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Stability, birational transformations and the
Kahler-Einstein problem

S. K. Donaldson

1. Introduction

This is the first in a series of papers in which we will discuss the existence
problem for Kahler-Einstein metrics on complex projective manifolds.1 It is
well-known that, following the work of Yau in the 1970’s, the question is
reduced to the “positive” case, so we want to decide when a Fano manifold
admits a Kahler-Einstein metric. The present paper is confined to algebro-
geometric aspects of the problem. We have three main purposes

• To state some new definitions, of “b-stability” and “K-stability”.
• To indicate the application of these to the differential geometric

existence problem.
• To highlight some purely algebro-geometric questions which seem

to be important in the existence problem.

In the late 1980’s, Yau suggested that the existence of Kahler-Einstein
metrics should be related to the algebro-geometric notion of stability, whose
origins lie in Geometric Invariant Theory [16]. This was motivated in part
by analogy with the Kobayshi-Hitchin correspondence for Hermitian Yang-
Mills connections on holomorphic vector bundles. The conjecture was refined
considerably by work of Tian in the 1990’s [14]. We will indicate this general
idea—the Tian-Yau conjecture—by the informal slogan

KE metric ⇐⇒ “algebro − geometric stability′′.

We should emphasise however that, while this slogan summarises the gen-
eral idea, the exact notion of “stability” needs to be specified, and this
specification can be considered as part of the problem. There are a number
of established notions in the literature, for example asymptotic Chow sta-
bility and K-stability: a good account of the relation between these is given

1An informal document Discussion of the Kahler-Einstein problem, giving some more
details, is available on the webpage http:/www2.imperial.ac.uk/ skdona/.
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in [9]. But our purpose here is to introduce two new notions, K-stability and
b-stability, so that we can formulate a precise version of this conjecture which
we hope will be more accessible to proof.

Before going further some general remarks may be helpful. First, there
has been a great deal of work in this area, which we will not attempt to
summarise in detail here. Notably, Tian showed in [14] that his notion of
K-stability was a necessary condition for the existence of a Kahler-Einstein
metric, and gave an explicit example where this condition goes beyond
those known before (see also (4.2) below). Second, the plethora of algebro-
geometric notions of stability are all variants of the same basic idea. One
expects that, among them, various definitions which are a priori different
may a posteriori turn out to be equivalent. Since we want, ultimately, to
establish a necessary and sufficient condition we can to some extent push dif-
ficulties from one side to the other: working with a stronger (more restrictive)
notion of “algebro-geometric stability” will, as a matter of logic, simplify the
proof of stability ⇒ KE metric while making the proof of the converse more
difficult. We will explain below how this obvious remark applies in the case
of K-stability and b-stability. The third remark is that, in the overall exis-
tence problem for Kahler-Einstein metrics, there is some distinction between
theory and practice. One may have sufficient criteria which, while not in gen-
eral necessary, can be applied to give existence statements in certain explicit
cases. For example this is true of Tian’s theory of the α-invariant. On the
other hand one can envisage general, theoretical, solutions which may be
difficult or impossible to apply to any specific case. This is probably the sit-
uation, as things stand at the moment, with the various notions of stability
mentioned above, since they are all exceedingly difficult to verify in exam-
ples. We will discuss this further in 4.3 below, but we note here that our
notion of “b-stability” comes with an integer parameter m—“b-stability at
multiplicity m”—which is related to this issue.

The general shape of all these definitions of stability is that a manifold
is stable unless there is a “destabilising object” of an appropriate kind. The
notion of b-stability is derived by extending the class of destabilising objects.
This extension can be seen as part of a more general trend. In Tian’s original
definition of K-stability the destabilising objects were projective varieties,
smooth or mildly singular, with holomorphic vector fields. In the general-
isation of [4] the destabilising objects were allowed to be general schemes
with C∗-actions. In the new notion of b-stability the destabilising objects are
sequences of schemes (“webs of descendants”), related by birational trans-
formations (reflected in the prefix “b”). Another point is that we find that
we need to work not just with the “test configurations” appearing in stan-
dard definitions of stability, but with more general degenerations. Thus in
Section 2 we develop background and foundations to do this, review the
definition of K-stability and state the definition of K-stability. Section 4 is
intended to explain the motivation for the definition of b-stability. We state,
without complete proof, a simple existence theorem and give some general
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discussion. In Section 5 we collect the proofs of some auxiliary results, not
used in an essential way in the core of this paper, and further examples.

