate to it a graded ring R̂, by modifying the previous construction
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for polytopes in the following way. Consider points v ∈ 1
kZ

n+1 such that
vn+1 ≥ ψ(v1, . . . , vn), modulo the equivalence relation

(2.9) v ∼ (
v1 + γ1, . . . , vn + γn, vn+1 + (v1, . . . , vn) · gγ + 1

2γ · gγ)
for γ ∈ Γ. Each such point has a height, which is vn+1 − ψ(v1, . . . , vn), and
this is unchanged under (2.9). When defining R̂k, we allow infinite formal
linear combinations of the v, as long as their heights go to infinity. The result
is that R̂k is a finite rank free module over C[[t]], where t acts as before by
raising the last coordinate by 1/k. Given two equivalence classes which give
rise to generators of R̂, we fix a point v representing the first one, then allow
all possible representatives w of the second one under (2.9): the (infinite)
sum of the resulting terms (2.3) defines the product of our generators. By
taking an appropriate version of Proj, we can associate to R̂ a formal scheme
X̂ , which comes with a proper flat morphism Ŵ : X̂ → Â

1 to the formal disc.
This construction has a long history in algebraic geometry, most of which
is frankly outside the competence of this author (the starting point is [34];
for an expository account of recent developments, see [8]). Because of our
assumptions, X̂ itself is smooth, and its zero fibre has toric components,
which have normal crossings with each other.

Example 2.6. Take Γ = Z, g = 2, and φZ(v) = v2. After substituting
ε= exp(τ/2i) and z = 2iζ/τ , one sees that F is precisely the Jacobi theta
function for C/Z⊕ τZ, hence M will consist of a single point. The Legendre
transform yields ψ = φ. The quotient R= R̂/tR̂ has generators a ∈R1, b ∈
R2 and c ∈R3 corresponding to points (0, 0), (1

2 ,
1
2) and (1

3 ,
1
3), respectively,

and the relation

(2.10) abc= b3 + c2 = (1
2 ,

1
2) + (1

3 ,
1
3) ∈R6.

Therefore, the zero-fibre W−1(0) = Proj(R) of our degeneration is a rational
curve with a node (lying at b= c= 0 in the coordinates introduced above).

Example 2.7. Take Γ = 2Z × 2Z ⊂ Z
2, g = 4 · Id, and

(2.11) φZ(v) =

⎧⎪⎨
⎪⎩

2‖v‖2 if (v1, v2) = (0, 0) mod 2,
2‖v‖2 − 2 if (v1, v2) = (0, 1) or (1, 0) mod 2,
2‖v‖2 − 3 if (v1, v2) = (1, 1) mod 2.

This decomposes R
2/Γ into eight triangles

�
�

�

�
�

�
�

��

�
�

�

In this case, M is a genus five curve, correspondingly decomposed into
eight pairs-of-pants. The central fibre of the degeneration associated to the
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Legendre dual ψ has four irreducible components, each of which is a copy of
CP 2 blown up at three points.

By construction, all our hypersurfaces M have ample canonical bun-
dle. More precisely, that bundle carries a connection whose curvature is
proportional to ω. This allows one to define the Fukaya category F(M)
as a Z/2-graded category over C, by appropriately restricting the class of
Lagrangian submanifolds under consideration (compare [44]; for the more
familiar monotone case which has the opposite sign of c1(M), see [38,51]).
On the other side, the main difference with respect to the previous situation
is that there is no longer a C

∗-action on X̂ covering that on the base. Hence,
we necessarily have to work with the ordinary differential graded category
of Landau-Ginzburg branes D(Ŵ ), which is Z/2-graded.

Conjecture 2.8. There is a cohomologically full and faithful embedding
F(M) ↪→Dπ(Ŵ ), where the superscript π stands for split-closure.

Remark 2.9. The split-closure (also called idempotent or Karoubi com-
pletion) is necessary even in simple situations like Example 2.6. In that
case, Dπ(Ŵ ) is generated by a single object, the structure sheaf at the sin-
gular point of the zero-fibre. The endomorphisms of that object form a two-
dimensional Clifford algebra. Hence, in the split-closure, the object splits into
two summands which are isomorphic up to a shift. Each summand corre-
sponds to the point object in the Fukaya category F(M) (this problem would
not have been present in the parallel case of Conjecture 2.2). More generally,
passing to the idempotent completion is also a great computational simplifi-
cation, since we know split-generators of F(M) in many cases [43].

