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Abstract. This is a survey of some of the recent developments
in the theory of complex Monge-Ampère equations. The topics dis-
cussed include refinements and simplifications of classical a priori
estimates, methods from pluripotential theory, variational methods
for big cohomology classes, semiclassical constructions of solutions
of homogeneous equations, and envelopes.
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1. Introduction

Monge-Ampère equations are second-order partial differential equations
whose leading term is the determinant of the Hessian of a real unknown func-
tion ϕ. As such, they are arguably the most basic of fully non-linear equa-
tions. The Hessian is required to be positive or at least non-negative, so the
equations are elliptic or degenerate elliptic. Monge-Ampère equations can be
divided into real or complex, depending on whether ϕ is defined on a real or
complex manifold. In the real case, the Hessian is ∇j∇kϕ, so the positivity
of the Hessian is a convexity condition. In the complex case, the Hessian is
∂j∂k̄ϕ, and its positivity is rather a plurisubharmonicity condition. Unlike
convex functions, plurisubharmonic functions can have singularities, and this
accounts for many significant differences between the theories of real and
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complex Monge-Ampère equations. In these lectures, we shall concentrate
on the complex case.

The foundations of an existence and regularity theory for complex
Monge-Ampère equations in the elliptic case, with smooth data, were laid
by Yau [Y78] and Caffarelli, Kohn, Nirenberg, and Spruck [CNS, CKNS].
In [Y78], a complete solution was given for the Calabi conjecture, which
asserts the existence of a smooth solution to the equation

(1.1)
(
ω0 +

i

2
∂∂̄ϕ

)n
= ef(z) ωn0 ,

on a compact n-dimensional Kähler manifold (X,ω0) without boundary,
where f(z) is a given smooth function satisfying the necessary condition∫
X e

fωn0 =
∫
X ω

n
0 . The solution was by the method of continuity, and the key

estimates for the C0 norms of ϕ, Δϕ, and ∇j∇k̄∇lϕ were formulated and
derived there. In [CKNS], a complete solution was given for the Dirichlet
problem

(1.2) det(∂j∂k̄ϕ) = F (z, ϕ) on D, ϕ= ϕb on ∂D,

where D is a smooth, bounded, strongly pseudoconvex domain in Cn, F ∈
C∞(D̄ × R), F (z, ϕ)> 0, Fϕ(z, ϕ) ≥ 0, and ϕb ∈ C∞(∂D). A crucial ingre-
dient of the existence and regularity developed there is the C0 boundary
estimates for the second order derivatives and their modulus of continuity.

In his paper [Y78], Yau also began an existence and regularity theory
for singular complex Monge-Ampère equations on Kähler manifolds. Here
the term “singular” should be interpreted in a broad sense. It encompasses
situations where the right hand side may be degenerate or have singulari-
ties [Y78], or where the manifoldX may not be compact or have singularities
[CY80, MY83, CY86, TY86], or where the boundary condition may be
infinite [CY80]. Such extensions were required by geometric applications,
and many important results were obtained, of which the references we just
gave are just a small sample (see e.g. [TY90, TY91, K83, W08, LYZ],
and especially [Y93, Y94, Y96] and references therein).

The last fifteen years or so have witnessed remarkable progresses in the
theory of singular Monge-Ampère equations. A particularly strong impe-
tus was provided by related problems from the minimal model program in
algebraic geometry ([EGZ, ST08, TZ, BEGZ]) and from the problem
of finding metrics of constant scalar curvature in a given Kähler class (see
[Y93, T97, D02] and [PS08] for a survey). The solutions in these prob-
lems are often inherently singular, and thus they must be understood in a
generalized sense. The foundations of a theory of generalized solutions for
the complex Monge-Ampère equation - or pluripotential theory - had been
laid out by Bedford and Taylor in [BT76, BT82]. There they constructed
Monge-Ampère measures for bounded potentials and capacities, established
monotonicity theorems for their convergence, and obtained generalized solu-
tions of the Dirichlet problem for degenerate right hand sides by the Perron
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method. A key catalyst for the several of the recent progresses is the the-
orem of Kolodziej [K98], based on pluripotential theory, which provided
C0 estimates for Monge-Ampère equations with right hand sides in Lp for
any p > 1. Other important ingredients have been the extensions of pluripo-
tential theory to unbounded potentials ([GZ, BBGZ, Ceg, B06, CG]
and references therein), the Tian-Yau-Zelditch theorem [Y93, T90a, Z,
Cat, L] on approximations of smooth metrics by Fubini-Study metrics
[PS06, PS07, PS09b, SZ07, SZ10, RZ08, RZ10a, RZ10b], and refine-
ments and extensions [Gb, B09b, PS09a, PS09c, GL, Gp, Ch, TW1,
TW2, DK] of the classic estimates in [Y78, CKNS].

The main goal of this paper is to survey some of the recent progresses.
There have been many of them, and the theory is still in full flux. While
definitive answers may not yet be available to many questions, we thought
it would be useful to gather here in one place, for the convenience of stu-
dents and newcomers to the field, some of what is known. It was not possible
to be comprehensive, and our selection of material necessarily reflects our
own limitations. At the same time, we hope that the survey would be useful
to a broad audience of people with relatively little familiarity with com-
plex Monge-Ampère equations, and we have provided reasonably complete
derivations in places, when the topics are of particular importance or the
literature not easily accessible. Each of us has lectured on parts of this paper
at our home institutions, and at various workshops. In particular, the first-
named author spoke at the 2010 conference at Lehigh University in honor
of Professor C.C. Hsiung, one of the founders of the Journal of Differential
Geometry. We would like to contribute this paper to the volume in his honor.

2. Some General Perspective

Let (X,ω0) be a compact Kähler manifold. We consider complex Monge-
Ampère equations of the form

(2.1)
(
ω0 +

i

2
∂∂̄ϕ

)n
= F (z, ϕ)ωn0

where F (z, ϕ) is a non-negative function. The solution ϕ is required to be
ω0-plurisubharmonic, that is, ϕ ∈ PSH(X,ω0), with

PSH(X,ω0) =
{
ϕ :X → [−∞,∞);ϕ is upper semicontinuous, ωϕ ≡ ω0

+
i

2
∂∂̄ϕ≥ 0

}
.

We shall consider both the case of X compact without boundary, and the
case of X̄ compact with smooth boundary ∂X, in which case we also impose
a Dirichlet condition ϕ= ϕb, where ϕb ∈ C∞(∂X) is a given function.

2.1. Geometric interpretation. Equations of the form (2.1) are fun-
damentally geometric in nature. The form ωϕ can be viewed as a form in
the same cohomology class as ω0. It defines a regular Kähler metric when it
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is >0, or a Kähler metric with degeneracies when it does have zeroes. It is
well-known that the Ricci curvature form Ricci(ωϕ) of a Kähler form ωϕ is
given by

(2.2) Ricci(ωϕ) = − i

2
∂∂̄ logωnϕ.

Thus the equation (2.1) is just an equation for a possibly degenerate metric
ωϕ in the same Kähler class as ω0, satisfying a given constraint on its volume
form ωnϕ or, equivalently upon differentiation, a given constraint on its Ricci
curvature Ricci(ωϕ).

The modern theory of complex Monge-Ampère equations began with the
following two fundamental theorems, due respectively to Yau [Y78] and to
Yau [Y78] and Aubin [A].

Theorem 1. Let (X,ω0) be a compact Kähler manifold without bound-
ary, and let F (z) = ef(z), where f(z) is a smooth function satisfying the
condition

(2.3)
∫
X
efωn0 =

∫
X
ωn0 .

Then the equation (2.1) admits a smooth solution ϕ ∈ PSH(X,ω0), unique
up to an additive constant.

Theorem 2. Let (X,ω0) be a compact Kähler manifold without bound-
ary, and let F (z, ϕ) = ef+ϕ where f(z) is a smooth function. Then the equa-
tion (2.1) admits a unique smooth solution ϕ ∈ PSH(X,ω0).

Geometrically, Theorem 1 provides a solution of the Calabi conjecture,
which asserts that, on a compact Kähler manifold X with c1(X) = 0, there
is a unique metric ωϕ with Ricci(ωϕ) = 0 in any Kähler class [ω0]. Indeed,
the formula (2.2) shows that the Ricci form of any Kähler metric must be
in c1(X). The assumption that c1(X) = 0 implies that Ricci(ω0) = i

2∂∂̄f for
some smooth function f(z). It is now readily verified, by taking F (z) = ef(z)

in the equation (2.1) and taking i
2∂∂̄ of both sides, that the solution of (2.1)

satisfies the condition

(2.4) Ricci(ωϕ) = 0.

Similarly, Theorem 2 implies the existence of a Kähler-Einstein metric
with negative curvature on any compact Kähler manifold X with c1(X)< 0.
In this case, since c1(X)< 0, we can choose a Kähler form ω0 in the cohomol-
ogy class −c1(X). But the Ricci curvature form Ricci(ω0) is still in c1(X),
and thus there is a smooth function f(z) with Ricci(ω0) +ω0 = i

2∂∂̄f . Tak-
ing F (z, ϕ) = ef+ϕ in the equation (2.1) and taking again i∂∂̄ of both sides,
we see that the solution of (2.1) satisfies now the Kähler-Einstein condition

(2.5) Ricci(ωϕ) = −ωϕ.
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We note that the Kähler-Einstein problem for compact Kähler manifolds
X with c1(X)> 0 is still open at this time, despite a lot of progress [TY87,
Si, N, T90b, T97, D10, D11a, D11b, CDa, CDb]. A well-known con-
jecture of Yau [Y93] asserts the equivalence between the existence of such a
metric on X and the stability of X in geometric invariant theory. This can
be reduced, just as above for the cases c1(X) = 0 and c1(X)< 0, to a com-
plex Monge-Ampère equation of the form (2.1), but with F (z, ϕ) = ef(z)−ϕ.
Thus the conjecture of Yau asserts the equivalence between the solvabil-
ity of a complex Monge-Ampère equation and a global, algebraic-geometric,
condition. Clearly, bringing the algebraic-geometric conditions into play in
the solution of a non-linear partial differential equation is an important and
challenging problem. The two major successes in this direction are the the-
orem of Donaldson-Uhlenbeck-Yau [D87, UY], on the equivalence between
the existence of a Hermitian-Einstein metric on a holomorphic vector bundle
E→ (X,ω) and the Mumford-Takemoto stability of E, and the recent results
of Donaldson [D08] on the equivalence between the existence of metrics of
constant scalar curvature on toric 2-folds and their K-stability. However,
there are still many unanswered questions in this direction.

2.2. The method of continuity. The original proof of Theorems 1
and 2 is by the method of continuity, and this has remained a prime method
for solving complex Monge-Ampère equations to this day. In this method, the
equation to be solved is deformed continuously to an equation which we know
how to solve. For example, one introduces for Theorem 1 the deformation,

(2.6)
(
ω0 +

i

2
∂∂̄ϕ

)n
=

∫
X ω

n
0∫

X e
tf(z)ωn0

etf(z)ωn0 , 0 ≤ t≤ 1

and for Theorem 2 the deformation,

(2.7)
(
ω0 +

i

2
∂∂̄ϕ

)n
= etf(z)+ϕωn0 , 0 ≤ t≤ 1.

The equations admit trivially the smooth solution ϕ= 0 at t= 0. It is not
difficult to show, by the implicit function theorem, that the set of parameters
t for which the equation is solvable is open. So to show that this set is the full
interval [0, 1] reduces to show that it is closed. This in turn reduces to the
proof of a priori estimates for the solutions ϕ, assuming that they already
exist and are smooth.

3. A Priori Estimates: C0 Estimates

We begin by discussing C0 estimates for the most basic complex Monge-
Ampère equation. Let (X,ω0) be a compact Kähler manifold without
boundary, and consider the equation

(3.1)
(
ω0 +

i

2
∂∂̄ϕ

)n
= F (z)ωn0
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for a smooth function ϕ satisfying the condition ϕ ∈ PSH(X,ω0), with F (z)
a smooth strictly positive function. Since the equation is invariant under
shifts of ϕ by constants, we may assume that supXϕ= 0. It is well-known
that all functions in PSH(X,ω0) satisfy an exponential integrability con-
dition, and hence their Lp norms are all uniformly bounded by constants
depending only on the Kähler class [ω0] and on p, for any 1 ≤ p <∞ (see
e.g. Appendix A). But the L∞, or C0 estimate, is fundamentally different.
In this section, we discuss several methods for obtaining C0 estimates.

3.1. Yau’s original method. Yau’s original method was by Moser
iteration. Set ψ = supXϕ−ϕ+1 ≥ 1 and let α≥ 0. Since (F − 1)ωn0 = (ω0 +
i
2∂∂̄ϕ)n − ωn0 = i

2∂∂̄ϕ
∑n−1

j=0 (ω0 + i
2∂∂̄ϕ)n−1−jωj0, we find, after multiplying

by ψα+1 and integrating by parts.

(3.2)∫
X
ψα+1(F − 1)ωn0 = (α+ 1)

n−1∑
j=0

∫
X
ψα i∂ψ ∧ ∂̄ψ

(
ω0 +

i

2
∂∂̄ϕ

)n−1−j
ωj0.

All the integrals on the right hand side are positive. Keeping only the con-
tribution with j = n− 1, we obtain∣∣∣∣

∫
X
ψα+1(F − 1)ωn0

∣∣∣∣≥ (α+ 1)
∫
X
ψα i∂ψ ∧ ∂̄ψ ωn−1

0

=
(α+ 1)

2(α2 + 1)2

∫
X
i∂(ψ

α
2
+1) ∧ ∂̄(ψ

α
2
+1) ∧ ωn−1

0 .(3.3)

and hence, with C1 depending only on ‖F‖L∞ , and all norms and covariant
derivatives with respect to the metric ω0,

(3.4) ‖∇(ψ
α
2
+1)‖2 ≤ C1

n(α2 + 1)2

α+ 1

∫
X
ψα+1ωn0 .

On the other hand, the Sobolev inequality asserts that

(3.5) ‖u‖2

L
2n

n−1
≤ C2(‖∇u‖2

L2 + ‖u‖2
L2)

with C2 the Sobolev constant of (X,ω0). Applied to u= ψ
p
2 , it can be

expressed as

(3.6) ‖ψ‖p
Lpβ ≤ C2(‖∇(ψ

p
2 )‖2

L2 + ‖ψ‖pLp),

with β = n
n−1 > 1. Setting p= α + 2, and applying the inequality (3.4), we

find

(3.7) ‖ψ‖Lpβ ≤ (C3p)
1
p ‖ψ‖Lp , p≥ 2,
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with a constant C3 depending only on n, ‖F‖L∞ , and the Sobolev constant
of (X,ω0). We can iterate p→ pβ→ · · · → pβk and get

(3.8) log ‖ψ‖L∞ ≤
∞∑
k=0

log (C3pβ
k)

pβk
+ log ‖ψ‖Lp = C4,p + log ‖ψ‖Lp .

An a priori bound for ‖ψ‖Lp for any fixed finite p can be obtained from
the exponential estimate for plurisubharmonic functions in Appendix A.
Alternatively, we can obtain an a priori bound for ‖ψ‖L2 from (3.4) by
taking α= 0, and applying the Poincaré inequality to the left hand side.
Either way gives

Theorem 3. Let ϕ be a smooth solution of the equation (3.1) on a
compact Kähler manifold (X,ω0) without boundary, F > 0, and ϕ ∈ PSH
(X,ω0). Then ‖ψ‖L∞(X) is bounded by a constant depending only on n, an
upper bound for ‖F‖L∞(X), and the Kähler form ω0. The dependence on
the Kähler form ω0 can be stated more precisely as a dependence on the
Sobolev constant and the Poincaré constant of ω0, or on the exponential
bound for ω0.

The Moser iteration method is now widely used in the study of Monge-
Ampère and other non-linear equations. An important variant has been
introduced by Weinkove [W], where the Moser iteration is applied to eϕ

instead of ϕ. Applications of this variant are in [SW, ST06, TWY].

3.2. Reduction to Alexandrov-Bakelman-Pucci estimates. It
was suggested early on by Cheng and Yau that the Alexandrov-Bakelman-
Pucci estimate can be applied to the complex Monge-Ampère equation. They
did not publish their work, but a detailed account was subsequently pro-
vided by Bedford [B] and Cegrell and Persson [CP]. Using the Alexandrov-
Bakelman-Pucci estimate, Blocki [B11a] gives the following proof of the C0

estimate. This proof is of particular interest as it is almost a local argument.
We follow closely Blocki’s presentation.

Let D be any bounded domain in Cn, u ∈ C2(D̄), uk̄j ≥ 0, and u= 0 on
∂D. Then

(3.9) ‖u‖C0 ≤ C ‖detuk̄j‖
1
n

L2

where C = C(n, diamD) depends only on the diameter of D and the dimen-
sion n. To see this, we apply the ABP estimate (from [GT], Lemma 9.2) to
get

(3.10) ‖u‖C0 ≤ cn(diamD)
(∫

Γ
detD2u

) 1
2n

where Γ is the contact set, defined by

(3.11) Γ = {z ∈D;u(w) ≥ u(z) + 〈Du(z), w − z〉, for all w ∈D}.
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On the contact set Γ, the function u satisfiesD2u≥ 0, and for such functions,
we have the following inequality between the determinants of the real and
complex Hessians,

(3.12) detuk̄j ≥ 2−n(detD2u)
1
2 .

This proves the estimate (3.9).
Let now z ∈D, h > 0, and define the sublevel set S(z, h) by

(3.13) S(z, h) = {w ∈D;u(w)< u(z) + h}

If S(z, h) ⊂⊂D, then applying the previous inequality to S(z, h) instead of
D gives

‖u− u(z) − h‖C0(S(z,h)) ≤ C(n, diamD)‖detuk̄j‖
1
n

L2(S(z,h))

≤ C(n, diamD)|S(z, h)|
1

2nq ‖detuk̄j‖
1
n

L2p(3.14)

for any p > 1, 1
p + 1

q = 1. In particular, we obtain the following lower bound
for |S(z, h)|

(3.15) h≤ C(n, diamD)|S(z, h)|
1

2qn ‖detuk̄j‖
1
n

L2p .

On the other hand, we have the following easy upper bound for |S(z, h)|,

(3.16) |S(z, h)|(−u(z) − h) ≤
∫
S(z,h)

(−u) ≤ ‖u‖L1(D)

If we choose z to be the minimum point for u, and eliminate |S(z, h)| between
the two inequalities, we obtain a lower bound for u in terms of h and h−1.

This can be applied to the C0 estimate for the Monge-Ampère equation
(ω0+ i

2∂∂̄ϕ)n = F (z)ωn0 on a compact Kähler manifold (X,ω0). Let z be the
minimum point for ϕ on X, and let K(w, w̄) be a Kähler potential for ω0 in
a neighborhood of z. By adding a negative constant and shifting K(w, w̄)
by the real part of a second order polynomial in w if necessary, we can
assume that K(w, w̄) ≤ 0 in a ball B(z, 2r) around z, K(w, w̄) ≥K(0)+h for
r ≤ |w| ≤ 2r, andK(w, w̄) attains its minimum inB(z, 2r) at 0. The constant
h > 0 depends only on the Kähler form ω0. Then the function u=K + ϕ
attains its minimum in B(z, 2r) at z, and the corresponding set S(z, h) ⊂
B(z, 2r) \ B(z, r) has compact closure. By the preceding inequalities, we
obtain a lower bound for u(z), depending only on ω0 and the L2p norm of
F , for any p > 1. Thus

Theorem 4. Let the setting be the same as in Theorem 3. Then for
any p > 1, ‖ϕ‖L∞(X) can be bounded by a constant depending only on n, an
upper bound for ‖F‖L2p(X), and the Kähler form ω0.
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3.3. Methods of pluripotential theory. A third method for C0 esti-
mates was introduced by Kolodziej [K98]. This method combines the classic
approach of De Giorgi with modern techniques of pluripotential theory. It
produces C0 bounds even when the right hand side F is only in Lp(X) for
some p > 1. As shown by Eyssidieux, Guedj, and Zeriahi [EGZ, EGZ08]
and Demailly and Pali [DP], it can also be extended to a family setting,
where the background Kähler form ωt is allowed to degenerate to a closed
form χ which is just non-negative. Other family versions of Kolodziej’s C0

estimates are in [KT, DZ, TZ]. As we shall see later, such family ver-
sions are important for the study of singular Kähler-Einstein metrics and
Monge-Ampère equations on complex manifolds with singularities.

Let (X,ω0) be a compact Kähler manifold. Let χ≥ 0 be a C∞ closed
semi-positive (1, 1)-form which is not identically 0. Set

(3.17) ωt = χ+ (1 − t)ω0, t ∈ (0, 1)

and let [ωnt ] =
∫
X ω

n
t . Consider the equation

(3.18)
(
ωt +

i

2
∂∂̄ϕt

)n
= Ftω

n
t

for some strictly positive function Ft and ϕt ∈ PSH(X,ωt) ∩L∞(X). Then
we have the following family version of the C0 estimates of Kolodziej [K98],
due to Eyssidieux-Guedj-Zeriahi [EGZ, EGZ08] and Demailly-Pali [DP]:

Theorem 5. Let A> 0 and and p > 1. Assume that χ≤Aω0 and
1

[ωn
t ]
ωn

t
ωn

0
≤A. Assume also that the functions Ft are in Lp(X,ωnt ) and that

(3.19)
1

[ωnt ]

∫
X
F pt ω

n
t ≤Ap <∞

for all t ∈ (0, 1). Normalize ϕt so that supXϕt = 0. Then there exists a con-
stant C > 0, depending only on n, ω0 and A, so that

(3.20) supt∈[0,1)‖ϕt‖L∞(X) ≤ C.

Proof. Recall the notion of capacity of a Borel set E with respect to a
Kähler form ω,

(3.21) Capω(E) = sup
{∫

E

(
ω +

i

2
∂∂̄u

)n
; u ∈ PSH(X,ω), 0 ≤ u≤ 1

}
.

Set

(3.22) ft(s) =
(

Capωt
(ϕt <−s)
[ωnt ]

) 1
n

.

It suffices to show that there exists s∞ <∞ independent of t so that

(3.23) ft(s) = 0 for s > s∞.
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Since ft(s)n ≥ 1
[ωn

t ]

∫
ϕ<−s ω

n
t , it would follow that ϕt ≥−s∞ a.e. with respect

to the measure ωnt , and since ϕt is upper semi-continuous, that ϕt ≥−s∞
everywhere. The following classic lemma of De Giorgi provides sufficient
conditions for the existence of s∞:

Lemma 1. Let f : R+ → R+ satisfy the following conditions:

(a) f is right-continuous;
(b) f decreases to 0;
(c) There exist positive constants α,Aα so that for all s≥ 0 and all

0 ≤ r ≤ 1, we have

(3.24) r f(s+ r) ≤Aαf(s)1+α.

Then there exists s∞, depending only on α,Aα and the smallest value s0 for
which we have f(s0)α ≤ (2Aα)−1 so that f(s) = 0 for s > s∞. In fact, we can
take s∞ = s0 + 2Aα(1 − 2−α)−1f(s0)α. �

We shall show that the above functions ft(s) satisfy the conditions of
Lemma 1. The right-continuity (a) of the function ft(s) is a consequence of
the fact that, for any Kähler form ω, and any sequence of increasing sequence
of Borel sets Ej ⊂ Ej+1, we have Capω(∪∞

j=1Ej) = limj→∞Capω(Ej). Clearly
ft(s) decreases as s increases. In fact, it does so uniformly to 0 in t as is
shown by the following lemma:

Lemma 2. There exists a constant C depending only on ω0 and an upper
bound A for χ so that

(3.25) ft(s)n ≤ C s−1.