The author hopes that the ideas discussed in this paper raise various
questions of interest to algebraic geometers. The main question is whether
the notion of b-stability is actually needed. The definition is designed to
get around a difficulty which it seems (to the author) might in principle
occur in taking algebro-geometric limits of Fano manifolds under projective
embeddings, defined by higher and higher powers of the anticanonical bun-
dle. But the author does not know of any real example where this occurs
(although certainly if one varies the hypotheses slightly it can: see (5.5)). It
might be that, with a deeper analysis, one could show that this phenome-
non does not occur (or perhaps one could show this under extra hypotheses,
such as complex dimension 3). In that case one could forget the definition
of b-stability and the existence theory for Kahler-Einstein metrics would be
much simpler. On the other hand, it might be that one could produce actual
examples of this phenomenon, and such examples should be related to the
question of whether Gromov-Haussdorf limits of Kahler-Einstein manifolds
have algebraic structures. In another direction, there is a circle of questions
related to the distinction between test configurations and general degener-
ations, which fall into the area of algebraic group actions. We give some
simple results and examples in (5.1) and (5.2) but the author would like to
understand the general picture better.

The author is very grateful to Alessio Corti, Paolo Cascini, Frances
Kirwan, Miles Reid, Julius Ross, Jacopo Stoppa, Gabor Szekelyhidi and
Richard Thomas for helpful discussions.

2. Basic definitions

2.1. Algebraic theory for group actions. Let U, V be complex vec-
tor spaces of dimensions q, r respectively. We suppose that G = SL(U) acts
on V and hence on P = P(V ). We consider the orbit O in P of a point x.
For simplicity we assume that the stabiliser of x in G is finite. We want to
study the closure in P of O. This is an algebraic variety, so for any point y
in the closure which is not actually in O we can find a holomorphic map Γ
from the disc Δ ⊂ C to P with Γ(0) = y and Γ(t) ∈ O for t �= 0. We will
call such a map an arc through y. Really we should work with germs of such
maps, allowing us to restrict to a smaller disc, but we will generally ignore
this in our notation. We say that two such arcs Γ1,Γ2 are equivalent if there
is a holomorphic map h : Δ → G such that Γ1(t) = h(t)Γ2(t). Any arc Γ can
be written in the form Γ(t) = g(t)(x) where g is a meromorphic map from Δ
to End(U), which restricts to a holomorphic map from the punctured disc
Δ∗ to G ⊂ End(U). Thus is we choose a vector x̂ ∈ V lying over x we have
a meromorphic map Γ̂ from Δ to V defined by γ(t) = g(t)(x̂). We define
the integer ν(Γ) to be the order of the pole of Γ̂ at t = 0. It is obvious that
equivalent arcs give the same value of ν. More explicitly, fixing a basis of V
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we represent Γ̂ by its components (γ1, . . . , γr) say, where γi are meromorphic
functions, then ν(Γ) is the maximum over i of the order of pole of γi. Thus
ν(Γ) ≤ 0 if and only if Γ̂ is holomorphic across t = 0 and ν(Γ) < 0 if and
only if Γ̂ vanishes at t = 0. Recall that x is called stable if the orbit of x̂ is
closed and semistable if the orbit of x̂ does not contain 0 in its closure. It is
clear that x is stable if and only if ν(Γ) > 0 for all Γ and semistable if and
only if ν(Γ) ≥ 0 for all Γ.

