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manifolds: survey
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Abstract. This article is a survey of the Lagrangian Floer theory
of toric manifolds, which summarizes the results obtained in a
series of the present authors’ papers [FOOO3, FOOO4, FOOO5].
In this survey, we discuss calculations of the Floer cohomology of
Lagrangian Tn orbits in compact toric manifolds. Applications to
symplectic topology and to mirror symmetry are also discussed.
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12. Poincaré duality and Residue pairing 275
12.1. Big quantum cohomology and Frobenius manifold 275
12.2. A fragment of K. Saito theory. 278
12.3. Residue pairing on Jac(POb) 280
12.4. Residue pairing is Poincaré duality. 284
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1. Introduction

This is the survey of a series of present authors’ papers [FOOO3,
FOOO4, FOOO5] on the Lagrangian Floer theory of toric manifolds and
its applications to mirror symmetry. The main purposes of the present sur-
vey are to convey systematic means of computations of Lagrangian Floer
cohomology of the Tn-orbits in toric manifolds, to demonstrate various oper-
ations introduced in [FOOO1] Section 3.8 and apply them to the mirror
symmetry between toric A model and Landau-Ginzburg B model and to
symplectic topology of toric manifolds.

Let X be a compact toric manifold with complex dimension n and let
L(u) be a Tn orbit. (Here u is an element of the interior of the moment
polytope which parametrizes the location of the corresponding Tn orbit. See
Section 4 Formula (12).) We show that the cardinality (counted with mul-
tiplicity) of the pairs (L(u), b), for which Floer cohomology HF ((L(u), b),
(L(u), b); Λ) is nontrivial, is equal to the Betti number of X. (Theorem 11.9.)
Here b is an element of H1(L(u); Λ0)/H1(L(u); 2π

√−1Z) which deforms the
Floer (pre-)coboundary map and so does the Floer cohomology of L.

The set of such pairs (L(u), b) one-one corresponds to the set of the
critical point of a certain function PO, called the potential function. Then
u, the location of L(u), is given by the valuation of the coordinates of the
corresponding critical point. For the given toric manifold X, valuations of
the critical points of PO can be obtained by solving a system of explicitly
calculable algebraic equations in a finite number of times. We illustrate these
examples in sections 6 and 10. (We use the result of Cho-Oh [CO] for this
calculation.)

The above mentioned one-one correspondence is induced by an isomor-
phism between quantum cohomology QH(X; Λ0) of X and the Jacobian ring
Jac(PO) of the potential function PO. The origin of such a correspondence
goes back to Givental [Gi1, Gi2] and Batyrev [B1, B2] in the case when
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X is Fano. We remark that the rank of QH(X; Λ0) is the same as the Betti
number of X, and the rank of Jac(PO) is the same as the number of critical
points of PO counted with multiplicity.

The isomorphism QH(X; Λ0) ∼= Jac(PO) is a ring isomorphism. In case
QH(X; Λ) is semi-simple, the ring QH(X; Λ) splits into the product of copies
of the field Λ and each factor of the product corresponds to a critical point
of PO. (Proposition 11.8.)

In this way we associate a non-displaceable Lagrangian submanifold
L(u) to each of the direct factors of QH(X; Λ). Entov-Polterovich [E, EP1,
EP2, EP3] and others [Os, Us] associated a Calabi quasi-homomorphism
to each direct factor of QH(X; Λ), and also associates non-displaceable
Lagrangian submanifolds L(u) to such Calabi quasi-homomorphisms. The
non-displaceable Lagrangian submanifold associated by the Entov-
Polterovich’s theory coincides with the one associated by the Lagrangian
Floer theory, as we prove in [FOOO7]. (Our construction and proof are
very different from Entov-Polterovich’s, though.)

The ring isomorphism QH(X; Λ0) ∼= Jac(PO) is generalized to the con-
text of big quantum cohomology in the left hand side and the potential
function of the Lagrangian Floer theory with bulk deformations in the right
hand side. We call the corresponding potential function the potential func-
tion with bulk.

Furthermore this ring isomorphism intertwines the pairings, which are
the Poincaré duality pairing in the left hand side and (a version of) the
residue pairing in the right hand side. This gives rise to an isomorphism
of the relevant Frobenius manifold structures present in the two sides: One
is the Frobenius manifold structure induced by big quantum cohomology,
which is due to Dubrovin [Dub], and the other is the one associated to the
isolated singularity by Saito [Sa, MSa]. This isomorphism can be regarded
as a version of mirror symmetry between Toric A model and Landau-
Ginzburg B model. It is closely related to the story of Hori-Vafa [HV] and
also of Givental.

The mirror symmetry between the toric manifold and the singularity
theory have been studied by many mathematicians. Besides those already
mentioned above, we provide a list of some of them, which is not exhaustive
by any means.

In this survey, we focus on the case in which we study the A model
(symplectic geometry and pseudo-holomorphic curve) on the toric manifold
side and the B model (deformation theory and complex geometry) on sin-
gularity theory side. The papers [Aur1, Aur2, Bar, CLe, CO, Gro1,
Gro2, GPS, Iri1, Iri2, Iri3, OT, Ta, W] also deal with that case.

The other side of the story, namely B model in toric side and A model
in singularity theory side, has been more extensively studied than the side
of present survey. The papers [Ab1, AKO, FLTZ, Se2, Ue, UY] deal
with this side.
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2. Preliminary

2.1. Notations and terminologies. The universal Novikov ring Λ0

is the set of all formal sums

(1)
∞∑
i=0

aiT
λi

where ai ∈ C and λi ∈ R≥0 such that limi→∞ λi = ∞, and T is a formal
parameter. We allow λi ∈ R in (1) (namely negative λi) to define Λ which
we call universal Novikov field. It is a field of fraction of Λ0. We require
λi > 0 in (1) to define Λ+, which is the maximal ideal of Λ0.

We define a valuation vT on Λ by

(2) vT

( ∞∑
i=0

aiT
λi

)
= inf{λi | ai �= 0}.

(Here we assume λi �= λj for i �= j.) Λ, Λ0, Λ+ are complete with respect to
vT and (Λ0, Λ+) is a valuational ring with valuation vT .

Remark 2.1. In [FOOO1] a slightly different Novikov ring Λ0,nov which
contains another formal parameter e is used. The role of e is to adjust all
the operators appearing in the story so that they have well-defined degree.
(e has degree 2.) In [FOOO3, FOOO4, FOOO5] and this paper we use
Λ0 since ring theoretical properties of Λ0 is better than one of Λ0,nov. As a
drawback only the parities of various operators are well-defined.

Let Z1, . . . , Zm be variables. We define the strictly convergent power
series ring

Λ0〈〈Z1, . . . , Zm〉〉
as the set of all formal sums

∞∑
k1=0

· · ·
∞∑

km=0

Ck1...kmZk1
1 . . . Zkm

m

where Ck1...km ∈ Λ0 such that

lim
k1+···+km→∞

vT (Ck1...km) = +∞.

We define strictly convergent Laurent power series ring

Λ0〈〈Z1, Z
−1
1 , . . . , Zm, Z−1

m 〉〉
as the set of all formal sums∑

k1∈Z

· · ·
∑

km∈Z

Ck1...kmZk1
1 . . . Zkm

m

where Ck1...km ∈ Λ0 such that

lim
|k1|+···+|km|→∞

vT (Ck1...km) = +∞.
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See [BGR] about those rings.
We also define

Λ〈〈Z1, Z
−1
1 , . . . , Zm, Z−1

m 〉〉 = Λ0〈〈Z1, Z
−1
1 , . . . , Zm, Z−1

m 〉〉 ⊗Λ0 Λ.

The definition of Λ〈〈Z1, . . . , Zm〉〉 is similar.
Let C be a graded free Λ0 module. The valuation vT induces a norm on

C in an obvious way, by which C is complete. We define its degree shift C[1]
by C[1]k = Ck+1. The shifted degree deg′ is defined by

deg′ x = deg x − 1.

We put

(3) BkC = C ⊗ · · · ⊗ C︸ ︷︷ ︸
k times

.

Let B̂C =
⊕̂∞

k=0BkC be the completed direct sum of them. Let Sk be the
symmetric group of order k!. It acts on BkC by

(4) σ · (x1 ⊗ · · · ⊗ xk) = (−1)∗xσ(1) ⊗ · · · ⊗ xσ(k)

where ∗ =
∑

i<j:σ(i)>σ(j) deg xi deg xj . We define EkC as the subset of Sk

invariant elements of BkC and put ÊC =
⊕̂∞

k=0EkC its completed direct
sum.

On BC we define a coalgebra structure Δ : BC → (BC)⊗2 by

(5) Δ(x1 ⊗ · · · ⊗ xk) =
k∑

i=0

(x1 ⊗ · · · ⊗ xi) ⊗ (xi+1 ⊗ · · · ⊗ xk).

(Note the summand in the case i = 0 is 1⊗(x1⊗· · ·⊗xk).) Δ is coassociative.
We can define Δ : EC → (EC)⊗2 by restriction. It is coassociative and

graded cocommutative.
We also consider a map Δk−1 : BC → (BC)⊗k

Δk−1 = (Δ ⊗ id ⊗ · · · ⊗ id︸ ︷︷ ︸
k−2

) ◦ (Δ ⊗ id ⊗ · · · ⊗ id︸ ︷︷ ︸
k−3

) ◦ · · · ◦ Δ.

For an indecomposable element x ∈ BC, it can be expressed as

(6) Δk−1(x) =
∑

c

xk;1
c ⊗ · · · ⊗ xk;k

c

where c runs over some index set. We use the same notation for EC.
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2.2. Moduli spaces of pseudo-holomorphic disks. Lagrangian
Floer theory is based on the moduli space of pseudo-holomorphic disks.
We recall its definition below. See [FOOO1] subsection 2.1.2 for detail.

Let X = (X, ω) be a symplectic manifold and L its Lagrangian sub-
manifold. We pick a compatible almost complex structure J on X. Let
β ∈ H2(X, L; Z).

The moduli space Mmain
k+1;�(β) is the compactified moduli space of the

genus zero bordered holomorphic maps u : (Σ, ∂Σ) → (X, L), in class β ∈
H2(X, L(u); Z) with k + 1 boundary marked points and � interior marked
points. This means the following:

Conditions 2.2. 1) Σ is a connected union of disks and spheres,
which we call (irreducible) components. We assume the intersection
of two different irreducible components is either one point or empty.
The intersection of two disk components is if nonempty, a boundary
point of both of the components. The intersection of a disk and a
sphere component is an interior point of the disk component. We
assume that intersection of three different components is empty.
We also require Σ to be simply connected. A point which belongs
to two different components is called a singular point.

2) u : Σ → X is a continuous map which is J-holomorphic on each of
the components. u(∂Σ) ⊂ L. Here ∂Σ is the union of the boundary
of disk components.

3) There are k + 1 points z0, . . . , zk on ∂Σ. (We call them boundary
marked points.) They are mutually distinct. None of them are sin-
gular point. We require the order of k + 1 boundary marked points
to respect the counter-clockwise cyclic order of the boundary of Σ.

4) There are � points z+
1 , . . . , z+

� on Σ\∂Σ. (We call them interior
marked points.) They are mutually distinct. None of them are sin-
gular point.

5) For each of the components Σa of Σ, one of the following conditions
hold:
a) u is not a constant map on Σa.
b) Σa is a disk component. We have 2nint + nbdry ≥ 3. Here nint is

the sum of the numbers of the interior marked points and the
interior singular points. nbdry is the sum of the numbers of the
boundary marked points and the boundary singular points.

c) Σa is a sphere component. The sum of the numbers of the
marked points and the singular points on Σa is ≥ 3.

The condition 5) is called the stability condition. It is equivalent to the
condition that the automorphism group of this element is a finite group.

In case � = 0 we write Mmain
k+1 (β) in place of Mmain

k+1;0(β).
We define the evaluation maps

(7) ev : Mmain
k+1;�(β) → X� × Lk+1
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where we put

ev = (ev+, ev) = (ev+
1 , . . . , ev+

� ; ev0, . . . , evk),

as follows:

evi(Σ, u) = u(zi)

where zi is the i-th boundary marked point as in 3).

ev+
i (Σ, u) = u(z+

i )

where z+
i is the interior marked point as in 4).

Our moduli spaces Mmain
k+1;�(β) have Kuranishi structure in the sense of

[FO] section 5 and [FOOO1] section A1.
Its boundary is described by using fiber product. For example, in case

� = 0 we have the equality

(8) ∂Mmain
k+1 (β) =

⋃
k1+k2=k+1

⋃
β1+β2=β

k2⋃
i=1

Mmain
k1+1(β1) ev0 ×evi Mmain

k2+1(β2).

as spaces with Kuranishi structures. ([FOOO1] subsection 7.1.1.)

3. A quick review of Lagrangian Floer theory

Let X = (X, ω) be a symplectic manifold and L its Lagrangian subman-
ifold. We assume L is oriented and spin. (Actually relative spinness in the
sense of [FOOO1] Definition 1.6 is enough.)

In [FOOO1] Theorem A, we defined a structure of gapped unital filtered
A∞ algebra {mk | k = 0, 1, . . . } on the cohomology group H(L; Λ0) of L with
Λ0 coefficient.

Namely there exists a sequence of operators

mk : BkH(L; Λ0)[1] → H(L; Λ0)[1]

of odd degree1 (for k ≥ 0).

Theorem 3.1. 1)

(9)
∑

k1+k2=k+1

k2∑
i=1

(−1)∗mk2(x1, . . . ,mk1(xi, . . . , xi+k1−1), . . . , xk) = 0,

where ∗ = deg′ x1 + · · · + deg′ xi−1.
2) m0(1) ≡ 0 mod Λ+.

1See Remark 2.1. Only the parity of the degree is well-defined in Floer cohomology
over Λ0.
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3) (Unitality) e = PD[L] ∈ H0(L; Λ0) is the strict unit. (Here PD :
Hk(L) → Hn−k(L) is the Poincaré duality.) Namely

mk+1(x1, . . . , e, . . . , xk) = 0 for k ≥ 2 or k = 0.

and
m2(e, x) = (−1)deg xm2(x, e) = x.

4) (G-gappedness) There exists an additive discrete submonoid G =
{λi | i = 0, 1, 2, . . . } (λ0 = 0 < λ1 < λ2 < · · · , limi→∞ λi = ∞) of
R≥0 such that our structure is G-gapped. Namely mk is written as

mk =
∞∑
i=0

T λimk,i

where mk,i : BkH(L; C)[1] → H(L; C)[1] is C-linear.
5) m2,0 coincides with cup product up to sign.

The triple (C, {mk}, e) that satisfies 1)–4) of Theorem 3.1 (with H(L; Λ0)
being replaced by C) is called a G-gapped unital filtered A∞ algebra.

The operator mk is constructed by using the moduli spaces Mmain
k+1 (β) as

follows. (Here we use de Rham cohomology, following [FOOO3, FOOO4,
FOOO5, Fu2, Fu3]. In [FOOO1] singular homology is used. Morse homol-
ogy version is in [FOOO2].)

Let h1, . . . , hk be differential forms on L. We define a differential form
mk,β(h1, . . . , hk) on L as follows:

(10) mk,β(h1, . . . , hk) = ev0!(ev1, . . . , evk)∗(h1 × · · · × hk)

for (k, β) �= (1, 0). We use evaluation maps (7) in (10). We put

m1,0(h) = (−1)n+deg h+1dh,

where d is the de Rham differential. (See [FOOO1] Remark 3.5.8.)
Here we regard h1 × · · · × hk as a differential form on Lk. Then the

pull back (ev1, . . . , evk)∗ defines a differential form on Mmain
k+1 (β). The sym-

bol ev0! denotes the integration along the fiber associated to the map ev0 :
Mmain

k+1 (β) → L. We remark that Mmain
k+1 (β) itself is not necessarily transver-

sal. So it may have wrong dimension. However we can use general theory of
Kuranishi structure to obtain a multisection s ([FO] section 5, [FOOO1]
section A1) so that the perturbed moduli space Mmain

k+1 (β)s (that is the zero
point set of the multisection s) has a virtual fundamental chain (over Q).
However still after perturbation, the map ev0 : Mmain

k+1 (β)s → L may not be a
submersion on the perturbed moduli space Mmain

k+1 (β)s . So we take a contin-
uous family of perturbations written as {sw}w∈W parametrized by a certain
smooth manifold W so that

evW
0 :

⋃
w∈W

(Mmain
k+1 (β)sw × {w})→ L
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is a submersion.2 So we can justify (10) as

mk,β(h1, . . . , hk) = evW
0! ((ev1, . . . , evk)∗(h1 × · · · × hk) ∧ ωW ) .

Here ωW is a smooth form of degree dim W on W that has compact support
and satisfies

∫
W ωW = 1. We pull it back to

⋃
w∈W

(Mmain
k+1 (β)sw × {w}) in an

obvious way. The fiberwise evaluation map evW
0 is ev0 on Mmain

k+1 (β)sw ×{w}.
We omit the detail of this construction and refer [FOOO4] section 12 or

[Fu2] section 13. In the toric case, which is the case of our main interest in
this article, this construction can be simplified in most of the cases. Namely
ev0 : Mmain

k+1 (β)s → L itself can be taken to be a submersion (without using
continuous family). See Section 5.

We now put
mk =

∑
β∈H2(X,L;Z)

T (β∩[ω])/2πmk,β .

We can use various properties of the moduli space to check Theorem
3.1. In fact, for example, Theorem 3.1 1) is a consequece of Formula (8) and
Theorem 3.1 4) is a consequence of Gromov compactness.

Thus we obtain a structure of G-gapped unital filtered A∞ algebra on
de Rham complex of L. Then it induces one on cohomology H(X, L; Λ0), by
a purely algebraic result. ([FOOO1] Theorem 5.4.2.)

The filtered A∞ algebra (H(X, L; Λ0), {mk | k = 0, 1, . . . }) is indepen-
dent of the choices (such as compatible almost complex structures and per-
turbations etc.) up to an isomorphism of a gapped unital filtered A∞ algebra,
(that is gapped unital filtered A∞ homomorphism which has an inverse). We
omit the precise definition of this notion and refer readers to [FOOO1] Def-
inition 3.2.29 and Proposition 5.4.5.

Let (C, {mk | k = 0, 1, . . . }, e) be a unital filtered A∞ algebra. We define
its weak Maurer-Cartan scheme M̂weak(C) as the set of solutions of the
equation

(11)
∞∑

k=0

mk(b, . . . , b) ≡ 0 mod Λ0e,

for b ∈ Codd, with b ≡ 0 mod Λ+. (Here and hereafter e denotes the unit.)
For b ∈ Codd, with b ≡ 0 mod Λ+, we define mb

k by

mb
k(x1, . . . , xk) =

∞∑
m0=0

· · ·
∞∑

mk=0

mk(b, . . . , b︸ ︷︷ ︸
m0

, x1, b, . . . , b︸ ︷︷ ︸
m1

, . . . , xk, b, . . . , b︸ ︷︷ ︸
mk

).