Proof of Lemma 2. Let u ∈ PSH(X,ωt). Then

∫
ϕt<−s

(
ωt +

i

2
∂∂̄u

)n

≤ 1
s

∫
X

(−ϕt)
(
ωt +

i

2
∂∂̄u

)n

=
1
s

∫
X

(−ϕt)ωnt +
1
s

∫
X

(−ϕt)
i

2
∂∂̄u

n−1∑
j=0

ωjt

(
ωt +

i

2
∂∂̄u

)n−1−j
(3.26)

Writing ωnt ≤A[ωnt ]ωn0 , and noting that PSH(X,ωt) ⊂ PSH(X, (A+1)ω0),
we can bound the first integral on the right hand side by C[ωnt ], in view
of Theorem A.1 on exponential estimates for plurisubharmonic functions.
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The other integrals can be re-expressed as∫
X
ϕt
i

2
∂∂̄u ωjt

(
ωt +

i

2
∂∂̄u

)n−1−j

= −
∫
X

i

2
∂∂̄ϕt uω

j
t

(
ωt +

i

2
∂∂̄u

)n−1−j

= −
∫
X
u

(
ωt +

i

2
∂∂̄ϕt

)
ωjt

(
ωt +

i

2
∂∂̄u

)n−1−j

+
∫
X
uωj+1

t

(
ωt +

i

2
∂∂̄u

)n−1−j
.

For 0 ≤ u≤ 1, we can write∣∣∣∣∣
∫
X
u

(
ωt +

i

2
∂∂̄ϕt

)
ωjt

(
ωt +

i

2
∂∂̄u

)n−1−j
∣∣∣∣∣

≤
∫
X

(
ωt +

i

2
∂∂̄ϕt

)
ωjt

(
ωt +

i

2
∂∂̄u

)n−1−j
= [ωnt ]

and similarly for the other integral. Thus we obtain an upper bound C[ωnt ],
and taking the supremum in u establishes the desired inequality. Q.E.D.

It remains to establish the property (c) for ft(s). For this, we need the
following two lemmas:

Lemma 3. Let ϕ ∈ PSH(X,ω) ∩ L∞(X). Then for all s > 0, 0 ≤ r ≤ 1,

(3.27) rnCapω(ϕ <−s− r) ≤
∫
ϕ<−s

(
ω +

i

2
∂∂̄ϕ

)n
.

Lemma 4. There exist constants δ, C > 0 so that for any open set E ⊂X,
and any t ∈ [0, 1], we have

(3.28)
1

[ωnt ]

∫
E
ωnt ≤ C exp

[
−δ
(

[ωnt ]
Capωt

(E)

)1/n
]
.

Assuming these two lemmas for the moment, we can readily establish
the inequality (c) in Lemma 1. For α > 0 we have

[r ft(s+ r)]n = rn
Capω(ϕt <−s− r)

[ωnt ]
≤ 1

[ωnt ]

∫
ϕt<−s

(
ω +

i

2
∂∂̄ϕt

)n

=
1

[ωnt ]

∫
ϕt<−s

Ftω
n
t ≤
(

1
[ωnt ]

∫
ϕt<−s

F pt ω
n
t

) 1
p
(

1
[ωnt ]

∫
ϕt<−s

ωnt

) 1
q

≤A exp

(
−δ
q

[
[ωnt ]

Capω(ϕt <−s)

] 1
n

)
≤Aα f

(1+α)n.(3.29)
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It remains to prove the two lemmas. Let u ∈ PSH(X,ω) with 0 ≤ u≤ 1,
and write

rn
∫
ϕ<−s−r

(
ω +

i

2
∂∂̄u

)n
=
∫
ϕ<−s−r

(
rω +

i

2
∂∂̄ ru

)n

≤
∫
ϕ<−s−r+ru

(
ω +

i

2
∂∂̄(ru− s− r)

)n

≤
∫
ϕ<−s−r+ru

(
ω +

i

2
∂∂̄ϕ

)n
(3.30)

where we have applied the comparison principle. Since −r + ru is negative,
this last integral is bounded by the integral over the larger region {ϕ <−s},
and Lemma 3 is proved. The next lemma requires some properties of global
extremal functions [GZ, Ze]:

Lemma 5. Let E ⊂X be an open set, and define its global extremal
function ψE,ω as the upper semi-continuous envelope of the following func-
tion ψ̃E,ω,

(3.31) ψ̃E,ω = sup{u ∈ PSH(X,ω);u= 0 on E}.

Then

(a) ψE,ω ∈ PSH(X,ω) ∩ L∞(X)
(b) ψE,ω = 0 on E

(c) (ω + i
2∂∂̄ψE,ω)n = 0 on X \ Ē.

We can now prove Lemma 4. Let E′ ⊂ E be any relatively compact open
subset. Then

1
[ωnt ]

∫
E′
ωnt =

1
[ωnt ]

e−δsupXψE′,ωt

∫
E′
e−δ(ψE′ωt

−supXψE′,ωt
)ωnt

≤ e
−δ supXψE′,ωn

t A

∫
X
e−δ(ψE′,ωt

−supXψE′,ωt
)ωn0(3.32)

where A is an upper bound for 1
[ωn

t ]
ωn

t
ωn

0
. Since χ≤Aω0 also by assumption,

PSH(X,ωt) ⊂ PSH(X, (A+1)ω0), and Theorem A.1 implies that the inte-
gral on the right hand side is bounded by a constant independent of t and
E′. We can now complete the proof of Lemma 4. First, observe that if
supXψE′,ωt ≤ 1, then

(3.33)

[ωnt ] =
∫
Ē′

(
ωt +

i

2
∂∂̄ψE′,ωt

)
≤ Capωt

(Ē′) ≤ Capωt
(E) ≤ Capωt

(X) = [ωnt ].
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Thus [ωn
t ]

Capωt
(E) = 1, and a constant Cδ can clearly be chosen so that the

desired inequality holds. Next, assume that supXψnE′,ωt
> 1. We can write

(supXψE′,ωt)
−n = (supXψE′,ωt)

−n
∫
X

(
ωt + i

2∂∂̄ψE′,ωt

)n
[ωnt ]

= (supXψE′,ωt)
−n
∫
Ē′
(
ωt + i

2∂∂̄ψE′,ωt

)n
[ωnt ]

≤

∫
Ē′

(
ωt + i

2∂∂̄
(

ψE′,ωt
supXψE′,ωt

))n
[ωnt ]

.(3.34)

This last term is bounded by [ωnt ]−1Capωt
(Ē′) ≤ [ωnt ]−1Capωt

(E). Thus we
obtain

(3.35)
1

[ωnt ]

∫
E′
ωnt ≤ exp

(
−δ
(

[ωnt ]
Capωt

(E)

) 1
n

)
.

Taking limits as E′ increases to E establishes Lemma 4. The proof of the
theorem is complete.

We note that all three proofs of C0 estimates can be extended to the
equation (1.1) on Hermitian manifolds. For the Moser iteration method, this
is carried out in [Ch, TW1, TW2]. It is interesting that, in the Kähler
case, only one term in the right hand side of (3.2) was needed, while the
other terms are also needed in the Hermitian case. The extension of the
pluripotential method to the Hermitian case is in [DK], while the extension
of the Alexandrov-Bakelman-Pucci method is in [B11a].

4. Stability Estimates

In this section, we shall establish the stability and uniqueness of the con-
tinuous solutions of the complex Monge-Ampère equations due to Kolodiej
[K03]. We shall closely follow the arguments in [K05]. Let (X,ω) be an
n-dimensional compact Kähler manifold and let

(4.1) Fp,A =
{
F ∈ Lp(X)|F ≥ 0,

∫
X
F pωn ≤A,

∫
X
Fωn =

∫
X
ωn
}

for p > 1 and A> 0.

Theorem 6. For any two F,G ∈ Fp,A, let ϕ and ψ ∈ PSH(X,ω)∩C(X)
be solutions of the following Monge-Ampère equations

(4.2)
(
ω +

i

2
∂∂̄ϕ

)n
= F (z)ωn,

(
ω +

i

2
∂∂̄ψ

)n
=G(z)ωn

normalized by

(4.3) sup
X
ϕ= sup

X
ψ = 0.
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Then for any ε > 0, there exists C > 0 depending only on ε, p, A and (X,ω),
so that

(4.4) ‖ϕ− ψ‖L∞(X) ≤ C‖F −G‖
1

n+3+ε

L1(X)
.

Theorem 6 has been generalized in [DZ] to nonnegative, big and smooth
closed (1, 1)-form ω if ω is chosen appropriately. The uniqueness of the solu-
tions ϕ ∈ PSH(X,ω) ∩ C0(X), supXϕ= 0, to the Monge-Ampère equation
(3.1) for F ∈ Fp,A for some p > 1 and A> 0 follows immediately from the
stability theorem.

As before, we write ωϕ = ω+ i
2∂∂̄ϕ for any ϕ ∈ PSH(X,ω). The follow-

ing lemma is a generalization of Lemma 3 and a detailed proof can be found
in [K05].

Lemma 6. Let ϕ and ψ ∈ PSH(X,ω)∩C(X) with 0 ≤ ϕ≤ C. Then for
any s > 0,

(4.5) Capω({ψ + 2s < ϕ}) ≤
(
C + 1
s

)n ∫
ψ+s<ϕ

ωnψ.

The following lemma is well-known for smooth plurisubharmonic func-
tions. The general result can also be found in [K05].

Lemma 7. Let B be a Euclidean ball in Cn with the standard Euclidean
volume form Ω. For any u ∈ PSH(B)∩C(B) and any nonnegative F ∈ L1(B)
with

(4.6)
(
i

2
∂∂̄u

)n
≥ F Ω,

(
i

2
∂∂̄v

)n
≥ F Ω,

we have

(4.7)
(
i

2
∂∂̄u

)k
∧
(
i

2
∂∂̄v

)n−k
≥ F Ω

for all k = 0, . . . , n.

By Theorem 5, there exists a > 0 depending on 3pA, p and (X,ω) such
that for any F ∈ Fp,3pA, the solution u ∈ PSH(X,ω) ∩ L∞(X) of (ω +
i
2∂∂̄u)

n = Fωn satisfies

(4.8) sup
X
u− inf

X
u≤ a.

Without loss of generality, we can assume that
∫
X Fω

n =
∫
X Gω

n =
∫
X ω

n =
1 and

(4.9)
∫
ψ<ϕ

(F +G)ωn ≤ 1.
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Furthermore, we let 0< t0 < (q − 1)/2, where q = (3/2)1/n and we further
assume tn+3+ε

0 < 1/3. For any 0< t < t0, we define for all nonnegative inte-
gers k,

(4.10) Ek = {ψ < ϕ− kat}

for a fixed ε > 0. From now on we assume that for 0< t < t0,

(4.11) ‖F −G‖L1(X) = tn+3+ε.

We have immediately

(4.12)
∫
E0

Gωn =
1
2

∫
E0

((F +G) + (G− F ))ωn ≤ 1
2

(
1 +

1
3

)
=

2
3
.

Now we define a new function H such that H = 3G/2 on E0 and H = c0
on the complement of E0 so that

∫
X Hω

n = 1. Obviously, c0 > 0 and H ∈
Fp,(3/2)pA. Then there exists a unique ρ ∈ PSH(X,ω) ∩ C(X) such that

(4.13) ωnρ =Hωn, sup
X
ρ= 0.

Furthermore,

(4.14) −a≤ ρ≤ 0.

We now define

(4.15) E = {ψ < (1 − t)ϕ+ tρ− at}, S = {F < (1 − t2)G}.

The following lemma can be easily verified.

Lemma 8.

(4.16) E2 ⊂ E ⊂ E0.

Lemma 9. On E0 \ S, for k = 0, . . . , n, we have

(4.17) ωkϕ ∧ ωn−kρ ≥ qn−k(1 − t2)k/nGωn.

Proof. On E0 \ S, we have

(4.18) ((1 − t2)−1/nωϕ)n ≥Gωn, (q−1ωρ)n =Gωn.

The lemma then follows from Lemma 7. Q.E.D.

Lemma 10. Let B =
∫
E2
Gωn. Then

(4.19) B ≤ 3
q − 1

tn+ε.
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Proof. On E0 \ S, we have

ωn(1−t)ϕ+tρ =
n∑
k=0

(
n
k

)
(1 − t)ktn−kωkϕ ∧ ωn−kρ

≥
n∑
k=0

(
n
k

)
qn−k(1 − t2)k/n(1 − t)ktn−kGωn.(4.20)

The right hand side can in turn be estimated by
n∑
k=0

(
n
k

)
qn−k(1 − t2)

k

n
(1 − t)ktn−kGωn

= (qt+ (1 − t)(1 − t2)1/n)nG≥ ((1 − t)(1 − t2) + qt)nGωn

≥ (1 + (q − 1)t− t2)nGωn ≥ (1 + (q − 1)t/2)Gωn,(4.21)

where we make use of the additional assumption that t < t0 < (q− 1)/2. On
the other hand, since

∫
S Fω

n ≤ (1 − t2)
∫
S Gω

n by the definition of S, we
have

(4.22) t2
∫
S
Gωn ≤

∫
S
(G− F )ωn ≤ tn+3+ε

and so

(4.23)
∫
S
Gωn ≤ tn+1+ε.

The above inequality implies that

(4.24)
∫
E\S

Gωn ≤ 2
q − 1

tn+ε.

Thus by (4.21) and (4.23),

(4.25) B ≤
∫
E
Gωn ≤

∫
E\S

Gωn +
∫
S
Gωn ≤ 3

q − 1
tn+ε.

The lemma is then proved. Q.E.D.

Lemma 11.

(4.26) Capω(E4) ≤
3

q − 1
(2a)−n(a+ 1)ntε.

Proof. By Lemma 6, we have

Capω(E4) ≤
(a+ 1)n

(2at)n

∫
E2

Gωn =
(a+ 1)n

(2at)n
B ≤ (a+ 1)n

(2a)n
3

q − 1
tε. �

The following lemma is used in Kolodziej’s original proof of the L∞

estimates. We refer the readers to the detailed proof in [K05].
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Lemma 12. Let ϕ,ψ ∈ PSH(X,ω) ∩ C(X) with 0 ≤ ϕ≤ C. Let

(4.27) U(s) = {ψ − s < ϕ}, α(s) = Capω(U(s)).

Assume that
(1) {ψ − S < ϕ} �= ∅ for some S,
(2) For any Borel set K,

(4.28)
∫
K
ωnψ ≤ f(Capω(K)),

where f(x) = x
h(x−1/n)

and h(x) : R+ → (0,∞) is a continuous strictly

increasing function satisfying
∫∞
1

1
th1/n(t)

dt <∞.
Then for any D < 1, we have

(4.29) D ≤ κ(α(S +D)),

where

(4.30) κ(s) = c(n)(1 + C)
(∫ ∞

s−1/n

dx

xh1/n(x)
+

1
h1/n(s−1/n)

)

for some constant c(n) depending only on n.

Proof of Theorem 6. By Lemma 4, for any δ > 0 and open set K,
there exists Cδ > 0,

(4.31)
∫
K
ωn ≤ C1e

−(C2Capω(K))−1 ≤ Cδ(Capω(K))1/δ.

Then 0 ≤ ϕ+a≤ a. We can easily check that we can choose h(x) = x1/δ and
there exists C ′

δ > 0 such that

(4.32) κ(s) = C ′
δs

1/(δn2).

Now we can prove the theorem by contradiction. Suppose that

(4.33) {ψ < ϕ− (4a+ 1)t} = {ψ + a < ϕ+ a− (4a+ 1)t} �= ∅.
Then by applying Lemma 12 with ψ + a, ϕ+ a, S = −(4a+ 1)t and D = t,

t≤ κ(Capω(E4)) ≤ κ

(
3

q − 1
(2a)−n(a+ 1)ntε

)

= C ′
δ

(
3

q − 1
(2a)−n(a+ 1)ntε

)1/(δn2)

.

This is a contradiction if we choose δ > 0 sufficiently small and then t > 0
sufficiently small. Therefore {ψ < ϕ− (4a+ 1)t} = ∅ and so

(4.34) sup
X

(ϕ−ψ) = sup
X

(ψ−ϕ) ≤ (4a+1)t= (4a+1)(‖F−G‖L1(X))
1/(n+3+ε)

if we choose t0 sufficiently small. The theorem is proved. Q.E.D.
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5. A Priori Estimates: C 1 Estimates

In Yau’s original solution of the Calabi conjecture [Y78], the C2 esti-
mates were shown to follow directly from the C0 estimates. The C1 estimates
follow from the C0 and C2 estimates by general linear elliptic theory. How-
ever, for more general Monge-Ampère equations where the right hand side
may be an expression F (z, ϕ) depending on the unknown ϕ as well as for the
Dirichlet problem, the C1 estimates cannot be bypassed. In this section, we
describe the sharpest C1 estimates available at this time. They are due to
[PS09a, PS09c], and they exploit a key differential inequality discovered
by Blocki [B09a].

Let (X,ω0) be a compact Kähler manifold with smooth boundary ∂X
(which may be empty) and complex dimension n. We consider the Monge-
Ampère equation on X̄

(5.1)
(
ω0 +

i

2
∂∂̄ϕ

)n
= F (z, ϕ)ωn0 .

Here F (z, ϕ) is a C2 function on X̄ × R which is assumed to be strictly
positive on the set X̄ × [inf ϕ,∞). The gradient estimates allow ϕ to be
singular along a subset Z ⊂X, possibly empty, which does not intersect
∂X. All covariant derivatives and curvatures listed below are with respect
to the metric ω0. Then [PS09c]

Theorem 7. Let (X,ω0) be a compact Kähler manifold, with smooth
boundary ∂X (possibly empty). Assume that ϕ ∈ C4(X̄ \ Z) is a solution of
the equation (5.1) on X̄ \ Z. If Z is not empty, assume further that Z does
not intersect ∂X, and that there exists a constant B > 0 so that

ϕ(z) → +∞ as z→ Z,

log |∇ϕ(z)|2 −B ϕ(z) →−∞ as z→ Z.(5.2)

Then we have the a priori estimate

(5.3) |∇ϕ(z)|2 ≤ C1 exp(A1 ϕ(z)), z ∈ X̄ \ Z,

where C1 and A1 are constants that depend only on upper bounds for infXϕ,
supX×[inf ϕ,∞)F , supX×[inf ϕ,∞)(|∇F

1
n |+|∂ϕF

1
n |), sup∂X |ϕ|, sup∂X |∇ϕ|, and

the following constant,

(5.4) Λ = −infX infM>0
M j

kR
k
j
p
q(M−1)qp

TrM TrM−1
,

where M = (M q
p) runs over all self-adjoint and positive definite endomor-

phisms.

When there is no boundary, and the function F (z, ϕ) is a function F (z)
of z alone, the equation (5.1) is unchanged under shifts of ϕ by an additive
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constant. Thus the infimum of ϕ(z) can be normalized to be 0 by replacing
ϕ(z) → ϕ(z) − infXϕ, so we obtain the estimate

(5.5) |∇ϕ(z)|2 ≤ C1 exp(A1(ϕ(z) − infX ϕ)) z ∈ X̄

where the constant C1 does not depend on inf ϕ, but depends only on the
other quantities listed above. We shall see that the Laplacian Δϕ satisfies
the same pointwise estimate.

Not surprisingly, the constants supM×[inf ϕ,∞]F and supM×[inf ϕ,∞]

|∇F 1
n | + |∂ϕF

1
n | in (5.3) can be replaced by supM×[inf ϕ,supϕ]F and

supM×[inf ϕ,supϕ]|∇F
1
n |+|∂ϕF

1
n | respectively. Thus, when ‖ϕ‖C0 is bounded,

we obtain gradient bounds for ϕ for completely general smooth and strictly
positive functions F (z, ϕ). We have however stated them in the above form
since we are particularly interested in the cases when there is no upper
bound for supϕ. This is crucial for certain applications [PS09a, PS09b].
If a dependence on ‖ϕ‖C0 is allowed, then there are many earlier direct
approaches. The first appears to be due to Hanani [Ha]. More recently,
Blocki [B09a] gave a different proof, and our approach builds directly on
his. The method of P. Guan [Gp] can be extended to Hessian equations,
while the method of B. Guan-Q. Li [GL] allows a general Hermitian metric
ω as well as a more general right hand side F (z)χn, where χ is a Kähler form.

The proof is an application of the maximum principle. Let gk̄j and g′
k̄j

be the two metrics defined by the Kähler forms ω0 and ω0 + i
2∂∂̄ϕ. The

covariant derivatives and Laplacians with respect to gk̄j and g′
k̄j

are denoted
by ∇, Δ, and ∇′, Δ′ respectively. A subindex g or g′ will denote the metric
with respect to which a norm is taken. It is convenient to introduce the
endomorphisms

(5.6) hjk = gjp̄g′p̄k, (h−1)jk = (g′)jp̄gp̄k.

Their traces are Trh= n+ Δϕ and Trh−1 = n+ Δ′ϕ.
As a preliminary, we calculate Δ′ log |∇ϕ|2g, |∇ϕ|2g being the expression

of interest, and Δ′ being the natural Laplacian to use, as it arises from
differentiating the Monge-Ampère equation. We have

(5.7) Δ′ log |∇ϕ|2g =
Δ′|∇ϕ|2g
|∇ϕ|2g

−
|∇|∇ϕ|2g|2g′

|∇ϕ|4g
.

If we express Δ′ on scalars as Δ′ = (g′)pq̄∇p∇q̄, then we can write

(5.8) Δ′|∇ϕ|2g = Δ′(∇mϕ)∇mϕ+ ∇mϕΔ′(∇mϕ) + |∇∇ϕ|2gg′ + |∇̄∇ϕ|2gg′ .

However, making use of the Monge-Ampère equation, we obtain

Δ′(∇mϕ) = (g′)pq̄∇p∇q̄∇mϕ= (g′)pq̄∇m(∇p∇q̄ϕ)

= ∂m log
(ω′)n

ωn
= ∂m log F,(5.9)
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while

Δ′(∇mϕ) = (g′)pq̄∇m∇q̄∇pϕ+ (g′)pq̄Rq̄pm�∇�ϕ

= ∇m log F + (h−1)prRrpm�∇�ϕ.(5.10)

Thus

Δ′ log |∇ϕ|2g ≥
2Re∇m logF∇mϕ

|∇ϕ|2g
− Λ Trh−1

+
|∇∇ϕ|2gg′ + |∇̄∇ϕ|2gg′

|∇ϕ|2g
−

|∇|∇ϕ|2g|2g′
|∇ϕ|4g

(5.11)

The first term on the right is easily bounded: first write,

(5.12)
2Re∇m logF∇mϕ

|∇ϕ|2g
≥−2|∇ log F |g

1
|∇ϕ|g

= −2nF− 1
n |∇F 1

n |g
1

|∇ϕ|g
,

and note that

|∇F 1
n |g ≤ supX×[0,∞)|∂zF (z, ϕ)

1
n | + |∇ϕ|gsupX×[0,∞)|∂ϕF (z, ϕ)

1
n |g

≡ F ′′
1 + |∇ϕ|gF ′

1,

while, using the Monge-Ampère equation and the arithmetic-geometric mean
inequality,

(5.13) nF− 1
n ≤ Trh−1.

Thus we find

Δ′ log |∇ϕ|2g ≥−
(

Λ + 2F ′
1 + 2

F ′′
1

|∇ϕ|g

)
Trh−1

+
|∇∇ϕ|2gg′ + |∇̄∇ϕ|2gg′

|∇ϕ|2g
−

|∇|∇ϕ|2g|2g′
|∇ϕ|4g

.(5.14)

The only troublesome term is the negative last term to the right. The key to
handling it is a partial cancellation with the two squares preceding it. This
cancellation is rather general, and we formalize in the following lemma:

Lemma 13. Let X be a Kähler manifold and gk̄j , g
′
k̄j

a pair of Kähler
metrics on X (not necessarily in the same Kähler class). Let ϕ ∈ C∞(X)
and define

(5.15) S = 〈∇∇ϕ,∇ϕ〉g, T = 〈∇ϕ, ∇̄∇ϕ〉g,

Then we have

(5.16)
|∇∇ϕ|2gg′ + |∇∇̄ϕ|2gg′

|∇ϕ|2g
≥

|∇|∇ϕ|2g|2g′
|∇ϕ|4g

−2Re

〈
∇|∇ϕ|2g
|∇ϕ|4g

, T

〉
g′

+2
|T |2g′
|∇ϕ|4g

.
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Proof of Lemma 13. First, we observe that for all tensors Api and Bj
on X,

(5.17) |〈A,B〉g|g′ = |Apigij̄Bj |g′ ≤ |A|gg′ |B|g.