Remark 2.10. If we set q = log(ε), then the torus T ∼= C
n/Zn ⊕ iqg(Γ)

can be defined for complex values of q (in the left half-plane), and is invari-
ant under q �→ q+i. The same holds for the hypersurface M , which therefore
comes with a monodromy map (compare Remark 2.5). The same conclusion
can be reached under slightly weaker assumptions than the ones used before:
instead of asking for g to be integral, it is sufficient that g(Γ) ⊂ Z

n. How-
ever, the Legendre transformed function ψ then no longer necessarily takes
integer values on integers, so the construction of the mirror would have to
be modified.

3. The analytic topology

The local picture for torus fibrations. We start by reviewing some
elementary material about the symplectic geometry of Lagrangian torus
fibrations, see for instance [13]. Consider M = Tn × R

n with its standard
symplectic form. This is a Lagrangian torus fibration over B = R

n, whose
symplectic geometry is tied closely to the Z-affine geometry of the base.
For instance, take a function H on B, pull back it to M , and consider the
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associated Hamiltonian system. This system is one-periodic if and only if H
is Z-affine, which means of the formH(b) = t+ v·b for some t ∈ R and v ∈ Z

n.
Similarly, consider Z-affine automorphisms of B, which are maps of the form
φ(b) = u + Ab, where u ∈ R

n and A ∈GLn(Z). Denote the group of such
automorphisms by G. They then naturally lift to symplectic automorphisms
of M . The last-mentioned observation has a more interesting converse:

Theorem 3.1 (Benci [unpublished] for the convex case, Sikorav [47]
in general). Let U, V ⊂ R

n be connected open subsets with trivial first Betti
number. If Tn ×U is symplectically isomorphic to Tn × V , there is a φ ∈G
such that φ(U) = V .

Let Λq be the Novikov field in one variable q, and with coefficients
in C. This is the field of formal series

∑
r arq

r, where r ∈ R and ar ∈ C,
such that for each C ∈ R, there are only finitely many r ≤ C with ar �= 0. It
comes with an obvious real-valued valuation valq : Λq → R ∪ {+∞}. Kont-
sevich and Soibelman [29] introduced the following sheaf OB of commuta-
tive Λq-algebras on B. For any connected open U , OB(U) consists of series
f =

∑
v∈Zn cvz

v1
1 · · · zvn

n , cv ∈ Λq, such that the following property holds for
each b ∈ U :

given C ∈ R, there are only finitely many v ∈ Z
n(3.1)

such that valq(cv) − b · v ≤ C.

More canonically, the exponents v naturally belong to the lattice of integer
cotangent vectors on B. This shows that the pairing in (3.1) is well-defined
without reference to any basis.

Example 3.2. Take n= 1 and U = (−∞, 0). For a function f =
∑

v
cvz

v to lie in OB(U), the sequence valq(cv) must satisfy limv→−∞ valq(cv)/
v→−∞ (super-linear decay) and lim infv→+∞ valq(cv)/v ≥ 0 (sub-linear
growth). This is the nonarchimedean analogue of the notion of holomorphic
functions on the punctured open unit disc in C.

Algebras of this kind are common in nonarchimedean geometry, but
they can also be related to symplectic homology (references for symplectic
homology are [10,50], or for instance the more recent [11]). Namely, letH be
a function on B, and XH the Hamiltonian vector field of its pullback to M ,
which is parallel to the torus fibres. Take the zero-section L= {0}×R

n ⊂M .
We are interested in length one chords, which are trajectories x : [0, 1] →M
of XH with both endpoints on L. There is precisely one such chord xb in
the fibre over every point b where dH is an integral cotangent vector. The
action functional for such chords is given by

(3.2) AH(xb) =H(b) − dHb · b.
Assume that all xb are nondegenerate, which means that the Hessians D2Hb

are nonsingular. Then they have well-defined Maslov indices, which are just
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the Morse indices of Hb. One defines the Floer cochain space CF ∗(L,L;H)
as follows. Its elements are formal series

∑
b,r ab,rq

rxb, where ab,r ∈ C, the
xb are chords of a given Maslov index, r runs over the real numbers, and
the following condition holds: for each C ∈ R, there are only finitely many
nonzero ab,r such that AH(xb) + r ≤ C. If there are only finitely many xb

overall, then CF ∗(L,L;H) is just the Λq-vector space generated by them.
However, in general it is somewhat bigger, being complete for the q-adic
topology.