The most familiar case of the above set-up is when g(t) has the form
g(t) = Λ(t)R where R is a fixed element of G and Λ is a one parameter
subgroup in G. We call an arc of this type an equivariant arc. Replacing x
by Rx we can usually reduce to the case when R = 1. The Hilbert-Mumford
criterion asserts that to test stability or semistability it suffices to restrict to
equivariant arcs. But it is not true that any point y ∈ O \O is contained in
an equivariant arc–there are cases where there are boundary points y which
are not “accessible by 1-parameter subgroups”, see (5.1). This is related to
the stabiliser Stab(y) of y in G. We have

Proposition 1. 1. If Stab(y) is isomorphic to C∗ then any arc through
y is equivalent to an equivariant arc.

2. If Stab(y) is reductive then there is an equivariant arc through y.

See (5.2) for the proof.
Recall that a weighted flag in U is a chain of subspaces U1 ⊂ . . . Us = U

and associated integers λ1 < λ2 · · · < λs. We say that an endomorphism A
of U is compatible with the weighted flag if it preserves the subspaces Ui and
acts as λi on Ui/Ui−1. It follows that A is diagonalisable, with eigenvalues λi.
Conversely, starting with any diagonalisable A, with integer eigenvalues, we
can define a weighted flag.

Proposition 2. Let g be a meromorphic function on the disc with values
in End(U), holomorphic away from 0 and with g(t) invertible for t �= 0. Then
there is a unique weighted flag in U with the following property. If A is any
endomorphism compatible with the weighted flag, then we can write

g(t) = L(t)Λ(t)R(t)

where L,R are holomorphic across 0 with L(0), R(0) invertible and where
Λ(t) = tA is the 1-parameter subgroup generated by A.

This is a standard result. In different language, we can view g as a
meromorphic trivialisation over Δ∗ of a bundle (in fact the trivial bundle)
over Δ. The statement is that in such a situation we get a parabolic structure
on the bundle at the point 0. To prove the Proposition we can reduce to the
case when g is holomorphic (multiplying by a power of t). So we can think
of it as a map of sheaves

g : Om → Om,
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and the cokernel of g is a torsion sheaf supported at 0. Then the statement
follows from the classification of torsion modules over C[t].

Now we can define numerical invariants of equivalence classes of arcs Γ
from the “eigenvalues” λi and their “multiplicities” dimUi/Ui−1 (Of course
they are not intrinsically eigenvalues, since the choice of A is not unique, but
they are well-defined integers associated to Γ.) For example we can define
the “ trace” ∑

i

λi dimUi/Ui−1.

This vanishes in the case when g maps into SL(U). We define the “norm” by

|Γ| = max
i

|λi|,

which is clearly strictly positive. Now define

(1) ψ(Γ) =
ν(Γ)
|Γ| .

This has the property that it is unchanged if we replace the parameter t by
a positive power of t. We can think, informally, of the numbers ψ(Γ), for
different arcs Γ, as a kind of measure of “how stable” the point x is. Next
we define

(2) Ψ(y) = sup
Γ
ψ(Γ),

where Γ runs over the arcs through y. In sum, we have attached a numerical
invariant Ψ(y) (which a priori could be +∞) to each point y in O \O.

We have

Proposition 3. The point x is stable if and only if Ψ(y) > 0 for all
points y ∈ O \O.

This is less obvious than it may appear at first sight. The problem is
that we might have a point y such that ψ(Γ) ≤ 0 for some arc through y
but not for all. So that while y “destabilises” x we do not have Ψ(y) ≤ 0.
We give the proof in (5.3).