Now ∇|∇ϕ|2g = S + T , and applying (5.17) to S and T gives:

|∇ϕ|2g · (|∇∇ϕ|2gg′ + |∇∇̄ϕ|2gg′) ≥ |S|2g′ + |T |2g′ = |∇|∇ϕ|2g − T |2g′ + |T |2g′
= |∇|∇ϕ|2g|2g′ − 2Re〈∇|∇ϕ|2g, T 〉g′ + 2|T |2g′(5.18)

This proves the inequality (5.16). �

Returning to the problem of C1 estimates, we can now formulate and
prove an important inequality due to Blocki at interior critical points of an
expression of the form

(5.19) log |∇ϕ|2g − γ(ϕ)

where γ is an arbitrary function of a real variable. We apply Lemma 13 as
follows: on the right side of (5.16), we drop the third term 2|T |2g′/|∇ϕ|4g. In
the second term, the tensor T simplifies upon replacing ∇̄∇ϕ by g′ − g, so
that T becomes Tj = (∇iϕ)gik̄g′

k̄j
−∇jϕ. We obtain

|∇∇ϕ|2gg′ + |∇∇̄ϕ|2gg′
|∇ϕ|2g

−
|∇|∇ϕ|2g|2g′

|∇ϕ|4g

≥ 2Re

〈
∇|∇ϕ|2g
|∇ϕ|2g

,
∇ϕ
|∇ϕ|2g

〉
g′
− 2Re

〈
∇|∇ϕ|2g
|∇ϕ|2g

,
∇ϕ
|∇ϕ|2g

〉
g

= 2γ′(ϕ)
|∇ϕ|2g′
|∇ϕ|2g

− 2γ′(ϕ)(5.20)

In the last line, we made use of the fact that ∇ log |∇ϕ|2g = γ′(ϕ)∇ϕ at an
interior critical point of the function log |∇ϕ|2g − γ(ϕ).

On the other hand,
(5.21)
−Δ′γ(ϕ) = −γ′(ϕ)Δ′ϕ−γ′′(ϕ)|∇ϕ|2g′ = γ′(ϕ) Trh−1−nγ′(ϕ)−γ′′(ϕ)|∇ϕ|2g′ .

Combining this with the preceding inequality, we obtain Blocki’s inequality
[B09a],

Δ′( log |∇ϕ|2g − γ(ϕ)) ≥
[
γ′(ϕ) − Λ − 2F ′

1 − 2
F ′′

1

|∇ϕ|g

]
Trh−1

− (n+ 2)γ′(ϕ) − γ′′(ϕ)|∇ϕ|2g′ + 2γ′(ϕ)
|∇ϕ|2g′
|∇ϕ|2g

.(5.22)
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The key to the desired estimate is the following choice of γ(ϕ) [PS09a,
PS09c]

(5.23) γ(ϕ) =Aϕ− 1
ϕ+ C1

where C1 is chosen to be C1 = −infXϕ+1, and A is a large positive constant.
Then

(5.24)

Aϕ− 1 ≤ γ(ϕ) ≤Aϕ, A≤ γ′(ϕ) ≤A+ 1, γ′′(ϕ) = − 2
(ϕ+ C1)3

< 0

and we obtain

Δ′( log |∇ϕ|2g − γ(ϕ)) ≥
[
A− Λ − 2F ′

1 − 2
F ′′

1

|∇ϕ|g

]
Trh−1

+
2

(ϕ+ C1)3
|∇ϕ|2g′ − C2.(5.25)

It suffices to show that, at an interior maximum point p, the function
log |∇ϕ|2g−γ(ϕ) is bounded by an admissible constant. We can assume that
|∇ϕ(p)|2g ≥ 1, otherwise the statement follows trivially from the fact that
γ(ϕ) ≥Aϕ−1, and ϕ is bounded from below. Choose A= Λ+2F ′

1+2F ′′
1 +1.

Then the preceding inequality simplifies further to

(5.26) Δ′( log |∇ϕ|2g − γ(ϕ)) ≥ Trh−1 +
2

(ϕ+ C1)3
|∇ϕ|2g′ − C2.

At an interior minimum point p, the left hand side is non-positive. This
implies that Trh−1(p) is bounded above, and hence the eigenvalues of h(p)
are bounded below by a priori constants. In view of the Monge-Ampère
equation, they are then bounded above and below by a priori constants,
since these constants are allowed to depend on supXF . This implies that
|∇ϕ|2g′ ≥ C3|∇ϕ|2g, and we obtain

(5.27) |∇ϕ|2g ≤ C4(ϕ+ C1)3.

But we can assume that log |∇ϕ(p)|2g−γ(ϕ(p)) ≥ 0, otherwise there is noth-
ing to prove. Thus γ(ϕ(p)) ≤ log |∇ϕ(p)|2g, and hence

(5.28) Aϕ(p) ≤ γ(ϕ(p)) + 1 ≤ log |∇ϕ(p)|2g + 1.

Substituting this in the previous inequality, we find

(5.29) |∇ϕ(p)|2g ≤ C4( log |∇ϕ(p)|2g + C5)3.

This implies that |∇ϕ(p)|2g is bounded by an a priori constant. The proof of
the C1 estimates is complete.
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We note that Lemma 13 has other uses. For example, the inequality
(5.16) also implies, by completing the square,

(5.30)
|∇∇ϕ|2gg′ + |∇∇̄ϕ|2gg′

|∇ϕ|2g
≥ 1

2

|∇|∇ϕ|2g|2g′
|∇ϕ|4g

.

This inequality can be used to simplify several estimates in the Kähler-Ricci
flow, including the one on the gradient of the Ricci potential.

6. A Priori Estimates: C 2 Estimates

The C2 estimates for the complex Monge-Ampère equation (5.1) are due
to Yau [Y78] and Aubin [A]. The precise statement is,

Theorem 8. Let ϕ be a C4 solution of the equation (2.1) on a compact
Kähler manifold X, with smooth boundary ∂X (possibly empty). Then

(6.1) 0 ≤ n+ Δϕ(z) ≤ C exp (A2 (ϕ(z) − infXϕ))

where the constant C depends only on an upper bound for F, for
supX×[inf ϕ,∞)|( logF )ϕ(z, ϕ)|, for the scalar curvature R, and a lower bound
for Δz log F , for ( logF )ϕϕ(z, ϕ)|∇ϕ|2, and for the lower bound Λ introduced
in (5.4) for the bisectional curvature of gk̄j.

When ∂X is not empty, the constant also depends on the boundary value
ϕb of ϕ, and on ‖Δϕ‖C0(∂X).

The conclusion still holds for z ∈X \ Z, if the equation (5.1) holds on
X \ Z, Z is a subset of X not intersecting ∂X, and ϕ(z) → +∞ as z→ Z.

The derivation of the C2 estimates is particularly transparent if we use
the formalism of the relative endomorphisms h of (5.6), as in [PSS] and
[PS09a], which we follow here. As in the proof of the C1 estimates, we
would like to estimate Trh by the maximum principle. As a preliminary, we
calculate

Δ′Trh= (g′)pq̄∂q̄∂p Trh= (g′)pq̄Tr(∇′
q̄((∇′

phh
−1)h)

= (g′)pq̄Tr(∇′
q̄(∇′

phh
−1)h) + (g′)pq̄Tr(∇′

phh
−1∇′

q̄h).(6.2)

But ∇′
q̄(∇phh

−1) = −Rm′
q̄p+Rmq̄p, as a special case of the general formula

comparing the curvatures of two Hermitian metrics on the same holomorphic
vector bundle. Here the full curvature tensors Rmq̄p and Rm′

q̄p are viewed
as endomorphisms on the holomorphic tangent bundle. Thus

(g′)pq̄Tr(∇′
q̄(∇′

phh
−1)h) = −(g′)pq̄R′

q̄p
j
kh

k
j + (g′)pq̄Rq̄p

j
kh

k
j

= −R′
m̄kg

km̄ + (h−1)pmRmpjkhkj .(6.3)

But the Ricci curvature R′
m̄k can be obtained from the Monge-Ampère

equation

(6.4) R′
m̄k =Rm̄k − ∂k∂m̄ log F (z, ϕ).
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Thus we obtain

(6.5)
Δ′Trh= −R+ Δ log F (z, ϕ) + (h−1)pmRmpjkhkj + (g′)pq̄Tr(∇′

phh
−1∇′

q̄h)

and hence

Δ′ log Trh=
−R+ Δ log F (z, ϕ) + (h−1)pmRmpjkhkj

Trh

+

{
(g′)pq̄Tr(∇′

phh
−1∇′

q̄h)
Trh

− |∇′Trh|2
(Trh)2

}
.(6.6)

A fundamental inequality due to Yau and Aubin is that the expression
between brackets is non-negative, as a consequence of the Cauchy-Schwarz
inequality. Also

(6.7)
Δ( log F (z, ϕ)) = (Δz logF )(z, ϕ) + ( logF )ϕ(Trh− n) + ( logF )ϕϕ|∇ϕ|2.

Thus

(6.8) Δ′ log Trh≥−C1(Trh)−1 − ΛTrh−1 − C2 ≥−(C1 + Λ)Trh−1 − C2

since (Trh)−1 ≤ Trh−1. Here C1, C2 depend only on an upper bound for the
scalar curvature R, a lower bound for (Δz log F )(z, ϕ), a lower bound for
(logF )ϕϕ|∇ϕ|2, and an upper bound for |(logF )ϕ|. We can write now

Δ′( log Trh−A2ϕ) ≥A2(Trh−1 − n) − (C1 + Λ)Trh−1 − C2

≥ 1
2
A2 Trh−1 − C3(6.9)

for A2 ≥ 2(C1+Λ) and C3 = nA2. At a maximum point z0 for log Trh−A2ϕ,
the eigenvalues of h−1 are then bounded from above by absolute constants.
Equivalently, the eigenvalues λi of h are bounded from below by absolute
constants, and hence, in view of the Monge-Ampère equation

∏n
i=1 λi = F ,

they are also bounded from above by constants depending also on supXF .
Thus for any z ∈X,

(6.10) log Trh(z) ≤ log Trh(z0) +A2(ϕ(z) − ϕ(z0)).

This establishes the desired C2 estimates. We note that the C0 bounds for
Δϕ imply similar C0 bounds for ∂j∂k̄ϕ by plurisubharmonicity, but not for
∇j∇kϕ.

7. A Priori Estimates: The Calabi Identity

To obtain estimates for derivatives of order higher than 2, we need the
equation to be non-degenerate. Thus we allow constants to depend now on
a lower bound for F . In particular, the C2 estimates imply that the metrics
gk̄j and g′

k̄j
are equivalent, up to such constants. We restrict ourselves to the
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equation (3.1), although the arguments can be extended to certain classes
of more general F (z, ϕ), for example F (z, ϕ) = ef(z)±ϕ.

In Yau’s solution of the Calabi conjecture [Y78], uniform bounds for
the third order derivatives ∇j∇k̄∇mϕ were derived from a generalization
to the complex case of an identity due to Calabi [Ca2]. We present here
a simplified proof of this identity which appeared in [PSS], and which is
again based on the formalism of the relative endomorphism hjk = gjp̄g′p̄k.
Norms and lowering and raising of indices are with respect to g′

k̄j
. Covariant

derivatives with respect to gk̄j and g′
k̄j

are denoted by ∇ and ∇′ respectively.

Define S = |∇∇̄∇ϕ|2 as in [Y78]. In terms of hαβ, we have (g′)αk̄∇jϕk̄β =
(∇′

jhh
−1)αβ, and thus [PSS]

(7.1) S = |∇′hh−1|2.
The point is that the Laplacian of S can now be evaluated directly in terms
of metrics and curvatures, instead of Kähler potentials. We readily find

Δ′S = (g′)mγ̄(Δ′(∇′
mhh

−1)βl(∇′
γhh

−1)β̄ �̄

+ (∇′
mhh

−1)β�Δ̄′(∇′
γhh

−1)β̄ �̄) + |∇̄′(∇′hh−1)|2 + |∇′(∇′hh−1)|2(7.2)

where |∇̄′(∇′hh−1)|2 ≡ (g′)qp̄∇′
p̄(∇′

jhh
−1)αβ∇′

q̄(∇′
mhh

−1)ᾱβ̄ , and Δ′ =
(g′)qp̄∇′

q∇′
p̄, Δ̄′ = (g′)qp̄∇′

p̄∇′
q. Commuting the ∇′

q and the ∇′
p̄ derivatives

gives,

(Δ̄′(∇′
jhh

−1))γα = (Δ′(∇′
jhh

−1))γα − (R′)γμ(∇′
γhh

−1)μα
+ (R′)μα(∇′

jhh
−1)γμ + (R′)μj(∇′

μhh
−1)γα(7.3)

while, in view of the Bianchi identity,

Δ′(∇′
jhh

−1)lm = (∇′)p̄∂p̄(∇′
jhh

−1) = −(∇′)p̄R′
p̄j
l
m + (∇′)p̄Rp̄j lm

= −∇′
j(R

′)lm + (∇′)p̄Rp̄j lm.

with Rp̄j lm = −∂p̄(glq̄∂jgq̄m). Thus we obtain the exact formula

Δ′S = |∇̄′(∇′hh−1)|2 + |∇′(∇′hh−1)|2

− ((∇′)γ̄R′
β̄α(∇′

γhh
−1)βᾱ + ((∇′)γ̄hh−1)βᾱ∇′

γR
′
β̄�

)

+ (∇′
mhh

−1)βl((R′)lρ̄((∇′)m̄hh−1)β̄ρ −R′
ρ̄β((∇′)m̄hh−1)ρl̄

+ (R′)mρ̄(∇′
ρhh

−1)β̄ l̄) + (∇′)p̄Rp̄mβl(∇′)m̄hh−1)β̄ l̄

+ ((∇′)γ̄hh−1)μ̄ᾱ(∇′)p̄Rp̄γμα.(7.4)

Since R′
p̄m =Rp̄m − ∂m∂p̄ log F , it can be viewed as known. As already

noted, the metrics gk̄j and g′
k̄j

are uniformly equivalent. Since the connection

∇′hh−1 is of order O(S
1
2 ), the above identity implies

(7.5) Δ′S ≥−C1S − C2
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where the constants Ci depend on an upper bound for Δϕ, a lower bound
for F , the C3 norm of F , and the C1 norms of the curvature Rk̄j

l
m of gk̄j .

Using the expression (6.5) for Δ′Trh, and the fact that

(7.6) (g′)pq̄Tr(∇′
phh

−1∇′
q̄h) = (g′)pq̄(g′)jk̄gmr̄∇p∇m̄∇jϕ∇q∇m̄∇kϕ≥ C3S

since the metrics gk̄j and g′
k̄j

are equivalent, we readily see that

(7.7) Δ′(S +ATrh) ≥ C4S − C5

for A sufficiently large. We can now apply the maximum principle and obtain
the following:

Theorem 9. Let ϕ be a C5 solution of the equation (5.1) on a compact
Kähler manifold (X,ω0) with smooth boundary ∂X (possibly empty). Then
that S is uniformly bounded by constants depending only on the C0 norms of
∂j∂k̄ log F and ∇j∇k̄∇m logF , a lower bound for F , the C1 norm of Rk̄j

l
m,

‖Trh‖C0(X) and, when ∂X is not empty, on ‖S‖C0(∂X).

We conclude this section by noting that most of the a priori estimates dis-
cussed here have counterparts for parabolic Monge-Ampère equations. They
were instrumental in Cao’s proof of the all-time existence for the Kähler-
Ricci flow on manifolds of definite Chern classes [Cao]. They also apply
in many situations to manifolds of general type [Ts, EGZ, ST09]. For the
modified Kähler-Ricci flow, the C3 estimates and the Calabi identity require
an additional argument [PSSW2], as well as a full use of the square terms
in (7.4) which were dropped in the proof of Theorem 9. Extensions to flows
on Hermitian manifolds can be found in [Gm, ZZ].

8. Boundary Regularity

In this section, we discuss a priori estimates for the Dirichlet problem
for the complex Monge-Ampère equation on a Kähler manifold (X,ω0) with
smooth boundary ∂X.

8.1. C 0 estimates. Let ϕb be a smooth function on ∂X, and consider
the Dirichlet problem

(8.1)
(
ω0 +

i

2
∂∂̄ϕ

)n
= F (z, ϕ,∇ϕ)ωn0 on X, ϕ= ϕb on ∂X,

where n= dimX, F is a smooth strictly positive function, and ϕ ∈ PSH
(X,ω0) ∩ C∞(X).

The fact that ϕ ∈ PSH(X,ω0) implies that n+Δϕ≥ 0. If h is the solu-
tion of the Dirichlet problem Δh= −n on X, h= ϕb on ∂X, then the com-
parison principle implies

(8.2) ϕ≤ h.
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Thus, to obtain C0 estimates, we need only a lower bound for ϕ. As shown
by Caffarelli, Kohn, Nirenberg, and Spruck [CNS, CKNS], this can be
effectively obtained if we assume the existence of a smooth subsolution ϕ of
the Dirichlet problem (9.1), that is, a smooth function ϕ satisfying

(8.3)
(
ω0 +

i

2
∂∂̄ϕ

)n
> F (z, ϕ,∇ϕ)ωn0 on X, ϕ= ϕb on ∂X.

Indeed, in the method of continuity, the problem reduces to a priori estimates
for the equation

(
ω0 +

i

2
∂∂̄ϕ

)n
= tF (z, ϕ,∇ϕ)ωn0 + (1 − t)

(
ω0 +

i

2
∂∂̄ϕ

)n
on X,

ϕ= ϕb on ∂X,(8.4)

for 0 ≤ t≤ 1. Let ϕ= ϕ for t= 0. We claim that, if a smooth solution exists
in an interval 0 ≤ t < T , then

(8.5) ϕ < ϕ in X,

for all t < T . To see this, note that the derivative in t of (ω0+ i
2
∂∂̄ϕ)n

(ω0+ i
2
∂∂̄ϕ)n is

strictly negative at t= 0. Thus (ω0 + i
2∂∂̄ϕ)n < (ω0 + i

2∂∂̄ϕ)n, and ϕ < ϕ for
t strictly positive and small, by the comparison principle. If there exists t0,
0< t0 < T , with ϕ(z0) = ϕ(z0) for some z0 ∈X, let t0 be the first such time.
By continuity, ϕ(z) ≤ ϕ(z) for all z ∈X and t= t0, so z0 is a maximum of
the function ϕ− ϕ at t0. In particular, at t0 and z0, we have ∇ϕ= ∇ϕ and

(8.6)
(
ω0 +

i

2
∂∂̄ϕ

)n
≤
(
ω0 +

i

2
∂∂̄ϕ

)n
.

But the equation (8.4) implies, again at t0 and z0,

(8.7)(
ω0 +

i

2
∂∂̄ϕ

)n
= tF (z, ϕ,∇ϕ) + (1− t)

(
ω0 +

i

2
∂∂̄ϕ

)n
<

(
ω0 +

i

2
∂∂̄ϕ

)n
,

which is a contradiction.

8.2. C 1 boundary estimates. The C1 estimates at the boundary ∂X
follow from the bounds ϕ≤ u≤ h, and the fact that all three functions have
the same boundary values. When the right hand side F (z, ϕ,∇ϕ) does not
depend on ∇ϕ, the estimates established earlier in Section 4 show that the
interior C1 estimates can be reduced to the boundary C1 estimates.
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8.3. C 2 boundary estimates of Caffarelli-Kohn-Nirenberg-
Spruck and B. Guan. The barrier constructions of Caffarelli, Kohn,
Nirenberg, Spruck [CKNS] and B. Guan [Gb] provide C0(∂X) bounds for
Δϕ, in terms of C0(X) bounds for ϕ and for ∇ϕ. The following slightly
more precise formulation of their estimates can be found in [PS09a], under
the simplifying assumption that the boundary ∂X is holomorphically flat2:

Theorem 10. Assume that ∂X is holomorphically flat, and that ϕ is a
C3 solution of the equation (8.1), with F (z) on the right-hand side. Then
we have

(8.8) sup∂X(n+ Δϕ) ≤ C sup∂X(1 + |∇ϕ|2) supX(1 + |∇ϕ|2),
for a constant C depending only on the boundary ∂X, ω0, and upper bounds
for supXF , and supX(∇ log F ), and ‖ϕ‖C0(X).

By the interior estimates of Yau and Aubin in §6, the uniform bound
for Δϕ in the whole of X can be reduced to its estimate on ∂X. Thus
the above bound implies that ‖Δϕ‖C0(X) is bounded in terms of the con-
stants indicated. By plurisubharmonicity, it follows that all the mixed par-
tials ‖∂j∂k̄ϕ‖C0(X) are bounded as well.

It is an interesting question whether bounds for the un-mixed partials
‖∇j∇kϕ‖C0 can be obtained as well without additional assumptions. Such
bounds have been obtained by Blocki [B09b] under the additional assump-
tion that the background form ω0 has non-negative bisectional curvature.

If we allow bounds to depend on a lower bound for F , then the equation
(8.3) can be viewed as uniformly elliptic, since the eigenvalues of the relative
endomorphism hjk = gjp̄g′p̄k are already known to be bounded from above,
and using the lower bound for F , they are also bounded from below. The
Monge-Ampère equation is concave, so we can then apply to the following
general theorem of the Evans-Krylov and Krylov theory, which we quote
from Chen-Wu [CW] (see also Gilbarg-Trudinger [GT] p. 482 and Q. Han
[H]). The statement is local, and can be formulated for domains with smooth
boundary in Rn:

Theorem 11. Assume that Ω ⊂ Rn has smooth boundary, and the
boundary data is smooth. Assume that F (x, u,Du,D2u) is smooth in all
variables (x, u, p, A), uniformly elliptic and concave (or convex) in D2u,
and assume that ‖u‖C1,γ(Ω̄) is bounded for some 0< γ < 1. Then there are
constants 0< α < γ and C so that, for any 0< β < α, we have

(8.9) ‖u‖C2,β(Ω̄) ≤ C.

We note that, while both the local [Ca] and the global [TrWa] C2,α

regularity is known for real Monge-Ampère equations when the right hand

2A hypersurface ∂X is holomorphically flat if, locally, there exist holomorphic coor-
dinates (z1, . . . , zn) so that ∂X is given by Re zn = 0.
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side F is in Cα, the corresponding question is still not completely resolved
in the complex case. For some recent progress on this issue, see [DZZ], and
particularly [W2], where it is shown that the solution ϕ is of class C2,α if
the right hand side F (z) is strictly positive, F

1
n ∈ Cα, and Δϕ is bounded.

9. The Dirichlet Problem for the Monge-Ampère Equation

The preceding a priori estimates imply the following classic existence
theorem due to Caffarelli, Kohn, Nirenberg, and Spruck [CKNS] and B.
Guan [Gb]:

Theorem 12. Let (X̄, ω0) be a compact Kähler manifold of dimension n,
with smooth boundary ∂X. Let F (z, ϕ) be a smooth, strictly positive function
of the variables z and ϕ, and let ϕb be a smooth function on ∂X. Consider
the Dirichlet problem

(9.1)
(
ω0 +

i

2
∂∂̄ϕ

)n
= F (z, ϕ)ωn0 , ϕ= ϕb on ∂X.

If Fϕ(z, ϕ) ≥ 0 and the problem admits a smooth subsolution, that is, a
smooth function ϕ satisfying

(9.2)
(
ω0 +

i

2
∂∂̄ϕ

)n
> F (z, ϕ)ωn0 , ϕ= ϕb on ∂X,

then the Dirichlet problem (9.1) admits a unique solution ϕ, and ϕ ∈ C∞(X̄).

Indeed, the C0 estimates of §8.1, the C2 estimates of §6 and §8.2, the
Evans-Krylov theory for higher derivatives of §8.2 can be applied to show
that the equation (8.4) admits a solution for 0 ≤ t≤ 1.

Similar results for the real Monge-Ampère equation can be found in [GS]
and [Gb98]. An extension to Hermitian manifolds can be found in [GL].