The right hand side converges in vT topology. We can show that (C, {mb
k |

k = 0, 1, . . . }, e) is a filtered A∞ algebra.
In our geometric situation, where C = H(L; Λ0), we can remove the

assumption b ≡ 0 mod Λ+ using a trick due to Cho [Cho3] and can define

2Actually the parameter space W is defined only locally. See [FOOO4] section 12.
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mb
k for any b ∈ Hodd(L; Λ0). (See [FOOO3] section 12 for toric case and

[Fu3] section 5 for the general case.) Moreover the left hand side of (11)
makes sense for any b ∈ Hodd(L; Λ0). In case we need to distinguish it from
the case b ∈ Hodd(L; Λ+), we denote the former by M̂weak(H(L; Λ0); Λ0).

It is easy to see that mb
0(1) coincides with the left hand side of (11).

Therefore if b ∈ M̂weak(C) then mb
0(1) = ce for some c ∈ Λ+. It follows that

(mb
1 ◦ mb

1)(x) = −c
(
mb

2(e, x) + (−1)deg′ xmb
2(x, e)

)
= 0.

Here we use Theorem 3.1 1) in the first equality and Theorem 3.1 3) in the
second equality. Now we define

Definition 3.2. Let b ∈ Hodd(L; Λ0). We define Floer cohomology by:

HF ((L, b), (L, b); Λ0) =
Ker(mb

1)
Im(mb

1)
.

HF ((L, b), (L, b); Λ) is defined by taking ⊗Λ0Λ.
It is proved in [FOOO1] Proposition 3.7.75 and the discussion right after

that (general case, singular homology version) [FOOO4] section 8 (toric
case, de Rham homology version) that HF ((L, b), (L, b); Λ) �= 0 implies that
L is Hamiltonian non-displaceable.3 Namely for any Hamiltonian diffeomor-
phism F : X → X we have F (L) ∩ L �= ∅.

Let b ∈ M̂weak(C). Then there exists PO(b) ∈ Λ+ such that
∞∑

k=0

mk(b, . . . , b) = PO(b)e.

Definition 3.3. We call PO : M̂weak(C) → Λ+, the potential function.

In the geometric situation we have PO : M̂weak(H(L; Λ0); Λ0) → Λ+.

4. A quick review of toric manifold

In this section we review a very small portion of the theory of toric
variety. We explain only the points we use in this article. See for example
[Ful] for an account of toric variety.

Let (X, ω, J) be a Kähler manifold, where J is its complex structure and
ω is its Kähler form. Let n be the complex dimension of X. We assume n
dimensional real torus Tn = (S1)n acts effectively on X such that J and ω
are preserved by the action. We call such (X, ω, J) a Kähler toric manifold if
the Tn action has a moment map in the sense we describe below. Hereafter
we simply say (X, ω, J) (or X) is a toric manifold.

3We need to take Λ (not Λ0) for the coefficient ring for this statement. Actually
HF ((L, b), (L, b); Λ0) = 0 never occurs when Floer cohomology is defined.
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Let (X, ω, J) be as above. We say a map π = (π1, . . . , πn) : X → Rn is a
moment map if the following holds. We consider the i-th factor S1

i of Tn.
(Here i = 1, . . . , n.) Then πi : X → R is the moment map of the action of S1

i .
In other words, we have the following identity of πi

dπi(X) = ω(X, t̃),

where t̃ is the Killing vector field associated to the action of the circle S1
i

on X.
Let u ∈ IntP . Then the inverse image π−1(u) is a Lagrangian submani-

fold which is an orbit of the Tn action. We put

(12) L(u) = π−1(u).

This is a Lagrangian torus. The main purpose of this article is to study
Lagrangian Floer cohomology for such L(u).

It is well-known that P = π(X) is a convex polytope. We can find a
finitely many affine functions �j : Rn → R (j = 1, . . . , m) such that

(13) P = {u ∈ Rn | �j(u) ≥ 0, ∀j = 1, . . . , m}.

We put ∂jP = {u ∈ P | �j(u) = 0} and Dj = π−1(∂jP ). (dimR ∂jP = n − 1.)
D1 ∪ · · · ∪ Dm is called the toric divisor.

Moreover we may choose �j so that the following holds.

Conditions 4.1. 1) We put

d�j = 	vj = (vj,1, . . . , vj,n) ∈ Rn.

Then vj,i ∈ Z.
2) Let p be a vertex of P . Then the number of faces ∂jP which contain

p is n. Let ∂j1P, . . . , ∂jnP be those faces. Then 	vj1 , . . . , 	vjn (which
is contained in Zn by item 1)) is a basis of Zn.

The affine function �j has the following geometric interpretation. Let
u ∈ IntP . There exists m elements βj ∈ H2(X, L(u); Z) such that

(14) βj ∩ Dj′ =

{
1 j = j′

0 j �= j′.

Then we have

(15) 2π�j(u) =
∫

βj

ω.

The existence of such �j and the property above is proved in [Gu] Theorem
4.5. (See [FOOO3] section 2 also.)
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Example 4.2. We consider the complex projective space CPn. Using
homogeneous coordinate [x0 : x1 : · · · : xn] we define Tn action by

(t1, . . . , tn) · [x0 : · · · : xn] = [x0 : e2π
√−1t1x1 : · · · : e2π

√−1tnxn].

(Here we identify R/Z ∼= S1.) The moment map π = (π1, . . . , πn) is given by

πi([x0 : · · · : xn]) =
|xi|2

|x0|2 + · · · + |xn|2 .

Its moment polytope P0 is a simplex that is:

P0 =

{
(u1, . . . , un) | 0 ≤ ui, i = 1, . . . , n,

n∑
i=0

ui ≤ 1

}
.

We have

(16) �i(u1, . . . , un) =

{
ui i �= 0
1 −∑n

j=0 uj i = 0.

Example 4.3. We consider CP 2 as above. For 1 > α > 0, let us consider

P (α) = P0 \ {(u1, u2) ∈ P0 | u2 > 1 − α} = {(u1, u2) ∈ P0 | u2 ≤ 1 − α}.
The inverse image π−1({(u1, u2) ∈ P0 | u2 > 1−α}) is a ball of radius

√
α/2

centered at [0 : 1 : 0]. The boundary of π−1(P (α)) has an induced contact
form which is identified with the standard contact form of S3. We identify
two points on ∂π−1(P (α)) if they lie on the same orbit of Reeb flow. After
this identification we obtain from π−1(P (α)) a symplectic manifold which
we write X(α) = CP 2#CP

2(α).
It is well-known (see for example [MS] section 6.2) and can be proved

from the above description that X(α) is a blow up of CP 2 with Kähler form
ω such that the symplectic area of the exceptional divisor is α.

The T 2 action on CP 2 induces a T 2 action on X(α) so that it becomes
a toric manifold. The moment polytope is P (α).

There are 4 faces of P (α) and 4 affine functions �i (i = 0, 1, 2, 3). Three
of them are �0, �1, �2 as in (16). The fourth one is given by

(17) �3(u1, u2) = 1 − α − u2.

Example 4.4. We can blow up again and may regard a two points blow
up of CP 2 as a toric manifold. For α, α′ > 0, with α+α′ < 1 we consider the
polytope

P (α, α′) = {(u1, u2) ∈ P0 | u2 ≤ 1 − α, u1 + u2 ≥ α′}.
There exists a toric manifold X(α, α′) that is a two points blow up of CP 2

and whose moment polytope is P (α, α′).
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P (α, α′) has 5 faces. There are 5 affine functions �0, . . . , �4 associated to
each of the faces. �0, �1, �2 are as in (16) and �3 is as in (17). �4 is given by

(18) �4(u1, u2) = u1 + u2 − α′.

5. Floer cohomology and potential function of the Tn orbits

In this section we give a description of Floer cohomology of the Tn orbit
L(u) of the toric manifold X. Here u ∈ IntP and P is the moment polytope
of X.

In this toric case the calculation of the Floer cohomology becomes sig-
nificantly simpler. This is because in this case the calculation of Floer coho-
mology is reduced to the calculation of the potential function. Moreover the
leading order term of the potential function is calculated by the work of
Cho-Oh [CO]. We will explain those points in this section.

We first fix a basis of H1(L(u); Z) as follows. In Section 4 we fix a split-
ting Tn = (S1)n and the associated coordinate (t1, . . . , tn) ∈ (R/Z)n. Let ei ∈
H1(Tn; Z) be the element represented by dti in de Rham cohomology, where
ti is the coordinate of the i-th factor of (S1)n. (Here we identify S1 with
R/Z.) The elements ei, i = 1, . . . , n form a basis of H1(Tn; Z) ∼= Zn. Since
the Tn action on L(u) is free and transitive, we may identify H1(Tn; Z) =
H1(L(u); Z). Hence we have a basis ei, i = 1, . . . , n of H1(L(u); Z).

Let b ∈ H1(L(u); Λ0). We can write b =
∑n

i=1 xiei. Hence we take
(x1, . . . , xn) as a coordinate of H1(L(u); Λ0). We also put yu

i = exi .

Remark 5.1. The expression exi determines an element of Λ0 in case
xi ∈ Λ0 as follows. We write xi = xi,0 + xi,+ where xi,0 ∈ C and xi,+ ∈ Λ+.
Then we put

yu
i = exi = exi,0

∞∑
k=0

xk
i,+/k!.

Note exi,0 ∈ C is defined as usual. The sum
∑∞

k=0 xk
i,+/k! converges in vT -

topology.

Now we consider a toric manifold X with its moment polytope P . We
consider affine functions �j (j = 1, . . . , m). We define vj,i ∈ Z as in Properties
4.1 1). We define

(19) zj = T �j(u)(yu
1 )vj,1 . . . (yu

n)vj,n .

Theorem 5.2. 1) H1(L(u); Λ0) is contained in M̂weak(H(L; Λ0);
Λ0).

2) Let b =
∑

xixi ∈ H1(L(u); Λ0). Then we have

(20) PO(b) = z1 + · · · + zm +
N∑

k=1

T ρkPk(z1, . . . , zm).
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Here N ∈ Z≥0 or N = ∞. The numbers ρk > 0 are positive and real.
In case N = ∞, the sequence of numbers ρk goes to ∞ as k goes to
∞. Pk(z1, . . . , zm) are monomials of z1, . . . , zm of degree ≥ 1 with
Λ0 coefficient. We remark that zj is defined from yu

i = exj by (19).
3) If X is Fano then Pk are all zero.
4) The monomials Pk and the numbers ρk are independent of u and

depends only on X.

Item 1) is [FOOO3] Proposition 4.3 plus the last line of [FOOO3]
section 4.

Item 2) is [FOOO3] Theorem 4.6 in the form (slightly) improved in
[FOOO4] Theorem 3.4. In [FOOO3, FOOO4] this formula is written using
yu

i in place of zj . But it is easy to see that they are the same by the iden-
tification (19). We use the result of Cho-Oh [CO] to calculate the term
z1 + · · · + zm in the right hand side of (20).

Item 3) is [FOOO3] Theorem 4.5.
Item 4) follows from [FOOO3] Lemma 11.7.

Sketch of the proof. The linear terms zj in (20) come from the
contribution (that is mk,βj (b, . . . , b)) of Mmain

1 (βj) to mk(b, . . . , b), where
βj ∈ H2(X, L(u); Z) is as in (14). Its coefficient 1 is the degree of the map

(21) ev0 : Mmain
1 (βj) → L(u),

which is calculated by [CO].
The term T ρkPk is a contribution of Mmain

1 (β) for some β. We will
assume β �= 0 in the rest of the argument.

We can use a Tn equivariant multisection to define virtual fundamental
chain. To see this we first observe that the Tn action on Mmain

1 (β) is free.
This is because Tn action on L(u) is free and (21) is Tn equivariant. There-
fore to find a transversal multisection we can proceed as follows. We first take
the quotient with respect to Tn action, next find transversal multisection on
the quotient space and then lift it.

Let s be a Tn equivariant multisection which is transversal to 0. Then Tn

acts freely on its zero set Mmain
1 (β)s. Therefore the dimension of Mmain

1 (β)s

is not smaller than n if it is nonempty. We can show

dimMmain
1 (β)s = n + μ(β) − 2

where μ : H2(X, L(u); Z) → Z is the Maslov index. It implies that μ(β) ≥ 2
if Mmain

1 (β)s �= ∅.
This is the key point of the proof.

Remark 5.3. In case X is Fano, μ(β) ≥ 2 automatically holds if
Mmain

1 (β) �= ∅. But in non-Fano case this holds only after taking Tn equi-
variant perturbation.
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Moreover Tn equivariance implies that ev0 : Mmain
1 (β) → L(u) is a sub-

mersion if Mmain
1 (β) �= ∅. Therefore we may use this Tn equivariant s to

define mk,β . Namely we do not need to use a continuous family of multisec-
tions in this case.

Now if deg b = 1 then

deg mk,β(b, . . . , b) = 2 − μ(β) ≤ 0.

Namely mk,β(b, . . . , b) is either 0 or is proportional to the unit. This proves
item 1).

To study mk,β(b, . . . , b) for β �= βj , we again use the classification of J
holomorphic disks in [CO] to find that if Mmain

1 (β) is nonempty the homol-
ogy class β is decomposed to a sum of βj ’s (j = 1, . . . , m) and sphere bubbles.
Therefore

β = βj1 + · · · + βje + α1 + · · · + αf

where bjk
is one of bj ’s and αi ∈ H2(X; Z) is represented by J-holomorphic

sphere. We put

cβ = deg[ev0 : Mmain
1 (β)s → L(u)].

Here the right hand side is the mapping degree of the map ev0. It is well-
defined since in case μ(β) = 2 the boundary of Mmain

1 (β)s is empty. (This is
because Mmain

1 (β′)s is empty if μ(β′) ≤ 0, β′ �= 0.)
Then we can show that

∞∑
k=0

mk,β(b, . . . , b) = cβT
∑f

i=1(αi∩ω)/2πzj1 . . . zje .

Item 2) follows from this formula.
Item 3) follows from the fact that in the Fano case, Mmain

1 (β) �= ∅ and
μ(β) = 2 imply β = βj for some j.

Item 4) follows from the fact that cβ is independent of u. �

Remark 5.4. In the general situation, the filtered A∞ structure asso-
ciated to a Lagrangian submanifold is well-defined only up to isomorphism.
In particular potential function PO is well-defined only up to a coordinate
change. (Namely it may depend on the choice of perturbation etc.) However
in our toric case we can use a Tn equivariant perturbation s and then PO
is well-defined as a function on H1(L(u); Λ0) without ambiguity. This is a
consequence of well-definedness of cβ and is [FOOO3] Lemma 11.7.

We have the following useful criterion which reduces computation of
Floer cohomology to the critical point theory of potential function.

Theorem 5.5. Let b =
∑

xiei ∈ H1(L(u); Λ0). Then the following three
conditions are equivalent.
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1) For each of i = 1, . . . , n we have:

∂PO

∂xi

∣∣∣∣
b

= 0.

2)
HF ((L(u), b), (L(u), b); Λ0) ∼= H(Tn; Λ0).

3)
HF ((L(u), b), (L(u), b); Λ) �= 0.

Sketch of the proof. By definition

(22) PO(b)e =
∞∑

k=0

mk(b, . . . , b).

We differentiate (22) by xi. Then using ∂b/∂xi = ei we obtain:

(23)
∂PO

∂xi

∣∣∣∣
b

e =
∞∑

k1=0

∞∑
k2=0

mk1+k2+1(b, . . . , b︸ ︷︷ ︸
k1

, ei, b, . . . , b︸ ︷︷ ︸
k2

) = mb
1(ei).

Here the second equality is the definition of mb
1.

Now we assume item 2). Then we have mb
1(ei) = 0. Therefore (23) implies

item 1).
We next assume item 1). Then (23) implies mb

1(ei) = 0. We use it together
with the fact that ei generates H(L(u); Λ0) by cup product, and A∞ formula
to prove that mb

1 = 0. (See [FOOO3] proof of Lemma 13.1.) Item 2) follows.
The equivalence between item 2) and item 3) is proved in [FOOO3]

Remark 13.9. �

To apply Theorems 5.2 and 5.5 for the calculation of Floer cohomology
of Tn, we need some algebraic discussion, which is in order.

Let y1, . . . , yn be n formal variables. We consider the ring Λ[y1, . . . , yn,
y−1
1 , . . . , y−1

n ] of Laurent polynomials of n variables with Λ coefficient. We
write it as Λ[y, y−1] for simplicity.

Let u = (u1, . . . , un) ∈ P . We put

(24) yu
i = T−uiyi ∈ Λ[y, y−1].

By an easy computation we have

(25) T �j(u)(yu
1 )vj,1 . . . (yu

n)vj,n = T �j(u
′)(yu′

1 )vj,1 . . . (yu′
n )vj,n .

for u,u′ ∈ P . Therefore (19) defines an elements zj ∈ Λ[y, y−1] in a way
independent of u ∈ P .

We next introduce a family of valuations vu
T on Λ[y, y−1] parametrized

by u ∈ P .
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Let F ∈ Λ[y, y−1]. Then for each u ∈ Int P there exists Fu
i1...in

∈ Λ for
i1, . . . , in ∈ Zn such that

F =
∑

i1,...,in∈Zn

Fu
i1...in(yu

1 )i1 · · · (yu
n)in .

Here only finitely many of Fu
i1...in

are nonzero. So the right hand side is
actually a finite sum.

Definition 5.6.

vu
T (F ) = inf{vT (Fu

i1...in) | Fu
i1...in �= 0},

if F �= 0 and vu
T (0) = +∞.

vu
T defines a valuation on Λ[y, y−1].

We denote the completion of Λ[y, y−1] with respect to vu
T by Λ〈〈y, y−1〉〉u.

By definition we have

vu
T (zj) = �j(u) ≥ 0

for u ∈ P . The following lemma is its immediate consequence.

Lemma 5.7. The right hand side of (20) converges with respect to vu
T for

any u ∈ P .

We remark that according to the general theory described in section 3,
the potential function PO associated to a Lagrangian submanifold L(u) is
a Λ+ valued function on M̂weak(L(u); Λ0). By Theorem 5.2 (1), we have
the inclusion H1(L(u); Λ0) ⊂ M̂weak(L(u); Λ0). Since x1, . . . , xn ∈ Λ0 forms
a coordinate of H1(L(u); Λ0) with respect to the basis ei, we may regard PO
restricted to H1(L(u); Λ0) as a function on (x1, . . . , xn) ∈ Λn

0
∼= H1(L(u); Λ0).