So far our discussion has been entirely algebraic. Now we introduce “met-
ric” geometry. We suppose that we have a hermitian metric on U , and hence
a maximal compact subgroup SU(q) ⊂ G, and that we have a norm on the
restriction of the tautological line bundle over P to O ⊂ P. Since O is usu-
ally singular it is not quite obvious what we mean by a norm and we leave
this point for the moment: for example we could think for the time being
of the case when this norm extends smoothly to P. We suppose that this
bundle norm is invariant under the action of SU(m) ⊂ G. Then we have a
moment map

M : O → su(q)∗.
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Now suppose we have y ∈ O \ O and Γ as above. There is a unique choice
of endomorphism A, compatible with the weighted flag, which is self-adjoint
with respect to the metric on U . Then iA lies in su(q) and we get a real
number 〈M(y), iA〉.

Lemma 1. In this situation ν(Γ) ≤ 〈M(y), iA〉.
In the case of equivariant arcs equality holds, which is a more stan-

dard and easy fact. To prove the Lemma, write g(t) = L(t)tAR(t) as above.
Changing the choice of base point x we can reduce to the case when L(t) is
identically 1 and R(0) = 1. Now write V =

⊕
Vμ where A acts with weight

−μ on Vμ. So tA acts as multiplication by t−μ on Vμ. Let μ be the largest
value of μ such that x̂ has a non-zero component in Vμ. Now R(t)(̂x) has
components xμ(t) say in Vμ which are (vector valued) holomorphic func-
tions of t and xμ(0) is non-zero by construction. Thus the Vμ component of
tAR(t)x̂ grows at least as fast as t−μ as t→ 0. For μ < μ the Vμ component
of tAR(t)x̂ grows strictly slower than tμ and for μ > μ0 it grows strictly
slower than t−μ. It follows that ν ≥ μ0 and the components yμ of ŷ vanish
if μ < μ. Let μ1 be the smallest value of μ such that yμ is not zero, so we
know that μ1 ≥ μ. Then it follows from the above that we must have ν ≤ μ1

(with strict inequality unless μ1 = μ).
Now let z ∈ P be the limit of t−Ay as t → 0, and let ẑ ∈ V be a

representative. Then it is clear that ẑ is in Vμ1 . The definition of the moment
map implies that

〈M(z), iA〉 = μ1.

On the other hand the definition also implies that

〈M(t−Ay, iA〉
is an decreasing function of t so

〈M(y), iA〉 ≥ 〈M(z), iA〉 = μ1.

Combining with the inequality ν ≤ μ1 from above we have established
the Lemma.

In sum, we now have a “differential geometric” way to obtain a bound
on the algebro-geometric invariant Ψ(y). With metric structures as above
we have

(3) Ψ(y) ≤ max
A

〈M(y), iA〉
‖A‖ ,

where ‖A‖ denotes the usual operator norm of A. Of course, it is equivalent
to say that

Ψ(y) ≤ ‖M(y)‖1

where ‖ ‖1 is the dual “trace-norm”.
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2.2. Application to Chow varieties. We will apply this theory to
the particular case of Chow varieties. Thus we start with a projective space
P(U) and for n, d we consider the set Ch of n-dimensional cycles in P(U)
of degree d. It is a fact that this can be embedded as a projective variety in
P(V ) for a certain representation V of G = SL(U) but we do not need to
know the details of this embedding. We take a projective manifoldX ⊂ P(U)
which defines a point in the Chow variety and hence a G-orbit. We also have
a Hilbert Scheme Hilb which parametrises subschemes with the same Hilbert
polynomial asX and a G-equivariant regular map from Hilb to Ch which is a
birational isomorphism. (Note that the scheme structure on Hilb—that is to
say, infinitesimal deformations which do not extend to actual deformations—
will not be relevant, so it would be better to take about the underlying
variety.)

Now suppose that Y is a an algebraic cycle in the closure of the orbit
of X and choose an arc Γ as above. Then Γ lifts to a map Γ̃ to the Hilbert
scheme and Γ̃(0) is a scheme W with underlying cycle Y . The lift Γ̃ defines
a projective degeneration of X: a flat family π : X → Δ, embedded in
P(U) × Δ, with fibre over t isomorphic to X for t �= 0 and to W for t = 0.
Conversely, a projective degeneration of X defines an equivalence class of
arcs Γ. An equivariant arc corresponds to an equivariant degeneration, with
a C∗-action, also called a “test configuration”.