The a priori estimates show more than just the existence of a solution ϕ
for the equation (9.1): the upper bound for Δϕ does not depend on a lower
bound for F (z, ϕ). This allows an immediate application to the existence of
solutions to the Dirichlet problem for the completely degenerate, or homo-
geneous, complex Monge-Ampère equation. For this, we apply Theorem 12
to the Dirichlet problem

(9.3)
(
ω0 +

i

2
∂∂̄ϕε

)n
= ε ωn0 , ϕε = 0 on ∂X,

where ε is a constant satisfying 0< ε < 1. The function ϕ
ε
= 0 is a subsolu-

tion, and hence Theorem 12 implies the existence of a smooth solution ϕs
with Δϕs bounded uniformly in ε. Thus a subsequence of the functions ϕε
converges in C1,α to a C1,α solution of the equation (9.4) for all 0< α < 1.
We obtain in this manner the following theorem, whose present formulation
is due to Blocki [B09b] and which generalizes the theorem of Chen [C00]
stated further below as Theorem 24:



COMPLEX MONGE-AMPÈRE EQUATIONS 357

Theorem 13. Let (X,ω0) be a compact Kähler manifold with smooth
boundary ∂X. Then the Dirichlet problem

(9.4)
(
ω0 +

i

2
∂∂̄ϕ

)n
= 0 on ∂X, ϕ= 0 on ∂X

admits a unique solution, which is of class C1,α(X̄) for each 0< α < 1.

In some applications, as in the problem of geodesics in the space of
Kähler potentials described below in Section §13, it is actually necessary to
consider equations of the form (9.4), but with the Kähler form ω0 replaced
by a smooth background (1, 1)-form ω which is closed, non-negative, but
not strictly positive. We discuss a specific situation where the existence
and regularity of solutions can still be established by the a priori estimates
that we described in sections §5, §6, §8.2, and §8.3 (in fact, some of the C1

estimates given in §5 were designed for that purpose).
Assume that ω is a smooth, closed, and non-negative (1, 1)-form, and

that there exists an effective divisor E, not intersecting ∂X, with the line
bundle O(E) admitting a metric K satisfying

(9.5) ωK ≡ ω + δ
i

2
∂∂̄ logK > 0.

for some strictly positive constant δ. Then we have the following theorem
[PS09a]:

Theorem 14. Let X be a compact complex manifold with smooth bound-
ary ∂X. Assume that ω is a smooth non-negative (1, 1)-form, E is an effec-
tive divisor not intersecting ∂X, K is a metric on O(E), with ωK satisfying
the Kähler condition (9.5). Then the Dirichlet problem

(9.6)
(
ω +

i

2
∂∂̄ϕ

)n
= 0 on X, ϕ= 0 on ∂X

admits a unique bounded solution. The solution is Cα(X̄ \ E) for any 0<
α < 1. If ∂X is holomorphically flat (in the sense that there exists holo-
morphic coordinates zi with ∂X = {Re zn = 0} locally), then the solution is
C1,α(X̄\E) for any 0< α < 1.

We sketch the proof. Let

(9.7) ωs = (1 − s)ω0 + sωK .

For 0< s < 1, ωs is strictly positive definite. Consider the equation

(9.8)
(
ωs +

i

2
∂∂̄ϕs

)n
= Fs(z)ωns on X, ϕs = 0 on ∂X,

for some smooth functions Fs > 0 satisfying supXFs < 1, to be specified more
completely later. By Theorem 12, this equation admits a smooth solution
in PSH(X,ωs) for each s > 0. Since the eigenvalues of ωs are bounded from
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above with respect to the Kähler form ωK , the ωs-plurisubharmonicity of
ϕs implies that ΔωKϕs ≥−C for a uniform constant C. The arguments
for C0 estimates in §8.1 imply that the norms ‖ϕs‖C0(X) are uniformly
bounded in s.

To obtain C1 estimates on compact subsets of X \ E, we choose Fs as
follows. First, define

(9.9) ω̂s = ωK + s
i

2
∂∂̄ logKδ.

Then ω̂s is uniformly bounded from below for all s sufficiently small. In
particular, its curvature tensor is uniformly bounded together with all its
derivatives. On the other hand, since ω̂s can also be expressed as

(9.10) ω̂s = ωs +
i

2
∂∂̄ logKδ.

the equation (9.8) can be rewritten as

(9.11)
(
ω̂s +

i

2
∂∂̄(ϕs − δ log ‖ψ‖2

K)
)n

= F̂sω̂
n
s ,

with ψ a holomorphic section of O(E), ‖ψ‖2
K = ψψ̄K, and F̂sω̂

n
s = Fsω

n
s .

Choose Fs to be constants tending so fast to 0 that limsups→0‖Fs‖C0(X) = 0.
The desired uniform bounds for ∇ϕs on compact subsets of X \ E follow
from the C1 estimates of §5. With these estimates, it is then easy to show
the existence of a subsequence of ϕs converging in Cα on compact subsets
of X \ E to a solution of (9.6).

10. Singular Monge-Ampère Equations

In the seminal paper [Y78], Yau not only solved the Calabi conjecture,
but he also started the study of complex Monge-Ampère equations in more
general settings. These include settings when the right hand side may have
zeroes or poles, or when the manifold X is not compact and one looks for a
complete Kähler-Einstein metric, or when X is quasi-projective. We recall
briefly some of these classical results below, before discussing some more
recent developments. In these more recent developments, the underlying
manifold may have singularities, and/or the background form ω0 in the
Monge-Ampère equation may be degenerate.

10.1. Classic works. The classical literature on singular Monge-
Ampère equations and singular Kähler-Einstein metrics is particularly rich,
as different equations are required by different geometric situations. We shall
restrict ourselves to describing three results.

First, we consider the case when the right hand side of the equation has
zeroes and/or poles. Let (X,ω0) be a compact Kähler manifold. Let {Li}Ii=1
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be a family of holomorphic line bundles over X. For each i, let si be a
holomorphic section of Li and hi a smooth hermitian metric on Li. Let

(10.1) uk =
I∑
i=1

ak,i|si|
2αk,i

hi
, k = 1, . . . ,K, vl =

I∑
i=1

bl,i|si|
2βl,i

hi
l = 1, . . . , L,

where ak,i bl,i, αk,i and βl,i are nonnegative numbers, and consider the fol-
lowing Monge-Ampère equation

(10.2)
(
ω0 +

i

2
∂∂̄ϕ

)n
=
u1u2 . . . uK
v1v2 . . . vL

ef(z)ωn0 ,

where f = f(z) is a smooth function on X,. The following theorem is due to
Yau [Y78]:

Theorem 15. Assume the following two conditions:
(1) (u1u2 . . . uK)(v1v2 . . . vL)−1ef ∈ Ln(X) and∫

X

u1u2 . . . uK
v1v2 . . . vL

ef ωn0 =
∫
X
ωn0 ,

(2) there exists ε > 0 such that

(v1v2 . . . vL)−ε|Δ log (v1v2 . . . vL)|(n−1)/n ∈ L1(X \D),

where Δ is the Laplacian with respect to ω0 and D is the union of the zeros
of vl, l = 1, . . . , L.

Then there exists a bounded ω0-psh function ϕ solving the equation
(10.2). Furthermore, ϕ is smooth outside the zeros of uk and vl, for k =
1, . . . ,K and l = 1, . . . , L, and ϕ is unique up to a constant.

In particular, if for each k and l, uk = aik |sik |
2αik
hik

and vl = bil |sil |
2βil
hil

for
some 1 ≤ ik ≤K and 1 ≤ il ≤ I, the second assumption in Theorem 15 holds
automatically. The first assumption for Theorem 15 is that the right hand
side of the equation (10.2) is in Ln(X). Thus the theorem on C0 estimates
of Kolodziej can also be applied here, and we can obtain in this manner a
new proof of Theorem 15.

The next important geometric situation is that of open complex mani-
folds. There one is interested in complete Kähler-Einstein metrics of negative
curvature. In [CY80], Cheng and Yau gave effective criteria for the exis-
tence of such metrics. In particular, they proved the existence of a complete
Kähler-Einstein metric of negative scalar curvature on bounded, smooth,
strictly pseudoconvex domains in Cn. This corresponds to solving Monge-
Ampère equations of the form (2.1), with the solution tending to ∞ at
the boundary. This also allowed Cheng and Yau to obtain essentially sharp
boundary regularity results for the Dirichlet problem for the closely related
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equation J(u) = 1 of Fefferman [F76]. It was subsequently shown by Mok
and Yau [MY83] that any bounded domain of holomorphy admits a com-
plete Kähler-Einstein metric.

A third important class of non-compact manifolds is the class of quasi-
projective manifolds. Let M =M \D be a quasi-projective manifold, where
M is a projective manifold and D is a smooth ample divisor on M . The
Calabi conjecture for quasi-projective manifolds asserts that, for any smooth
real valued (1, 1)-form η ∈ c1(K−1

M
⊗ [D]−1), there exists a complete Kähler

metric on M with its Ricci curvature equal to η|M . This was proved by Tian
and Yau in [TY86, TY90, TY91].

These works required at that time many new technical tools which
remain useful to this day. They include the notion of bounded geometry,
the Cheng-Yau Hölder spaces with weights, and particularly the observa-
tion repeatedly stressed in these works that the arguments are almost local
in nature, and that the manifold can be allowed singularities, as long as the
metric admits a non-singular resolution by a local holomorphic map.

10.2. Monge-Ampère equations on normal projective varieties.
The original theorems of Yau [Y78] and Yau [Y78] and Aubin [A] estab-
lish the existence of Kähler-Einstein metrics on a Kähler manifold X when
KX has zero or positive first Chern class. We discuss now one of the new
developments in the theory of complex Monge-Ampère equations, namely an
extension of these results to normal projective manifolds. Normal projective
manifolds are a very specific class of manifolds with singularities. For the
convenience of the reader, we summarize here some of their basic definitions
and properties.

Let X be a subvariety of CPN. A function on a neighborhood of a
point z0 ∈X is holomorphic if it extends to a holomorphic function on a
neighborhood of z0 ∈ CPN . Let Xsing be the smallest subset of X with
X \ Xsing a complex manifold. Then X is said to be normal if for any
z0 ∈Xsing, there is a neighborhood U so that any bounded holomorphic
function on U \Xsing extends to a holomorphic function on U .

A plurisubharmonic function on U ⊂X is by definition the restriction
to X of a plurisubharmonic function in a neighborhood Û of U in CPN . By
a theorem of Fornaess and Narasimhan [FN], if X be a normal projective
variety, and a function ϕ is plurisubharmonic on U \Xsing and is bounded,
then ϕ is plurisubharmonic on U .

A line bundle L on X is an ample Q-line bundle if mL is the restriction
to X of O(1) for some m ∈ Z+. More generally, a line bundle L̃→ X̃ is an
ample Q-line bundle if there is an imbedding of X̃ into projective space,
with the pull-back of O(1) equal to mL̃ for some m ∈ Z+.

We can define now the notion of Monge-Ampère measure on a normal
projective variety X. Let dimX = n, and let π : X̃ →X be a smooth resolu-
tion of singularities of X. Let L̃= π∗L for any ample Q-line bundle L→X.
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By definition, mL=O(1) for some m ∈ Z+ and so

mL̃= π∗O(1).

Let mω be the restriction of the Fubini-Study metric on CPM to X and
let ω̃ = π∗ω. For any bounded ω-plurisubharmonic function ϕ on X, we let
ϕ̃= π∗ϕ. The measure (ω̃+ i

2∂∂̄ϕ̃)n is a well-defined Monge-Ampère measure
on X̃. Since ϕ̃ is bounded and ω̃-plurisubharmonic, by the work of Bedford
and Taylor [BT76], it puts no mass on the exceptional locus π−1(Xsing).
Furthermore,

(10.3)
∫
X\Xsing

(
ω +

i

2
∂∂̄ϕ

)n
=
∫
X̃

(
ω̃ +

i

2
∂∂̄ϕ̃

)n
=
∫
X̃
ω̃n <∞.

Therefore, (ω̃ + i
2∂∂̄ϕ̃)n can be pushed forth to a measure on X and it

coincides with the trivial extension of (ω + i
2∂∂̄ϕ)n from X\Xsing to X. In

particular, the Monge-Ampère measure (ω+ i
2∂∂̄ϕ)n on X does not depend

on the resolution of singularities.
Let Ω be a smooth real valued semi-positive (n, n)-form on X\Xsing and

let Ω̃ = π∗Ω. We consider the following Monge-Ampère equation on X

(10.4)
(
ω +

i

2
∂∂̄ϕ

)n
= eαϕ+FΩ,

where α= −1, 0, 1 and F is a real valued function onX. This Monge-Ampère
equation can be lifted to a Monge-Ampère equation on X̃ if the solution ϕ
is bounded and ω-plurisubharmonic, i.e., ω + i

2∂∂̄ϕ≥ 0. More precisely, let
ϕ̃= π∗ϕ, and consider the Monge-Ampère equation on X̃

(10.5)
(
ω̃ +

i

2
∂∂̄ϕ̃

)n
= eαϕ̃+F̃ Ω̃,

where F̃ = π∗F . If ϕ is a bounded ω-plurisubharmonic solution of equa-
tion (10.4), then ϕ̃= π∗ϕ is bounded and ω̃-plurisubharmonic, and it solves
equation (10.5). Now let us assume that ϕ̃ is a bounded ω̃-plurisubharmonic
solution of the equation (10.5). Any fibre of π over a singular point of X is
connected by Zariski’s connectedness theorem, and ω̃ = 0 when restricted to
the fibre. Therefore ϕ̃ is constant along the fibre because it is plurisub-
harmonic and bounded. Hence ϕ̃ descends to a function ϕ on X. The
function ϕ is bounded and ω-plurisubharmonic on X\Xsing, and so it is ω-
plurisubharmonic function on X because X is normal. We have thus shown

Lemma 14. The equation (10.4) admits a bounded ω-plurisubharmonic
solution ϕ if and only if the equation (10.5) admits a bounded ω̃-plurisub-
harmonic solution ϕ̃.

Therefore, we can solve equation (10.5) on a smooth manifold X̃ instead
of solving equation (10.4) on a singular varietyX. Furthermore the construc-
tion is resolution independent because given any two resolutions, we can
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move the measures to the same resolution and apply the uniqueness prop-
erty of Monge-Ampère equations there. So we obtain the following lemma,
which follows immediately from Theorem 5:

Lemma 15. Let Θ be a smooth volume form on X̃. Then the equation
(10.4) admits a bounded and ω-plurisubharmonic solution for α= 0, if e

F̃ Ω̃
Θ ∈

Lp(X̃) for some p > 1.

In fact, Lemma 15 also holds for α= 1 by [EGZ]. We can apply it now
to solving Kähler-Einstein equations on singular varieties. Recall some basic
definitions for canonical models of general type:

Definition 1. (a) A projective variety X is said to be a canonical model
of general type if X is a normal and the canonical divisor KX is an ample
Q-line bundle.

(b) Let X be a canonical model of general type. A form Ω is said to be
a smooth volume form on X if for any point z ∈X, there exists an
open neighborhood U of z such that

Ω = fU (η ∧ η) 1
m ,

where fU is a smooth positive function on U and η is a local gen-
erator of mKX on U . In particular, any smooth volume Ω induces
a smooth hermitian metric h= Ω−1 on KX .

(c) X is said to be a canonical model of general type with canonical
singularities if for any resolution of singularities π : X̃ →X and
any smooth volume form Ω on X,

(10.6) Ω̃ = π∗Ω

is a smooth real valued (n, n)-form on X̃.

We can now describe some recent results of Eyssidieux, Guedj, and Zeri-
ahi [EGZ] on the existence of Kähler-Einstein metrics of zero or negative
curvature on manifolds with canonical singularities. As above, let π : X̃ →X
be a resolution of singularities, let mω be the restriction of the Fubini-Study
metric of CPM on X, and let Ω be a smooth volume form Ω on X such that

(10.7)
i

2
∂∂̄ log Ω = ω.

The following theorem on Kähler-Einstein metrics with negative curvature
was proved in [EGZ], using the C0 estimates of Theorem 5:

Theorem 16. Let X be a canonical model of general type with canonical
singularities. Then there exists a unique bounded and ω-plurisubharmonic
function ϕ solving the following Monge-Ampère equation on X

(10.8)
(
ω +

i

2
∂∂̄ϕ

)n
= eϕΩ.
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In particular, on X\Xsing, ωKE = ω + i
2∂∂̄ϕ is smooth and

Ricci(ωKE) = −ωKE .

Next we discuss the case of zero curvature. Recall that X is said to be a
Calabi-Yau variety if X is a projective normal variety and mKX is a trivial
line bundle on X for some m ∈ Z+. Since mKX is a trivial line bundle on
X, there exists a constant global section η of mKX . Let ΩCY = (η ∧ η) 1

m .
Then Ω is a smooth volume form on X. Furthermore, i

2∂∂̄ log ΩCY = 0.

Definition 2. A Calabi-Yau variety X is said to be a Calabi-Yau variety
with canonical singularities if for any resolution of singularities π : X̃ →X,

Ω̃CY = π∗ΩCY

is a smooth real valued (n, n)-form on X̃.

Let X be a Calabi-Yau variety with canonical singularities. We choose
the smooth Kähler form ωL ∈ c1(L) induced from the Fubini-Study metric
on CPN in the same way as in the earlier discussion. Then we have the
following theorem due to [EGZ]

Theorem 17. Let X be a Calabi-Yau variety with canonical singular-
ities. Then for any ample Q-line bundle L, there exists a unique bounded
and ωL-plurisubharmonic function ϕ solving the following Monge-Ampère
equation on X

(10.9)
(
ωL +

i

2
∂∂̄ϕ

)n
= cLΩCY ,

where cL
∫
X ΩCY =

∫
X ω

n
L. In particular, on X\Xsing, ωCY = ωL + i

2∂∂̄ϕ is
smooth and

(10.10) Ricci(ωCY ) = 0.

10.3. Positivity notions for cohomology classes. Another exten-
sion of the theory is the existence of Kähler-Einstein metrics, which are
then necessarily singular, on manifolds X whose first Chern class c1(KX) is
neither zero nor positive definite.

To discuss the classes which are allowed, we recall briefly the definitions
of some basic cones in the space of cohomology classes. They were introduced
by Demailly [D1] and play an important role in his differential geometric
approach to positivity problems in algebraic geometry. Let X be a compact
Kähler manifold and α ∈H1,1(X,R) be a cohomology class. Then

(10.11) α ∈ {θ : closed (1, 1) forms}
{θ : exact (1, 1) forms} =

{T : closed (1, 1) currents}
{T : exact (1, 1) currents}
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We say α is pseudo-effective (psef) if there is a closed (1, 1) current T ∈ α
such that T ≥ 0. We say α is big if there exists T ∈ α with T ≥ εω for some
ε > 0 and some Kähler form ω.

Let PSEF(X) be the set of psef classes and BIG(X) the set of big classes.
Then we clearly have BIG(X) ⊆ PSEF(X). Moreover, PSEF(X) is a closed
convex cone in the vector space H1,1(X,R) and BIG(X) is an open convex
cone. If T is psef then T + εω is big for all ε > 0. This shows that BIG(X)
is precisely the interior of PSEF(X).

Let KAH(X) be the set of Kähler classes in H1,1(X,R). Thus α ∈
KAH(X) if and only if there exists a Kähler form ω ∈ α. Thus KAH(X)
is an open cone and we clearly have KAH(X) ⊆ BIG(X). This inclusion
may be proper. Let NEF(X) be the closure of KAH(X). An element of
α ∈ NEF(X) is called a nef class. In summary,

(10.12)
BIG(X) ⊆PSEF(X)

∪ ∪
KAH(X)⊆ NEF(X)

The cones on the left are open and those on the right are their closures.
Let

(10.13) T (X,α) = {T ∈ α : T a closed (1, 1) current, T ≥ 0}
Then α is pseudo-effective (psef) iff T (X,α) �= ∅. We endow T (X,α) with
the weak topology, so that Tj ⇀T iff

∫
X Tj ∧ η→

∫
X T ∧ η for all smooth

(n− 1, n− 1) forms η. The space T (X,α) is compact in the weak topology.
Fix a smooth volume form dV on X and let L1(X) = L1(X, dV ). For

θ ∈ α smooth, let PSH1(X, θ) = {ϕ ∈ L1(X) : θ + i
2∂∂̄ϕ≥ 0} endowed with

the L1(X) topology. The map ϕ �→ θ + i
2∂∂̄ϕ defines PSH1(X, θ)/R →

T (X, [θ]) a homeomorphism of compact topological spaces. The map sup :
PSH1(X, θ) → R is continuous (this is Hartogs’ lemma). Thus we have a
homeomorphism

(10.14) {ϕ ∈ PSH1(X, θ) : supϕ= 0}→ T (X, [θ]).

Let X be a compact Kähler manifold and α ∈H1,1(X,R) a big class.
Fix θ ∈ α, a closed smooth (1, 1) form. Then, by definition, there exists
ϕ ∈ PSH1(X, θ) such that T = θ + i

2∂∂̄ϕ≥ εω for some Kähler metric ω
and some ε > 0. Demailly’s theorem says that we may choose ϕ such that ϕ
has analytic singularities. This means that locally on X,

(10.15) ϕ= c log

⎛
⎝ N∑
j=1

|fj |2
⎞
⎠+ ψ

where c > 0, fj are holomorphic and ψ is smooth. In particular, the set
Amp(θ) where T is smooth is a Zariski open subset of X.

Let X and θ be as above. Thus θ is big, but it general it will not be
positive. We define Vθ ∈ PSH(X, θ), the extremal function of θ (the analogue
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of the “convex hull”) by

(10.16) Vθ(x) = sup{ϕ(x) : ϕ ∈ PSH1(X, θ), sup
X
ϕ≤ 0 }

Thus Vθ = 0 if θ is a Kähler metric.
The extremal function Vθ has a number of nice properties. To describe

them, and because Vθ is not bounded in general, we need to extend the
definition of Monge-Ampère measures. We shall use the definition that does
not charge pluripolar sets, and which can be described as follows.

Let T1, . . . , Tp be closed positive (1, 1) currents. For any z ∈M there
there exists an open set U containing z, and pluri-subharmonic functions
u1, . . . , uj , for which Tj = i

2∂∂̄uj . Let Uk = ∩j{uj >−k} ⊆ U . Then the non-
pluripolar product 〈T1 ∧ · · · ∧ Tp〉 is the closed (p, p)-current defined by
[BEGZ]

(10.17) T1 ∧ · · · ∧ Tp|U = lim
k→∞

1Uk

p∧
j=1

i

2
∂∂̄max(uj ,−k)

where 1Uk
denotes the characteristic function of Uk. The non-pluripolar

product coincides with the Bedford-Taylor definition of T1 ∧ · · · ∧ Tp if the
potentials are all bounded. We still denote T ∧ · · · ∧ T by Tn. We can now
describe the properties of extremal functions:

Theorem 18. Let X be a compact Kähler manifold and θ a big (1, 1)
form. Let Vθ be the extremal function of θ. Then

(1) Vθ ∈ PSH1(X, θ)
(2) Vθ has minimal singularities: if ϕ ∈ PSH1(X, θ) then ϕ≤ Vθ + C

for some C ≥ 0.
(3) On the set Amp(θ) Vθ is continuous, and i

2∂∂̄Vθ is locally bounded.
(4) (θ + i

2∂∂̄Vθ)
n has L∞ density with respect to dV . In particular, if

ϕ ∈ PSH1(X, θ) then
∫
X |ϕ| (θ + i

2∂∂̄Vθ)
n <∞.