Then by Theorem 5.2 2) we have

PO(x1, . . . , xn) = PO(x′
1, . . . , x

′
n)

if xi − x′
i ∈ 2π

√−1Z for each i. In other words, we may regard PO as a
function of yu

i = exi . Note xi ∈ Λ0 implies that yu
i − 1 ∈ Λ+. We next extend

the domain of PO by using Theorem 5.2 2).
We put λj = �j(0). Then it is easy to see from definition that

(26) zj = T λjy
vj,1

1 . . . y
vj,n
n .

Lemma 5.8. Let (y1, . . . , yn) ∈ (Λ \ {0})n. We assume

(27) (vT (y1), . . . , vT (yn)) ∈ P.

We put zj = T λjy
vj,1

1 . . . y
vj,n
n . Then

z1 + · · · + zm +
N∑

k=1

T ρkPk(z1, . . . , zm) ∈ Λ+

converges as N →∞ with respect to the valuation vT .
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Proof. (27) implies vT (zj) = �j(u) ≥ 0. The lemma then follows easily
from limk→∞ ρk = ∞ in the statement of Theorem 5.2 (20). �

We define

(28) A(P ) = {(y1, . . . , yn) ∈ (Λ \ {0})n | (vT (y1), . . . , vT (yn)) ∈ P}.
By Lemma 5.8 we may regard PO as a function

PO : A(P ) → Λ+.

We remark that A(P ) is not a manifold. So we can not define differentiation
of PO in the sense of usual calculus. Instead we will define it as follows. We
remark that zj and Pk(z1, . . . , zm) are Laurent monomials of y1, . . . , yn with
Λ0 coefficient. So we can differentiate it by yi in an obvious way. Moreover

yi
∂

∂yi
Pk(z1, . . . , zm)

is again a monomial of z1, . . . , zm with Λ0 coefficient. Therefore for y =
(y1, . . . , yn) ∈ A(P ) the limit

lim
N→∞

(
yi

∂z1

∂yi
(y) + · · · + yi

∂zm

∂yi
(y) +

N∑
k=1

T ρkyi
∂Pk

∂yi
(z1, . . . , zm)

)

converges. (Here we put zj = T λjy
vj,1

1 . . . y
vj,n
n .) We write its limit as

yi
∂PO

∂yi
(y).

Thus we have defined

yi
∂PO

∂yi
: A(P ) → Λ+.

We now have the following:

Theorem 5.9. For u ∈ Int P the following two conditions are equivalent.
1) There exists b ∈ H1(L(u); Λ0) such that

HF ((L(u), b), (L(u), b); Λ0) ∼= H(Tn; Λ0).

2) There exists y = (y1, . . . , yn) ∈ A(P ) such that

(29) yi
∂PO

∂yi
(y) = 0

for i = 1, . . . , n and that

(vT (y1), . . . , vT (yn)) = u.

Definition 5.10. We say that L(u) is a strongly balanced if the Condi-
tion 1) (= Condition 2)) in Theorem 5.9 is satisfied.
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Proof. 2) =⇒ 1): Let y be as in 2). We put yu
i = T−uiyi. Then vT (yu

i ) =
0. Therefore there exist yu

i,0 ∈ C and yu
i,+ ∈ Λ+ such that yu

i = yu
i,0 +yu

i,+. We
put xi,0 = log(yu

i,0) and

xi,+ = log(1 + (yu
i,0)

−1yu
i,+)).

Note (yu
i,0)

−1yu
i,+ ∈ Λ+. Therefore we can define the right hand side by the

Taylor expansion of log(1 + z).
We put xi = xi,0 +xi,+ and b =

∑m
i=1 xie1. Then using Theorem 5.5 it is

easy to see that 1) is satisfied.
1) =⇒ 2): Let b =

∑
xiei be as in 1). We put yi = T uiexi . It is easy to

see that y = (y1, . . . , yn) satisfies yi
∂PO
∂yi

(y) = 0. �

Remark 5.11. It is easy to see that y0
i = yi, where 0 ∈ Rn is the ori-

gin. Note that the moment polytope P is well-defined only up to parallel
translation. Namely we can replace it by P + u for any u ∈ Rn, then P + u
corresponds to the same toric manifold as P .

Thus the choice y0
i = yi is quite ad-hoc, and we may take any yu

i in place
of yi in our story. In fact the ring Λ[y, y−1] can be canonically identified with
the Laurent polynomial rings over yu

i (i = 1, . . . , n) using yu
i ∈ Λ[y, y−1].

On the other hand, the valuation vu
T and the completion Λ〈〈y, y−1〉〉u is

canonically associated to the Lagrangian submanifold L(u).
The variables yu

i also is defined in a way independent of the choice of
the origin of the affine space in which P is embedded.

In some reference such as [Aur1, HV] ‘renormalization’ is discussed.
It seems that this process depends on the choice of the origin in the affine
space Rn. Namely it is related to the homothetic transformation yi �→ Cyi

where C →∞.
As we mentioned above the choice of 0 is not intrinsic. More canonical

way seems to be as follows. We consider each of u0 such that HF ((L(u0), b),
(L(u0), b); Λ) �= 0 for some b. We then replace P by P−u0, so this orbit L(u0)
becomes L(0). We now use yi �→ Cyi to ‘renormalize’.

Thus there exists a ‘renormalization’ for each such u0. This process of
‘renormalization’ seems to be related to the study of leading term equation,
which we discuss in section 9.

6. Examples 1

Example 6.1. We first consider the case of CPn. We use (16) and The-
orem 5.2 2), 3) to obtain

PO = z1 + · · · + zn + z0 = y1 + · · · + yn + T (y1 . . . yn)−1.

Therefore the equation (29) becomes

0 = yi
∂PO

∂yi
= yi − T (y1 . . . yn)−1.
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The solutions are

y1 = · · · = yn = T 1/(n+1) exp(2π
√−1k/(n + 1))

where k = 0, 1, . . . , n. The valuation of yi are 1/(n + 1). Thus u0 = (1/(n +
1), . . . , 1/(n + 1)) is the unique strongly balanced fiber.

Example 6.2. We next consider X(α), one point blow up of CP 2 as in
Example 4.3. Using the discussion in Example 4.3 and Theorem 5.2 2), 3)
we obtain

PO = y1 + y2 + T (y1y2)−1 + T 1−αy−1
2 .

The equation (29) becomes

1 − Ty−2
1 y−1

2 = 0, 1 − Ty−1
1 y−2

2 − T 1−αy−2
2 = 0.

By eliminating y2 = Ty−2
1 we obtain

(30) y4
1 + Tαy3

1 − Tα+1 = 0.

We put u1 = vT (y1).
(Case 1) u1 < α.

We take vT of (30) and obtain 4u1 = α + 1. Namely u1 = (α + 1)/4.
u1 > α then implies α > 1/3.

Conversely if α > 1/3 and u1 = (α + 1)/4 we put y1 = T u1y then (30)
becomes

y4 + T (3α−1)/4y3 − 1 = 0.

Since (3α−1)/4 > 0, this equation has 4 simple roots y which are congruent
to ±1,±√−1 modulo Λ+, respectively.
(Case 2) u1 > α.

We take vT of (30) and have 3u1 + α = α + 1. Namely u1 = 1/3. u1 > α
then implies α < 1/3.

Conversely if α < 1/3 and u1 = 1/3 we put y1 = T 1/3y then (30) becomes

T 1/3−αy4 + y3 − 1 = 0.

This equation has 3 simple roots y which are congruent to 1, e2π
√−1/3,

e4π
√−1/3 modulo Λ+, respectively.

(Case 3) u1 = α.
We put y1 = T u1y. Then vT (y) = 0 and we have

(31) y3(1 + y) − T 1−3α = 0.

(Case 3-1) α = 1/3.
In this case there exist exactly 4 roots y ∈ C of (31).

(Case 3-2) α �= 1/3.
By (31) α < 1/3. Then vT (1+y) = 1−3α. We put y = T 1−3αw−1. Then

vT (w) = 0. Then (31) becomes

(1 − T 1−3αw)3w + 1 = 0.
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There is one root of this equation with w ≡−1 modulo Λ+. Three other
roots do not satisfy vT (w) = 0. Thus there exists one solution in this case
such that u1 = vT (y1) = α.

In sum we have the following.
If α < 1/3 there exists one solution with u1 = vT (y1) = α and three solu-

tions with u1 = 1/3. Note u2 = vT (y2) = 1−2u1. Therefore L(α, 1−2α) and
L(1/3, 1/3) are the strongly balanced fibers.

If α ≥ 1/3 we have 4 solutions with u1 = (α+1)/4, u2 = (1−α)/2. Namely
there is exactly one strong balanced fiber L((α + 1)/4, (1 − α)/2).

In this section we discuss the Fano case only, where we can explicitly
calculate PO. The non-Fano case will be discussed in section 10.

In the case of Example 6.1 and 6.2, McDuff [Mc] proved that all the Tn

orbits where Floer cohomology vanish for all choices of b, are displaceable
by Hamiltonian diffeomorphism.

However there is an example of toric surface and its T 2 orbit, such that
one can not displace it from itself by the method of [Mc] but all the known
versions of Floer cohomology over Λ vanish for this T 2 orbit. (See [Mc]
Lemma 4.4.) We do not know whether they are displaceable or not.

7. Open-closed Gromov-Witten theory and operators q

In this section, we discuss the operator q introduced in [FOOO1] section
3.8. Let (X, ω) be a symplectic manifold and L its Lagrangian submanifold
as in section 3. Let h1, . . . , hk be differential forms on L and g1, . . . , g� dif-
ferential forms on X. Let β ∈ H2(X, L; Z). We define

q�,k,β(g1, . . . , g�; h1, . . . , hk)

(32)

=
1
�!

ev0!

(
(ev+

1 , . . . , ev+
� , ev1, . . . , evk

)∗ (g1 × · · · × g� × h1 × · · · × hk).

We also put
q0;1;0(h) = (−1)ndh.

We remark that g1 ×· · ·× g� ×h1 ×· · ·×hk is a differential form on X� ×Lk

and its pull back is a differential form on Mmain
k+1;�(β). The map ev0! is inte-

gration along fiber by the map ev0 : Mmain
k+1;�(β) → L. More precisely we use

a continuous family of perturbations in the same way as we defined mk in
section 3.

We then put
q�,k =

∑
β∈H2(X,L;Z)

T (β∩ω)/2πq�,k,β .

It defines a map

q�;k : E�(Ω(X)[2] ⊗ Λ0) ⊗ Bk(Ω(L)[1] ⊗ Λ0) → Ω(L)[1] ⊗ Λ0.
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This operator has the following properties. We omit the suffix �, k in q�;k

and write q in the formula below. We use the convention (6) introduced at
the end of subsection 2.1.

Theorem 7.1. 1) Let x ∈ Bk(Ω(L)[1]⊗Λ0), y ∈ E�(Ω(X)[2]⊗Λ0).
Suppose y is a linear combination of the elements of the form
y1 ⊗ · · · ⊗ y� where each of yi are closed forms. We then have the
following:

(33) 0 =
∑
c1,c2

(−1)∗q(y2;1
c1 ;x3;1

c2 ⊗ q(y2;2
c1 ;x3;2

c2 ) ⊗ x3;3
c2 )

where ∗ = deg′ x3;1
c2 + deg′ x3;1

c2 deg y2;2
c1 + deg y2;1

c1 .
2) If y = 1 ∈ E0(Ω(X)[2] ⊗ Λ0) = Λ0 then

(34) q0,k(1,x) = mk(x).

3) Let e = PD([L]) be the Poincaré dual to the fundamental class of L.
Let xi ∈ B(Ω(L)[1]⊗Λ0) and we put x = x1⊗e⊗x2 ∈ B(Ω(L)[1]⊗
Λ0). Then

(35a) q(y;x) = 0

except the following case:

(35b) q(1; e ⊗ x) = (−1)deg xq(1; x ⊗ e) = x,

where x ∈ Ω(L)[1] ⊗ Λ0 = B1(Ω(L)[1] ⊗ Λ0).
4) There exists a discrete submonoid G = {λi | i = 0, 1, 2, . . . } such

that

q�,k =
∞∑
i=1

T λiq�,k,i

where q�,k,i : E�(Ω(X)[2]) ⊗ Bk(Ω(L)[1]) → Ω(L)[1].
5) Let i : L → X be the inclusion and y ∈ Ω(X) ⊗ Λ0. Then

q1,0(y, 1) ≡ i∗(y) mod Ω(L) ⊗ Λ+.

Remark 7.2. Formula (33) above implies that the operator q (after mod-
ifying the sign appropriately) define a homomorphism EA[2] → HH∗(L; Λ)
to the Hochschild cohomology of de Rham cohomology ring of L. See
[FOOO1] Section 7.4.

This is de Rham version of [FOOO1] Theorem 3.8.32. Namely item 1)
is [FOOO1] (3.8.33), Item 2) is [FOOO1] Theorem 3.8.32 (3). Item 3) is
[FOOO1] (3.8.34.2). Item 4) follows immediately from definition. Item 5)
follows from [FOOO1] (3.8.34).

Let b ∈ Ωeven(X) ⊗ Λ+ and b ∈ Ωodd(L) ⊗ Λ+. Suppose db = 0. We put
b = (b, b) and define

mb
k : Bk(Ω(L)[1] ⊗ Λ0) → Ω(L)[1] ⊗ Λ0
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by

mb
k (x1, . . . , xk)

=
∞∑

�=0

∞∑
m0=0

· · ·
∞∑

mk=0

q�,k(b�; b, . . . , b︸ ︷︷ ︸
m0

, x1, b, . . . , b︸ ︷︷ ︸
m1

, . . . , xk, b, . . . , b︸ ︷︷ ︸
mk

).(36)

It is easy to see that {mb
k | k = 0, 1, 2, . . . } defines a unital and gapped filtered

A∞ structure.
We define M̂def,weak(L) as the set of all b = (b, b) such that

(37) mb
0 (1) = ce.

Here e = 1 ∈ Ω0(L).
If b ∈ M̂def,weak(L) then we have

mb
1 ◦ mb

1 = 0.

Definition 7.3. For b ∈ M̂def,weak(L), we define Floer cohomology with
bulk deformation by

(38) HF ((L,b), (L,b); Λ0) ∼= Ker mb
1

Im mb
1

.

HF ((L,b), (L,b); Λ) is defined by taking ⊗Λ0Λ.
We define the potential function PO : M̂def,weak(L) → Λ+ by the equa-

tion

(39) POe = mb
0 (1).

We also put POb(b) = PO(b, b).

If HF ((L,b), (L,b); Λ) �= 0 then L is non-displaceable. This is [FOOO4]
Proposition 3.15 which is proved in [FOOO4] section 8.

8. Floer cohomology with bulk deformation in the toric case

Now we apply the construction explained in the last section to the case
of toric manifolds. In this section we use cycles (submanifolds) rather than
differential forms to represent the (co)homology classes of ambient manifold
X, by a reason we will mention in Remark 8.3.

Let D1, . . . , Dm be the irreducible components of toric divisors. Let J =
{j1, . . . , jk} ⊆ {1, . . . , m}. If DJ = Dj1 ∩ · · · ∩Djk

is non-empty, it is a (real)
codimension 2k submanifold of X. We include the case J = ∅. In that case
DJ = X. We denote by A the free abelian group generated by DJ . We put
cohomology degree on it. Namley deg DJ = 2k if codimension of DJ is 2k.
We define A(Λ0) = A⊗ Λ0.

There is an obvious homomorphism

(40) A→ H∗(X; Z)
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which is surjective but not injective. We write the generator of A as pi,
(i = 0, . . . , B), where p0 = X and pi = Di for i = 1, . . . , m are degree 2 classes.
For I = (i1, . . . , i�) ∈ {1, . . . , B}� we put

pI = pi1 ⊗ · · · ⊗ pi�
, [pI ] =

1
�!

∑
σ∈S�

piσ(1)
⊗ · · · ⊗ piσ(�)

∈ E�A[2].

Here S� is the symmetric group of order �!.
Let u ∈ Int P , β ∈ H2(X, L(u); Z) and I ∈ {1, . . . , B}�. We define:

(41) Mmain
k+1,�(β,pI) = Mmain

k+1,�(β)(ev+
1 ,...,ev+

� ) ×X� pI .

Note ev+
i are evaluation maps at interior marked points. We then still have

evaluation maps at boundary marked points:

(42) ev = (ev0, . . . , evk) : Mmain
k+1,�(β,pI) → Lk+1.

We use it to define an operator

q�,k;β : E�A[2] ⊗ BkH(L(u); C)[1] → H(L(u); C)[1]

as follows. We remark that there is a transitive and free action of Tn on
L(u). We put a Tn invariant metric on L(u). Harmonic forms with respect
to this metric are nothing but the Tn invariant differential forms. We identify
the cohomology group H(L(u); C) with the set of the Tn invariant forms on
L(u) from now on.

Let h1, . . . , hk ∈ H(L(u); C). The pull-back

(ev1, . . . , evk)∗(h1 × · · · × hk)

is a differential form on Mmain
k+1,�(β,pI). We use integration along fiber of the

evaluation map ev0 : Mmain
k+1,�(β,pI) → L and define:

(43) q�,k;β([pI ]; h1 × · · · × hk) = ev0!(ev1, . . . , evk)∗(h1 × · · · × hk).

We can perform all the constructions in a Tn equivariant way. So the right
hand side is a Tn invariant differential form, which we identify with an
element of cohomology group.

Remark 8.1. To define integration along the fiber, we need the map
ev0 : Mmain

k+1,�(β,pI) → L to be a submersion. We also need the moduli space
to be transversal after taking an appropriate perturbation.

We can do so by using multisection in the same way as section 5 as
follows. We remark that the fiber product moduli space Mmain

k+1,�(β,pI) has a
Kuranishi structure. The group Tn acts on it. Moreover the Tn action is free.
(This is because ev0 is Tn equivariant and the Tn action on L(u) is free.)
Thus by the same argument as we explained during the proof of Theorem
5.2, we can take multisection s which is Tn equivariant and transversal to
0. Then ev0 : Mmain

k+1,�(β,pI)s → L(u) automatically becomes a submersion if
Mmain

k+1,�(β,pI)s is nonempty.
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We can also choose our perturbation so that it is invariant under the
permutation of the interior marked points so descents to E�A[2]. Therefore
the right hand side of (43) depends only on [pI ] rather than on pI .

We now define

q�,k : E�A(Λ0)[2] ⊗ BkH(L(u); Λ0)[1] → H(L(u); Λ0)[1]

by
q�,k =

∑
β∈H2(X;L(u);Z)

T (ω∩β)/2πq�,k;β .

In case we consider elements of E�A(Λ0)[2] which contain p0, the Poincaré
dual to [X], we define q�,k as follows:

(44) q1,0(p0; 1) = e.

In all the other cases, q�,k is zero if the first factor E�A(Λ0)[2] contains p0.
Then our q�,k satisfies the conclusion of Theorem 7.1.
For b = (b, b) ∈ A(Λ+)×Hodd(L(u); Λ+), we define mb

k by (36). It defines
a unital gapped filtered A∞ structure on H(L(u); Λ0).