Next we go on to the metric theory, so we suppose that U has a Hermitian
metric. The basic fact is that there is then a natural induced metric on the
restriction of the tautological bundle to Ch ⊂ P(V ), and in particular to
the closure O of our orbit, so we are in the situation considered above.
This theory is explained well by Phong and Sturm in [8]. All we really need
to know is the corresponding moment map M : Ch → su∗. Let A be a
trace-free self-adjoint endomorphism of U and define a function H = HA on
P(U) by

H =
1

|x|2 〈x,Ax〉.

This is the Hamiltonian for the action of the 1-parameter group s �→ eiAs

on P(U), with respect to the Fubini-Study symplectic form. Now let Z be
an n-dimensional algebraic cycle in P. Then the formula which defines the
moment map is

〈M(Z), iA〉 =
∫

Z
Hdμ

Here integration over Z is defined in the obvious way, using the volume form
dμ induced by the Fubini-Study metric (normalised so that the volume of Z
is equal to to its degree). It is convenient to extend this definition to general
Hermitian A by decreeing that the moment map vanishes on multiples of
the identity. It will also be convenient to introduce a factor, so we define the
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“Chow number” of Z,A to be

(4) Ch(Z,A) =
1

Vol(Z)

∫
Z
Hdμ− TrA

dimU
.

Thus Ch(Z,A) is the difference between the average of H over Z and the
average eigenvalue of A. With this explicit formula in place we can go back
to the point we skimmed over before, involving precisely what we mean by
a hermitian structure on a line bundle over a singular space. There is no
need to produce a general definition, since one can directly check that the
argument above applies in our setting. The crucial points are

• If Z is preserved by the 1-parameter subgroup generated by A then
Ch(Z,A) is independent of the metric. On the one hand it is equal
to the weight of the induced action on the fibre of the line bundle
L−1 over Z, and on the on the other hand it has an interpretation
in equivariant cohomology (see [5]).

• Ch(Z,A) is monotone if Z moves under the 1-parameter subgroup
generated by A (see (5.4)).

To sum up, we attach to each algebraic cycle Y in the closure of the
G-orbit of X (but not in the orbit) an invariant Ψ(Y ). The projective variety
X is Chow stable if and only if Ψ(Y ) > 0 for all such Y . If we choose any
Hermitian metric on U we get a bound

(5) Ψ(Y ) ≤ Vol(Y ) max
A

Ch(Y,A)
‖A‖ .

Notice that from the form of the definition—using arcs—it does not
really matter whether we talk about algebraic cycles or schemes here. For a
scheme W which is in the closure of the orbit of X in the Hilbert scheme we
can define Ψ(W ) by taking the supremum over degenerations with central
fibre W of the same quantity we used in defining Ψ(Y ), so Ψ(W ) ≤ Ψ(Y )
for the cycle Y underlying W and in particular the inequality (5) gives a
bound on Ψ(W ).

2.3. K-stability and K-stability. We will now think slightly more
abstractly of a compact complex n-manifold X and positive line bundle L
over X. Suppose that Lm is very ample so its sections define an embedding
in P(U) with U = H0(X,Lm)∗. Suppose that we have a degeneration, as
considered above. This is a flat family X → Δ with X ⊂ P(U) × Δ. The
central fibre is a scheme W ⊂ P(U) and the line bundle O(1) on P(U)
is isomorphic to Lm on the non-zero fibres. Take a positive integer p such
that O(p) is also very ample on all fibres of X (this is certainly true if p is
sufficiently large). The direct image of O(p) is a locally free sheaf over Δ
which can thus be trivialised. If we fix a trivialisation we get an embedding
of X in P(Up) where