(5) Vθ is maximal with respect to θ, that is

(10.18)
(
θ +

i

2
∂∂̄Vθ

)n
= 1{Vθ=0}θ

n

10.4. Prescribing the Monge-Ampère measure. If [θ] is a big class
and T1, . . . , Tn ∈ T (X, [θ]) then

∫
X〈T1 ∧ · · · ∧ Tn〉 ≤

∫
X [θ]n. If we have T1 =

· · ·Tn = T = θ + i
2∂∂̄ϕ and if equality holds, we say T has full mass. Define

T 0(X, θ) = {T ∈ T (X, θ) : T has full mass}

T 1(X, θ) =
{
T = θ +

i

2
∂∂̄ϕ ∈ T 1(X,ω) :

∫
X
|ϕ|
(
θ +

i

2
∂∂̄ϕ

)n
<∞

}
(10.19)
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Let MX be the space of probability measures on X, let M0
X consist of

those measures which take no mass on pluri-polar sets, and let M1
X consist

of those measures of “finite energy” (to be defined below). Then it has been
shown by Guedj and Zeriahi [GuZe] and by Berman, Boucksom, Guedj, and
Zeriahi [BBGZ] respectively that the map T �→ Tn defines bijections:

(10.20) T 0(X,ω) →M0
X , T 1(X,ω) →M1

X .

10.5. Singular KE metrics on manifolds of general type. Before
stating the results, it is convenient to recast the Kähler-Einstein equation
for negative curvature in a slightly different form from usual. Let X be a
compact Kähler manifold, and let KX be its canonical bundle. If c1(KX) is
a Kähler class, then the Aubin-Yau theorem says that for any Kähler metric
ω there is a unique smooth ψ ∈ PSH(X,−Ricci(ω)) such that

(10.21)
(
−Ricci(ω) +

i

2
∂∂̄ψ

)n
= eψωn

To put this in the usual form, let η = −Ricci(ω) + i
2∂∂̄ψ. Then η > 0 and

(10.22) Ricci(ω) −Ricci(η) =
i

2
∂∂̄ψ =Ricci(ω) + η

which implies Ricci(η) = −η.
Now assume that c1(K) is big and nef. Then Tsuji [Ts] proved that

there is a subvariety Z ⊆X and a smooth function ψ ∈ C∞(X\Z) such
that η = −Ricci(ω) + i

2∂∂̄ψ > 0 and such that (10.21) holds on X\Z. Thus
Ricci(η) = −η on X\Z.

Tian-Zhang [TZ] proved that ψ extends to a locally bounded ψ ∈ PSH
(X,−Ricci(ω)) satisfying

∫
(−Ricci(ω) + i

2∂∂̄ψ)n =
∫

(−Ricci(ω))n (i.e., ψ
has full MA measure) and that (10.21) holds on all of X.

Now assume that c1(X) is big. Then [EGZ] showed that there is a unique
ψ ∈ PSH1(−Ricci(ω)) of full Monge-Ampère measure such that (10.21)
holds. The [EGZ] proof uses the existence of canonical models. Tsuji
described an interesting approach to proving the existence of a singular
Kähler-Einstein metric without resorting to the existence of a canonical
model in [Ts]. Then Song-Tian [ST09] gave an independent proof, via the
Kähler-Ricci flow. A new proof was also given by [BEGZ] which used a
generalized comparison principle. More recently, a proof using variational
methods was given in [BBGZ].

11. Variational Methods for Big Cohomology Classes

A basic property of the Monge-Ampère determinant is that it can be
interpreted as the variational derivative of a concave energy functional. In
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fact, if ω is a smooth Kähler form on a compact complex manifold X, and
we set

(11.1) Eω(ϕ) =
1

n+ 1

n∑
j=0

∫
X
ϕ

(
ω +

i

2
∂∂̄ϕ

)j
∧ ωn−j

for ωϕ ≡ ω + i
2∂∂̄ϕ > 0. Then for smooth and small variations δϕ, we have

(11.2) δE =
∫
X
δϕωnϕ and δ2E = −n

∫
X
dδ(ϕ) ∧ dcδϕ ∧ ωn−1

ϕ

This shows that δE
δϕ = ωnϕ and that E is concave.

The functional E(ϕ) is actually equal to E(ϕ) = −(J(ϕ) −
∫
X ϕω

n),
where

(11.3) J(ϕ) =
n−1∑
j=0

n− j

n+ 1

∫
X
i∂ϕ ∧ ∂̄ϕ ∧ ωn−1−j

ϕ ∧ ωj .

This relation will play an important role below. The functional E is some-
times denoted by −(n+1)V F 0 in the literature, where F 0 is the Aubin-Yau
energy functional.

The goal of this section is to describe some recent work of Berman,
Boucksom, Guedj, and Zeriahi [BBGZ] taking this variational viewpoint
further. Their approach, which works in the generality of big cohomology
classes, allows one to use direct methods of the calculus of variations to
obtain solutions to a variety of Monge-Ampère equations.

11.1. Finite dimensional motivation. We start with a finite dimen-
sional model for the method introduced in [BBGZ]. Let P ⊆ Rn be a con-
vex domain and E : P → R be a strictly concave smooth function. Then
∇E : TP → R where TP = P × Rn is the tangent bundle of P . In other
words, ∇E : P → (Rn)∗ where (Rn)∗ is the dual of Rn. Since E is strictly
concave, ∇2E(ϕ) : Rn → (Rn)∗ is strictly negative definite for all ϕ ∈ P and
∇E is a diffeomorphism of P onto a convex domain M⊆ (Rn)∗.

More generally, suppose E is concave (but not strictly concave) and that
there is a flat direction, that is, an element ϕ0 ∈ P such that E(ϕ+ tϕ0) =
E(ϕ)+ t for all t ∈ R and let T 1 = P/(R ·ϕ0) which we view as a domain in
the vector space W = Rn/(R ·ϕ0). Then ∇E : P → (Rn)∗ is invariant under
R · ϕ0 so

(11.4) ∇E : T 1 →M0

where M0 ⊆ (Rn)∗ is the n− 1 dimensional affine space

(11.5) M0 = {μ ∈ Rn : 〈ϕ0, μ〉 = 1} = the elements of (Rn)∗ of full mass

Now we want to impose the following condition: E is strictly concave in every
direction other than R ·ϕ0. There are several equivalent ways of making this
condition precise:
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Lemma 16. Let E : P → R be a concave function and assume that E(ϕ+
tϕ0) = E(ϕ) + t for all t ∈ R. Then the following conditions are equivalent

(1) The map t �→ E((1 − t)ψ0 + tψ1) is strictly concave whenever
ψ1 − ψ0 /∈ R · ϕ0.

(2) The negative definite map ∇2E(ϕ) :W →W ∗ is strictly negative
definite if ϕ ∈ T .

(3) The map ∇E : T 1 →M is a diffeomorphism where M⊆M0 is the
image of ∇E.

(4) Fix ψ0 ∈ T 1, let μ0 = ∇E(ψ0), L0(ϕ) = ϕ ·μ0 and define J0 : T 1 →
[0,∞) by

(11.6) Jψ0(ϕ) = E(ψ0) + ∇E(ϕ0) · (ϕ− ψ0) − E(ϕ) = L0(ϕ) − E(ϕ) + C

Then J0 = Jψ0 : T 1 → [0,∞) is strictly convex.

The proof of the lemma is easy and will be omitted. Henceforth, we shall
assume that E satisfies any one of the equivalent conditions enumerated in
Lemma 1.

The function J0 is proper so the sets {J0 ≤ C} ⊆ T 1 are compact and
exhaust T 1. In the case T 1 is bounded, we can define T to be the closure of
T 1 and extend J0 : T → [0,∞] as a continuous map between compact spaces.

For μ ∈M0 we let

(11.7) E∗(μ) = sup
ϕ∈T

(E(ϕ) − ϕ · μ) = sup
ϕ∈T

Fμ(ϕ) ∈ (−∞,∞]

We let M1 ⊆M0 be the elements with finite energy :

M1 = {μ ∈M0 : E∗(μ)<∞}

If μ ∈M then, by definition, there exists ϕ ∈ T 1 such that ∇E(ϕ) = μ and
hence ϕ is a critical point of Fμ. Since Fμ is strictly concave we conclude
that Fμ achieves its maximum at ϕ and thus

(11.8) M⊆M1 ⊆M0

Conversely, if μ ∈M1 then supFμ <∞ and μ ∈M if and only if Fμ achieves
its sup (i.e. there exists ϕ ∈ T 1 such that Fμ(ϕ) = E∗(μ)).

The inclusion M⊆M1 may be strict. We give two simple examples:
Example A. Suppose T = R and E : R → R is smooth and concave, and

E(x) = log x− x for x large. Then M = M1 = (−1, 1). So for example A,

(11.9) M = M1

Example B. Suppose T = R and E : R → R is smooth and convex, and
E(x) = −x − 1

x for x large. Then M = (−1, 1) but M1 = [−1, 1]. Thus in
example B property (11.9) fails.
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There is a simple criterion for guaranteeing that (11.9) holds. Suppose J :
T → [0,∞) is a proper function and let μ ∈M1. We say that Fμ is coercive
with respect to J if there exists ε, C > 0, depending on μ, such that

(11.10) Lμ − E = −Fμ ≥ εJ − C = ε(Lμ0 − E) − C ′

We say F is J-proper if −Fμ →∞ as J →∞. Clearly J-coercive implies
J-proper. Note that (11.10) holds trivially if ε= 0: If μ0 = ∇E(ψ0) then
J0(ϕ) = Fμ0(ψ0) − Fμ0(ϕ) ≥ 0.

Lemma 17. Let μ ∈M1 and assume that Fμ is J-proper for some J .
Then μ ∈M.

To see this, we fix ϕ0 ∈ T and let A= J(ϕ0)+1. Then the set TA = {J ≤
A} is compact so there exists ϕ̂ such that Fμ(ϕ̂) ≥ Fμ(ϕ) for all ϕ ∈ TA and
hence for all ϕ ∈ T . Thus Fμ achieves its sup at ϕ̂ which implies ∇Fμ(ϕ̂) = 0,
that is, ∇E(ϕ̂) = μ. This shows μ ∈M.

In order to apply Lemma 17 we need to find an appropriate J . It turns
out that if Fμ is J-coercive for some J , then it is coercive for the function
J0 constructed in (11.6):

Lemma 18. Let μ ∈M1. Then the following are equivalent

(1) μ ∈M
(2) Fμ is J0-coercive.
(3) Fμ is J-coercive for some exhaustion function J .
(4) Fμ is J-proper for some exhaustion function J .

Proof. We need only show that 1) implies 2). Let μ ∈M. We must
show that for some ε, C > 0 the following holds.

(11.11) −Fμ(ϕ) ≥ ε(Fμ0(ψ0) − Fμ0(ϕ)) − C

which we rewrite as

(11.12) ϕ · με − E(ϕ) = ϕ · (μ− εμ0)
1 − ε

− E(ϕ) ≥ εFμ0(ψ0) − C

1 − ε

But M is an open set so for ε sufficiently small, με ∈M which implies
ϕ · με − E(ϕ) is bounded below. �

Now fix ψ0 ∈ T and define J0 as in (11.6).

Lemma 19. M = M1 if and only if Fμ is J0-coercive for all μ ∈M1.

Now we record a condition on J0 that guarantees Fμ is coercive for all μ.
This key condition will hold in the infinite dimensional setting and is used
in the proof of coerciveness.
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Lemma 20. Suppose that J0 grows quadratically or, more generally, sup-
pose that

(11.13) |J0(tϕ)| ≤ C(tp|J(ϕ)| + 1) if t≤ 1

for some p > 1. Then Fμ is J0-coercive for all μ ∈M1.

Observe that we can rewrite the coercive condition (11.10) as follows:

(11.14) Lμ0 − Lμ ≤ (1 − ε)J0 + C1

Now (11.13) implies that for arbitrary ϕ ∈ T , we have ϕp = ϕ
|J(ϕ)|1/p ∈ {J0 ≤

C2} which is a compact set. This implies

(11.15)
|Lμ0 − Lμ|(ϕ)
|J0(ϕ)|1/p = |Lμ0 − Lμ|(ϕp) ≤ C3

which clearly implies (11.14).

11.2. The infinite dimensional setting. We describe the work of
[BBGZ]. Let θ be a big (1, 1) form on a compact Kähler manifold X. Let
P = PSH1(X, θ) and T = T (X, θ) and M′ the space of positive metrics
on X. Our goal is to define a concave function E : PSH1(X, θ) → R with
the property: ∇E : P →M′ is the map ϕ �→MA(ϕ), where MA(ϕ) is the
Monge-Ampère measure, defined by the non-pluripolar product. Moreover,
we will show that if ϕ0 = 1, the constant function, then ϕ0 is a flat direction
for E and T is a complement to Rϕ0 in P . Then, as in the finite dimen-
sional case, we obtain a map ∇E : T →M′. Also, in analogy with the finite
dimensional case, we define the function Fμ(ϕ) = E(ϕ)−

∫
X ϕdμ for μ ∈M′.

Our goal is to prove (11.9) and this will be done by establishing (11.10) for
a suitably chosen J .

The functional E(ϕ) has been defined in (11.1) for θ = ω a Kähler
form, and ϕ a smooth form in PSH1(X, θ). To extend it to θ a big form
and ϕ ∈ PSH1(X, θ), we proceed as follows: Define E(ϕ) = inf {E(ψ) : ψ ∈
PSH1(X,ω) ∩ C∞(X) and ψ ≥ ϕ}.

Now let θ be a big (1, 1) form (not necessarily Kähler). Let ϕ ∈ PSH1

(X, θ) and assume ϕ has minimal singularities (i.e. that ϕ−Vθ is bounded).
Define

(11.16) E(ϕ) =
1

n+ 1

n∑
j=0

∫
X

(ϕ− Vθ)
(
θ +

i

2
∂∂̄ϕ

)j (
θ +

i

2
∂∂̄Vθ

)n−j

Of course this coincides with (11.1) in the case where θ = ω is Kähler (since
in that case, Vθ = 0). If ϕ is arbitrary, then again extend using the mono-
tonicity property of E as before: E(ϕ) = inf{E(ψ) : ψ ≥ ϕ and ψ has minimal
singularities}.

We wish to implement the finite dimensional program in the infinite
dimensional setting. Since E may assume the value −∞, we must, at the
outset, restrict E to the set E1 = {ϕ ∈ PSH1(X, θ) : |E(ϕ)|<∞} so that
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E : E1 → R is concave. If ϕ0 = 1, then ϕ0 is a flat direction so, as in the
finite dimensional program, we let T 1 = E1/R Again, we let Fμ(ϕ) = E(ϕ)−∫
X(ϕ − Vθ) dμ= E(ϕ) − Lμ(ϕ) and let M1 ⊆M0 be those measures with

finite energy.

11.3. Statement of theorems and sketch of proofs.

Theorem 19. ([BBGZ]) Let θ be a big (1, 1) form on a compact complex
manifold X. If ϕ ∈ T 1(X, θ) then ∇E(ϕ) =MA(ϕ) has full mass and finite
energy, that is, MA(ϕ) ∈M1. Conversely, if μ ∈M1 then there exists a
unique ϕ ∈ T 1 such that MA(ϕ) = μ. Moreover, the solution ϕ satisfies the
following bound:

(11.17)
1
n
E∗(μ) ≤ J0(ϕ) ≤ nE∗(μ)

where J0 = Jψ0 is defined in (11.6).

We sketch the proof of the converse, using the finite dimensional program
as our guide. Recall that

Jψ(ϕ) = E(ψ) − E(ϕ) +
∫
X

(ϕ− ψ)MA(ψ)

=
n−1∑
j=0

j + 1
n+ 1

∫
X

i

2
∂(ϕ− ψ) ∧ ∂̄(ϕ− ψ) ∧ θjψ ∧ θn−1−j

ϕ(11.18)

The first equality is a definition and the second follows via integration
by parts. In particular, we see

(11.19) n−1Jψ(ϕ) ≤ Jϕ(ψ) ≤ nJψ(ϕ)

Now we can establish the bound Now we can establish the bound (11.17):
Assume ϕ ∈ E1 MA(ϕ) = Tn = μ, where T = θ + i

2∂∂̄ϕ. Then (11.18) and
(11.19) imply

1
n
J0(ϕ)≤ Jϕ(V0) =E(ϕ)+

∫
X
(V0 −ϕ)MA(ϕ) =E(ϕ)−

∫
X
(ϕ−V0) dμ=Fμ(ϕ)

Since MA(ϕ) = μ one shows, in analogy with the finite dimensional picture,
that E∗(μ) = supψ∈E1 Fμ(ψ) = Fμ(ϕ). This proves (11.17).

Now let us fix μ ∈M1. We wish to prove the existence of T ∈ T 1 such
that Tn = μ. The first step is to prove that Fμ is J0 coercive, where J0

is defined with respect to the potential ψ0 = V0, as in (11.6). To do this,
we wish to use Lemma 20, which means that we must prove that E grows
quadratically. But this follows easily from the definitions (here we assume
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Vθ = 0 for simplicity): If supX ϕ= 0 then

|E(tϕ)| = 1
n+ 1

∣∣∣∣∣∣
n∑
j=0

∫
(tϕ)

(
t

(
ω +

i

2
∂∂̄ϕ

)
+ (1 − t)ω

)j
ωn−j

∣∣∣∣∣∣
≤ c(n)[t2E(ϕ) + 1](11.20)

For C > 0 let EC be the compact set EC = {ϕ ∈ E1 : E(ϕ) ≥ C}. Since Fμ is
coercive, there exists C > 0 such that supϕ∈E1 Fμ = supϕ∈EC Fμ.

The first main difficulty in implementing the finite dimensional program
is proving that Fμ is upper semi continuous on EC . To do this, [BBGZ]
restrict first to the case where μ ∈ C = {μ ∈M1 : μ≤A·Cap for some A> 0}
(here Cap is the pluri-subharmonic capacity).

Fix μ ∈ C. Since E is easily seen to be usc, it suffices to show that Lμ is
continuous. Let T :K → L1(X, dμ) be the map T (ϕ) = ϕ−Vθ (here K ⊆ E1

is any compact convex subset). It’s not hard to show that T (K) is closed
and that it has a closed graph. If we could prove T (K) is compact, then
we would be done. To see this, let ϕj → ϕ in K. If T (K) is compact then
T (ϕj) → f (after passing to a subsequence). But the closed graph property
implies f = ϕ. Thus T (ϕj) → T (ϕ) so T is continuous which implies Lμ is
continuous.

Instead of proving that T (K) is compact, we prove something weaker,
namely that T (K) ⊆ L1(X, dμ) is “convex combination compact”. Recall
that if B is a Banach space and if T ⊆B is closed and convex, then T is
convex combination compact if for every sequence τ1, τ2, . . . ∈ T there exists
τ ′1, τ

′
2, . . . ∈ T such that τ ′j is a finite convex combination of τj , τj+1, . . . and

such that τ ′j converges. Observe that showing T (K) is convex combination
compact suffices for our purposes: Let ϕj → ϕ ∈K. Then one shows Lμ(ϕj)
is bounded and hence Lμ(ϕj) =

∫
T (ϕj) → � ∈ R (after passing to a sub-

sequence). On the other hand, the convex combination compactness of T
implies there exist ψ1, ψ2, . . . ∈K such that ψj is a convex combination of
ϕj , ϕj+1 . . . and T (ψj) → f for some f ∈ T (K). Since ψj → ϕ we see that
f = T (ϕ) by the closed graph property. Thus

(11.21)
∫
T (ψj) dμ→

∫
f dμ=

∫
T (ϕ) dμ

On the other hand, limj

∫
T (ψj) dμ= limj

∫
T (ϕj) dμ so

∫
T (ϕj) →

∫
T (ϕ).

This shows Lμ is continuous on K.
To show that T (K) is convex combination compact, it suffices to prove

T (K) is weakly compact (by the Hahn-Banach Theorem). On the other
hand, the Dunford-Pettis theorem says that to show that T (K) is weakly
compact, it suffices to show that T (K) is uniformly integrable, that is, there
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exists εk ↓ 0 such that

(11.22)

∣∣∣∣∣
∫
T (ϕ)<−k

T (ϕ) dμ

∣∣∣∣∣≤ εk for all ϕ ∈K

But μ ∈ C implies

(11.23)
∫ ∞

0
tμ{t < V − ϕ} dt≤A

∫ ∞

0
tCap{t < V − ϕ} dt≤ C1

Thus T (K) is a bounded subset of L2(X, dμ) and hence, by Hölder’s inequal-
ity, T (K) is uniformly integrable.

The second main difficulty is to prove the Euler-Lagrange equation is
satisfied at the point where Fμ reaches its maximum. The problem is that
the minimum ϕ may only satisfy ω+ i

2∂∂̄ϕ≥ 0, and a variation ϕt = ϕ+ δϕ
may no longer satisfy this condition even if δϕ is smooth and small. This is
overcome using a technique of [BB] which we now describe. Define for each
u an upper semi-continuous function on X, its θ-psh envelope,

(11.24) P (u) = sup{ϕ ∈ PSH1(X, θ) : ϕ≤ u on X}
Then P (u) ∈ PSH1(X, θ) so the function g(t) = E(P (ϕ+tδϕ))−Lμ(ϕ+tδϕ)
is now well-defined for t ∈ R, and has a maximum at t= 0. It is shown
in [BBGZ] that we still have 0 = g′(0) =

∫
X δϕ(MA(ϕ) − dμ). Thus the

equation MA(ϕ) = μ has a solution in the case where μ ∈ C.
We now remove the assumption μ ∈ C. Thus we let μ be a non-pluripolar

probability measure with finite energy. Our goal is to prove that there exists
ϕ ∈ T 1 such that MA(ϕ) = μ. To do this, we make use of the following
lemma of Cegrell [Ceg]:

Lemma 21. Let μ be a non-pluripolar probability measure. Then there
exists ν ∈ C and f ∈ L1(X, ν) such that μ= fν.

Write μ= fν as in the lemma. For k > 0 choose εk ≥ 0 so that μk =
(1 + εk) min(f, k)ν is a probability measure. Then μk ≤ 2k Cap so μ ∈ C.
Thus, by what has been proved thus far, μk = Tnk for some Tk ∈ T 1. Next
we observe that μk ≤ 2μ. Using the fact that E∗(μ)<∞, one shows that
E∗(μk) ≤ C <∞ for some C > 0. The bound (11.17) then implies that the
Tk all lie in the compact set {J0 ≤ nC}. Thus, after passing to a subsequence,
we conclude Tk → T for some T ∈ T 1. Since Tnk = μk we can take the limit as
k→∞ to conclude Tn = μ (this follows by Fatou’s lemma in the case n= 1,
and a generalization of Fatou’s lemma, due to [BEGZ], in the case n > 1).

We remark that if μ is a non-pluripolar probability measure (not nec-
essarily of finite energy), then one can still apply Lemma 21 to conclude
μ= fν and one can still construct μk = (1 + εk) min(f, k)ν as above. Then
Theorem 19 implies the existence of Tk ∈ T 1 such that Tnk = μk. Since μ is
not assumed to have finite energy, we cannot conclude that the Tk lie in
a compact subset of T 1. On the other hand, we have Tk ⊆ T 1 ⊆ T and T
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is compact. Thus, after passing to a subsequence, Tk → T for some T ∈ T .
Then [BBGZ] show that one can again take the limit as k→∞ to conclude
Tn = μ. This gives a variational proof of the following theorem of [BEGZ]:

Theorem 20. Let μ be a non-pluripolar probability measure on X. Then
there exists T ∈ T (X, θ) such that Tn = μ.

We close by describing one more application of the variational method
in [BBGZ].

Theorem 21. Let (X,ω) be a manifold of general type and let θ =
−Ricci(ω). Then there exists ψ ∈ PSH1(X, θ) such that

(11.25)
(
θ +

i

2
∂∂̄ψ

)n
= eψωn

To prove this theorem, we consider the functional F = E − L where
L(ϕ) = 1

2 log
∫
X e

ϕωn and follow the same three steps as in the proof of
Theorem 19. The first step is to show that F is J0 coercive. The second
step is to show that L is continuous (which implies that F is upper semi-
continuous). And the third step is to prove that the critical points for F are
solutions to (11.25).