Now we define

M̂def,weak(L(u); Λ+) ⊂A(Λ+) × Hodd(L(u); Λ+)

as the set of all b = (b, b) ∈ A(Λ+) × Hodd(L(u); Λ+) such that mb
0 (1) ≡ 0

mod Λ+e. In other words it is the set of (b, b) such that

(45)
∞∑

�=0

∞∑
k=0

q�;k(b�; bk) ≡ 0 mod Λ+e.

We define the potential function PO : M̂def,weak(L(u); Λ+) → Λ+ by

(46)
∞∑

�=0

∞∑
k=0

q�;k(b�; bk) = PO(b; b)e.

Using a similar trick as the one used in section 5 we can extend the story
to the cohomology groups with Λ0 coefficient. Namely we obtain a Maurer-
Cartan scheme

M̂def,weak(L(u); Λ0) ⊂A(Λ0) × Hodd(L(u); Λ0)

and Floer cohomology parametrized thereover. We also have a potential
function

PO : M̂def,weak(L(u); Λ0) → Λ+.

Most of the stories in section 5 can be generalized to the current situa-
tion.

Theorem 8.2. 1) A(Λ0) × H1(L(u); Λ0) is contained in
M̂def,weak(H(L; Λ0); Λ0).
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2) Let b =
∑

xixi ∈ H1(L(u); Λ0) and b ∈ A(Λ+). Then we have

(47) PO(b, b) = z1 + · · · + zm +
N∑

k=1

T ρkPk(b; z1, . . . , zm).

Here N ∈ Z≥0 or N = ∞. The numbers ρk are all positive and real.
In case N = ∞, the sequence of numbers ρk goes to ∞ as k goes
to ∞. Pk(b; z1, . . . , zm) are monomials of z1, . . . , zm of degree ≥ 1
with Λ0 coefficient. (Here degree means that of monomials of zi.)
We remark that zj is defined from yu

i = exj by (19).
3) Let b =

∑
xixi ∈ H1(L(u); Λ0) and b ∈ A(Λ0).

PO(b, b) = c1z1 + · · · + cmzm + P0(b; z1, . . . , zm)

+
N∑

k=1

T ρkPk(b; z1, . . . , zm).
(48)

P0(b; z1, . . . , zm) is a formal power series of z1, z2, . . . , zm with Λ0

coefficient such that each term has degree ≥ 2. The numbers cj are
defined as follows. Let b =

∑
wjpj. We put wj ≡ wj mod Λ+ and

wj ∈ C. Then cj = ewj ∈ C \ {0}. Other notations are the same as
in (47).

4) The monomials Pk and the numbers ρk are independent of u and
depends only on X and b.

Item 1) is [FOOO4] Proposition 3.1. (In [FOOO4] Proposition 3.1 it
is assumed that b ∈ A(Λ+). It holds also for b ∈ A(Λ0). See [FOOO4] sec-
tion 11.)

Item 2) is [FOOO4] Theorem 3.4.
Item 3) follows from [FOOO4] sections 8 and 11. (Formulas (9.3),

(11.1) etc.)
Item 4) follows from [FOOO4] Lemma 6.8.
The proof of Theorem 8.2 is similar to that of Theorem 5.2. We here

mention only a few points. Let I = (i1, . . . , i�) ∈ {1, . . . , B}�. We put pI =
pi1 ⊗ · · · ⊗ pi�

. We have

(49) dimMmain
1,� (β;pI) = n − 2 + μ(β) −

�∑
i=1

(deg pi − 2).

Here dim is the virtual dimension that is the dimension in the sense of
Kuranishi structure. As we explained in Remark 8.1 the perturbed moduli
space Mmain

1,� (β;pI)s is empty if (49) < n.

Remark 8.3. This is the reason why we use cycles pi rather than dif-
ferential forms on X to represent cohomology classes of X. This point is
crucial to prove item 1) in Theorem 8.2.
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In the case (49) = n we define

(50) c(β; I) = deg[ev0 : Mmain
1,� (β;pI)

s → L(u)] ∈ Q.

Here and hereafter Mmain
1,� (β;pI)s denotes the perturbation of the moduli

space Mmain
1,� (β;pI). Namely it is the zero set of the multisection s. This

zero set has a triangulation and each simplex of maximal degree comes
with a weight ∈ Q. Thus it has a virtual fundamental cycle. See [FOOO1]
Section A1.

The number (50) is well-defined. Namely it is independent of the pertur-
bation s as far as it is Tn equivariant. It is also independent of u. ([FOOO4]
Lemma 6.8.) The potential function is calculated by using c(β; I) as follows.
Let 	� = (�1, . . . , �B) ∈ ZB

≥0. We put

I(	�) = (1, . . . , 1︸ ︷︷ ︸
�1

, . . . , B, . . . , B︸ ︷︷ ︸
�B

) ∈ {1, . . . , B}
∑B

i=1 �i ,

and
c(β; 	�) = c(β; I(	�)).

Let b =
∑B

i=0 wipi.
We define ∂i(β) ∈ Z by

∂i(β) = 〈∂β, e∗i 〉,
and put

(yu)∂β = (yu
1 )∂1β · · · (yu

n)∂nβ = T−〈∂β,u〉y∂1β
1 · · · y∂nβ

n .

Now we have

PO(b, b) = w0 +
∑

β∈H2(X,L(u);Z)

∞∑
�1=0

· · ·
∞∑

�B=0

× T (β∩ω)/2π

�1! · · · �B!
c(β; 	�)w�1

1 · · ·w�B
B (yu)∂β.

(51)

For the proof of (51) see [FOOO4] section 9.
(47) follows from (51) and c(βj ; (0, . . . , 0)) = 1. This follows from [CO].

(See [FOOO4] section 7.)

Theorem 5.5 is generalized to our situation without change. Namely we
have the following theorem. Hereafter we put POb(b) = PO(b, b).

Theorem 8.4. Let b =
∑

xiei ∈ H1(L(u); Λ0) and b ∈ A(Λ0). Then the
following three conditions are equivalent.

1) For each of i = 1, . . . , n we have:

∂POb

∂xi

∣∣∣∣∣
b

= 0
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2)

HF ((L(u), (b, b)), (L(u), (b, b)); Λ0) ∼= H(Tn; Λ0).

3)
HF ((L(u), (b, b)), (L(u), (b, b)); Λ) �= 0.

The proof is the same as the proof of Theorem 5.5 except some technical
points, which we omit and refer [FOOO4].

The discussion in section 5 on the domain of the function PO as a
function of yi is also generalized.

We put:

(52) A(
◦
P ) = {(y1, . . . , yn) ∈ Λn | (vT (y1), . . . , vT (yn)) ∈ Int P}.

We remark that by Theorem 8.2 POb may be regarded as a function of
y1, . . . , yn.

Lemma 8.5. Let (y1, . . . , yn) ∈ A(
◦
P ). We put zj = T λjy

vj,1

1 . . . y
vj,n
n . Then

z1 + · · · + zm + P0(b; z1, . . . , zm) +
N∑

k=1

T ρkPk(b; z1, . . . , zm) ∈ Λ+

converges as N →∞ with respect to the valutaion vT .
In case b ∈ A(Λ+) where the term P0(b; z1, . . . , zm) is absent, we may

relax the assumption to (y1, . . . , yn) ∈ A(P ).

Thus we may regard POb as a function either : A(
◦
P ) → Λ+ or :

A(P ) → Λ0.
We can define

yi
∂POb

∂yi

in the same way as section 5. It defines either a function : A(
◦
P ) → Λ+ or

: A(P ) → Λ0. Theorem 5.9 can be generalized as follows:

Theorem 8.6. For u ∈ Int P , b ∈ A(Λ0), the following two conditions
are equivalent.

1) There exists b ∈ H1(L(u); Λ0) such that

HF ((L(u), (b, b)), (L(u), (b, b)); Λ0) ∼= H(Tn; Λ0).

2) There exists y = (y1, . . . , yn) ∈ A(P ) such that

(53) yi
∂POb

∂yi
(y) = 0
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for i = 1, . . . , n and that

(vT (y1), . . . , vT (yn)) = u.

This is [FOOO4] Theorem 3.12.

9. Leading term equation

Theorem 8.6 provides a means of determining the Floer cohomology in
terms of the potential function. The main obstacle to directly apply the
theorem in practice is that we do not know how to calculate the extra terms
Pk(b; z1, · · · , zn) unless X is Fano and b has degree 2. (There has been some
computation carried out in this direction for the nef case. See e.g. [CLa].)

Fortunately to determine all the Tn orbits L(u) for which some Floer
cohomology with bulk does not vanish, we do not need to calculate those
terms. We will explain it in this section.

In this and the next sections we fix b and u and consider POb as a
function of variables yu

i . In this section we write yi instead of yu
i . We remark

that vu
T (yi) = 0 and

zj = T �j(u)y
vj,1

1 · · · yvj,n

1 .

Definition 9.1. We denote the sum of linear terms zj ’s in POb by

POb
0 = c1z1 + · · · + cmzm =

m∑
j=1

T �j(u)cjy
vj,1

1 · · · yvj,n
n

and call it the leading order potential function. Here cj is defined as in
Theorem 8.2 3).

Note this function appears frequently in the literature (see [Gi1, HV,
Iri1]), is denoted as W , and is called the (Landau-Ginzburg) superpotential.

Remark 9.2. Note in our situation of toric manifold, superpotential in
physics literature is basically the same as our potential function. However in
other situation they may be different. For example in the case of Calabi-Yau
3 fold X and its special Lagrangian submanifold L, our potential function
is identically 0. (In other words, if b is a weak bounding chain then it is a
bounding chain automatically.) On the other hand, the physisists’ superpo-
tential coincides with the invariant introduced in [Fu4].

We remark that the leading order potential function POb
0 is explicitly

read off from the moment polytope P and u. The leading term equation we
will define below depends only on leading order potential function and so is
also explicitly calculable.

We renumber the values �i(u) according to its order. Namely we take
j(l, r) ∈ {1, . . . , m} for l = 1, . . . , K0, r = 1, . . . , a(l′) with the following
conditions.
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Conditions 9.3. 1) {j(l, r) | l = 1, . . . , K0, r = 1, . . . , a(l)} =
{1, . . . , m}.

2) a(1) + · · · + a(K0) = m.
3) �j(l,r)(u) = �j(l,r′)(u) for 1 ≤ r, r′ ≤ a(l).
4) �j(l,r)(u) < �j(l′,r′)(u) if l < l′.

We put

(54) Sl = �j(l,r)(u).

This is independent of r. Set

(55) 	vl,r = 	vj(l,r) = (vj(l,r),1, . . . , vj(l,r),n) ∈ Zn.

It is an element of the dual vector space of A(Q) = Qn, which we denote by
A(Q)∗. Here A(R) = A(Q)⊗R is the R vector space associated to the affine
space which contains the moment polytope P . Let A⊥

l is a vector subspace
of A(Q)∗ generated by {	vl′,r | l′ ≤ l, r = 1, . . . , a(l′)}. We denote by K ≤ K0

the smallest integer such that A⊥
K = A(Q)∗. We have a filtration

(56) 0 ⊂ A⊥
1 ⊂ A⊥

2 ⊂ · · · ⊂ A⊥
K = A(Q)∗.

We put

(57) d(l) = dim A⊥
l − dim A⊥

l−1.

We have

(58) d(1) + · · · + d(K) = n = dim A(Q)∗.

Note A ∼= Zn ⊂ A(Q) = Qn. So Zn ⊂ A(Q)∗ is determined canonically. (We
remark that Zn ⊂ A(Q)∗ is generated by 	vj , j = 1, . . . , m.) Let {e∗i | i =
1, . . . , n} be the standard basis of Zn ⊂ A(Q)∗. We take e∗l,s for l = 1, . . . , K,
s = 1, . . . , d(l) satisfying the following conditions.

Conditions 9.4. 1) {e∗l′,s | l′ ≤ l, s = 1, . . . , d(l′)} is a Q basis of
A⊥

l .
2) 	vl,r is contained in the Z module generated by {e∗l′,s | l′ ≤ l, s =

1, . . . , d(l′)}.

We define bl′,s;i ∈ Q by

e∗l′,s =
n∑

i=1

bl′,s;ie∗i

and put

yl′,s =
n∏

i=1

y
bl′,s;i
i = exp

(
n∑

i=1

bl′,s;ixi

)
.
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(Note yi = exi .) Since bl′,s;i may not be an integer, yl′,s may not be contained
in the Laurent polynomial ring Λ0[y, y−1] of the variables yi (i = 1, . . . , n).
But it is contained in the finite extention of it.

By Condition 9.4 2),

zj(l,r) = TSly
vj(l,r),1

1 · · · yvj(l,r),n
n

is contained in Λ0[y, y−1]. Moreover it is contained in the Laurent polynomial
ring of the variables yl′,s, l′ = 1, . . . , l, s = 1, . . . , d(l′).

We define cl,r;l′,s ∈ Z by

(59) zj(l,r) = TSl
∏
l′≤l

∏
s≤d(l′)

y
cl,r;l′,s
l′,s .

In other words
	vl,r =

∑
l′≤l

∑
s≤d(l′)

cl,r;l′,se
∗
l′,s.

We put

(60)
(
POb

0

)
l
= T−S�

a(l)∑
r=1

cj(l,r)zj(l,r) =
a(l)∑
r=1

cj(l,r)

∏
l′≤l

∏
s≤d(l′)

y
cl,r;l′,s
l′,s .

The numbers cj(l,r) ∈ {c ∈ Λ0 | vT (c) = 0} are defined in Definition 9.1.
We remark

(
POb

0

)
l
is a Laurent polynomial of variables yl′,s, l′ ≤ l, s =

1, . . . , d(l′) with coefficients in a field of complex numbers.

Definition 9.5. The leading term equation is a system of n equations
of n variables yl,s with complex number coefficients. We define it by

(61)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y1,s

∂
(
POb

0

)
1

∂y1,s

= 0 s = 1, . . . , d(1),

y2,s

∂
(
POb

0

)
2

∂y2,s

= 0 s = 1, . . . , d(2),

· · ·

yl,s

∂
(
POb

0

)
l

∂yl,s

= 0 s = 1, . . . , d(l),

· · ·

yK,s

∂
(
POb

0

)
K

∂yK,s

= 0 s = 1, . . . , d(K).

Note the first equation in (61) contains y1,s s = 1, . . . , d(1), the second
equation in (61) contains y1,s s = 1, . . . , d(1) and y2,s s = 1, . . . , d(2) etc.

If b−b′ ∈ A2(Λ+)⊕⊕
k �=2 Ak(Λ0) then

(
POb

0

)
l
=
(
POb′

0

)
l
. So the lead-

ing term equation is the same for such b and b′.
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One of the main results of [FOOO4] is as follows.

Theorem 9.6. Let u ∈ Int P and b ∈ A(Λ0). Then the following two
conditions are equivalent.

1) The leading term equation (61) has a solution yl,s ∈ C \ {0}.
2) There exists b ∈ H1(L(u); Λ0) and b′ ∈ A(Λ0) with b−b′ ∈ A2(Λ+)

such that

HF ((L(u), (b, b)), (L(u), (b, b)); Λ0) ∼= H(Tn; Λ0).

This is [FOOO4] Theorem 4.5 and Proposition 11.3. We omit the proof
and refer [FOOO4].

Definition 9.7. We say that L(u) is strongly bulk balanced if there exists
b ∈ A(Λ0) and b ∈ H1(L(u); Λ0) such that

HF ((L(u), (b, b)), (L(u), (b, b)); Λ0) ∼= H(Tn; Λ0).

See [FOOO4] Definition 3.13 for a related definition.
Theorem 9.6 gives a way to locate strongly bulk balanced L(u) in terms

of the leading term equation.

10. Examples 2

Example 10.1. We consider Hirzebruch surface Fn, n ≥ 2. We take its
Kähler form so that the moment polytope is

P = {(u1, u2) | 0 ≤ u1, u2, u1 + nu2 ≤ n, u2 ≤ 1 − α} ,

0 < α < 1. The leading order potential function is

PO0 = y1 + y2 + Tny−1
1 y−n

2 + T 1−αy−1
2 .

We put

�1(u1, u2) = u1, �2(u1, u2) = u2,

�3(u1, u2) = n − u1 − nu2, �4(u1, u2) = 1 − α − u2.

We put S1(u1, u2) = inf{�j(u1, u2) | j = 1, 2, 3, 4}.
Suppose the first of the leading term equation (61) has a nonzero solu-

tion. Then it is easy to see that d(1) ≥ 2. Namely

#{j | S1(u1, u2) = �j(u1, u2)} ≥ 2.

This is satisfied on the 5 line seguments l1, . . . , l5, where

l1 : u1 = u2 ≤ (1 − α)/2, l2 : u1 = 1 − α − u2 ≤ (1 − α)/2,

l3 : u1 = n − (n + 1)u2 ≥ n − (n + 1)(1 − α)/2

l4 : u1 = n − 1 + α − (n − 1)u2 ≥ n − (n − 1)(1 − α)/2,

l5 : u2 = (1 − α)/2, (1 − α)/2 ≤ u1 ≤ n − (n − 1)(1 − α)/2.
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(0,1−α)

(0,(1−α)/2)

l2

l1 l3

l4

l5

(n,0)(0,0)

Figure 10.1

Note
v1 = (1, 0), v2 = (0, 1), v3 = (−1,−n), v4 = (0,−1).

Let u = (u1, u2) ∈ l5. Then A⊥
1 is Q · (0, 1) and

(62) (POu
0 )1 = y2 + y−1

2

(Here b = 0 and so we do not write b in the above notation. We put yi = yu
i .)

We also have

(63) (POu
0 )2 =

⎧⎪⎨⎪⎩
y1 If u1 < (1 + α)n/4
y−1

1 y−n
2 If u1 > (1 + α)n/4

y1 + y−1
1 y−n

2 If u1 = (1 + α)n/4.

(62) gives the first leading term equation 1 − y−2
2 = 0 whose solutions are

y2 = ±1.
Then (63) gives the second of the leading term equation which are 1 = 0,

−(±1)−ny−2
1 = 0, 1−(±1)−ny−2

1 = 0, where u1 < (1+α)n/4, u1 > (1+α)n/4
and u1 = (1 + α)n/4, respectively.

The solution y1 �= 0 exists only in the case u1 = (1 + α)n/4. In that case
the solutions of leading term equations are (1,±1) and (−1,±(−1)n/2). Thus
L((1 + α)n/4, (1 − α)/2) is strongly bulk balanced.

We can check that there are no other strongly bulk balanced T 2 orbits.
(This follows from Theorem 11.9 also.)

See [FOOO3] Example 8.2 where the same conclusion is proved by
basically the same but a slightly different calculation.

Remark 10.2. For the case of Example 10.1 we can actually prove that
L((1+α)n/4, (1−α)/2) is strongly balanced. Namely some Floer cohomology
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without bulk deformation is non-zero. This follows from [FOOO3] Theorem
10.4.