Now take an open subset U ⊂B which is bounded and strongly convex.
The last-mentioned condition means that it is convex, with smooth bound-
ary, and that the Gauss map N : ∂U → Sn−1 is a diffeomorphism. One can
then find a continuous function H̄ : Ū → R which is constant on the bound-
ary, restricts to a smooth and strictly convex function H = H̄|U on the
interior, and such that the derivatives grow to infinity in normal direction
near the boundary. More precisely, we want

(3.3)
lim
b→c

‖dHb‖ = ∞,

lim
b→c

dHb/‖dHb‖ =N(c)

uniformly for c ∈ ∂U (a general reference for the construction of convex func-
tions is [7], but our specific situation is actually much easier than the one
considered in that paper). This in particular implies that dH : U → R

n is a
diffeomorphism. Temporarily ignoring the fact that the function is defined
only partially, we can then consider the Floer cochain space CF ∗(L,L;H),
which in this case is concentrated in degree zero. The chords xb are nat-
urally parametrized by v = dHb ∈ Z

n, so that we can write elements of
CF 0(L,L;H) as series

∑
v,r av,rq

rzv. Due to (3.2) and the fact that H is
bounded, the growth condition says that for each C, there are only finitely
many nonzero av,r such that r − v · b≤ C. This is just the specialization of
(3.1) to points b where the chords appear. However, because of (3.3) such
points cluster everywhere near the boundary, which implies that

(3.4) CF 0(L,L;H) ∼= OB(U).

Hamiltonian functions such as H are tricky from the point of view of Floer
cohomology, so one may have trouble using this approach directly (which
would be necessary if one wanted to refine (3.4) to an isomorphism of
rings rather than vector spaces, for instance). However, there are known
workarounds where one first considers a certain class of functions which are
constant outside U , and then passes to the limit, see again [10,11].

Global torus fibrations. Again following [29], we now globalize the
picture above. Namely, let B be a Z-affine manifold. This structure can either
be described through its sheaf Aff B of Z-affine functions (seen as a subsheaf
of the continuous function sheaf CB), or more concretely by specifying an
atlas with transition functions inG. There is a canonical symplectic manifold
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M associated to B, defined as the quotient of T ∗B by its fibrewise integer
lattice T ∗

Z
B, and a natural sheaf of Λq-algebras OB in the base, locally

isomorphic to the one introduced above for B = R
n.

From now on, we assume that B is closed. Let D(OB) be the derived
dg category of OB-module sheaves. This is a dg category over Λq, whose
underlying cohomological category is the standard unbounded derived cate-
gory, and is unique up to quasi-equivalence. On the symplectic side, consider
the Fukaya category F(M), which is an A∞-category over Λq. To precisely
specify this category, we have to make at least two additional remarks. First
of all, for any compatible almost complex structure on M , the canonical
bundle KM = Λtop

C
TM can be identified with the complexified pullback of

Λtop
R
TB. In particular, K2

M has a canonical trivialization up to homotopy,
which we can use to define the gradings in the Fukaya category. Secondly,
we can pull back the Stiefel-Whitney class w2(B) to M , and use Lagrangian
submanifolds which are Pin relative to this class [18] to fix the signs. With
this in mind, we have:

Theorem 3.3 (Kontsevich-Soibelman [29]). The full subcategory of
F(M) consisting of Lagrangian sections of our torus fibration embeds in
a cohomologically full and faithful way into D(OB).

Conjecture 3.4 (Kontsevich-Soibelman [29]). All of F(M) embeds
into D(OB) in the same sense.