Steps one and three proceed exactly as in the proof of Theorem 19.
Thus we restrict ourselves to step two, which is much easier than the corre-
sponding step in Theorem 19. Indeed, if ϕj → ϕ is a convergent sequence in
PSH1(X, θ) then after passing to a subsequence, ϕj → ϕ almost everywhere.
On the other hand, Hartogs’ lemma implies that ϕj is bounded above. Thus∫
X e

ϕjωn →
∫
X e

ϕωn and hence L is continuous.
We observe that Theorem 21 follows from Theorem 16. To see this, let

π :X →Xcan be the canonical model of X and choose ϕcan to be the solution
of (10.8)

(11.26)
(
ω +

i

2
∂∂̄ϕcan

)n
= eϕcanΩ.

where i
2∂∂̄ log Ω = ω. Choose Θ such that i

2∂∂̄ log Θ = θ. Let Ω̃ = π∗Ω and
ϕ̃can = ϕcan◦π. Define ψ by the equation eψcanΩ̃ = eψΘ. Applying π∗ to both
sides of (11.26) we obtain (11.25).

The variational method establishes the existence of generalized solutions
to the complex Monge-Ampère equation. It is then important to determine
when the generalized solution is actually smooth. One such result is the
theorem of Szekelyhidi-Tosatti [ST] which asserts the smoothness of the
generalized solution when it is known to be bounded and the right hand
side is smooth.

It may also be noteworthy that the above solutions to the Monge-Ampère
equation can be obtained as limits of the critical points of certain naturally-
defined finite-dimensional analogues of the infinite-dimensional functionals.
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In the Fano case, the proof makes use of the Moser-Trudinger inequality
proved in [PSSW]. Finite-dimensional approximations also play a major
role in the construction of solutions to the homogeneous Monge-Ampère
equation in § 13.

12. Uniqueness of Solutions

It is a remarkable fact that the map T 0(X, θ) →M0
X , defined by T �→

Tn, is bijective. The surjectivity is part of Theorem 20. The injectivity was
proved in [BEGZ], by adapting the proof of Dinew [Di09], who proved the
injectivity in the Kähler case. We give here a slightly streamlined version of
the proof of Dinew.

Theorem 22. Let (X,ω) be a compact Kähler manifold and E(X,ω) ⊆
PSH1(X,ω) denote the potentials ϕ such that (ω + i

2∂∂̄ϕ)n has full mass.
Let ϕ,ψ ∈ E(X,ω). Assume (ω + i

2∂∂̄ϕ)n = (ω + i
2∂∂̄ψ)n. Then ϕ − ψ is

constant.

To prove the theorem, we wish to make use of the comparison principle. If
we apply it directly to V = {ϕ < ψ} we get

∫
V ω

n
ψ ≤

∫
V ω

n
ϕ, which is not useful

(in fact, the inequality is an equality since ωnϕ = ωnψ). Instead, we shall apply
the comparison principle to the set Vε(θ, ρ) = {(1−ε)ϕ+εθ < (1−ε)ψ+ερ}
where θ, ρ are potentials to be chosen later. We obtain, for T a positive
closed current, and k ≥ 1,

(12.1)
∫
Vε

T ∧ ((1 − ε)ωψ + εωρ)k ≤
∫
Vε

T ∧ ((1 − ε)ωϕ + εωθ)k

Assume
∫
Vε
T ∧ ωkψ =

∫
Vε
T ∧ ωkϕ. Then the leading terms cancel so

(12.2)
∫
Vε

T ∧ ωk−1
ψ ∧ ωρ ≤

∫
Vε

T ∧ ωk−1
ϕ ∧ ωθ +O(ε)

We shall also need the following generalization of Lemma 7 proved in Dinew
[Di09a]:

Theorem 23. Let ϕ,ψ ∈ E(X,ω) and μ a positive non-pluripolar mea-
sure. Assume that ωnϕ ≥ fdμ and ωnψ ≥ gdμ for some non-negative f, g ∈
L1(dμ). Then for 0 ≤ k ≤ n

(12.3) ωkϕ ∧ ωn−kψ ≥ f
k
n g

n−k
n dμ

In particular, if ωnϕ = ωnψ, then ωnϕ = ωntϕ+(1−t)ψ for all t ∈ [0, 1].

We return to the proof of Theorem 22 and follow the argument in [Di09].
Let μ= ωnϕ and define f : R → [0, 1] by f(t) = μ({ϕ < ψ + t}. Then f is left
continuous. Moreover, since f is increasing, there is a countable set Σ such
that f is continuous on R\Σ.
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The key step in the proof is to show that Image(f) = {0, 1}: Assume not.
Then there exists α ∈ R\Σ such that 0< f(α)< 1. To see this, let β ∈ R
satisfy 0< f(β)< 1. Now choose an increasing sequence tj ∈ R\Σ such that
tj → β. Then we can take α= tj for any sufficiently large j. After replacing
ϕ by ϕ− α we may assume α= 0.

Since 0< f(0)< 1 we may choose 0< q < 1 such that 1 − q < f(0)<
q. With this choice of q we see that μ({ϕ < ψ})< q and μ({ψ < ϕ})< q
and μ({ϕ= ψ}) = 0 (the last equality follows from the fact that α ∈ R\Σ).
To get a contradiction, we consider the probability measure μ̂= gμ where
g = 1

q on {ϕ < ψ} and g = cμ on {ϕ≥ ψ} for an appropriately chosen c > 0.
The theorem of Guedj-Zeriahi [GuZe] implies there exists ρ ∈ PSH1(X,ω)
with sup ρ= 0 and ωnρ = μ̂. Then, setting a= (1

q )
1/n, and θ = 0, and k = n,

Theorem 23 implies

(12.4) ωn−1
ψ ∧ ωρ ≥ aωnψ on the set Vε(θ, ρ) ⊆ {ϕ < ψ}

Substituting in (12.2), and taking the limit, ε ↓ 0, we get Vε ↑ {ϕ < ψ} so

(12.5) a

∫
ϕ<ψ

ωnϕ ≤
∫
ϕ<ψ

ωn−1
ϕ ∧ ω

If instead we take k = 1 and T = ωn−1
ψ we obtain

a

∫
ϕ<ψ

ωnψ ≤
∫
ϕ<ψ

ωn−1
ψ ∧ ω

Interchanging ϕ and ψ in the second estimate, we get a
∫
ϕ≥ψ ω

n
ϕ ≤
∫
ϕ≥ψ ω

n−1
ϕ

∧ ω, where we make use of the fact that μ{ϕ= ψ} = 0. Adding this to the
previous inequality we conclude that a≤ 1, a contradiction.

The next step is to show

(12.6)
∫
ϕ<ψ

ωjϕω
k−1
ψ ωl+1 ≤

∫
ϕ<ψ

ωjϕω
k
ψω

l = 0

for all j, k, l such that j + k + l = n. To see this, we use induction on l.
Let ρ= 0 and θ = ϕ and T = ωjϕωl. Then applying (12.2) we obtain, for
every δ > 0,∫

ϕ<(1−ε)ψ−δ
ωjϕω

k−1
ψ ωl+1 ≤

∫
ϕ<(1−ε)ψ−δ

ωjϕω
k
ψω

l +O(ε)

Taking the limit as ε ↓ 0 we obtain (12.6) but with {ϕ < ψ} replaced by
{ϕ≤ ψ − δ}. Now take the limit δ ↓ 0 to obtain (12.6).

Taking l = n we obtain
∫
ϕ<ψ ω

n = 0. Similarly
∫
ϕ>ψ ω

n = 0. Since these
sets are plurifine open, they must be empty. This proves the theorem.
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13. Semiclassical Solutions of Monge-Ampère Equations

In this section we discuss a particular method for solving Monge-Ampère
equations, namely by semiclassical limits of Bergman kernels. The equation
accessible this way is the homogeneous complex Monge-Ampère equation. It
is a very specific equation, but one which is of great interest in the problem of
finding Kähler metrics of constant scalar curvature, and which is intimately
linked with the notion of stability in geometric invariant theory (see [D99]
and [PS08] for a survey). We shall see how semiclassical limits lead to
generalized solutions of this equation. This may be noteworthy in itself from
the viewpoint of PDE theory, as generalized solutions of partial differential
equations usually arise rather from either variational or Perron methods.

13.1. Geodesics in the space of Kähler potentials. We begin with
some geometric motivation. Let (X,ω0) be a compact Kähler manifold with-
out boundary of dimension n. Then the space K of Kähler potentials

(13.1) K =
{
ϕ ∈ C∞(X); ωϕ ≡ ω0 +

i

2
∂∂̄ϕ > 0

}

is formally an infinite-dimensional Riemannian manifold with tangent space
Tϕ(K) = {δϕ ∈ C∞(X)} and metric

(13.2) ‖δϕ‖2 =
∫
X
|δϕ|2ωnϕ.

The geodesic equation for K is the Euler-Lagrange equation for the energy
functional

(13.3) E =
∫ T

0

∫
X
ϕ̇2ωnϕdt

for paths [0, T ) � t→ ϕ(·, t) ∈ K. Under a variation δϕ of this path, we have

(13.4) δE =
∫ T

0

∫
X

(2ϕ̇ δϕ̇+ ϕ̇2Δϕδϕ)ωnϕdt,

where Δϕ is the Laplacian with respect to the Kähler form ωϕ. For variations
δϕ fixing the end points, integrating by parts gives

(13.5) δE = −2
∫ T

0

∫
X
δϕ(ϕ̈− |∇ϕ̇|2ωϕ

)ωnϕdt.

and thus the geodesic equation for paths [0, T ) � t→ ϕ(·, t) ∈ K is

(13.6) ϕ̈− |∇ϕ̇|2ωϕ
= 0.

A key observation due to Donaldson [D99] and Semmes [Se] is that this
geodesic equation is equivalent to a homogeneous complex Monge-Ampère
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equation

(13.7)
(
π∗ω0 +

i

2
∂∂̄Φ

)n+1

= 0.

for the function

(13.8) Φ(z, w) ≡ ϕ(z, log |w|)
on M ≡X × A, with A= {w ∈ C; e−T < |w|< 1}, Here ∂∂̄Φ is taken with
respect to all (n+ 1) variables (z, w), and π∗ω0 is the pull-back of ω0 to M .
Note that π∗ω0 is not strictly positive, viewed as a (1, 1)-form on M .

We shall consider both geodesic segments, joining two points ϕ0 and ϕ1

of K, and geodesic rays, extending from a point ϕ0 ∈ K to infinity. There is
no loss of generality in taking ϕ0 = 0.

The equation for geodesic segments is then a standard Dirichlet problem
on the manifold M =X × A, ∂A= {w ∈ C; |w| = 1 or |w| = e−T } with T
finite, and boundary value Φb defined by

Φb(z, w) = 0 for |w| = 1

Φb(z, w) = ϕ1 for |w| = e−T .(13.9)

The equation for geodesic rays is more unusual: here T = ∞, so the
annulus A reduces to the punctured disk D× = {w ∈ C; 0< |w|< 1}, and
M =X × D×. A boundary value Φb is assigned only on the component
|w| = 1 of the boundary of M ,

(13.10) Φb(z, w) = 0 for |w| = 1

but there is no condition near w = 0. In practice, and with motivation from
geometric invariant theory, we shall restrict to the case where ω0 = c1(L),
where L→X is a positive line bundle, and consider the geodesic rays asso-
ciated to a test configuration of L→X. A test configuration (see the precise
definition in §13.2 below) is a one-parameter subgroup (1PS) degeneration
of the line bundle L→X. It produces a limiting singular line bundle, or
more precisely a polarized scheme, L0 →X0, which can be viewed as an
implicit boundary value for the Dirichlet problem for the homogeneous com-
plex Monge-Ampère equation at w = 0. The net result is that we shall asso-
ciate a canonical geodesic ray to each test configuration, starting from an
arbitrary point ϕ0 ∈ K. Thus a test configuration can also be viewed as pro-
viding a direction where the Cauchy problem admits a generalized solution
for infinite time, and hence as a generalized vector field on the space K of
Kähler metrics.

The motivation for test configurations and geodesic rays is the following.
It has been shown by Donaldson [D99] and Mabuchi [M87] that K is a sym-
metric space with non-positive curvature. The geodesic rays in K are then
just a generalization of the one-parameter subgroups of finite-dimensional
symmetric spaces of negative curvature. In Donaldson’s program for the
problem of constant scalar curvature metrics [D99], a numerical invariant
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for geodesic rays can be defined as the limiting value as t→∞ of the rate of
change of the Mabuchi K-energy along geodesic rays. An infinite-dimensional
notion of stability in geometric invariant theory (GIT) can then be defined
as the negativity of this numerical invariant of geodesic rays, and we obtain
in this way an infinite-dimensional version of the Yau-Tian-Donaldson con-
jecture, which asserts the equivalence between the existence of a metric of
constant scalar curvature in the Kähler class c1(L) and the K-stability of
L→X in the sense of GIT.

Very recently, Lempert and Vivas [LV] have produced examples of
Kähler manifolds (X,ω0), specifically tori with certain symmetries, where
there are no C3 geodesic connecting two given potentials ϕ1, ϕ2 ∈ K. A C∞

geodesic would correspond to a function Φ(z, w) which is C∞ in both z and
w, a solution of the completely degenerate Monge-Ampère equation, and
which is strictly plurisubharmonic with respect to ω0 for each w ∈A. On
the other hand, generalized solutions of (13.7) in the sense of pluripotential
theory, where Φ(z, w) is only known to be plurisubharmonic in all variables
(z, w), and where Φ is only of class C1,α, have been known for some time.
Their existence can be deduced from the general theory of boundary value
problems of §9 [C00, B09b, PS09a], as well as from explicit semi-classical
constructions [PS06, PS07, SZ07, SZ10, RZ08]. Other constructions
are due to Arezzo-Tian [AT] (by the Cauchy-Kowalevska method), and to
Chen [C06], Chen-Sun [CS], Chen-Tang [CT], Ross-Witt Nystrom [RW]
and other authors under various types of assumptions. A partial regularity
theory for the homogeneous complex Monge-Ampère equation has been pro-
posed by Chen and Tian [CT]. We discuss some of these developments in
this section.

13.2. Geodesics from a priori estimates. We show how generalized
geodesics can be obtained from the existence theorems for the Dirichlet
problem of Section §8. In the present context, (X,ω0) is a given compact
Kähler manifold without boundary, and the manifolds with boundary of the
theorems in Section §8 are now given by M =X ×A, with A an annulus, or
M =X ×D×, with D× a punctured disk.

First, we consider the case of geodesic segments, linking ϕ0 = 0 to ϕ1 ∈ K.
Here the set-up of the geodesic equation is exactly the same as for Theorem
13, with the difference that the form π∗ω0 in (13.7) is not strictly positive.
However, it is easy to bring ourselves back to the case of a strictly positive
form, by constructing a smooth function Φ satisfying

(13.11) π∗ω0 +
i

2
∂∂̄Φ> 0 on M, Φ = Φb on ∂M.

Setting then Ω0 = π∗ω0 + i
2∂∂̄Φ and Φ = Ψ + Φ, the equation (π∗ω0 +

i
2∂∂̄Φ)n+1 = 0 is equivalent to the equation (Ω0 + i

2∂∂̄Ψ)n+1 = 0, with Ω0

now a Kähler form so that Theorem 13 applies at once. The function Φ is
obtained by the following elementary construction (see e.g. Lemma 14 of
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[PS08]): Φ = tϕ1 +f(w), t= log |w|, with f(w) the solution of the Dirichlet
problem Δf(w) = C on A, f = 0 on ∂A, and C is a large positive constant.
Thus we have established the following theorem, first proved by Chen [C00]:

Theorem 24. Let ϕ0 and ϕ1 be two points in K. Then there exists
a unique generalized geodesic of class C1,α, for any 0< α < 1, joining ϕ0

and ϕ1.

We turn next to geodesic rays. The notion of test configuration alluded
to in §13.1 can be defined precisely as follows (see Donaldson [D02]):

Definition 3. Let L→X be a positive line bundle over a compact com-
plex manifold X. A test A test configuration T for L→X consists of

(1) a scheme X with a C× action ρ;
(2) a C× equivariant line bundle L→X , ample on all fibers;
(3) and a flat C× equivariant map π : X → C, where C× acts on C by

multiplication, with the property that (π−1(1),L|π−1(1)
) is isomor-

phic to (X,Lr) for some r > 0.

We shall also denote T by

(13.12) T =
(
ρ : C× → Aut(L→X → C)

)
where Aut(L→X → C) is the space the space of automorphisms of the
fibrations L→X → C. A test configuration configuration L is said to be
trivial if L = L×C, with the action ρ(τ)(�, w) = (�, τw), for (�, w) ∈ L×C,
τ ∈ C×.

It is convenient to introduce the notation Xw = π−1(w), Lw = L|π−1(w)
,

and to view X as X = ∪w∈CXw. A typical example of a test configuration
would be X = ∪τστ (X) where X is a submanifold of CPN , and στ = eτB,
is a one-parameter subgroup of GL(N + 1).

Note that all fibers (Xw, Lw) are biholomorphic to (X1, L1) for w �= 0.
However, the “central fiber” (X0, L0) will usually have singularities. It can
be viewed as the limit in the sense of schemes of (Xw, Lw) as w→ 0, and it
is invariant under the action of ρ.

For the construction of geodesic rays, we need the following geometric
properties of a test configuration. Let

(13.13) p : X̃ → X → C

a resolution of singularities, which can be chosen to be equivariant, in
the sense that the homomorphism ρ lifts to a homomorphism ρ̃ : C× →
Aut(p∗L→X → C), and that all diagrams commute. Let XD = π−1(D),
X×
D = π−1(D×), and LD →XD = π−1(D) and L×

D →X×
D be the fibrations

above D and D×, with similar definitions for X̃D, X̃×
D , and L̃D and L̃×

D. Let
the Kähler form ω0 on X be the curvature of a metric h0 on L. Then an
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element ϕ of the space of Kähler potentials K can be identified with a met-
ric h= h0e

−ϕ on L. We can now state the properties of test configurations
which we need:

• There is a biholomorphism

M =X ×D× → X̃×

L×D× → L̃×(13.14)

defined by (ζ, w) → ρ(w)(ζ) ∈ Lw, for ζ ∈ L= L1. If we extend the metric
h0 on L trivially as a metric on L ×D×, then it can be identified through
the above biholomorphism with a metric H0 on L̃×. The curvature of H0 is
(the push-forth of) Ω0. If H is any other metric on L̃× and Ω its curvature,
then H =H0e

−Ψ, and the equation (Ω0 + i
2∂∂̄Φ)m = 0 on M is equivalent

to the equation

(13.15)
(

Ω +
i

2
∂∂̄Φ̃

)n+1

= 0 on X̃×
D

with Φ̃ = Φ − Ψ.
• Recall that h0 is any fixed metric on L with positive curvature ω0. It

is shown in [PS07a], [PS09b] that there is a metric H on L̃ (in particular
over the whole of X̃D, including the central fiber), which restricts to h0 on
X1, and which has curvature Ω ≥ 0 over X̃ , and Ω> 0 on X̃×

D .
• Furthermore, there exists an effective divisor E supported only in the

central fiber of X̃ and a smooth metric K on O(E) so that

(13.16) ΩK ≡ Ω + ε
i

2
∂∂̄ logK

is smooth and strictly positive definite everywhere on X̃D, for all small,
strictly positive ε.

We return now to the problem of constructing generalized geodesic rays.
Given a test configuration, the above constructions show that a generalized
geodesic ray is a solution of the equation (13.15) on X̃×

D . The above geo-
metric properties of test configurations mean precisely that the hypotheses
of Theorem 13.15 are satisfied with M = X̃D. Note that in this case, the
boundary of the manifold is clearly holomorphically flat. Thus we obtain
the following theorem [PS09a]:

Theorem 25. Let L→X be a positive line bundle over a compact com-
plex manifold X. Let T be any test configuration of L→X, and let p be
an equivariant resolution as in (13.13). Then for any metric h0 on L with
positive curvature, there is a C1,α generalized geodesic, with bounded poten-
tial, starting from h0. More precisely, there is a bounded solution Φ̃ of the
equation (Ω + i

2∂∂̄Φ̃)n+1 = 0 on X̃D, which is of class C1,α on X̃×
D .
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13.3. Algebraic approximations: the Tian-Yau-Zelditch theo-
rem. The conjecture of Yau on Kähler-Einstein metrics [Y93], and the
Yau-Tian-Donaldson conjecture on the existence of metrics of constant scalar
curvature in a Kähler class c1(L) if L is K-stable [D02], are conjectures
relating the solvability of a geometric partial differential geometric to a
global algebraic condition. One strategy, advocated by Yau and implemented
particularly successfully by Donaldson [D01, D10] in the proof of the
necessity of stability, has been to approximate transcendental objects such
as metrics by their algebraic counterparts, such as Bergman kernels and
Fubini-Study metrics. A precise example is the Tian-Yau-Zelditch theorem
[Y93, T90a, Z] (also proved independently by Catlin [Cat] and refined by
Lu [L]), which can be stated as follows.

Let L→X be a positive line bundle over a compact complex manifold
X. If s= {sα}Nk

0 is a basis for the space H0(X,Lk) of holomorphic sections
of Lk, dimH0(X,Lk) = 1 +Nk, then the Kodaira map ιs is defined by

(13.17) ιs : X � z→ [s0(z) : · · · : sNk
(z)] ∈ CPNk .

The Kodaira imbedding theorem says that ιs is an imbedding for k suffi-
ciently large. The hyperplane bundle O(1) over CPNk pulls back to Lk. The
Fubini-Study metric hFS = 1∑Nk

α=0 |sα|2
on O(1) and ωFS = − i

2∂∂̄ log hFS on

CPNk pull back then to the metrics

(13.18) ι∗s(hFS) =
1∑Nk

α=0 |sα(z)|2
, ι∗s(ωFS) = − i

2
∂∂̄ log

Nk∑
α=0

|sα(z)|2.

on Lk and X respectively. Note that h(k) ≡ (ι∗s(hFS))
1
k is then a metric on

L, and its curvature ω(k) ≡ 1
k ι

∗
s(ωFS) is a metric on X, which can be viewed

as algebraic objects.
Let now h be a metric on L with positive curvature ω = − i

2∂∂̄ log h > 0.
The Tian-Yau-Zelditch theorem asserts that the metric h on L and ω on X
can be approximated asymptotically in k by the metrics h(k) and ω(k), if the
basis s= {sα}Nk

0 used to construct the Kodaira imbedding is an orthonormal
basis of H0(X,Lk) with respect to the L2 metric, ‖s‖2 ≡

∫
X |s|2hkωn. To see

how this comes about, we write

(13.19) log
h(k)
h

= −1
k

log ρk(z), ω − ω(k) = − i

2k
∂∂̄ log ρk(z)

where ρk(z) is the Bergman kernel (or density of states, since it integrates
to dimH0(X,Lk)),

(13.20) ρk(z) ≡
Nk∑
α=0

|sα(z)|2hk(z).
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The desired statement follows then from an asymptotic expansion for
ρk(z) [Z]

(13.21) ρk(z) = kn

⎛
⎝1 +

∞∑
p=1

Ap(z)k−p

⎞
⎠ ,

This expansion is itself a consequence of an asymptotic expansion obtained
by Boutet de Monvel and Sjöstrand [BS] for the Szegö kernel on strongly
pseudo-convex domains, refining an earlier expansion along the diagonal
obtained by Fefferman [?]. The coefficient A1(z) has been shown by Lu [L]
to be given by 1

2R(z), where R is the scalar curvature of ω. This turns out
to provide a key link with the problem of constant scalar curvature metrics
[D01, D10]. Other generalizations and applications of asymptotic expan-
sions and of the Tian-Yau-Zelditch theorem can be found in [MM, Wg].

13.4. Semi-classical constructions. Let Kk denote the space
{(ιs(hFS))

1
k } of pull-backs of the Fubini-Study metrics, under Kodaira

imbeddings defined by an arbitrary basis s of H0(X,Lk). Since hFS is invari-
ant under SU(Nk + 1), we have

(13.22) Kk = SL(Nk + 1)/SU(Nk + 1).

Note that the right hand side is a symmetric space with negative curvature.
A suggestive consequence of the Tian-Yau-Zelditch theorem is that, in a
pointwise sense, we have

(13.23) K = limk→∞Kk = limk→∞SL(Nk + 1)/SU(Nk + 1).