Up = H0(X,Lpm)∗.
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Now the fixed degeneration X has a sequence of projective embeddings.
We will write Xp when we want to emphasise the difference, and Wp for
the central fibre. For each one we have a numerical invariant ν(Xp) say. The
notion of K-stability involves the asymptotics of these as p→ ∞. The theory
developed in the literature deals with the case when X is an equivariant
degeneration (or test configuration), defined by a C∗ action, so we will now
restrict to that situation. Then it is known that p−nν(Xp) has a limit as
p→ ∞ and we define the Futaki invariant F (X ) to be this limit. We say that
(X,L) is K-stable if F (X ) > 0 for all degenerations X , and for all m. It is
important to realise that, even if L is itself very ample over X, degenerations
may occur at some large multiplicity m which cannot be realised by any
smaller value, such as m = 1.

Let X̃ be the blow-up of X at a point x. For large integers γ the line
bundle γL− [E] is ample on X̃, where E is the exceptional divisor.

Definition 1. The polarised manifold (X,L) is K-stable if there is a
γ0 such that the blow-up X̃ at any point of X, with the polarisation γL− [E]
is K-stable, for γ ≥ γ0.

There is a slightly different notion in which we use Chow stability of
the blow-up rather than K-stability; indeed this may turn out to be more
relevant to the existence problem. But for the discussion in the present paper
we stick to K-stability.

3. Birational modifications

3.1. Families over the disc. We begin by considering a flat family
π : X → Δ over the disc. We write W for the central fibre. Suppose we have
an embedding of the family in P(U∗) × Δ = P × Δ such that each fibre
π−1(t), for nonzero t, maps to a smooth projective variety Vt. We suppose
that for all p ≥ 1 and all t ∈ Δ∗ the restriction map

evt : H0(P;O(p)) → H0(Vt,O(p))

is surjective. We also suppose that the central fibre W contains a component
B which is reduced at its generic point. For each p ≥ 1 we will define another
flat family X ′ → Δ through a certain birational modification of X .

Shrinking the disc if necessary we can suppose that the kernel of evt has
a fixed dimension. This family of kernels has a limit as t tends to 0. Choose
a fixed subspace J ⊂ H0(P,O(p)) = sp(U) which is a complement to this
limit. Then the evt to J yields an isomorphism for all t ∈ Δ∗ and when t = 0
the restriction of the map ev0 : H0(P;O(p)) → H0(W,O(p)) to J has the
same image as ev0. Then we get an embedding of X in P(J∗) × Δ which is
just the composite of the original embedding, the Veronese map and a linear
projection.

Now let s be a nonzero element of J , so e0(s) is a section of O(p) over
the central fibre. We consider an extension σ of s over X . Thus σ will have



212 S. K. DONALDSON

the form σ = s +
∑

i≥1 t
iτi for τi in J . Such an extension has an order of

vanishing ν(σ) on the component B ⊂ W.

Lemma 2. For each s ∈ J \ {0} there is a ν(s) such that ν(σ) ≤ ν(s)
for all extensions σ of s.

Given μ > 1 the set of τ1 such that s+ τ1t admits a higher order exten-
sion vanishing to order μ along B is an affine subspace Kμ ⊂ J . Clearly the
Kμ decrease as μ increases and hence they are eventually constant. So if
there is no such upper bound ν(s) we can find a τ1 such that s+ τ1t admits
higher order extensions vanishing to arbitrarily high order. Repeating the
argument we can find a sequence τi such that for each μ the finite sum
s+

∑μ
i=1 τit

i vanishes to order μ along B. Thus we get a formal power series
s +

∑∞
i=1 τit

i which vanishes to infinite order. Standard general arguments
show that this formal power series can be arranged to be convergent and
this contradicts the fact that it is an isomorphism for t �= 0.

Of course we specify ν(s) by defining it to be the least possible upper
bound and we set ν(0) = +∞. Define

Jμ = {s ∈ J : ν(s) ≥ μ}.
Then the Jμ are linear subspaces of J , defining a flag. Choose a correspond-
ing direct sum decomposition

J =
⊕

Iμ,

where

Jμ′ =
⊕
μ≥μ′

Iμ.