The conjecture follows from the theorem above if one can prove that
the Lagrangian sections are split-generators for the Fukaya category. This is
known when B is a circle [42] or a two-dimensional square torus [5].

We also need a slight generalization. A signed Z-affine manifold is a
Z-affine manifold B together with a torsor Lσ over the local system T ∗

(1/2)Z

B/T ∗
Z
B ∼= T ∗

Z
B⊗Z/2 (equivalently, one can express this additional datum as

a lift of the transition maps from G to a finite extension Gσ = (Z/2)n
�G).

This naturally gives rise to a Lagrangian torus fibration M →B together
with an antisymplectic fibrewise involution, whose fixed point set can be
identified with Lσ. On the other hand, we can associate to our signed Z-affine
structure a sheaf of matrix algebras Oσ

B of size 2n over OB. For B = R
n with

the trivial torsor, rows and columns of the matrices are labeled by elements
of (Z/2)n, and the (i, j) entries are elements of z(i1−j1)/2

1 · · · z(in−jn)/2
n OB.

In general, rows and columns are labeled by points in the fibre of Lσ. The
analogue of Conjecture 3.4 says that F(M) should embed into the derived
category of Oσ

B-module sheaves. For the trivial torsor, this reduces to the
original statement by way of Morita equivalence.

In the remainder of the paper, we will consider only the case when B
is one-dimensional. In that case, T ∗

(1/2)ZB/T
∗
Z
B is canonically isomorphic

to the constant sheaf Z/2, so Lσ is just a double cover of B. We want to
tweak the definition of Oσ

B slightly, by turning it into a sheaf of Z/2-graded
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algebras, where the off-diagonal pieces z1/2OB are odd, and the others even.
The covering transformation of Lσ acts by permuting the rows as well as
the columns of Oσ

B.

The pair-of-pants. Our next step is to adapt the mirror of the pair-
of-pants from Section 2 to the nonarchimedean framework. Consider trop-
ical affine three-space, which is B = (R+)3 with the sheaf OB of functions
f =

∑
v∈Z3 cvz

v satisfying the same condition as in (3.1), and with the fol-
lowing additional holomorphicity requirement: if an open connected sub-
set U ⊂B contains a point b with bk = 0 for some k ∈ {1, 2, 3}, then all
f ∈ OB(U) have cv = 0 for all v such that vk < 0. In particular, global sec-
tions consist of formal power series with rapidly decreasing Λq-coefficients.
Take the superpotentialW = −z1z2z3 ∈ OB(B), and its three obvious matrix
factorizations, which are

(3.5) E1 = {· · · OB
z1 �� OB

−z2z3 �� OB · · · }

and its cyclic permutations E2, E3. The endomorphisms of E = E1⊕E2⊕E3

form a sheaf of Z/2-graded differential algebras AB = End(E). If we forget
the differential and the grading, then this is the matrix algebra over OB of
rank 6.

Let U3 = (R+)2 × (0,∞) ⊂B be the complement of the third coordinate
plane, I3 = (0,∞) the open half-line, and ι3 : I3 → U3 the embedding given
by ι3(b) = (0, 0, b). Consider the trivial double cover of I3 and the associated
sheaf of Z/2-graded algebras Oσ

I3
.

Lemma 3.5. There is a quasi-isomorphism of sheaves of differential alge-
bras,

(3.6) φ3 : (ι3)∗Oσ
I3 −→AB|U3.

In informal language, the idea behind this statement is that on the region
where z3 �= 0, the superpotential becomes a nondegenerate quadratic func-
tion of z1, z2. Matrix factorizations of such functions form a semisimple cat-
egory, see for instance [25], which is described by the left hand side of (3.6).
More concretely, one first uses z−1

3 to build a contraction of E3|U3, which
shows that AB|U3 is quasi-isomorphic to its subalgebra of endomorphisms
of E1 ⊕ E2. One then writes down an explicit quasi-isomorphism

(3.7) (ι3)∗Oσ
I3 −→ End(E1 ⊕ E2)|U3,

as follows. Elements on the left hand side are two-by-two matrices (fij(z3)),
where the diagonal entries are series with zn