It is a natural question whether this pointwise approximation can be
extended to the approximation of more geometric properties, for example of
extended geometric objects. A prime example is whether geodesics in K can
be approximated by geodesics in Kk. This translates precisely into whether
the solutions of the homogeneous complex Monge-Ampère equations can be
approximated by one-parameter subgroups of Bergman kernels [PS06]. We
shall see below that the answer is affirmative, see [PS06, PS07, PS09b].
Some refinements of these approximations and their rate of convergence can
be found in Berndtsson [Be1, Be2], and in [SZ07, SZ10] in the case of toric
varieties. For toric varieties, a similar approximation has been extended to
harmonic maps by Rubinstein and Zelditch [RZ08].

We provide now some details. Fix a metric h0 on L with positive cur-
vature ω0. Let Φ(z, w) be a solution of the Dirichlet problem (13.7) with
boundary value ϕ0 when |w| = 1. If we view it as either a geodesic seg-
ment or a geodesic ray in K emanating from the corresponding potential
ϕ0, then this geodesic segment or ray should be the limit of a sequence of
one-parameter subgroups in Kk, as k→∞. Let Bk ∈GL(Nk + 1) be the
infinitesimal generator of the one-parameter subgroup in Kk, so that the
subgroup is given by wBk , w ∈ C×. We can assume that Bk is diagonal,
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with eigenvalues λ(k)
α , 0 ≤ α≤Nk. Let s= {sα}Nk

0 be a basis of H0(X,Lk)
which is orthonormal with respect to the L2 norm defined by h0 and the
volume form ωn0 . The subgroup wBk acts on the basis {sα}Nk

0 to produce

the basis wBk ·s≡ {wλ
(k)
α sα}Nk

0 . The corresponding pull-backs of the Fubini-
Study metrics can be written explicitly as

(13.24) Φk(z, w) =
1
k

log
Nk∑
α=0

|w|2λ
(Nk)
α |sα(z)|2h0(z)k

Thus the main problem is to choose the appropriate generators Bk and to
show that the Φk(z, w) converge, in a suitable sense, to a solution Φ(z, w)
of the homogeneous complex Monge-Ampère equation. Note that, by the
Tian-Yau-Zelditch theorem, the functions Φk(z, w) converge to the correct
boundary value when |w| = 1.

We address the problem of choosing the generators Bk.
Consider first the case of a generalized geodesic segment joining two

points ϕ0 and ϕ1 in K. There is in this case a natural choice of infinitesimal
generator Bk: Bk is just the matrix of change of bases, from a basis {s(0)α }Nk

0

orthonormal with respect to the L2 metric defined by h0, ωn0 , to a basis
{s(1)β }Nk

0 orthonormal with respect to the L2 metric defined by h1, ωn1 .
Next, consider the case of a test configuration. The group action ρ(w),

w ∈ C× preserves the central fiber (X0, L0). Thus it induces a one-parameter
subgroup wBk on the space of holomorphic sections,

(13.25) wBk : H0(X0, L
k
0) →H0(X0, L

k
0).

The generators Bk are the generators that we are looking for.
Once the generators Bk, and hence their eigenvalues λ(k)

α have been
chosen, we need a criterion for when the expressions (13.24) have the desired
convergence properties. This is provided by the following lemma [PS08]:

Lemma 22. Fix h0 ∈ K as before. Consider the general Ansatz

(13.26) Φk(z, w) =
1
k

log
Nk∑
α=0

|w|2λ
(k)
α |2|s(k)α (z)|2

hk
0

where {s(k)α (z)} is an orthonormal basis for H0(X,Lk) with respect to the L2

norm defined by (hk0, ω
n
0 ), and λ(k)

α are real numbers, 0 ≤ α≤Nk for each k.
Then if

(1) There exists a constant C independent of both α and k so that

(13.27) |λ(k)
α | ≤ C k

(2) There exists a constant CT independent of k so that

(13.28)
∫ ∫

X×{e−T<|w|≤1}

(
π∗ω0 +

i

2
∂∂̄Φk

)n+1

≤ C k−1.
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then Φ(z, w) = limk→∞[sup�≥kΦk(z, w)]∗ is continuous at |w| = 1, and
satisfies in the sense of pluripotential theory

(13.29)(
π∗ω0 +

i

2
∂∂̄Φ

)n+1

= 0 on X ×{e−T < |w|< 1}, Φ(z, w) = 0 for |w| = 1.

It can be shown that, in both choices of generators Bk for geodesic
segments and for geodesic rays, the condition on the uniform growth of the
eigenvalues λ(k)

α is satisfied. The only non-trivial step remaining is to verify
the condition on the decay of the masses of the Monge-Ampère measures
of Φk(z, w). The key observation here is that these masses are essentially
cohomological, and given by

(13.30)
∫ ∫

X×{e−T<|w|<1}

(
π∗ω0 +

i

2
∂∂̄Φ

)n+1

= Ė(ϕ(·, 0))− Ė(ϕ(·,−T ))

where E(ϕ) is the functional (11.1) we had encountered earlier as the anti-
derivative of the Monge-Ampère measure ωnϕ.

We can now state the main theorems of this section and complete their
proofs. For geodesic segments, we have [PS06]:

Theorem 26. Let h1 ∈ K be another metric on L with ω1 = − i
2∂∂̄ log

h1 > 0, M ≡X × {e−1 < |w|< 1}. Then the generalized solution Φ(z, w) of
the Dirichlet problem (13.7) can be expressed as

(13.31) Φ(z, w) = limk→∞[sup�≥kΦ�(z, log |w|)]∗

where the eigenvalues λ(k)
α defining Φk(z, w) are the eigenvalues of the matrix

Bk of change of bases from an orthonormal basis of H0(X,Lk) with respect
to h0, ω

n
0 to an orthonormal basis of H0(X,Lk) with respect to h1, ω

n
1 .

Proof. We compute explicitly the right hand side of (13.30). Denote
the approximating Fubini-Study metrics in (13.19) for the metrics h0 and
h1 as h0(k) = e−ϕ0(k)h0 and h1(k) = e−ϕ1(k)h0 respectively. Let ωa(k) be
their curvatures. Let {s(k)a,α} be orthonormal bases with respect to ha, ω

n
a .

Then we have, with a= 0, 1,

∫
X
ϕ̇a(k)ωa(k)n =

2
kn+1

∫
X

Nk∑
α=0

λ(k)
α |s(k)a,α(z)|2ha(k)kωa(k)n

=
2

kn+1

Nk∑
α=0

λ(k)
α +O

(
1

kn+2

)
Nk maxα|λ(k)

α |,(13.32)

where we have applied the Tian-Yau-Zelditch theorem. Thus the leading
terms cancel in the difference (13.30), giving the desired estimate. Q.E.D.



386 D.H. PHONG, J. SONG, AND J. STURM

By the uniqueness of the solution of the Dirichlet problem, this solution
must coincide with the solution obtained by Chen [C00] from the method
of a priori estimates (see Theorem 24), so it must be C1,α. It has also been
shown by Berndtsson [Be2] that the convergence described in [PS06] can
actually be strengthened to uniform convergence.

For geodesic rays defined by a test configuration, we have
[PS07, PS09b]:

Theorem 27. Let ρ be a test configuration for a positive line bundle L→
X over a compact complex manifold X. Let h0 be a metric on L, with ω0 =
− i

2∂∂̄ log h0 > 0. Let Φk(z, w) be defined by (13.24), where the eigenvalues
λ

(k)
α are the eigenvalues of the endomorphisms Bk on H0(X0, L

k
0) induced

by the group action ρ. Then

(13.33) Φ(z, w) = limk→∞[sup�≥kΦk(z, w)]∗

defines a generalized solution of the Dirichlet problem

(13.34)
(
π∗ω0 +

i

2
∂∂̄Φ

)m+1

= 0 on X ×D×, Φ(z, w) = 0 for |w| = 1.

The solution is actually of class C1,α(X ×D×) for any 0< α < 1. It is non-
constant when the test configuration is non-trivial.

Proof. As before, it remains only to prove the bound O(k−1) on the
mass of the Monge-Ampère measure on M =X×D×. Consider the functions
Φ#
k (z, w) defined by the same formula as Φk(z, w), but with the eigenvalues

λ
(k)
α replaced by their traceless counterparts

(13.35) λ#,(k)
α = λ(k)

α − TrBk
Nk + 1

.

Then Φk(z, w) = Φ#
k (z, w)(z, w)+ TrBk

k(Nk+1) log |w|2. Thus they have the same
complex Hessian, and we can evaluate (13.30) with Φk(z, w) replaced by
Φ#
k (z, w). The formula (13.30) gives then, with obvious notations,

∫
X×D×

(
π∗ω0 +

i

2
∂∂̄Φ#

k

)n+1

= limT→∞

∫
X
ϕ̇(T )#ωk(T )n

−
∫
X
ϕ̇(0)#ωk(0)n.(13.36)

Since the eigenvalues λ#(k)
α sum to 0, the leading term in the second expres-

sion on the right hand side is 0. As for the first expression, the lemma below
shows that it is automatically O(k−1). This establishes the fact that the limit
Φ(z, w) satisfies the homogeneous complex Monge-Ampère equation. �
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Lemma 23. Let T be a test configuration. Then we have

(13.37) limT→∞

∫
X
ϕ̇(T )ωk(T )n =

1
k
F

where F is the Donaldson-Futaki invariant of T , defined as the second term
F in the following asymptotic expansion

(13.38)
TrBk

k(Nk + 1)
= F0 + F k−1 +O(k−2).

We should say that this lemma was implicit in the paper of Donaldson
[D04]. Its explicit statement and proof can be found in [PS07], Mabuchi
[M09], and Donaldson [D10].

Unlike in the case of the geodesic segments, the regularity of the geodesic
rays obtained from the above theorem does not follow as yet, since the
behavior of the ray near w = 0 has not been addressed. The following lemma
gives a complete description of this behavior [PS09b]:

Lemma 24. Let T be a test configuration, and let p be an equivariant
resolution of singularities as considered earlier in §13.2 . Then the function

(13.39) Ψk ≡ Φk − Φ1

extends as a smooth function over the whole of X̃D. Furthermore, it satisfies
the following uniform estimate

(13.40) supk≥1supX̃D
|Ψk| ≤ C <∞.

With this lemma, we can show that the function

(13.41) Ψ = Φ − Φ1

is a bounded solution of a homogeneous complex Monge-Ampère equation
on X̃D with a non-negative background form Ω1. This can be expressed in
turn as a homogeneous complex Monge-Ampère equation with a background
form Ω which satisfies all the hypotheses of Theorem 14. Thus the solution
must be C1,α, and the proof of the theorem is complete.

13.5. The toric case. In the toric case, the previous constructions
of solutions of homogeneous complex Monge-Ampère equations as limits of
Bergman metrics can be analyzed more precisely. We can obtain in this man-
ner more detailed information on the approximating paths and their rates
of convergence. A remarkable feature also emerges from this study, which
is an unexpected relation between the previous semiclassical constructions
and the theory of large deviations [SZ07, SZ10].
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13.5.1. Bergman geodesics. Let X be an n-dimensional toric manifold
and L→X be a positive toric line bundle over X. Let KT be the space of
positively curved smooth toric hermitian metrics on L which are invariant
under the compact (S1)n torus action. Let h0, h1 ∈ KT and let ht for 0 ≤ t≤
1 be the Monge-Ampère geodesic between them as defined in Section §13.4.
We define

(13.42) ϕt(z) = log (ht(h0)−1).

Then Ricci(ht) =Ricci(h0) + i
2∂∂̄ϕt.

The line bundle L is associated to a convex polytope P in Rn which
coincides with the image of the moment map by any toric Kähler metric
in c1(L). Each integral point α ∈ kP corresponds to a holomorphic section
in H0(X,Lk). In particular, {zα}α∈kP form a basis for H0(X,Lk) for z ∈
(C∗)n. Let {sα(z)}α∈kP∩Zn be an orthonormal toric basis for H0(X,Lk)
with respect to the L2 norm defined by (hk0, ω

n
0 ), where ω0 = − i

2∂∂̄ log h0.
Then we define the following paths of Bergman metrics,

(13.43) ht,k(z) =
∑

α∈kP∩Zn

1
(Qhk

0
(α))1−t(Qhk

1
(α))t

|sα(z)|2,

where

(13.44)

Qhk
0
(α) = ‖sα‖2

hk
0

=
∫
X
|sα(z)|2

hk
0
ωn0 , Qhk

1
(α) = ‖sα‖2

hk
1

=
∫
X
|sα(z)|2

hk
1
ωn1 .

The corresponding potentials are given by

(13.45) ϕk(t, z) =
1
k

log (ht,kh−k0 ).

They correspond to the potentials Φk(z, w) of Theorem 26 with t= log |w|.
The following theorem [SZ10] shows that the potentials ϕk(t, z) actually

converge in C2:

Theorem 28. We have

(13.46) lim
k→∞

‖ϕk(t, z) − ϕt(z)‖C2([0,1]×X) = 0.

Theorem 28 is a considerable strengthening of both Theorem 26 and
Berndtsson’s result [Be2] in the toric case. The advantage of studying
Bergman metrics on toric manifolds is that toric holomorphic sections are
naturally orthogonal to each other and one can analyze the norming con-
stants Qhk(α). On the other hand, toric geodesics ϕt are alway smooth [Gd].
Thus one may expect a higher order of convergence.

In [RZ08], Theorem 28 is generalized from geodesics of toric Kähler
metrics to harmonic maps of a compact Riemannian manifold with boundary
into the space of toric Kähler metrics. More precisely, such a harmonic map
equation can always be solved, and the solution approximated by harmonic
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maps into the space of toric Bergman metrics in the C2-topology. The case
of geodesics corresponds to the case when the Riemannian manifold with
smooth boundary is the interval [0, 1].

13.5.2. Geodesic rays and large deviations. The approximation of the
geodesic rays associated in Section §13.4 to a test configuration T for a
polarization L→X can similarly be refined in the case of toric manifolds
[SZ07]. An interesting observation is made in [SZ07], which relates the
geodesic rays constructed in §13.4 on toric manifolds to the large deviations
principle [V].

Let L→X be a very ample toric line bundle over a toric manifold X.
We use the same notations as in Section §13.5.1. Let h= e−ϕ a smooth toric
hermitian metric on L such that ω = i

2∂∂̄ϕ ∈ c1(L) is a toric Kähler metric
on X. On (Cn)∗,the potential ϕ can be identified with a smooth convex
function ψ on Rn, ϕ(z) = ψ(ρ), with ρ= log |z|2. The Legendre transform
of ψ defined by

(13.47) u(x) = sup
ρ∈Rn

(x · ρ− ψ(ρ))

is called the symplectic potential associated to ψ. The function u(x) is a
smooth convex function on P with appropriate boundary singularities.

Let ψt(ρ) be the geodesic ray constructed in Theorem 27 in the toric
setting. Then the symplectic potential associated to ψt is given by

ut(x) = u0(x) − t(R− f(x))

for some positive piecewise linear convex function f(x) on P , and R ∈ R
with R − f(x)> 0 on P . The piecewise function f(x) is an alternative way
of describing a test configuration T in the toric setting [D02].

Define the pair (dμρk, I
ρ(x)) by

dμρk(x) = (Πhk(z, z))−1
∑

α∈kP∩Zn

|sα|2hk(z)
Qhk(α)

δα
k
(x)

Iρ(x) = u0(x) + ψ0 − x · ρ(13.48)

where Πhk(z, z) is the Szegö kernel for (Lk, hk) and δα/k(x) is a delta function
at α/k. Then the pair (dμρk, I

ρ(x)) satisfies the large deviation principle. The
measure dμρk is a probability measure on P and the function Iρ(x) is called
the rate function associated to dμρk. Varadhan’s lemma says that for each t
and ρ,

(13.49) lim
k→∞

1
k

log
∫
P
ekt(R−f(x))dμρk(x) = sup

x∈P
(t(R− f(x)) − Iρ(x)).

However, it turns out that

(13.50) ψt,k(ρ) − ψ0(ρ) =
1
k

log
∫
P
ekt(R−f(x))dμρk(x)
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is exactly the Bergman geodesic ray constructed in Theorem 27, while

sup
x∈P

(t(R− f(x)) − Iρ(x)) = sup
x∈P

{x · ρ− (u0(x) − t(R− f(x))} − ψ0(ρ)

= ψt(ρ) − ψ0(ρ).(13.51)

Therefore Varadhan’s lemma immediately gives the pointwise convergence
of ψk,t to ψt. The uniform convergence in C1(X × [0, 1]) topology is proved
in [SZ07]. The toric geodesic ray ψt is also shown in [SZ07] to be C1,1(X×
[0, 1]), but not C2(X × [0, 1]) in general.

13.5.3. Counter-examples to regularity of higher order than C1,1. It is
well-known that solutions of the homogeneous real Monge-Ampère equation
may be only of class C1,1 and not higher. Such counterexamples have been
extended to the complex case by Gamelin and Sibony [GS]. A more general
argument for why solutions cannot always be smooth has been given by
Donaldson [D]. In this section, we would like to give a simple example which
illustrates the fact that, even when geodesic segments may be smooth, as
in the case of toric varieties, geodesic rays associated to a test configuration
may be again at most C1,1 [SZ07].

Consider the following simple example of a C1,1 geodesic ray over CP1.
We consider the standard Fubini-Study metric gFS = i

2∂∂̄ϕ0 = i
2∂∂̄ log (1 +

|z|2) = i
2∂∂̄ log (1 + eρ) on CP1, where ϕ0 = log (1 + eρ) and ρ= log |z|2.

Then the moment map can be constructed by

(13.52) x=
∂ log (1 + eρ)

∂ρ
=

eρ

1 + eρ
∈ (0, 1).

The symplectic potential u0 corresponding to ϕ0 is given by

(13.53) u0(x) = xρ− ϕ0(ρ) = x log x+ (1 − x) log (1 − x), x=
eρ

1 + eρ
.

Let f(x) = |x− 1/2| be a piecewise linear convex function. Then

(13.54) ut(x) = u0(x) + tf(x) = x log x+ (1 − x) log (1 − x) + t|x− 1/2|
induces a geodesic ray. Now we can calculate the Kähler potential ϕt(ρ)
corresponding to ut.

By applying the Legendre transform to ut, we can show by a straight-
forward calculations that

(13.55) ϕt(ρ) = ρx− ut(x), ρ=
∂ut
∂x

,

and

(13.56) ϕt(ρ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

− t

2
+ log (1 + eρ+t), ρ ∈ (−∞,−t)

ρ

2
+ log 2, ρ ∈ (−t, t)

t

2
+ log (1 + eρ−t), ρ ∈ (t,∞)
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Let ϕ(t, z) = ϕt(ρ)−ϕ0. Then ϕ is an ωFS-psh function in C1,1(R×X),
but it is not of class C2(R ×X).

13.6. The Cauchy problem for the homogeneous Monge-
Ampère equation. The construction of geodesic rays associated to a test
configuration can be viewed as the solution of the Cauchy problem for the
homogeneous complex Monge-Ampère equation, with the initial velocity pro-
vided, implicitly, by the test configuration. Even though the Cauchy problem
is not well-posed in the sense of Hadamard, it is instructive to examine when
there are solutions and when and how they break down. Such an analysis
has been provided recently by Rubinstein and Zelditch [RZ10a] for convex
solutions of the real Monge-Ampère equation.

Consider the Cauchy problem

det(∇2ϕ) = 0 on [0, T ] × Rn,

ϕ(0, x) = ϕ0(x) on Rn,
∂ϕ

∂t
(0, x) = ψ0(x) on Rn.(13.57)

It is shown in [RZ10b] that the above equation can be solved via
Legendre transform until the Legendre transform of the solution stops being
convex. More precisely, the Legendre transform of ϕt is given by

(13.58) ut = u0 + tv.

The function ut will stop being convex at a certain Tspan > 0 if v is not
convex, thus ψt stops solving the HRMA after Tspan. A candidate solution is
constructed in [RZ10b] for t≥ Tspan, however, it does not solve the homo-
geneous real Monge-Ampère equation even in a weak sense and it is not dif-
ferentiable in general. Before Tspan, the solution can also be approximated
by Toeplitz quantization of the Hamiltonian flow defined by the Cauchy
data [RZ10a].

14. Envelopes and the Perron Method

The complex Monge-Ampère equation satisfies the comparison princi-
ple. Thanks to this, generalized solutions can be obtained by the Perron
method, as envelopes of families of plurisubharmonic functions. In this sec-
tion, we describe some results obtained in this manner, focusing on the
homogeneous case.

14.1. Envelopes. The Perron method for complex Monge-Ampère
equations was first developed by Bedford and Taylor [BT76] for degenerate
complex Monge-Ampère equations on bounded domains in Cn. A special
case of their results of particular interest to our considerations is the fol-
lowing. Let D ⊂ Cn be a smooth, bounded strictly pseudoconvex domain
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in Cn, and let f ∈ C(∂D). Define the following family of plurisubharmonic
functions

(14.1) ED,f = {u ∈ PSH(D)|u|∂D ≤ f}

and its upper envelope

(14.2) û(z) = sup
ED,f

u(z).

Then û ∈ ED,f ∩ C(D), u is of class C1,1 in the interior of D, and u is
the unique solution of the Dirichlet problem for the homogeneous complex
Monge-Ampère equation

(14.3)
(
i

2
∂∂̄u

)n
= 0 on D, u|∂D = f on ∂D.

The local C1,1 regularity follows from the C1,1 regularity of the solution of
the Dirichlet problem for the unit ball [BT76].

The Perron method has been widely applied since for the complex
Monge-Ampère equations, and there has been considerable progress, thanks
partly to the infusion of new techniques and improved approximation theo-
rems for plurisubharmonic functions. In particular, the following results were
obtained relatively recently by Berman and Demailly for certain homoge-
neous complex Monge-Ampère equations, generalizing the geodesic equa-
tions considered in §13.

Let (X,ωX) be an n-dimensional compact Kähler manifold with a
smooth Kähler form ωX . Let Σ be a strictly pseudoconvex domain in Cm

with ρ being a smooth strictly plurisubharmonic defining function for Σ
and Σ = {ρ < 0}. We consider the product manifold M =X × Σ and let
ωM = ωX +ωΣ be a Kähler form on M , where ωΣ = i

2∂∂̄ρ. Let πX :M →X
and πΣ :M → Σ be the natural projection maps.

Let α be closed real (1, 1) form on M with bounded coefficients, with
αs ≡ α|{s}×X ≥ εωX for some ε > 0 and all s ∈ Σ. Let f be a continuous
function on M such that for each s ∈ ∂Σ, f |Xs ∈ PSH(X,αs), where Xs =
π−1
X (s). We define

(14.4) EM,α,f = {u|u ∈ PSH(M,α) ∩ C(M), u≤ f on ∂M}.

and the upper envelope of EM,α,f by

(14.5) ϕ= sup
EM,α,f

u.

The following theorem was proved in [BD];

Theorem 29. Let (X,ωX), Σ, α, and f ∈ C(∂M) satisfy all the prop-
erties listed above, and define the family EM,α,f and its upper envelope ϕ as
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above. Then the function ϕ is the unique α-plurisubharmonic solution of the
Dirichlet problem

(14.6)
(
α+

i

2
∂∂̄ϕ

)dimM

= 0 on M, ϕ= f on ∂M.

Furthermore, if f ∈ C1,1(∂M), then for any s ∈ Σ, i∂∂̄ϕ|{s}×X is locally
bounded, uniformly in s ∈ Σ.

The proof in [BD] depends on the Kiselman infimum principle and
refined regularization techniques for plurisubharmonic functions. Here we
discuss only the special case when α= ωX (more precisely, the pull-back of
ωX to M) and f ∈ C∞(∂M). In this case, the fiber-wise regularity can be
obtained by the method of elliptic regularization used earlier for the geodesic
equation and the standard C2 estimates of Yau, as described in §6.