Example 10.3. ([FOOO4] section 5, [FOOO3] Example 10.17.) We
consider two points blow up X(α, α′) of CP 2. (Example 4.4.) We consider
the case α > 1/3, α′ = (1 − α)/2. The moment polytope is

P = {(u1, u2) | 0 ≤ u1 ≤ 1, 0 ≤ u2 ≤ 1 − α, (1 − α)/2 ≤ u1 + u2 ≤ 1}.
We consider

(64) u(t) = (t, (1 − α)/2), t ∈ ((1 − α)/2, (1 + α)/4).

We have

PO = T (1−α)/2(y2 + y−1
2 ) + T t(y1 + y1y2) + T (1+α)/2+t(y1y2)

−1

where
(1 − α)/2 < t < (1 + α)/2 + t.

Therefore
(PO)1 = y2 + y−1

2 , (PO)2 = y1 + y1y2.

Thus the leading term equation is

1 − y−2
2 = 0, 1 + y2 = 0.

This has a solution y2 = −1 (y1 is any number ∈ C \ {0}.)
Theorem 9.6 implies that all of L(u(t)) as in (64) are strongly bulk

balanced. In particular they are non-displaceable.

(0,1−α)

(0,(1−α)/2)

(1,0)((1−α)/2,0)

u(t)

Figure 10.2

Remark 10.4. In the toric case, for each given b, the number of L(u)
with nontrivial Floer cohomology for a pair (b, b) for some b ∈ H1(L(u); Λ0)
is finite. (It is not greater than the Betti number of X by Theorem 11.9.) So
to obtain infinitely many L(u) with nontrivial Floer cohomology we need to
include bulk deformations.
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In the examples we discussed in this section, we do not need to change
the variables from yj to yl,s. An example where we need this change of
variables is given in [FOOO3] Example 10.10.

In Example 10.3 we obtain a continuum of non-displaceable Lagrangian
torus in certain two points blow up of CP 2. ([FOOO4]). We can also use
bulk deformation to obtain a continuum of Lagrangian tori in S2×S2. They
are not of the type of T 2 orbit but is obtained from the T 2 orbit of singular
Hirzebruch surface F2(0) by deforming the singularity, that is of orbifold of
A1-type. ([FOOO6].) Closely related construction is in [NNU1, NNU2]

11. Quantum cohomology and Jacobian ring

11.1. Jacobian ring over Novikov ring. In this section we discuss
the isomorphism between the Jacobian ring of POb and the quantum coho-
mology ring of X deformed by b. We start with defining Jacobian ring pre-
cisely.

Usually Jacobian ring is studied in the case of (Laurent) polynomial or
holomorphic function germ. Our function POb is neither a Laurent polyno-
mial and nor a holomorphic function. So we first define a function space in
which POb is contained.

We consider the Laurent polynomial ring Λ[y, y−1] of n variables with Λ
coefficients. We defined a valuation vu

T for each u ∈ Rn in section 5 Definition
5.6. Let P be a compact subset of Rn. (We use the case when P is a convex
polytope only in this article.)

Definition 11.1. For F ∈ Λ[y, y−1] we define

vP
T (F ) = inf{vu

T (F ) | u ∈ P}.
This is not a valuation but is a norm. Therefore it defines a metric on
Λ[y, y−1] by dP (F1, F2) = e−vP

T (F1−F2). We denote the completion of Λ[y, y−1]
with respect to dP by Λ〈〈y, y−1〉〉P . It is a normed ring.

We define Λ〈〈y, y−1〉〉P0 as the set of all F ∈ Λ〈〈y, y−1〉〉P such that
vP

T (F ) ≥ 0.

Let P be a moment polytope of our toric manifold X. We take �j (j =
1, . . . , m) as in Condition 4.1 and put

Pε = {u ∈ Rn | �j(u) ≥ ε, j = 1, . . . , m}
for ε > 0. We define vPε

T , Λ〈〈y, y−1〉〉Pε and Λ〈〈y, y−1〉〉Pε
0 in a similar way.

Definition 11.2. We define a metric d ◦
P

on Λ[y, y−1] by

d ◦
P
(F1, F2) =

∞∑
k=1

2−k min(dP1/k
(F1, F2), 1).

Let Λ〈〈y, y−1〉〉
◦
P be the completion of Λ[y, y−1] with respect to d ◦

P
and define

Λ〈〈y, y−1〉〉
◦
P
0 =

⋂∞
k=1 Λ〈〈y, y−1〉〉P1/k

0 .
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It is easy to see that an element of Λ〈〈y, y−1〉〉P may be regarded as a

function : A(P ) → Λ and an element of Λ〈〈y, y−1〉〉
◦
P may be regarded as a

function : A(
◦
P ) → Λ.

Lemma 11.3. If b ∈ A(Λ0) then

(65) POb ∈ Λ〈〈y, y−1〉〉
◦
P
0 , yi

∂POb

∂yi
∈ Λ〈〈y, y−1〉〉

◦
P
0 .

If b ∈ A(Λ+) then

(66) POb ∈ Λ〈〈y, y−1〉〉P0 , yi
∂POb

∂yi
∈ Λ〈〈y, y−1〉〉P0 .

We omit the proof, which follows from Theorem 8.2. See [FOOO5]
Lemma 2.6. Now we define

Definition 11.4.

Jac(POb) =
Λ〈〈y, y−1〉〉

◦
P
0

Closd◦
P

(
yi

∂POb

∂yi
: i = 1, . . . , n

) .

(We may replace Λ〈〈y, y−1〉〉
◦
P
0 by Λ〈〈y, y−1〉〉P0 in the above formula in

case b ∈ A(Λ+).)
Here the denominator is the closure of the ideal generated by yi

∂POb

∂yi
:

i = 1, . . . , n. The closure is taken with respect to the metric d ◦
P
.

11.2. Big quantum cohomology: a quick review. We next review
briefly the well established story of deformed quantum cup product. Let
(X, ω) be a symplectic manifold. For α ∈ H2(X; Z) let M�(α) be the moduli
space of stable maps from genus zero semi-stable curves with � marked points
and of homology class α. There exists an evaluation map

ev : M�(α) → X�.

M�(α) has a virtual fundamental cycle and hence defines a class

ev∗[M�(α)] ∈ H∗(X�; Q).

(See [FO].) Here ∗ = 2n+2c1(X)∩α+2�−6. Let Q1, . . . , Q� be cycles such
that

(67)
∑

codim Qi = 2n + 2c1(X) ∩ α + 2� − 6.

We define Gromov-Witten invariant by

GW�(α : Q1, . . . , Q�) = ev∗[M�(α)] ∩ (Q1 × · · · × Q�) ∈ Q.

We put GW�(α : Q1, . . . , Q�) = 0 when (67) is not satisfied.
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We now define

(68) GW�(Q1, . . . , Q�) =
∑
α

T (α∩ω)/2πGW�(α : Q1, . . . , Q�).

The formula (68) extends to a Λ0 module homomorphism

GW� : H(X; Λ0)⊗� → Λ0.

Definition 11.5. Let b ∈ H(X; Λ0) be given. For each given pair c, d ∈
H(X; Λ0), we define a product c ∪b d ∈ H(X; Λ0) by the following formula

(69) 〈c ∪b d, e〉PDX
=

∞∑
�=0

1
�!

GW�+3(c, d, e, b, . . . , b).

Here 〈·, ·〉PDX
denotes the Poincaré duality pairing. The right hand side

converges if b ∈ H2(X; Λ+)⊕⊕k>2 Hk(X; Λ0). We can extend it to arbitrary
b ∈ H∗(X; Λ0). (This is well-known. See for example [FOOO5] section 2.)

∪b defines a graded commutative and associative ring structure on
H(X; Λ0). We call ∪b the deformed quantum cup product.

11.3. The isomorphism ‘Jacobian ring = quantum cohomology’
and its applications.

Theorem 11.6. There exists a ring isomorphism

(H(X; Λ0),∪b) ∼= Jac(POb).

This is [FOOO5] Theorem 1.1.1 (1). We explain some parts of the proof
later in this section. We first discuss some applications.

Definition 11.7. Let Crit(POb) be the set of all y ∈ A(
◦
P ) such that

∂POb

∂yi
(y) = 0

for i = 1, . . . , n. An element of Crit(POb) is said to be a critical point of POb.
A critical point y of POb is said to be non-degenerate if the matrix[

yiyj
∂2POb

∂yi∂yj
(y)

]i,j=n

i,j=1

is invertible, as an n × n matrix with Λ entries.
The function POb is said to be a Morse function if all of its critical

points are non-degenerate.
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We put

M(X; b) =

{
(u, b)

∣∣∣∣∣u ∈ Int P, b ∈ H1(L(u); Λ0)/H1(L(u); 2π
√−1Z),

HF ((L(u), (b, b)), (L(u), (b, b)); Λ0) ∼= H(Tn; Λ0)

}
.

Theorem 8.6 implies the following.

(70) #M(X; b) = #Crit(POb).

Proposition 11.8. There exists a direct product decomposition

(71) Jac(POb) ⊗Λ0 Λ =
∏

y∈Crit(POb)

Jac(POb; y),

as a ring.
The factor Jac(POb; y) in the right hand side is a local ring.
The ring Jac(POb; y) is one dimensional if and only if y is non-

degenerate.

This is a standard result in the case, for example, when the function
(POb in our case) is a polynomial or a holomorphic function. We can prove
Proposition 11.8 in a similar way to those cases. It is proved in [FOOO5]
section 2.2.

Theorem 11.6 and Proposition 11.8 imply that (H(X; Λ),∪b) is semi-
simple if and only if POb is a Morse function.

Theorem 11.6 together with Proposition 11.8 and Formula (70) imply
the following:

Theorem 11.9. 1) If POb is a Morse function then

rankH(X; Q) = #M(X; b).

2) If POb is not a Morse function then

0 < #M(X; b) < rankH(X; Q).

This is [FOOO5] Theorem 1.1.3. Some of the earlier partial results is
given in [FOOO3] Theorems 1.9 and 1.12.

Remark 11.10. Theorem 11.9 in particular implies that there exists at
least one non-displaceable Tn orbit. This fact also follows from an earlier
result by Entov-Polterovich [EP2, EP3].

Another application is the following:

Theorem 11.11. ([FOOO5] Theorem 1.1.4.) Assume b ∈ H2(X; Λ0).
The set of eigenvalues of the map x �→ c1(X)∪bx : H(X; Λ) → H(X; Λ) coin-
cides with the set of critical values of POb, with multiplicities counted.

Remark 11.12. Theorem 11.11 was conjectured by M. Kontsevich. See
also [Aur1].
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Proof. The proof uses the following:

Lemma 11.13. Let us consider the situation of Theorem 11.11. Then, by
the isomorphism in Theorem 11.6, the first Chern class c1(X) ∈ H2(X; C)
is sent to the equivalence class of POb in Jac(POb).

This is [FOOO5] Proposition 2.12.1.
Now we consider x �→ c1(X)∪bx. We use Thoerem 11.6 and Proposition

11.8 then it is identified to the direct sum of maps

[F ] �→ [PObF ], Jac(POb; y) → Jac(POb; y).

The eigenvalue of this map is POb(y). This implies Theorem 11.11. �

11.4. Construction of the homomorphism ksb. In various applica-
tions of Thoerem 11.6 it is also important to know the way how the isomor-
phism is defined, which we describe in this subsection.

Let pi be the basis of A as in section 8. We write an element b ∈
A(Λ0) as

b =
B∑

i=0

wipi.

We put wi = ewi for i = 1, . . . , m. (Note pi, i = 1, . . . , m are degree 2 classes.)
We define Pj0...jB(y) by

(72) PO(b; y) =
∞∑

j0=0

· · ·
∞∑

jB=0

Pj0...jB(y)wj0
0 w

j1
1 · · ·wjm

m w
jm+1

m+1 . . . wjB
B .

We can show that

Pj0...jB(y) ∈ T ρj0...jB Λ〈〈y, y−1〉〉
◦
P
0

with
lim

j0+···+jB→∞
ρj0...jB = ∞.

Therefore the right hand side of
∂

∂wi
PO(b; y)

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∞∑
j0=0

· · ·
∞∑

jB=0

jiPj0...jB(y)wj0
0 · · ·wji−1

i · · ·wjB
B i �= 1, . . . , m

∞∑
j0=0

· · ·
∞∑

jB=0

jiPj0...jB(y)wj0
0 · · ·wji

i · · ·wjB
B i = 1, . . . , m

(73)

makes sense and is contained in Λ〈〈y, y−1〉〉
◦
P for each b ∈ A(Λ0).

We define the map

k̃sb0 : A(Λ0) → Λ〈〈y, y−1〉〉
◦
P
0
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by

(74) k̃sb0(pi) =
∂

∂wi
PO(b; y)

∣∣∣∣
b=b0

.

Theorem 11.14. There exists a Λ0 module homomorphism ksb such that
the following diagram commutes:

(75)

A(Λ0)
k̃sb−−−−→ Λ〈〈y, y−1〉〉

◦
P
0⏐⏐# ⏐⏐#

H(X; Λ0)
ksb−−−−→ Jac(POb).

The map ksb is the isomorphism mentioned in Theorem 11.6.
Theorem 11.14 is [FOOO5] Theorem 2.4.1.

Sketch of the proof. By definition, we have

(76) PO(b; y) =
∞∑

k=0

∞∑
�=0

∫
L(u)

q�;k(b�, bk).

Here b =
∑n

i=1 xiei and yi = exi . Using ∂b/∂wi = pi we have

(77)
∂PO(b; y)

∂wi
=

∞∑
k=0

∞∑
�1=0

∞∑
�2=0

∫
L(u)

q�;k(b�1pib
�2 , bk).

The homomorphism

(78) pi �→
∞∑

k=0

∞∑
�1=0

∞∑
�2=0

q�;k(b�1pib
�2 , bk)

induces a homomorphism

(79) H(X; Λ0) → HF ((L(u), (b, b)), (L(u), (b, b)); Λ0).

This fact was proved in [FOOO1] Theorem 3.8.62 for arbitrary L ⊂ X.
Note that to define (79) by (78) we fix b, b and regard the right hand

side of (78) as an element of H(L(u), Λ0). When we define k̃sb, we regard
b =

∑n
i=1 xiei, as a H(L(u), Λ0) valued function of xi. So the right hand side

of (77) is a function of yi = exi .
In other words we need to study the ‘family version’ of the well-

definedness of (79).
We consider the boundary operator

a ∈ H(L(u), Λ0) �→ m
b,b
1 (a) =

∞∑
k1=0

∞∑
k2=0

∞∑
�=0

q�;k(b�, bk1abk2).

The well-definedness of (79) means the following Claim 11.15. Let i∗qm,(b,b)

(pi) be the right hand side of (78).
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Claim 11.15. If
∑B

i=0 cipi is zero in H(X; Λ0), then
∑B

i=0 cii
∗
qm,(b,b)(pi)

lies in the image of m
b,b
1 .

We can prove the same claim when we regard b as a function of xi. By
the proof of Theorem 5.5 (especially by Formula (23)), the image of m

b,b
1

(where b is regarded as a function of xi) is in the Jacobian ideal (the ideal
generated by yi∂POb/∂yi).

Thus the kernel of A(Λ0) → H(X; Λ0) is mapped to the Jacobian ideal
by k̃sb. This implies the theorem. �

Before closing this subsection, we state Theorem 11.17 which is a non-
linear version of Theorem 11.14.

The potential function with bulk POb is parametrized by b ∈ A(Λ0).
Theorem 11.17 says that it depends only on the cohomology class b up to

appropriate change of variables. Λ〈〈y, y−1〉〉
◦
P
+ denotes the set of elements R

of Λ〈〈y, y−1〉〉
◦
P
0 such that T−εR ∈ Λ〈〈y, y−1〉〉

◦
P
0 for some ε > 0.

Definition 11.16. We consider n elements y′i ∈ Λ〈〈y, y−1〉〉
◦
P

(i = 1, . . . , n).
1) We say that y′ = (y′1, . . . , y′n) is a coordinate change converging on

IntP (or a coordinate change on Int P ) if

(80) y′i ≡ ciyi mod yiΛ〈〈y, y−1〉〉
◦
P
+

ci ∈ C \ {0}.
2) We say that the coordinate change is strict if ci = 1 for all i.
3) We say that the coordinate change converges on P if y′i ∈

Λ〈〈y, y−1〉〉P (i = 1, . . . , n) in addition. Its strictness is defined in
the same way. We also say that y′ is a coordinate change on P .

The set of all coordinate changes forms a group. It is regarded as a
kind of group of self automorphisms of the filtered A∞ algebra associated
to L(u). (The domain of convergence assumed in Definition 11.16 requires
that it converges not only by the norm vu

T but also by vu′
T with any u′. This

is the reason we write “a kind of” in the above sentence.) A closely related
group appears in [KS2] and [GPS].

Theorem 11.17. Let b, b′ ∈ A(Λ0). We assume that [b] = [b′] ∈
H(X; Λ0).

Then there exists a coordinate change y′ on Int P , such that

(81) POb(y′) = POb′(y).

If b − b′ ∈ A(Λ+), then y′ can be taken to be strict.
If both b, b′ ∈ A(Λ+), then y′ can be taken to be a strict coordinate change

on P .
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This is [FOOO5] Theorem 8.7.

We remark that Λ〈〈y, y−1〉〉
◦
P
0 parametrizes the deformation of the poten-

tial function. Then the Jacobian ideal corresponds to the part induced by
the coordinate change. Thus Theorem 11.17 follows from Theorem 11.14 by
some ‘integration’ (that is solving appropriate ordinary differential equa-
tion.) See [FOOO5] section 8.

11.5. The homomorphism ksb is an isomorphism. The main geo-
metric input to the proof of Theorem 11.6 is the following:

Theorem 11.18. The map ksb : (H(X; Λ0),∪b) → Jac(POb) is a ring
homomorphism.

Theorem 11.18 is [FOOO5] Theorem 2.6.1.
Note this theorem is a version of a result which holds in greater gener-

ality. Namely there exists a ring homomorphism

(82) QH(X; Λ0) → HH(Fuk(X, ω)),

where the right hand side is the Hochschild cohomology of the Fukaya cate-
gory (see [Fu1, FOOO8] for its definition.) The existence of such homomor-
phism was first suggested by [Ko] and conjectured explicitly by [Se3] etc.
See [FOOO5] section 4.5 and the reference therein for some of the related
works.

We remark that HH(Fuk(X, ω)) parametrizes the deformation of the
Lagrangian Floer theory on X. The Jacobian ring Jac(POb) parametrizes
the deformation of a part of the structures, that is the part described
by mb

0(1). So there is a natural ring homomorphism HH(Fuk(X, ω)) →
Jac(POb) in the toric case. Combining them we obtain the ring homomor-
phism in Theorem 11.18.