3 exponents, while the off-
diagonal entries have zn+1/2

3 exponents. We take a function fkk(z3) to the
corresponding diagonal degree zero endomorphism of Ek, respectively. The
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off-diagonal entries go to the odd homomorphisms between E1 and E2, given
respectively by

(3.8) E1|U = {· · · OB

z
−1/2
3 f12(z3)

������������������

z1 �� OB

z
1/2
3 f12(z3)

���������������
−z2z3 �� OB · · · }

E2|U = {· · · OB z2

�� OB −z3z1

�� OB · · · }

and the same formula in the other direction. Consider the transposition τ12

which exchanges the first two coordinates. Then we have a commutative
diagram

(3.9) Oσ
I3

��

φ3 �� AB|U3

τ∗
12

��
Oσ

I3

τ∗
12(φ3)

�� τ∗12AB|U3,

where the left hand ↓ is the involution of Oσ
I3

associated to the nontrivial
covering transformation.

The tropical pair-of-pants is

(3.10) T = (R+ × {0}) ∪ ({0} × R
+) ∪ {(−b,−b) : b≥ 0} ⊂ R

2.

Take the embedding ι : T →B given by (b, 0) �→ (b, 0, 0), (0, b) �→ (0, b, 0),
(−b,−b) �→ (0, 0, b), and set

(3.11) Oσ
T = ι∗AB.

In general, as a pullback sheaf this would be defined as a direct limit, but
Lemma 3.5 shows that in this case all the maps in the direct system are quasi-
isomorphisms. Consider the boundary of a thickening of T ⊂ R

2, together
with its projection to T , which is a double cover except for the preimage of
the vertex:

(3.12)

��
�

�
�

�

�
�

�
�

�
�

�
�

�� ��

��

��
		

A cyclic ordering of the edges of T , or equivalently an orientation of the
plane into which it is embedded, determines a trivialization of the double
cover over I3, and simultaneously a quasi-isomorphism Oσ

I3
�Oσ

T |I3.
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Metrized graphs. Let C be a graph with trivalent vertices, but possi-
bly with some semi-infinite edges. A signed tropical structure on C is given
by a Z-affine structure on each edge, together with a map Lσ → C from
a topological one-manifold Lσ which is a double cover away from the ver-
tices, and has the same local structure near those vertices as in (3.12). This
restricts to give a signed Z-affine structures on the edges, and it also allows
us to glue together the resulting cylinders to form a symplectic surface M ,
in an essentially unique way (which means up to symplectic automorphisms
which are Hamiltonian isotopic to the identity). The Fukaya category F(M)
is a Z/2-graded A∞-category over Λq (if M is not a torus, there are smaller
subcategories defined over C, versions of which we used previously in Con-
jectures 2.2 and 2.8; however, those do not fit in naturally with the present
argument).

On the other hand, one can associate to C a sheaf of differential Z/2-
graded algebras Oσ

C , by using the standard matrix algebra sheaf over the
edges, the model Oσ

T near each vertex, and the quasi-isomorphisms from
Lemma 3.5 to glue the two together. The general theory of sheaves of dga’s
can be quite sophisticated, because one wants to allow homotopies between
the gluing maps (compare for instance [49]), but the present case is much
more straightforward, because of the particularly simple topology of the
base. There is an associated dg category D(Oσ

C) of sheaves of dg modules
(appropriately derived), and our main idea is expressed by the following:

Conjecture 3.6. F(M) embeds cohomologically fully and faithfully into
D(Oσ

C).

Remark 3.7. It is helpful to compare this with previously proposed
descriptions of the Fukaya category of closed higher genus surfaces. Sev-
eral such constructions have appeared in the literature, starting with the
pioneering [24] (and indeed, we’ve given another one in Section 2, for sur-
faces appearing as theta-divisors). In all such cases, the mirror is a Landau-
Ginzburg model whose singular set is an algebraic curve consisting of rational
components whose intersection models the pair-of-pants decomposition of the
surface. However, the local algebro-geometric structure near that set varies,
and even though one expects all of these descriptions to be equivalent (after
idempotent completion), it is by no means obvious that this is true. One
possible advantage of Conjecture 3.6 is that the model is constructed in a
more hands-on way, with less extraneous information.
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