First we show that ϕ is the solution of the Dirichlet problem. Let ωX,f =
ωX + i

2∂∂̄f after extending f to a smooth function on M . The original
problem is equivalent to the same problem formulated rather with

(14.7) EM,ωX,f ,0 = {u|u ∈ PSH(M,ωX,f ), u≤ 0 on ∂M}, ϕ= sup
EM,ωX,f ,0

u.

We show that ϕ is continuous on ∂M . The form ωX,f + A i
2∂∂̄ρ is a

Kähler form onM for sufficiently large A> 0. Hence Aρ ∈ EM,ωX,f ,0 and then
Aρ≤ ϕ. On the other hand, for any u ∈ EM,ωX,f ,0, u+Aρ is plurisubharmonic
on π−1

X (z) for each z ∈X, for sufficiently large A> 0 independent of the
choice z ∈X. Thus u + Aρ≤ 0 since u + Aρ≤ 0 on ∂(π−1

X (z)). It easily
follows that

(14.8) Bρ≤ ϕ≤−Bρ

for some B > 0. In particular, ϕ is continuous on ∂M .
Next we show that ϕ is continuous in M . First we fix A> 0 with

(14.9) Aρ≤ ϕ≤−Aρ.

For any compact subset K in M and any sufficiently small ε > 0, we choose
δ = (4A)−1ε so that K ⊂M4δ and ϕ≤ ε/4 on M \M4δ, where

(14.10) Mδ = {(z, s) ∈M |ρ(z, s)<−δ}.

By Demailly’s regularization techniques [D], there exists a decreasing
sequence {uj} ⊂ PSH

(
M,
(
j+1
j

)
ωX,f

)
∩ C(Mδ/2) which converges to the

ϕ∗, the upper semi-continuous envelope of ϕ. We define

(14.11) ũj(z, s) =

⎧⎨
⎩max

(
j

j + 1
uj − ε, 2Aρ

)
, (z, s) ∈Mδ

2Aρ (z, s) /∈Mδ.
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On ∂Mδ,
j
j+1uj − ε≤−ε/2 ≤−2Aδ. Hence ũj ∈ EM,ωX,f ,0. Furthermore,

on K,

(14.12)
j

j + 1
uj − ε≥ j

j + 1
ϕ− ε≥ j

j + 1
Aρ− 4Aδ ≥Aρ+Aρ= 2Aρ,

and so ũj = j
j+1uj − ε. It follows immediately that

(14.13) ϕ∗ ≤ uj =
j + 1
j

(ũj + ε) ≤ j + 1
j

ϕ+
j + 1
j

ε

or 0 ≤ uj − ϕ≤ 1
j |ϕ| + ε. Therefore uj converges to ϕ uniformly in L∞(K)

and so ϕ∗ is continuous in K. In conclusion, ϕ= ϕ∗ ∈ EM,ωX,f ,0 ∩ C(M).
Finally, we show that ( i2∂∂̄û)

dimM = 0. Fix any Euclidean ball B in M .
There exists η ∈ C∞(B) such that ωX,f = i

2∂∂̄η on B. Let

(14.14) EB,(ϕ+η)|∂B
= {v|ϕ ∈ PSH(B), v|∂B = (ϕ+ η)|∂B}

and ψ = supv∈EB,(ϕ+η)|∂B
v. Then by the above Bedford-Taylor theorem for

CdimM , we have ( i2∂∂̄ψ)dimM = 0 and ϕ= ψ − η on B. Hence (ωX,f +
i
2∂∂̄ϕ)dimM = 0 on B.

We turn to the proof of fiber wise regularity. Consider the following
elliptic regularization of the homogeneous Monge-Ampère equation,

(14.15)
(
ωX +

i

2
∂∂̄ϕε

)n+m

= ε ωn+m
M on M, ϕε = f on ∂M.

For any ε > 0, there exists a unique smooth solution ϕε in M . In fact, since
(ωX + i

2∂∂̄us)
dimM > εωdimM

M , the function us ≡ f+Aρ is a subsolution sat-
isfying us|∂M = f |∂M for sufficiently large A> 0. Thus ϕε ≥ uε. Furthermore
ϕε ≤ ϕ ∈ EM,ωX ,f , and we have

(14.16) ‖ϕε‖C0(M) ≤ C

uniformly in ε.
It suffices now to show that there exists C > 0 such that for any ε ∈ (0, 1)

and s ∈ Σ,

(14.17)
(
ωX +

i

2
∂∂̄ϕε

)∣∣∣∣
Xs

≤ CωX |Xs .

It would follow then that, for any s ∈ Σ,

(14.18)
(
ωX +

i

2
∂∂̄ϕ

)∣∣∣∣
Xs

≤ CωX .

since ϕε is increasingly monotone as ε→ 0 and ϕε converges to ϕ uniformly.
To establish (14.17), let ωε = ωX + i

2∂∂̄ϕε. We denote gX , gΣ, gM and gε
be the Kähler metrics associated to ωX , ωΣ, ωM and ωε. We always use the
product coordinates for M , where (z, s) = (z1, . . . , zn, s1, . . . , sm) and z ∈X
and write ωM = i

2(gX)j̄idzi ∧ dz̄j + i
2(gΣ)β̄αds

α ∧ ds̄β .
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We define

(14.19) Hε =

(
ωX + i

2∂∂̄ϕε
)
∧ ωn−1

X ∧ ωmΣ
ωnX ∧ ωmΣ

.

Notice that Hε is the trace of the relative endomorphism between ωε|Xs

and ωX ,

(14.20) Hε(z, s) = TrωX (ωε|Xs)(z) =
n∑

i,j=1

(gX)ij̄(gε)j̄i,

where gX is the Kähler metric associated to ωX and gε is the Kähler metric
associated to ωX+ i

2∂∂̄ϕε. The same calculations as in Yau’s Schwarz lemma
[Y78a] or in Yau’s second order estimates, see §6, show that there exists
C1 > 0 such that for all ε ∈ (0, 1), we have on M ,

(14.21) Δε logHε ≥−C1Trωε(ωM ) − C1,

where Δε is the Laplacian operator on M with respect to ωε. We also have

(14.22) Δε(−ϕε+ρ) = −(n+m)+Trωε(ωX +ωΣ) = −(n+m)+Trωε(ωM ).

Then there exist C2, C3, C4 > 0 which are independent of ε ∈ (0, 1) such that

Δε( logHε −Aϕε +Aρ) ≥ (A− C1)Trωε(ωM ) − C1 −A(n+m)

≥ C2(TrωM (ωε))1/(n+m−1)

(
ωn+m
M

ωn+m
ε

)1/(n+m−1)

− C2

≥ C3Hε − C4.

On the other hand,

(14.23) Hε|∂M =

(
ωX + i

2∂∂̄f
)
∧ ωn−1

X

ωnX

∣∣∣∣∣
∂M

is uniformly bounded from above for all ε ∈ (0, 1). Applying the maximum
principle, we obtain a constant C5 > 0 such that for all ε ∈ (0, 1),

(14.24) Hε ≤ C5

since both uε and ρ are uniformly bounded in C(M). The proof of the
fiberwise regularity is complete.

14.2. Envelopes with integral conditions. In the previous section,
we have seen how envelopes with pointwise Dirichlet conditions can produce
solutions to the Dirichlet problem for complex Monge-Ampère equation. It
would be interesting to determine whether envelopes with integral condi-
tions can be effectively used to produce other solutions of Monge-Ampère
equations, or other canonical metrics. We describe some examples of such
envelopes below.



396 D.H. PHONG, J. SONG, AND J. STURM

One example is the following hermitian metric defined by Tsuji [Ts07]
on projective manifolds of general type, generalizing the metric introduced
in [NS]. Let X be a smooth projective variety of general type. Fix a smooth
hermitian metric h0 on KX and define

(14.25) ϕcan(z) = sup
{
ϕ(z)|Ric(h0) +

i

2
∂∂̄ϕ≥ 0,

∫
X
eϕh−1

0 = 1
}

and

(14.26) hcan = e−ϕcanh0.

It has been shown by Berman and Demailly [BD] that this metric hcan
coincides with the metric h̃can defined instead by

(14.27)

h̃can(z) = inf
m∈Z+

inf
{
(σ ∧ σ̄(z))−1/m

∣∣∣∣
∫
X
|σ ∧ σ̄|1/m = 1, σ ∈H0(X,mKX)

}
.

which is manifestly a birational invariant, h̃can is a birational invariant since
H0(X,mKX) is invariant under birational transformations.

Another example is the following. Let Ω be a bounded strictly pseudo-
convex domain in Cn. We define

(14.28) ϕcan(z) = sup
{
ϕ(z)

∣∣∣∣ i2∂∂̄ϕ≥ 0,
∫

Ω
eϕ
(
i

2
∂∂̄|z|2

)n
= 1
}
.

We also define (hcan)−1 = eϕcan( i2∂∂̄|z|2)n to be the canonical measure on Ω.

Lemma 25. ϕcan is a plurisubharmonic function on Ω.

Proof. First, we show that ϕcan is bounded from above in any com-
pact subset of Ω. Suppose not, then by taking a subsequence, there exist
a sequence of points zj → ẑ ∈ Ω and a sequence of psh functions ϕj with∫
Ω e

ϕj = 1 such that
ϕj(zj) →∞.

Without loss of generality, we can assume that B(zj , r) ⊂⊂ Ω for all j for
some fixed r > 0. Then by the mean value inequality and Jensen’s inequality,
there exist positive constants C1, C2, C3 independent on j such that

(14.29) 1 =
∫

Ω
eϕj ≥ C1e

∫
Ω ϕj ≥ C2e

∫
B(zj ,r) ϕj ≥ C3e

ϕj(zj) →∞.

This is a contradiction.
Next we have to show that ϕcan = (ϕcan)∗. By the definition of ϕcan,

for any ẑ ∈ Ω, there exists a sequence zj → ẑ and psh ϕj with
∫
Ω e

ϕj = 1
such that

(14.30) ϕj(zj) → (ϕcan)∗(ẑ).
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By taking a subsequence, we can assume that ϕj converges to a psh function
ϕ in L1(Ω) and thus almost everywhere. In particular,

∫
Ω e

ϕ ≤ 1 by Fatou’s
lemma. On the other hand,

ϕcan(ẑ) ≥ ϕ(ẑ) = lim
r→0

1
vol(B(ẑ, r))

∫
B(ẑ,r)

ϕ

= lim
r→0

lim
j→∞

1
vol(B(zj , r))

∫
B(zj ,r)

ϕj

≥ lim
j→∞

ϕj(zj) = (ϕcan)∗(ẑ).

The lemma is proved. Q.E.D.

The following theorem provides a more algebraic characterization
of ϕcan:

Theorem 30. ϕcan ∈ PSH(Ω) ∩ C(Ω) and
(14.31)

ϕcan(z) = sup
m∈Z+

sup
{

1
m

log |f |2(z)|f ∈ O(Ω),
∫

Ω
|f | 2

m

(
i

2
∂∂̄|z|2

)n
= 1
}
.

Proof. Denote by ϕcan,alg the right-hand side of (14.31). It is easy to
see that ϕcan,alg ≤ ϕcan, so it suffices to show that ϕcan,alg ≥ ϕcan.

By the Ohsawa-Takegoshi extension theorem, for any psh ϕ on Ω with∫
Ω e

ϕ = 1 and any point z ∈ Ω, there exists a holomorphic function f on Ω
such that for any m ∈ Z+,

(14.32) |f |2e−(m−1)ϕ(z) = 1 and
∫

Ω
|f |2e−(m−1)ϕ ≤ C,

where C does not depend on ϕ or m. By Hölder’s inequality, we have∫
Ω
|f |2/m ≤

(∫
Ω
|f |2e−(m−1)ϕ

)1/m(∫
Ω
eϕ
)(m−1)/m

≤ (C)1/m.

Let F = f
(
∫
Ω |f |2/m)m . Then F ∈ O(Ω) with

∫
Ω |F |2/m = 1, and

(14.33)
1
m

log |F |2(z) ≥ (m− 1)ϕ(z) − 1
m
C = ϕ(z) − 1

m
(ϕ(z) + C).

For fixed z, ϕ(z) and C are uniformly bounded from below. By letting m→
∞, we get

(14.34) ϕcan,alg(z) ≥ ϕ(z).

Since this is true for any z and any psh ϕ with
∫
Ω e

ϕ = 1, we have ϕcan,alg(z)
≥ ϕcan(z), and hence ϕcan,alg = ϕcan.

Now we can show that ϕcan is continuous. It suffices to show that ϕcan is
lower semi-continuous. Suppose not. Then there exists ẑ ∈ Ω and ε > 0 and
a sequence of points zj ∈ Ω converging to ẑ so that

(14.35) ϕcan(zj)< ϕcan(ẑ) − ε.



398 D.H. PHONG, J. SONG, AND J. STURM

Also there exist f ∈ O(Ω) and m ∈ Z+ such that

(14.36)
∫

Ω
|f |2/m = 1,

1
m

log |f |2(ẑ)> ϕcan(ẑ) −
ε

2
.

Then there exist r > 0 such that for all z ∈B(ẑ, r),

ϕcan(z) ≥
1
m

log |f |2(ẑ)> ϕcan(ẑ) −
ε

4
.

This is a contradiction. Q.E.D.

A natural question to ask is whether gcan = i
2∂∂̄ϕcan defines a complete

metric on a bounded strictly pseudoconvex domain in Cn and how it is
related to other invariant metrics such as the Bergman, Carathéodory and
Kobayashi metrics.

15. Further Developments

As we had acknowledged in the introduction, we could not cover all
the possible recent developments, and this survey has not touched on many
important topics. In this section, we would like to mention a few and provide
some references, for readers who may be completely new to the subject.

A first major omission is a discussion of the important equation (2.1)
with F (z, ϕ) = ef(z)−ϕ, which corresponds to the open problem of Kähler-
Einstein metrics on a compact Kähler manifold (X,ω0) with ω0 ∈ c1(K−1

X ).
From the discussion of a priori estimates in §6 and §7, we see that the equa-
tion would be solvable if we can obtain a C0 estimate. The problem is to
link such an estimate to stability in GIT, as required by the conjecture of
Yau [Y93]. Donaldson has recently laid out a program for achieving this
[D10, D11a, D11b, CDa, CDb]. Prior to this program, Kähler-Einstein
metrics with positive scalar curvature have been found in various geometric
situations by Tian and Yau [TY87] and Tian [T87] using the α-invariant,
and by Siu [Si] and Nadel [N] using multiplier ideal sheaves. Necessary con-
ditions for Kähler-Einstein metrics have been obtained by Tian [T97]. It
has been shown by Tian [T90b] that, for surfaces, the existence of Kähler-
Einstein metrics is equivalent to the vanishing of the Futaki invariant. A full
account of the arguments in [T90b] can be found in the paper of Tosatti
[T10]. The same characterization of the existence of Kähler-Einstein met-
rics by the vanishing of the Futaki invariant has been established by Wang
and Zhu [WZ2]. Their proof exploits the fact that the toric potentials on a
toric variety satisfy a real Monge-Ampère equation, and the image of their
gradients is the polytope of the variety. For a survey of some of these devel-
opments and the related issue of stability, see [PS03, PS08].

The related question of singularities for the Monge-Ampère equation
when the manifold is unstable is of similar considerable interest, and even
less explored. The case of holomorphic vector bundles has seen remarkable
progress, with the recent works of G. Daskalopoulos and R. Wentworth for
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complex surfaces [DW1, DW2], and A. Jacob [J1, J2] for general Kähler
manifolds, on the generalization to arbitrary dimensions of the Atiyah-Bott
formula for complex curves. An analysis of a break-up of an unstable ruled
surface by the Calabi flow has been given by G. Szekelyhidi [Sz].

Another major omission is parabolic complex Monge-Ampère equations,
and particularly the Kähler-Ricci flow. As we had mentioned earlier, start-
ing with the papers of Cao [Cao] and Tsuji [Ts], there has been a con-
stant feedback between developments for the elliptic and for the parabolic
Monge-Ampère equation. In fact, much of the material discussed in Sec-
tions 3, 6, 7 either arose from or are directly motivated by the study of the
Kähler-Ricci flow on Fano manifolds (e.g. [ST09, PS06a, PSSW1, CZ,
MS, Yu, Zh] and references therein) or on manifolds of general type (e.g.
[ST06, TZ, ST09, SW1]). New powerful techniques have been introduced
by Perelman (see [ST] for an account of Perelman’s unpublished results on
the Kähler-Ricci flow). We refer to the papers we listed for a fuller list of
references. Related developments for the Sasaki-Ricci flow can be found in
[Co1, Co2, He1].

The Monge-Ampère measure is uniquely defined by Bedford and Taylor
[BT76] for locally bounded potentials. The largest classes of possibly
unbounded potentials for which a well-behaved measure can be defined have
been identified by Cegrell [Ceg] and Blocki [B06]. The Monge-Ampère mea-
sures can also be defined for unbounded potentials, if their singularity set
is compact [D, Sib]. A prime example is the pluricomplex Green’s function
(see e.g. [L, BD, Gb, B00, Ze1] and references therein). As we saw in
Section §9, a non-pluripolar definition can be given, and the range of the
corresponding Monge-Ampère measures has been completely characterized
by Guedj and Zeriahi [GuZe]. The investigation of Monge-Ampère measures
which charge pluripolar sets is still in its infancy, see [CG] for examples on
projective spaces and [ACCH] for some general results. It is an important
direction for research.

In Section §13, we have seen how geodesics in the space of Kähler met-
rics lead to the homogeneous complex Monge-Ampère equation. Similarly,
Donaldson [D07] has shown how geodesics in the space of volume forms
on a Riemannian manifold lead to a non-linear equation now known as
Donaldson’s equation. He also showed how this equation can be interpreted
as a PDE version of Nahm’s equation in mathematical physics, and is closely
related to well-known free boundary problems. The existence of C1,α solu-
tions of Donaldson’s equation has been obtained by Chen and He [CH] and
He [H]. The same questions of regularity and maximum rank arise for this
equation as they do for the homogeneous complex Monge-Ampère equation.
Some early results in low dimensions can be found in [GPa, GPb]. The
existence and regularity of geodesics in the space of Sasaki metrics have also
been investigated in [GZ].

We have seen in Section 3.2 how the most basic Alexandrov-Bakelman-
Pucci estimates can be applied to the complex Monge-Ampère equations.
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It would be interesting to find out whether this method can be carried out
further. In this context, we would like to mention the recent remarkable ABP
estimates on Riemannian manifolds obtained by Wang and Zhang [WZ1],
building on earlier works of Cabré [Ca1].

Finally, we would like to mention viscosity methods. They have been
very successful in the investigation of non-linear equations where no com-
plex structure plays a particular role [CIL]. Even though the notion of
plurisubharmonicity poses a number of difficulties, it may not be unreason-
able to expect that viscosity methods can be developed and become of wider
use for equations such as the complex Monge-Ampère equation. Some major
steps in incorporating plurisubharmonicity in viscosity methods have been
undertaken by Harvey and Lawson [HL], Eyssidieux, Guedj, and Zeriahi
[EGZ10], and Wang [W1]. For example, a version of Theorem 12, estab-
lishing the existence and uniqueness of viscosity solutions to the Dirichlet
problem for the equation (2.1) on domains in Cn for continuous data, has
been established in [W].

A. Plurisubharmonic functions

We gather here for the convenience of the reader some basic properties
of plurisubharmonic functions and of their Monge-Ampère measures.

A.1. The exponential estimate. Now the L2 norm, in fact the Lp

norm for any p <∞, of any non-positive plurisubharmonic function ϕ is
bounded by a constant depending only on the Kähler class of ω0. This is
a consequence of the following local estimate of Hörmander, extended to
Kähler manifolds by [T87, TY87, Ze]

Theorem 31. Let ω0 be a Kähler form. There exists a a strictly positive
number α and a constant C depending only on ω0 so that

(A.1)
1

[ωn0 ]

∫
X
e−α(u−supXu)ωn0 ≤ C

for all u ∈ PSH(X,ω0).

Since eαt ≥ (αp )ptp for all t≥ 0 and all p > 0, it follows that ‖u−supXu‖Lp

is bounded by a constant depending only on p and ω0.
For recent advances on exponential estimates for plurisubharmonic func-

tions, see [DNS].

A.2. Regularization of plurisubharmonic functions. The exist-
ence of approximations of ω0-plurisubharmonic functions by monotone
sequences of smooth ω0-plurisubharmonic functions is much more delicate
for Kähler manifolds than for domains in Cn. Part of the difficulty resides
in the conflicting roles of the differential geometric and the complex struc-
ture. An early approximation theorem with loss of ε-positivity is due to
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Demailly [D89]. Many others are now available, including the recent ones of
Demailly, Peternell, and Schneider [DPS] and of Demailly and Paun [DP2],
which imply in particular the following statement: let (X,ω0) be a Kähler
manifold, and let γ be a continuous non-negative (1, 1)-form. Then for any
ϕ ∈ PSH(X, γ) with Lelong numbers νϕ(z) = 0 for all z ∈X, and any sub-
set X ′ ⊂X with compact closure, there exists a decreasing sequence εj ↓ 0,
and a sequence ϕj ∈ PSH(X, γ+ εjω0)∩C∞(X) with ϕj ↓ ϕ in a neighbor-
hood of X ′. This statement was given an independent proof by Blocki and
Kolodziej [BK]. But particularly important for our purposes is the observa-
tion of Blocki and Kolodziej [BK] that, for X compact and γ = ω0, no loss
of positivity is necessary:

Theorem 32. Let (X,ω0) be a compact Kähler manifold. Then for every
ϕ ∈ PSH(X,ω0), there exists a sequence ϕj ∈ PSH(X,ω0) ∩ C∞(X) with
ϕj ↓ ϕ.

For the convenience of the reader, we provide some details on how to
derive Theorem 32 from the result of [DPS, DP2].

Let ϕ ∈ PSH(X,ω0), ϕ≤−1 on X. For each j, the function max(ϕ,−j)
is bounded, and hance has vanishing Lelong numbers. Thus the result of
[DPS, DP2] implies the existence of a sequence of smooth functions ψjk ∈
PSH(X, (1+εj,k)ω0) with ψj,k ↓ max(ϕ,−j) and εj,k ↓ 0 as k→∞. By pass-
ing to a subsequence, we may assume that εj,k ≥ εj+1,k for all j, k. It suffices
to show that there exists a sequence k1 < k2 < · · · so that ϕ̃j ≡ ψj,kj + 1

2j is
a decreasing sequence converging to ϕ. The sequence

(A.2) ϕj ≡
ϕ̃j

1 + εj,kj

is then a sequence of smooth functions in PSH(X,ω0) with ϕj ↓ ϕ.
We choose kj inductively as follows. Fix j. Let

(A.3) Cj =
{
ψj+1,k ≥ ψl,kl+j +

1
2j+1

for some l ≤ j

}
.

Since ∩kCk = ∅, we can choose kj+1 so that Ckj+1 = ∅. Note that

(A.4) ψj+1,kj ≤ ψj,kj +
1

2j+1
and so ϕ̃j+1 ≤ ϕ̃j .

Now fix x ∈X, ε > 0, and assume that ϕ(x) ≥−j0. Choose j so that

(A.5) 0 ≤ ψj0,kj0
+j(x) − ϕ(x)< ε

Then ψj,kj − ϕ(x)< ε + 1
2j , which implies ϕ̃j(x) − ϕ(x)< ε + 1

2j + 1
2j . The

argument is complete.
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A.3. The comparison principle. The following is a useful version of
the comparison principle. It follows from the standard arguments of Bedford
and Taylor [BT82], using the above approximation theorem for plurisub-
harmonic functions on Kähler manifolds.

Theorem 33. Let (X,ω0) be a compact Kähler manifold with smooth
boundary ∂X and dimension n, and let ω be a smooth, non-negative, closed
(1, 1)-form. Then we have

(A.6)
∫
{ϕ<ψ}

(
ω +

i

2
∂∂̄ψ

)n
≤
∫
{ϕ<ψ}

(
ω +

i

2
∂∂̄ϕ

)n
for all ϕ,ψ ∈ PSH(X,ω)∩L∞(X) satisfying liminfz→∂X(ϕ(z)−ψ(z)) ≥ 0.
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