More precise and down-to-earth proof of Theorem 11.18 is given as
follows.

We recall that the map ksb : (H(X; Λ0),∪b) → Jac(POb) is induced from
the map

(83) pi �→
∞∑

k=0

∞∑
�1=0

∞∑
�2=0

∫
L(u)

q�1+�2+1;k(b�1pib
�2 , bk) : A→ Λ〈〈y, y−1〉〉P0 .

(See (78).) Note b =
∑

xiei and the right hand side is a function of xi. It then
turns out to be a function of yu

i = exi . Moreover by changing the variables
to yi by the formula yi = T uiyu

i , the right hand side becomes a function of
yi and is an element of Λ〈〈y, y−1〉〉P0 .

We consider the case b = 0 for simplicity.
We consider the moduli space Mk+1;2(β) of J-holomorphic disks with

k + 1 boundary and � interior marked points, (See subsection 2.2.) and take
a fiber product

Mmain
k+1;2(β)(ev+

1 ,ev+
2 ) × (p × p′)
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where p,p′ ∈ A. We denote this fiber product by

Mmain
k+1;2(β;p,p′).

Let M1;2 be the moduli space of bordered Riemann surface of genus 0 with
two interior and one boundary marked points. This moduli space is a two
dimensional disk. We consider two points [Σ1], [Σ2] ∈M1;2 as in the figure
below.

X

X

Σ1
Σ2

Figure 11.1

We have a forgetful map

(84) forget : Mmain
k+1;2(β) →M1;2.

Namely we put

forget([Σ; z0, . . . , zk, z
+
1 , z+

2 , u]) = [Σ; z0; z+
1 , z+

2 ].

It induces a map

forget : Mmain
k+1;2(β;p,p′) →M1;2.

For i = 1, 2, we denote by

Mmain
k+1;2(β;p,p′; Σi)

the inverse image of {[Σi]} in Mmain
k+1;2(β;p,p′).

Let hj ∈ H1(L(u); C) (j = 1, . . . , k). (Note we identify the cohomology
group with the set of Tn invariant forms.) We pull back h1 × · · · × hk

to Mmain
k+1;2(β;p,p′; Σi) by (ev1, . . . , evk) and consider the integration along

fiber by ev0. We denote it by

Corr(h1 × · · · × hk;Mmain
k+1;2(β;p,p′; Σi)).

More precisely we take a Tn invariant multisection s so that the zero set
Mmain

k+1;2(β;p,p′; Σi)s is transversal to zero. Then integration along the fiber
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is well-defined. This is because ev0 on Mmain
k+1;2(β;p,p′; Σi)s must become a

submersion by the Tn equivariance.
We put

Corr(h1 × · · · × hk;Mmain
k+1;2(p,p′; Σi))

=
∑

β

T (β∩ω)/2πCorr(h1 × · · · × hk;Mmain
k+1;2(β;p,p′; Σi))

and extend Corr(· · · ;Mmain
k+1;2(p,p′; Σi)) to

H1(L(u); Λ0)⊗k → Λ0.

We then can prove the following two formulas:

Corr(b, . . . , b︸ ︷︷ ︸
k

;Mmain
k+1;2(p,p′; Σ1)) = q1;k(p ∪Q p′; bk).(85)

Corr(b, . . . , b︸ ︷︷ ︸
k

;Mmain
k+1;2(p,p′; Σ2)) =

∑
k1+k2=k

q1;k1(p; bk1)q1;k2(p
′; bk2).(86)

Note the sum over k of the right hand sides of (85) and (86) are

ks0(p ∪Q p′) and ks0(p)ks0(p′)

respectively. (Note we are studying the case b = 0.)
We finally use cobordism argument to show that the left hand side of (85)

coincides with the left hand side of (86) modulo elements in the Jacobian
ideal. This is an outline of the proof of Theorem 11.18. See [FOOO5] section
2.6 for detail.

The outline of the rest of the proof of Theorem 11.6 is as follows.
We first prove the surjectivity of ksb. For this purpose we consider the

map obtained by reducing the coefficient to C = Λ0/Λ+. Then the quantum
cohomology of the domain becomes ordinary cohomology. We can calculate
the C = Λ0/Λ+ reduction of the Jacobian ring using Cho-Oh’s result (namely
by studying the leading order term z1+· · ·+zm. See Theorem 8.2.) Then the
C-reduction of ksb is an isomorphism by a classical result of Stanley which
calculates the cohomology ring of toric manifold. (See for example [Ful].) It
implies that ksb itself is surjective.

We remark that the fact that C-reduction of ksb is an isomorphism does
not imply that ksb is isomorphism. In fact we need to eliminate the pos-
sibility that Jac(POb) has a component such as Λ0/(T λ). Note that the
(quantum) cohomology H(X; Λ0) is a free Λ0 module. Therefore to prove
the injectivity of ksb and complete the proof of Theorem 11.6 it suffices to
prove the following inequality.

(87) rankΛ(Jac(POb) ⊗Λ0 Λ) ≥ rankQH(X; Q).

We remark that in many explicit examples we can prove the equality (87)
directly by finding critical points of POb, for example by solving leading
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term equation. However the proof of (87) is in general more involved, which
we briefly describe now. We consider the case b = 0, for simplicity.

We prove (87) in two steps. We first use a result of McDuff-Tolman
[MT] (which is based on Seidel’s work [Se1]), to find elements z′1, . . . , z′m ∈
QH(X; Λ0) with the following properties.

1) z′1, . . . , z′m satisfies quantum Stanley-Reisner relation.
2) There exists Pi(Z1, . . . , Zm) =

∑m
j=1 vj,iZi +

∑∞
k=1 T ρkPi,k(Z1, . . . ,

Zm) such that

(88) Pi(z′1, . . . , z
′
m) = 0

and ρk →∞, ρk > 0, Pi,k ∈ C[Z1, . . . , Zm]. (We recall d�j = (vj,1, . . . ,
vj,n) ∈ Zn.)

3) The relations in the above (1),(2) are all the relations among z′i.
Moreover z′i generates QH(X; Λ0).

Let us explain the above statement briefly. By putting Zi = T λiy
vi,1

1 · · · yvi,n
n

we obtain a surjective ring homomorphism

Λ[Z1, . . . , Zm] → Λ[y1, y
−1
1 , . . . , yn, y−1

n ].

The quantum Stanley-Reisner relations are the generators of the kernel of
this homomorphism. (See [FOOO3] Definition 6.4.) The quantum Stanley-
Reisner relation appeared in the Batyrev’s work on quantum cohomology of
toric manifold and is given explicitly by using moment polytope P .

We put zi = T λiy
vi,1

1 · · · yvi,n
n ∈ Jac(PO0). Then (47) implies that it sat-

isfies the formula

(89)
m∑

j=1

vj,izi +
∞∑

k=1

T ρk
∂Pk

∂xi
(z1, . . . , zm) = 0.

(Note we put yi = exi so (89) is ∂Pk
∂xi

= yi
∂Pk
∂yi

.) We remark that the first term
of the left hand side of (89) is

∂PO0

∂xi
(z1, . . . , zm).

We also remark that the left hand side of (88) is similar to (89). Namely
their leading order terms coincide.

The element z′i is the invariant of [Se1] associated to the Hamiltonian S1

action. Here S1 is the component of Tn which fixes Di. The fact that they
satisfy the quantum Stanley-Reisner relation is proved in [MT] using the
relation between those S1 actions and basic properties of Seidel invariant.
The property (2) can be proved using the fact z′i ≡ [Di] mod Λ+.
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Let (QSR) ⊂ Λ0〈〈Z1, . . . , Zm〉〉 be the ideal generated by the quantum
Stanley-Reisner relations. Then (1), (2) above imply the existence of homo-
morphism

(90)
Λ0〈〈Z1, . . . , Zm〉〉

Clos((QSR) ∪ {Pi : i = 1, . . . , m}) → QH(X; Λ0).

Here Clos means a closure with respect to an appropriate topology. By
reduction to C = Λ0/Λ+ we can show that (90) is an isomorphism. (We use
the fact that QH(X; Λ0) is torsion free here.)

Now the proof of (87) goes as follows. For s ∈ Λ we put

Ps
i = s

∂PO0

∂xi
+ (1 − s)Pi.

We remark Ps
i has the form

Ps
i(Z1, . . . , Zm) =

m∑
j=1

vj,iZi +
∞∑

k=1

T ρkP s
i,k(Z1, . . . , Zm).

We define the ring Rs by

Rs =
Λ0〈〈Z1, . . . , Zm〉〉

Clos((QSR) ∪ {Ps
i : i = 1, . . . , m}) ⊗Λ0 Λ.

We have

R0
∼= QH(X; Λ)

since (90) is an isomorphism. On the other hand

R1
∼= Jac(PO0) ⊗Λ0 Λ.

Thus it suffices to show that dimΛ Rs is independent of s. We regard ∪s∈Λ

Spec(Rs) as a family of affine schemes parametrized by s ∈ Λ. If we can
prove that this family is flat and proper then the independence of dimΛ Rs

is a standard result of algebraic geometry.
We prove the properness using the fact that the valuation of the solution

of the equation Ps
1 = · · · = Ps

m = 0 can not escape from moment polytope.
The flatness is a consequence of the fact that our scheme is a local complete
intersection and also of standard facts about the regular sequence of Cohen-
Macauley ring.

In general Ps
i is an infinite series rather than a polynomial. So we first

need to change the coordinate yi so that Ps
i becomes a polynomial. Such

a process is known in algebraic geometry as a algebraization of singularity.
See [FOOO5] section 2.9.

This is an outline of the proof of (87). See [FOOO5] especially its section
2.11 for details. �
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Remark 11.19. We regard

(91)
⋃

b∈H(X;Λ0)

Spec(POb)

as a H(X; Λ0) parametrized ‘family of schemes’4

The same argument to show the flatness and properness of the family
∪s∈ΛSpec(Rs) seems to be applicable to show that the family (91) is also
flat and proper.

In the study of K. Saito theory of Laurent polynomials (such as one
described in [Sab]), the properness of the family of the critical point sets is
an important issue. When one works over C the properness is not necessarily
satisfied. When we work over a Novikov ring in place of C, properness of the
family of the critical point sets (that is the geometric points of Spec(POb))
is always satisfied at least for the potential function appearing as the mirror
of a toric manifold. The authors believe that this is an important advantage
of working with Novikov ring over working with C.

Remark 11.20. Let us consider the family (91). For the H2(X; Λ0) part
of b it is natural to replace the coordinate wi by its exponential wi = ewi .
Then we may extend the domain {wi | vT (wi) = 0} to wi ∈ Λ. Note in POb

the leading order term is
∑

wizi. So if we extend wi and allow for example
wi = T c, we have a term T czi. We may regard this insertion wi = T c as
changing the moment polytope. Namely appearance of the term T czi is
equivalent to moving ∂iP = {u | �i(u) = 0} to {u | �i(u) = −c}5.

Thus for this extended family the flatness and properness still hold as
far as the corresponding moment polytope is combinatorially equivalent to
the original one.

There is some flavor of this kind of arguments in [FOOO5] subsec-
tion 2.11.2.

12. Poincaré duality and Residue pairing

In this section we explain that the isomorphism in Theorem 11.6 can
be enhanced to give an isomorphism between two Frobenius manifold struc-
tures.

12.1. Big quantum cohomology and Frobenius manifold.

Definition 12.1. A Frobenius manifold structure on a manifold M is a
quintet (〈·〉,∇, ◦, e,Φ) with the following properties.

4It is proved in [FOOO5] that each of POb can be transformed to a Laurent poly-
nomial by change of variables. So we can define its Spec. It is not verified that the whole
family can be regarded to be a scheme. So we put quotation mark.

5In other words the parameter vT (wi) corresponds to the Kähler cone of our toric
manifold X. This is similar to the fact that the valuation of yi corresponds to the parameter
u of the Lagrangian submanifold L(u)
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1) 〈·〉 is a non-degenerate inner product on the tangent bundle TM .
2) ∇ is a connection of TM .
3) ∇ is a metric connection. Namely :

X〈Y, Z〉 = 〈∇XY, Z〉 + 〈Y,∇XZ〉.
4) ∇ is flat and torsion free. Namely :

∇X∇Y −∇Y ∇X −∇[X,Y ] = 0,

∇XY −∇Y X − [X, Y ] = 0.

5) ◦ defines a ring structure on TpM which depends smoothly on p
and satisfies

(92) 〈X ◦ Y, Z〉 = 〈X, Y ◦ Z〉.
An associative algebra with unit which satisfies (92) is called a
Frobenius algebra.

6) e is a section of TM such that e(p) is the unit of (TpM, ◦, +) for
each p. Moreover

∇e = 0.

7) Φ is a function on M such that

(93)
〈

∂

∂xi
◦ ∂

∂xj
,

∂

∂xk

〉
=

∂3Φ
∂xi∂xj∂xk

.

Here xi (i = 1, . . . ,dim M) is a local coordinate of M such that
∇ ∂

∂xi

( ∂
∂xj

) = 0. We call Φ the potential.

In some case we have a vector field E on M that satisfies the following

E〈X, Y 〉 − 〈[E, X], Y 〉 − 〈X, [E, Y ]〉 = d1〈X, Y 〉,
[E, X ◦ Y ] − [E, X] ◦ Y − X ◦ [E, Y ] = d2X ◦ Y,

[E, e] = d3e,

(94)

where d1, d2, d3 ∈ Q. We call E the Euler vector field.

Remark 12.2. In various situations where a Frobenius manifold arises
the tangent space TpM appears as either a C vector space or a Λ vector
space. In that case the inner product 〈·〉 is bilinear over C or Λ. (In this case
〈·〉 is required to be complex symmetric not hermitian.) Moreover Φ is a C

or Λ valued function.
We do not try to define what connection, function, coordinate etc. mean

in case TM is a Λ vector space. At the present stage of development, we
do not meet the situation where we need to seriously study it. In the main
example of our consideration, M is a Λ0 affine space, hence we can easily
make sense out of them.
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This structure first appeared in K. Saito’s work [Sa] (see the next subsec-
tion). Dubrovin [Dub] discovered this structure in Gromov-Witten theory,
which we recall below.

Let X be a symplectic manifold. We take M = Hevev(X; Λ0) the even
degree cohomology group of X with Λ0 coefficients. (We may include odd
degree part by regarding X as a supermanifold. Since in the case of our main
interest (toric manifold), there is no cohomology class of odd degree, we do
not discuss odd degree part.)

In subsection 11.2 we associate a deformed quantum cup product ∪b

on H(X; Λ) for each b ∈ Heven(X; Λ0). We regard TbM = H(X; Λ) and put
◦ = ∪b there. It is associative.

Remark 12.3. Note Heven(X; Λ0) is not an open set of Heven(X; Λ). So
TbH

even(X; Λ0) = H(X; Λ) does not make sense in a usual sense of manifold.
This is regarded only as a convention here.

We have Poincaré duality pairing

Hd(X; Λ) ⊗Λ H2n−d(X; Λ) → Λ.

The inner product 〈·〉 is the Poincaré duality pairing. We remark that then
the Levi-Civita connection, that is the connection which is a torsion free
metric connection of the metric 〈·〉, is the standard affine connection of the
vector space Heven(X; Λ0). It is obviously flat.

(92) follows from

〈c ∪b d, e〉PDX
=

∞∑
�=0

1
�!

GW�+3(c, d, e, b, . . . , b).

(See (69).) and the fact that GW�(Q1, . . . , Q�) is independent of the permu-
tation of Qi.

The element e is the unit of the cohomology group that is the Poincaré
dual to the fundamental homology class [X].

The potential Φ is defined by

(95) Φ(b) =
∞∑

�=0

1
�!

GW�(b, . . . , b)

for which the formula (93) can be easily checked. The potential Φ in (95) is
called the Gromov-Witten potential.

The Euler vector field E is defined by the vector field:

(96) E =
∂

∂w0
+

m∑
i=1

ri
∂

∂wi
+

B∑
i=m+1

(
1 − degpi

2

)
wi

∂

∂wi
,

where c1(X) =
∑m

i=1 ripi. We remark that pi, i = 0, . . . , B are basis of Heven

(X; Q) such that degp0 = 0, degpi = 2 for i = 1, . . . , m and degpi > 2 for
i > m.
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By using the dimension formula

dimC M�(α) = n + � − 3 + c1(X) ∩ α

of the moduli space M�(α) of pseudo-holomorphic spheres with � interior
marked points and of homology class α, we can prove (94), where d1 = 2−n,
d2 = 1, d3 = 0. Thus we have:

Theorem 12.4. (Dubrovin) (〈·〉,∇,∪b, Φ, e) is a structure of Frobenius
manifold on H(X; Λ0). (96) is its Euler vector field.

12.2. A fragment of K. Saito theory. Let

(97) F (x1, . . . , xn; w0, w1, . . . , wB) : U × V → C

be a holomorphic function on U × V ⊂ Cn ×CB+1. Here U and V are small
neighborhoods of origin in Cn and CB+1, respectively.

We assume F is of the form

F (x1, . . . , xn; w0, w1, . . . , wB) = w0 + F (x1, . . . , xn; 0, w1, . . . , wB).

We put
F �w(x1, . . . , xn) = F (x1, . . . , xn; w0, w1, . . . , wB),

for 	w = (w0, . . . , wB). We assume that F
�0(x1, . . . , xn) has 	x =	0 as an iso-

lated critical point. Namely (dF
�0)(0, . . . , 0) = 0, and (dF

�0)(	x) �= 0 for 	x ∈
U\{	0}.

Definition 12.5. We define the Jacobian ring Jac(F �w) by

(98) Jac(F �w) =
O(U)(

∂F �w

∂xi
; i = 1, . . . , n

) .

Here O(U) is the ring of holomorphic functions on U and the denominator
is its ideal generated by ∂F �w

∂xi
, i = 1, . . . , n.

We define the Kodaira-Spencer map ks�w : T�wV → Jac(F �w) by

(99) ks�w

(
∂

∂wi

)
≡ ∂F

∂wi
(x1, . . . , xn; 	w) ∈ Jac(F �w).

F is called a universal unfolding of F
�0 if ks�0 : T�0V → Jac(F�0) is an iso-

morphism.

We remark that if F is a universal unfolding of F
�0 then by shrinking V

if necessary we may assume that ks�w is an isomorphism for any 	w ∈ V . We
assume it in the rest of this subsection.

We remark that Jac(F �w) is a ring. On the other hand T�wV does not
have a ring structure a priori. We define

(100) X ◦ Y = (ks�w)−1(ks�w(X)ks�w(Y )),
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for X, Y ∈ T�wV . Thus (T�wV, ◦, +) forms a ring. Note ∂/∂w0 ∈ T�wV is sent
to [1] ∈ Jac(F �w). Therefore

e(	w) = ∂/∂w0 ∈ T�wV

is a unit.

Theorem 12.6. (K.Saito-M.Saito) There exists a C valued metric 〈·〉
on TV , its Levi-Civita connection ∇ and a holomorphic function Φ : V → C

such that (〈·〉, ◦, e,∇, Φ) is a Frobenius manifold.

K. Saito [Sa] constructed a Frobenius manifold structure assuming the
existence of a primitive form. We do not explain the notion of primitive form
here. (See [SaTa] for its description in a way closely related to the discussion
here.) Existence of primitive form for a universal unfolding of a germ of
isolated singularity is established in [MSa]. We remark that Theorem 12.6
had been proved before Gromov-Witten theory started.

The metric 〈·〉 is called a residue paring. Since ∇ is flat there exists a local
coordinate t0, t1, . . . , tB of V so that ∇∂/∂ti(∂/∂tj) = 0. Such a coordinate
(t0, t1, . . . , tB) is called a flat coordinate. (t0 = w0.)

For some F associated to an ADE singularity, the primitive form takes a
simple form dx1∧dx2∧dx3. In such a case we have the following description
of the residue pairing.

We put
Crit(F �w) = {y ∈ U | dF �w(y) = 0}.

Let Oy be the ring of germs of holomorphic functions at y ∈ U . We put

(101) Jac(F �w; y) =
Oy(

∂F �w

∂xi
; i = 1, . . . , n

).
The following fact is standard:

Proposition 12.7. We have

Jac(F �w) ∼=
∏

y∈Crit(F �w)

Jac(F �w; y).

Jac(F �w; y) is one dimensional if and only if the critical point y is non-
degenerate.

Let 	w be a vector such that F �w is a Morse function. Let 1y ∈ Jac(F �w; y)
be the unit. Then Proposition 12.7 implies that {1y | y ∈ Crit(F �w)} forms a
C basis of the vector space Jac(F �w). If y �= y′ we obtain

〈1y, 1y′〉 = 〈1y, 1y′ ◦ 1〉 = 〈1y ◦ 1y′ , 1〉 = 0,

from the equation 1y ◦ 1y′ = 0 and (92). Namely {1y | y ∈ Crit(F �w)} is an
orthogonal basis with respect to the residue pairing.
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Lemma 12.8. If the primitive form is dx1∧ · · ·∧dxn and F �w is a Morse
function then we have

〈1y, 1y〉 =

(
det

[
∂2F �w

∂xi∂xj

]i=n,j=n

i=1,j=1

(y)

)−1

.

This lemma follows from the definition. We remark that in general the
primitive form is not necessarily equal to dx1 ∧ · · · ∧ dxn.

12.3. Residue pairing on Jac(POb). We now consider the case
F (x1, . . . , xn, 	w) = POb(y1, . . . , yn) where b =

∑
wipi and exi = yi.

We however remark that our situation is different from that of subsection
12.2 in the following two points.

1) The tangent space Tb(H(X; Λ0)) is a Λ vector space and is not a
C vector space.

2) The ‘open set’ on which POb is defined is the set A(
◦
P ) which is

not a ‘small’ neighborhood of a point.
However, many parts of the story are directly translated to the case POb.
(See however Remark 12.26.) Note V in subsection 12.2 corresponds to
H(X; Λ0).

In this subsection we describe a pairing on Jac(POb) which we expect
to be the version of residue pairing in our situation.

Definition 12.9. Let C be a Z2 graded finitely generated free Λ module.
A structure of unital Frobenius algebra of dimension n is 〈·, ·〉 : Ck ⊗Cn−k →
Λ, ∪ : Ck ⊗ C� → Ck+�, 1 ∈ C0, such that:

1) 〈·, ·〉 is a graded symmetric bilinear form which induces an isomor-
phism x �→ (y �→ 〈x, y〉), Ck → HomΛ(Cn−k, Λ).

2) ∪ is an associative product on C. 1 is its unit.
3) 〈x ∪ y, z〉 = 〈x, y ∪ z〉.

The cohomology group of an oriented closed manifold becomes a unital
Frobenius algebra in an obvious way.

Definition 12.10. Let (C, 〈·, ·〉,∪, 1) be a unital Frobenius algebra. We
take a basis eI , I ∈ I of C such that e0 is the unit. Let gIJ = 〈eI , eJ〉 and
let gIJ be its inverse matrix. We define an invariant of C by

Z(C) =
∑

I1,I2,I3∈I

∑
J1,J2,J3∈I

(−1)∗gI1J1gI2J2gI30gJ30

× 〈eI1 ∪ eI2 , eI3〉〈eJ1 ∪ eJ2 , eJ3〉
(102)

where ∗ = deg eI1 deg eJ2 + n(n−1)
2 . We call Z(C) the trace of unital Frobe-

nius algebra C.
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It is straightforward to check that Z(C) is independent of the choice of
the basis. This invariant is an example of 1-loop partition function and can
be described by the following Feynman diagram.

ee

Figure 12.1

Let us consier u ∈ Int P and b ∈ H1(L(u); Λ0) such that the Floer coho-
mology HF ((L(u), (b, b)), (L(u), (b, b)); Λ) is isomorphic to H(Tn; Λ).

We have a binary operator m
c,b,b
2 on it. The Poincaré duality induces a

Λ valued non-degenerate inner product 〈·〉PDL(u)
of it.

We define

x ∪c,b,b y = (−1)deg x(deg y+1)m
c,b,b
2 (x, y),(103)

〈x, y〉cyc = (−1)deg x(deg y+1)〈x, y〉PDL(u)
.(104)

Then (H(L(u); Λ), 〈·, ·〉cyc,∪c,b,b, PD[L(u)]) becomes a unital Frobenius alge-
bra.

Remark 12.11. We remark that the operation m
c,b,b
2 is slightly different

from the operation m
b,b
2 which is obtained from the operation q�,k by (36).

In fact q�,k may not satisfy the cyclic symmetry:

〈q�;k(y; h1, . . . , hk), h0〉cyc

= (−1)deg′ h0(deg′ h1+···+deg′ hk)〈q�;k(y; h0, h1, . . . , hk−1), hk〉cyc.
(105)

This is because the way how we perturb the moduli space Mmain
k+1;�(β), which

we described in sections 3 and 7, breaks cyclic symmetry.
However we can modify the construction of q�;k to obtain qc

�;k for which

(105) is satisfied. Using it in place of q�;k we define m
c,b,b
2 , which appears in

(103). Then Definition 12.9 3) is satisfied for ∪b,b.
This point is quite technical and delicate. So we do not discuss its detail

in this survey and refer readers to [FOOO5] sections 3.2–3.3. However it is
inevitable and essential, especially in the non-Fano case. It might be related
to the fact that primitive form may be different from dx1 ∧ · · · ∧ dxn in
general.
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We put

(106) Z(b, b) = Z((H(L(u); Λ), 〈·, ·〉cyc,∪c,b,b, PD([L(u)])).

Definition 12.12. Assume that POb is a Morse function. We then
define a residue pairing

〈·, ·〉res : (Jac(POb) ⊗Λ0 Λ) ⊗ (Jac(POb) ⊗Λ0 Λ) → Λ

by

(107) 〈1y, 1y′〉res =

{
0 if y �= y′,
(Z(b, b))−1 if y = y′.

We remark that we use the decomposition in Proposition 11.8 and 1y

is the unit of Jac(POb; y). u = (u1, . . . , un) is defined by the valuation of
y = (y1, . . . , yn). Namely ui = vT (yi). b ∈ H1(L(u); Λ0) is defined from yi by
b =

∑n
i=1 xiei, T uiexi = yi.

The name ‘residue pairing’ is justified by the following Theorem 12.13
and Lemma 12.8.

Theorem 12.13. 1) Assume that y is a nondegenerate critical
point of POb. Suppose b =

∑n
i=1 xiei, T uiexi = yi as above. Then

(108) Z(b, b) ≡ det

[
yiyj

∂2POb

∂yi∂yj

]i,j=n

i,j=1

(y) mod T λΛ+.

Here λ = vT (Z(b, b)) and y = (T u1ex1 , . . . , T unexn).
2) If dimC X = 2, then we have

(109) Z(b, b) = det

[
yiyj

∂2POc,b

∂yi∂yj

]i,j=n

i,j=1

(y).

3) If X is nef and degb = 2, then we have

(110) Z(b, b) = det

[
yiyj

∂2POb

∂yi∂yj

]i,j=n

i,j=1

(y).

Remark 12.14. We use m
c,b
k in place of mb

k to define POc,b by

POc,b(b) =
∞∑

k=0

∫
L(u)

m
c,b
k (b, . . . , b︸ ︷︷ ︸

k

).

POc,b appears in (109).
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Theorem 12.13 is Theorem 1.2.25 [FOOO5].

Sketch of the proof. We discuss only the case X is nef and b =
0. We will prove that the algebra (H(L(u); Λ),∪b) is a Clifford algebra,
modifying the proof of a related result by Cho [Cho2]. More precisely we
prove the following Proposition 12.15.

Let e′1, . . . , e′n be formal variables and di ∈ Λ \ {0} (i = 1, . . . , n). We
consider relations

(111)

{
e′ie

′
j + e′je

′
i = 0, i �= j

e′ie
′
i = di1.

We take a free (non-commutative) Λ algebra generated by e′1, . . . , e′n and
divide it by the two-sided ideal generated by (111). We denote it by CliffΛ

(n; 	d), where we set 	d = (d1, . . . , dn).
Let I = (i1, . . . , ik), 1 ≤ i1 < · · · < ik ≤ n. We write the set of such I’s by

2{1,...,n}. We put

e′I = e′i1e
′
i2 · · · e′ik−1

e′ik ∈ CliffΛ(n; 	d).

It is well-known and can be easily checked that {e′I | I ∈ 2{1,...,n}} forms a
basis of CliffΛ(n; 	d) as a Λ vector space.

Assume moreover that there exists a Λ valued non-degenerate inner
product 〈·〉 on CliffΛ(n; 	d) such that CliffΛ(n; 	d) becomes a Frobenius alge-
bra. We say that e′i forms a cyclic Clifford basis if

(112) 〈e′I , e′J〉 =

{
(−1)∗(I) J = Ic,

0 otherwise.

Here Ic = {1, . . . , n} \ I and ∗(I) = #{(i, j) | i ∈ I, j ∈ Ic, j < i}.
Proposition 12.15. Suppose X is nef and deg b = 2. We also assume

that L(u) and b ∈ H1(L(u); Λ0) satisfy HF ((L(u), (b, b)), (L(u), (b, b)); Λ) ∼=
H(Tn; Λ).

Then there exists a basis (e′1, . . . , e′n) of H1(L(u); Λ) such that the alge-
bra ((H(L(u); Λ),∪c,b,b) is isomorphic to the Clifford algebra CliffΛ(n; 	d)
where (d1, . . . , dn) satisfies

tA

[
yiyj

∂2POb

∂yi∂yj
(y)

]i,j=n

i,j=1

A = 2

⎡⎢⎢⎢⎣
d1 0 . . . 0
0 d2 . . . 0
...

...
. . .

...
0 0 . . . dn

⎤⎥⎥⎥⎦ .

for a matrix A with det A = 1.
Moreover (e′1, . . . , e′n) is a cyclic Clifford basis.
Furthermore ∫

L(u)
e′1 ∪b,b · · · ∪b,b e′n = 1.
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This is [FOOO5] Theorem 3.6.2. Once Proposition 12.15 is established
we can prove Theorem 12.13 by a direct calculation. (See [FOOO5] sec-
tion 3.7) �

Sketch of the proof of Proposition 3.4.8. Note

POb(b) =
∞∑

k=0

∫
L(u)

mb
k(b, . . . , b︸ ︷︷ ︸

k

).

Its first derivative at y is zero since y is a critical point. We calculate its
second derivative ∂2POb/∂xi∂xj = yiyj∂

2POb/∂yi∂yj . Then we have

(113) m
b,b
2 (ei, ej) + m

b,b
2 (ej , ei) =

((
yiyj

∂2POb

∂yi∂yj

)
(y)

)
1

Here 1 ∈ H0(L(u); Q) is the unit and {ei} is the basis of H1(L(u); Q) which
we fixed before. (Note b =

∑
xiei.)

We take basis (e′1, . . . , e′n) of H1(L(u); Λ) so that the quadratic form
associated to the Hessian matrix becomes diagonal and

∫
L(u) e

′
1∪· · ·∪e′n = 1.

Then (113) implies that (e′1, . . . , e′n) satisfies the Clifford relation (111).
Using this fact we can prove that ((H(L(u); Λ),∪c,b,b) is a Clifford algebra.
(We do not use the assumption X is nef and b is degree two, up to this
point.)

The proof of (112) is as follow. We use the assumption that X is nef and
b is degree two to show

(114) a ∪c,b,b a′ − a ∪ a′ ∈
⊕

k<deg a+deg a′
Hk(Tn; Λ)

for a, a′ ∈ HF ((L(u), (b, b)), (L(u), (b, b)); Λ) ∼= H(Tn; Λ). Here the second
term is the usual cup product. We use cyclic symmetry to show

〈e′I , e′J〉PDL(u)
= 〈e′I ∪c,b,b e′J , 1〉PDL(u)

=
∫

L(u)
e′I ∪c,b,b e′J .

Using (114) and the Clifford relation, we can see that e′I ∪c,b,b e′J has no
Hn(L(u); Λ) component unless Ic = J . This implies Proposition 12.15. �

12.4. Residue pairing is Poincaré duality.

Theorem 12.16. Let X be a compact toric manifold and b ∈ A(Λ0).
Suppose POb is a Morse function. Then for each a1, a2 ∈ H(X; Λ) we have

(115) 〈a1, a2〉PDX
= 〈ksba1, ksba2〉res.

Here the pairing in the right hand side is defined in Definition 12.12 and the
map ksb is the isomorphism in Theorem 11.14. The pairing in the left hand
side is the Poincaré duality.
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Theorem 12.16 is [FOOO5] Theorem 1.1.1 (2) and is proved in [FOOO5]
Chapter 3. Before explaining an outline of its proof, we mention some of its
consequences.

Corollary 12.17. 1) The inner product 〈·〉res, whose definition
was given only in case POb is a Morse function (in Definition
12.12), extends to arbitrary b’s.

2) The Levi-Civita connection ∇ of this extended 〈·〉res is flat.
3) (H(X; Λ0), 〈·〉res,∇, ◦, Φ, 1) is a Frobenius manifold.
4) The Frobenius manifold structure of Item 3) above is equal to one

in Theorem 12.4.

Proof. 1) is an immediate consequence of Theorem 12.16 and the
fact that the Poincaré duality pairing is independent of b and is obviously
extended.

The Levi-Civita connection of the Poincaré duality pairing is the canon-
ical affine connection of H(X; Λ0) and hence is flat. 2) follows.

3) then follows from Theorem 12.4.
4) is obvious. �

Remark 12.18. The Frobenius manifold in Corollary 12.17 3) has an
Euler vector field (96) with ri = 1. We also have

(116) E(PO) = PO,

here PO is a function of b =
∑

wipi and yi. The formula (116) is proved in
[FOOO4] Theorem 10.2.

Remark 12.19. Corollary 12.17 first appeared as a conjecture in [Ta],
where the case of CP 1 was checked. It was further studied in [Bar]. See
the papers mentioned at the end of the introduction for some of the other
related works.

The above proof of the coincidense of the two Frobenius manifold struc-
tures is not so satisfactory since the proof of Items 1), 2) uses the isomor-
phism of Item 4). It is preferable that we construct Frobenius manifold
structure on H(X; Λ0) using the family of functions POb and without going
to the quantum cohomology theory side, and then prove Item 4) for that
Frobenius manifold structure.

Problem 12.20. Develop an analogue of K. Saito theory for our family
of Λ valued functions POb.

Define the notion of primitive form for it and prove its existence.
Construct the Frobenius manifold structure on H(X; Λ0) using primitive

form and prove that it is isomorphic to one obtained in Theorem 12.4.
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Another corollary of Theorem 12.16 is the following. Let Crit(POb) be
the critical point set of POb. For y = (y1, . . . , yn) ∈ A(P ) we put

(117) yi = T uiexi , b =
n∑

i=1

xiei ∈ H1(L(u), Λ0).

Here u = (u1, . . . , un) ∈ P and xi ∈ Λ0. Note ui = vT (yi). In this way we may
regard Crit(POb) as a set of pairs (uc, bc), c = 1, . . . , B′. Here we put B′ =
#Crit(POb).

Corollary 12.21. Suppose POb is a Morse function. Then we have

(118) 0 =
B′∑
c=1

1
Z(b, bc)

.

Proof. Let 1X ∈ H0(X; Λ) be the unit. Then 〈1X , 1X〉PDX
= 0. By

Proposition 11.8 we have 1X =
∑

y∈M(X,b) 1y where 1y is the unit of the
Jacobian ring Jac(POb; y). Corollary 12.21 now follows from (107) and The-
orem 12.16. �

12.5. Operator p and the Poincaré dual to ksb. In this and the
next subsections we sketch a proof of Theorem 12.16. We assume POb is a
Morse function in this and next subsections. Let y ∈ Crit(POb). It defines
u, b by (117). We define a homomorphism

(119) i∗qm,(b,b,u) : H(X; Λ0) → HF ((L(u), (b, b)); (L(u), (b, b)); Λ0)

by

(120) i∗qm,(b,b,u)(Q) =
∞∑

k=0

∞∑
�1=0

∞∑
�2=0

qc
�1+�2;k(b

�1Qb�2 , bk).

(See (78) and [FOOO1] Theorem 3.8.62.)
Here qc

�;k is a cyclically symmetric version of the operator q�;k. (See
Remark 12.14.)

We define

(121) i∗,qm,(b,b,u) : HF ((L(u), b, b); (L(u), b, b); Λ) → H(X; Λ)

by

(122) 〈i∗qm,(b,b,u)(Q), P 〉PDL(u)
= 〈Q, i∗,qm,(b,b,u)(P )〉PDX

.

The main part of the proof of Theorem 12.16 is the proof of Theorem 12.22
below. Let volL(u) ∈ Hn(X; Q) be the degree n cohomology class such that∫
L(u) volL(u) = 1. Let {eI | I ∈ 2n} be a basis of

Hn(L(u); Λ) ∼= HF ((L(u), (b, b)); (L(u), (b, b)); Λ).

We put gIJ = 〈eI , eJ〉PDX
. Let gIJ be the inverse matrix of gIJ .
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Theorem 12.22. We have:

〈i∗,qm,(b,b,u)(volL(u)), i∗,qm,(b,b,u)(volL(u))〉PDX

=
∑

I,J∈2{1,...,n}
(−1)

n(n−1)
2 gIJ〈mc,b,b

2 (eI , volL(u)), m
c,b,b
2 (eJ , volL(u))〉PDL(u)

.

This is [FOOO5] Theorem 3.4.1.

Theorem 12.22 ⇒ Theorem 12.16. Let Qy ∈ H(X; Λ) be an element
such that ksb(Qy) = 1y, where 1y is the unit of the factor Jac(POb; y) of
Jac(POb). Let b,u corresponds to y by (117).

Then we have

i∗qm,(b,b,u)(Qy′) =

{
1 if y′ = y

0 if y′ �= y.

Here 1 ∈ H0(L(u); Λ) is the unit. This is a consequence of the definition of
ksb. Therefore

(123) 〈Qy, i∗,qm,(b,b,u)(volL(u))〉PDX
= 1.

We remark 〈Qy, Qy′〉 = 〈Qy ∪b Qy′ , 1〉 = 0 if y �= y′. Therefore

(124) i∗,qm,(b,b,u)(volL(u)) =
1

〈Qy, Qy〉PDX

Qy.

Theorem 12.22 implies

(125) 〈i∗,qm,(b,b,u)(volL(u)), i∗,qm,(b,b,u)(volL(u))〉PDX
= Z(b, b).

(See [FOOO5] subsection 3.10.2 for sign.) Theorem 12.16 follows from (124)
and (125). �

To prove Theorem 12.22 we need a geometric description of the homo-
morphism i∗,qm,(b,b,u). We use the operator p introduced in [FOOO1] sec-
tion 3.8, for this purpose. To simplify the notation we consider only the
case b = 0. Let C be a filtered A∞ algebra and define an automorphism
cyc : BkC[1] → BkC[1] by

cyc(x1 ⊗ · · · ⊗ xk) = (−1)deg′ xk×(
∑k−1

i=1 deg′ xi)xk ⊗ x1 ⊗ · · · ⊗ xk−1.

It induces a Zk action on BkC[1]. Let Bcyc
k C[1] be the invariant set of the

Zk action and BcycC[1] =
⊕̂

kB
cyc
k C[1] the completed direct sum of them.

We call Bcyc
k C[1] the cyclic bar complex.

Theorem 12.23. For a relatively spin Lagrangian submanifold L there
exists a sequence of operators

pk : Bcyc
k H(L; Λ0)[1] −→ H(X; Λ0)

(k = 0, 1, 2, . . . ) of degree n + 1 with the following properties.
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Let p : BcycH(L; Λ0)[1] −→ H(X; Λ0) be the operator whose restriction
on Bcyc

k H(L; Λ0)[1] is pk. We denote by mc
k the cyclically symmetric version

of mk and write mc instead of mc
k.

1)
p1 ≡ i! mod Λ+.

Here i! = Hk(L; Λ0) → Hk+n(X; Λ) is the Gysin homomorphism.
2)

(126)
∑

c

p(x3;1
c ⊗ mc(x3;2

c ) ⊗ x3;3
c ) = 0

for x ∈ Bcyc
k H(L; Λ0)[1], k > 0. We use the notation (6).

3)
(p1 ◦ mc

0)(1) + GW1(L) = 0.

Here the second term is defined by 〈GW1(L), Q〉PDX
= GW2(L, Q),

where the right hand side is as in (68).

This is [FOOO1] Theorem 3.8.9. (Here we use cohomology group instead
of appropriate chain complex. The latter is used in [FOOO1] Theorem 3.8.9.
We also omit the statement on the unit in [FOOO1] Theorem 3.8.9.) See
also [FOOO5] section 3.1–3.3.

The operator pk is constructed as follows. We consider the moduli space
Mmain

k;1 (β) described in section 2.2. Note the number of interior marked point
is 1 and the number of exterior marked points is k. We have an evaluation
map

(ev1, . . . , evk, ev+) = (ev, ev+) : Mmain
k;1 (β) → Lk × X.

Let h1, . . . , hk be differential forms on L. We consider the pull back ev∗(h1×
· · ·×hk), which is a differential form on Mmain

k;1 (β). We use integration along
fiber by the map ev+ to obtain a differential form on X, which we put
pk,β(h1, . . . , hk). Namely

pk,β(h1, . . . , hk) = ev+
! (ev∗(h1 × · · · × hk)).

This is a map between differential forms. By an algebraic argument it induces
a map between tensor products of the de Rham cohomology groups of L and
of X. Thus obtain the operator

pk =
∑

β∈H2(X,L)

T (β∩ω)/2πpk,β.

We can prove (126) by studying the stable map compactification of
Mmain

k;1 (β). In case k = 0 the compactification of M0;1(β) is slightly different
from the case of k > 0. The second term of Item 3) appears by this reason.
In our case of toric manifold and Tn orbit L, this term drops since L is
homologous to 0 in X. So we do not discuss it here but refer to [FOOO1]
subsections 3.8.3 and 7.4.1 for more detail.
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Now we go back to the case where X is a toric manifold and L = L(u)
is a Tn orbit. Let b ∈ H1(L(u); Λ0). For P ∈ H(L(u); Λ0) we put

[Peb] =
∞∑

k1=0

∞∑
k2=0

b ⊗ · · · ⊗ b︸ ︷︷ ︸
k1

⊗P ⊗ b ⊗ · · · ⊗ b︸ ︷︷ ︸
k2

.

Suppose H(L(u); Λ) ∼= HF ((L(u), (0, b)); (L(u), (0, b)); Λ).

Proposition 12.24. Let P ∈ H(L(u); Λ0). Then we have:

(127) i∗,qm,(0,b,u)(P ) = p([Peb]).

Remark 12.25. We remark that [Peb] is an element of BcycH(L(u); Λ0)
if b ≡ 0 mod Λ+. So p([Peb]) is defined in that case. Otherwise we write
b = b0 + b+ such that b0 ∈ H1(L(u); C) and b+ ∈ H1(L(u); Λ+), and define

p([Peb]) =
∑

β∈H2(X,L:Z)

T (β∩ω)/2π exp(b0 ∩ ∂β)pβ([Peb+ ]).

We omit the discussion of this point. See [FOOO4] section 9 and [FOOO5]
section 3.3.

Sketch of the proof. Let Q ∈ H(X; Λ0). We remark that i∗,qm,(0,b,u)(P )
is defined by (122). Therefore it suffices to prove

(128)
∞∑

k=0

〈qc
1,k(Q; bk), P 〉PDL(u)

= 〈Q, p([Peb])〉PDX
.

This is [FOOO5] Theorem 19.8. Let us sketch its proof for the case b = 0.
In case b = 0, Formula (128) reduced to

(129) 〈qc
1,0(Q; 1), P 〉PDL(u)

= 〈Q, p1(P )〉PDX
.

We take ρ and h which are closed forms on X and L(u), representing the
cohomology class Q and P , respectively. Then it is easy to see that the left
and the right hand sides of (129) both become

(130)
∑

β∈H2(X,L(u);Z)

T (β∩ω)/2π

∫
M1;1(β)

(ev+)∗ρ ∧ ev∗h.

Here (ev, ev+) : M1;1(β) → L(u) × X is evaluation maps at marked points.
(129) follows. �

Remark 12.26. In fact, we need to perturb M1;1(β) appropriately so
that the integration in (130) makes sense. It is a nontrivial thing to prove
that after perturbation (129) still holds. Actually we need to consider cycli-
cally symmetric version of the operator q for this purpose. (See [FOOO5]
Remark 3.3.12.) We omit the discussion about perturbation and refer the
reader to [FOOO5] section 3.3.
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12.6. Annulus argument. We continue the sketch of the proof of The-
orem 12.22. We assume b = 0 in this subsection for simplicity. We consider
the class volL(u). (It is the Poincaré dual to the point class.) Then the left
hand side is

(131) ∑
β1,β2∈H2(X,L(u);Z),

β=β1+β2

T ((β1+β2)∩ω)/2π
〈
pβ1([volL(u)e

b]), pβ2([volL(u)e
b])
〉

PDX

.

We show that (131) can be regarded as an appropriate integration of the
differential form volL(u) × volL(u) on a moduli space of pseudo-holomorphic
annuli, as follows. For simplicity we assume b = 0.

We consider a pair ((Σ; z1, z2), u) with the following properties.

1) Σ is a bordered curve of genus zero such that ∂Σ is a disjoint union
of two circles, which we denote by ∂1Σ, ∂2Σ.

2) The singularity of Σ is at worst the double point.
3) zi ∈ ∂iΣ for i = 1, 2.
4) u : Σ → X is a pseudo-holomorphic map. u(∂Σ) ⊂ L(u).
5) u∗([Σ]) = β ∈ H2(X, L(u); Z).
6) The set of maps v : Σ → Σ which is biholomorphic, v(zi) = zi for

i = 1, 2, and u ◦ v = u is finite.

We denote by M(1,1);0(β) the totality of such ((Σ; z+
1 , z+

2 ), u). There exists
an evaluation map

ev = (ev1, ev2) : M(1,1);0(β) → L(u)2,

which is defined by

ev((Σ; z1, z2), u) = (u(z1), u(z2)).

We consider the set of all (Σ; z1, z2) which satisfies 1), 2), 3) above and

7) The set of all biholomorphic maps v : Σ → Σ with v(zi) = zi for
i = 1, 2 is finite.

We denote it by M(1,1);0. There is a forgetful map

(132) forget : M(1,1);0(β) →M(1,1);0,

which is obtained by forgetting the map u.
We can show that M(1,1);0 is homeomorphic to a disk and so is connected.

We take two points (Σ(j); z(j)
1 , z

(j)
2 ) ∈M(1,1);0 (j = 1, 2) which we show in the

figure below.

We denote by M(1,1);0(β; Σ(j)) the inverse image of {(Σ(j); z(j)
1 , z

(j)
2 )} by

the map (132).
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X

Σ(1) Σ(2)

X

XX

Figure 12.2

Lemma 12.27. ∑
β1,β2∈H2(X,L(u);Z),

β=β1+β2

〈p1,β1(volL(u)), p1,β2(volL(u))〉PDX

=
∫
M(1,1);0(β;Σ(1))

ev∗
1volL(u) ∧ ev∗

2volL(u).

Geometric origin of this lemma is clear from Figure 12.2. To prove the
lemma rigorously we need to work out the way to perturb our moduli space
M(1,1);0(β; Σ(1)) so that the integration of the right hand side makes sense
and the lemma holds. The detail is given in [FOOO5] section 3.4 as the
proof of Proposition 3.4.8.

Lemma 12.28.∑
I,J∈2{1,...,n}

(−1)
n(n−1)

2 gIJ〈mc,0,0
2 (eI , volL(u)), m

c,0,0
2 (eJ , volL(u))〉PDL(u)

=
∫
M(1,1);0(β;Σ(2))

ev∗
1volL(u) ∧ ev∗

2volL(u).

Geometric origin of this lemma is also clear from Figure 12.2 and the
equality

[{(x, x) | x ∈ L(u)}] =
∑
I,J

(−1)deg eI deg eJ gIJeI × eJ

∈ Hn(L(u) × L(u); Z).
(133)

The detail is given in [FOOO5] section 3.4 as the proof of Proposition 3.4.10.
(The sign in (133) is proved in [FOOO5] Lemma 3.10.7.)
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Now we can use the fact that M(1,1);0 is connected to find a cobor-
dism between M(1,1);0(β; Σ(1)) and M(1,1);0(β; Σ(2)). The differential form
ev∗

1volL(u) ∧ ev∗
2volL(u) extends to this cobordism. Therefore Lemmas 12.27

and 12.28 imply Theorem 12.22 in case b = b = 0. The general case is
similar. �

Remark 12.29. According to E. Getzler, the fact M(1,1);0(β; Σ(1)) is
cobordant to M(1,1);0(β; Σ(2)) is called the Cardy relation.

Remark 12.30. A similar trick using the annulus is used in [Ab2, BC]
for a similar but a slightly different purpose.

13. Examples 3

Example 13.1. We consider the case of CPn and b = 0. The moment
polytope P is a simplex {(u1, . . . , un) | 0 ≤ ui,

∑
ui ≤ 1} and the potential

function is

PO0 =
n∑

i=1

yi + T (y1 . . . yn)−1.

The critical points are y(k) = (T
1

n+1 e
2π

√−1k
n+1 , . . . , T

1
n+1 e

2π
√−1k
n+1 ), k = 0, . . . , n

which are all non-degenerate. The isomorphism Jac(PO0) ⊗Λ0 Λ ∼=∏n
k=0

Λ1y(k) . is induced by

P �→
n∑

k=0

P (y(k))1y(k) .

We put fk = π−1({(u1, . . . , un) ∈ P | ui = 0, i = n − k + 1, . . . , n}) and pk =
PD(fk) the Poincaré dual to fk. We derive

POwp1(y) = PO0(y) + (ew − 1)yn

from Proposition 4.9 [FOOO4] and hence

(134) ks0(p1) = [yn] = T
1

n+1

n∑
k=0

e
2π

√−1k
n+1 1y(k)

by definition of ks0. Using the fact that ks0 is a ring homomorphism, we
have

(135) ks0(p�) = T
�

n+1

n∑
k=0

e
2π

√−1k�
n+1 1y(k) .

Note this holds for � = 0 also since f0 is a unit and ks0 is unital.
The Hessian of PO0 is given by

Hessx(k)PO0 =
[
T

1
n+1

∂2

∂xi∂xj

(
ex1 + · · · + exn + e−(x1+···+xn)

)]i,j=n

i,j=1

(x(k))
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with x(k) = 2π
√−1k
n+1 . Therefore

Hessx(k)PO0 = T
1

n+1 e
2π

√−1k
n+1 [δij + 1]i,j=n

i,j=1 .

It is easy to see that the determinant of the matrix [δij + 1]i,j=n
i,j=1 is n + 1.

Therefore the residue pairing is given by

(136) 〈1y(k) , 1y(k′)〉res = T− n
n+1 e−

2π
√−1kn
n+1

δkk′

1 + n
.

Combining (135) and (136), we obtain

(137) 〈ks0(p�), ks0(p�′)〉res =
1

n + 1
T− n

n+1

n∑
k=0

e−
2π

√−1kn
n+1 T

�+�′
n+1 e

2π
√−1(�+�′)k

n+1 .

It follows that (137) is 0 unless � + �′ = n and

〈ks0(p�), ks0(pn−�)〉res = 1 = 〈p�,pn−�〉PDCPn .

Thus Theorem 12.16 holds in this case.

Remark 13.2. There are various works in the case of CPn. See [Ta,
Bar, Gro1].

Example 13.3. We consider the Hirzebruch surface F2(α). We use the
notation of Example 10.1. In this case the full potential function for b = 0
is calculated in [Aur2], [FOOO5] section 2.13 and [FOOO6] section 5 as
follows.

(138) PO0 = y1 + y2 + T 2y−1
1 y−2

2 + T 1−α(1 + T 2α)y−1
2 .

The valuation of the critical points are

(vT (y1), vT (y2)) = ((1 − α)/2, (1 + α)/2) = u.

It is the same for 4 critical points. Then using the variables yi = yu
i we have

(139) PO0 = T (1−α)/2(y2 + (1 + T 2α)y−1
2 ) + T (1+α)/2(y1 + y−1

1 y−2
2 ).

(See Example 10.1.) (We remark vT (yi) = 0.) The critical point equation is

0 = 1 − y−2
1 y−2

2 .(140)

0 = 1 − 2Tαy−1
1 y−3

2 − (1 + T 2α)y−2
2 .(141)

This has 4 solutions.
The Hessian matrix of (139) is⎡⎢⎢⎣

T (1+α)/2(y1 + y−1
1 y−2

2 ) 2T (1+α)/2y−1
1 y−2

2

2T (1+α)/2y−1
1 y−2

2 T (1−α)/2(y2 + (1 + T 2α)(y−1
2 )

+4T (1+α)/2y−1
1 y−2

2

⎤⎥⎥⎦.
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We can easily calculate the determinants of this matrix at the four solutions
of (140), (141). The determinants are 4T, 4T,−4T,−4T . (See [FOOO5] sec-
tion 2.13 for the detail of the calculation.)

The Hirzebruch suface F2(α) is symplectomorphic to S2(1−α)×S2(1−
α), where S2(1−α) is the sphere S2 with total area 1−α. This fact is proved
in [FOOO6] Proposition 5.1.

The quantum cohomology of S2(1 − α) × S2(1 − α) is generated by
x, y that correspond to the fundamental class of the factors S2(1 − α) and
S2(1 + α) respectively. The fundamental relations among them are

x2 = T 1−α1, y2 = T 1+α1, xy = yx.

We put

e± =
1
2
T−(1−α)/2(T (1−α)/2 ± x), f± =

1
2
T−(1+α)/2(T (1+α)/2 ± y).

Then e−f−, e−f+, e+f−, e+f+ are the units of the 4 direct product factors
of QH(S2(1 − α) × S2(1 + α); Λ). We have∫

S2(1−α)×S2(1+α)
e−f−e−f− =

1
4T

Hence

〈e−f−, e−f−〉PDS2(1−α)×S2(1+α)
=

1
4T

.

We obtain −1/4T,−1/4T, 1/4T from e−f+, e+f−, e+f+ in the same way.
Thus, Theorem 12.16 holds in this case also.

Example 13.4. We take the monotone toric blow up of CP 2 at one point,
whose moment polytope is {(u1, u2) | 0 ≥ u1, u2, u1 + u2 ≤ 1, u1 ≤ 2/3}. Its
unique monotone fiber is u = (1/3, 1/3). We put y1 = yu

1 , y2 = yu
2 . Then the

potential function (for b = 0) is:

(142) PO0 = T 1/3(y1 + y2 + (y1y2)
−1 + y−1

1 ).

The condition for (y1, y2) to be critical gives rise to the equation:

(143) 1 − y−2
1 y−1

2 − y−2
1 = 0, 1 − y1y

2
2 = 0.

We put y2 = z. Then y1 = 1/z and

(144) z4 + z3 − 1 = 0.

By Theorem 12.13 (3) we have

Z(0, (y1, y2)) = T 2/3det
[
y1 + (y1y2)−1 + y−1

1 (y1y2)−1

(y1y2)−1 y2 + (y1y2)−1

]
= T 2/3 4 − z3

z
.
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Let zi (i = 1, 2, 3, 4) be the 4 solutions of (144). Then the left hand side of
(118) becomes:

(145) T−2/3
4∑

i=1

zi

4 − z3
i

.

We can directly check that (145)= 0. (See [FOOO5] Example 1.2.36.) Thus
we checked that Corollary 12.21 holds in this case.
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[KS1] M. Kontsevich and Y. Soibelman, Homological mirror symmetry and torus
fibration, in: Symplectic Geometry and Mirror Symmetry, (Seoul, 2000), eds
by K. Fukaya, Y.-G. Oh, K. Ono and G. Tian, pp 203–263, World Sci. River
Edge, 2001.

[KS2] M. Kontsevich and Y. Soibelman, Affine structures and non-archimedean ana-
lytic spaces, in: The Unity of Mathematics (P. Etingof, V. Retakh, I. M. Singer,
eds), pp 321–385, Progr. Math. 244, Birkhäuser 2006.
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