(Here of course the sums run over a finite subset of integers μ.) Let M :
J∗ → J∗ be the endomorphism which acts as multiplication by μ on I∗μ.
Then for non-zero t, we have an automorphism tM of J∗ and hence of P(J∗).
Now we set

V ′
t = tM (Vt).

This gives a family V ⊂ P(J∗)⊗Δ∗ over the punctured disc and by general
theory there is a unique way to extend this to a scheme X ′ ⊂ P(J∗)×Δ, flat
over Δ. We will see presently that X ′ is independent of the various choices
made in the construction. We write W ′ for the central fibre of X ′.

Notice that we can perform this construction with p = 1 and then W ′ =
W if and only if B does not lie in any hyperplane in P.

A simple example
Let Vt ⊂ CP2 be a family of cubics degenerating to the union of a conic

B and a line R with two intersection points X,Y . Take p = 2. Then J is
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the 6 dimensional space of quadratic polynomials and our decomposition
is J = I1 ⊕ I0 where I1 is the one dimensional subspace spanned by the
polynomial P defining the conic B. In the Veronese embedding of the original
family X ⊂ P5×Δ the component B lies in P4 = P(C5) and the component
R lies in a P2 ⊂ P5. The modified family X ′ ⊂ P5 is different. The central
fibre has just one component B′, which is a rational curve with a double
point at [P ]. The effect of the modification is to collapse the component R
and identify the two intersection points X,Y .

Fix a basis sα of J compatible with the direct sum decomposition so sα

lies in Iμ(α). Let σα be extensions vanishing to maximal order. By construc-
tion σα = t−μ(α)σα extends holomorphically over the generic point in B.
Let fα be the restriction to B. This is meromorphic section of O(p) over B.
More precisely if we lift to the normalisation of B the only poles of fα will
be on the intersection D ⊂ B of the component B in W and the other
components.

Lemma 3. The fα are linearly independent.

Suppose that there is a linear relation
∑
cαfα = 0, for cα ∈ C. Let λmax

be the largest value of λ(α) for terms with cα �= 0. Choose ordering so that
the relation is

c1f1 + . . . cqfq +
∑
β>q

cβfβ = 0

where λ(α) = λmax for α ≤ q and λ(α) > λmax for α > q. Then

c1σ1 + . . . cqσq +
∑
β>q

tλmax−λ(β)cβσβ

is an extension of c1s1 + . . . cqsq which vanishes to order at least λmax + 1
along B. But by construction the s1, sq are linearly independent elements of
the space Iλmax and all elements of this space vanish to order exactly λmax

so we have our contradiction.
Let R+

p denote the vector space of meromorphic sections of O(p) over
X , holomorphic away from the central fibre. Thus elements of R+

p can be
written as semi-finite Laurent series

∑
ρit

i where the sum has only finitely
many negative terms and the coefficients ρi are in sm(U). Let Rp ⊂ R+

p be
the subspace of sections which extend holomorphically over the generic point
of B ⊂⊂ W. We know that the extensions σα lie in Rp. Further we have

Lemma 4. The elements of Rp are exactly the sums of the form
∑

α aα

(t)σα, for holomorphic functions aα on Δ.

It is obvious that such a sum does lie in Rp; we have to establish the
converse. Any element σ of R+

p can be written in the form

σ =
∑

aα(t)σα
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where aα(t) is meromorphic on Δ, holomorphic away from 0. Suppose that
at least one of the aα(t) has a pole. Let k be the maximal order of pole
of the aα and suppose that a1, . . . ar have poles of order k while ar+1, . . .
have poles of lower order. Then, along B, the meromorphic section σ is
t−k(b1f1 + · · · + brfr) where bi is the coefficient of t−k in ai. By the linear
independence of the fi this section σ cannot be extended over the generic
point of B, so does not lie in Rm.

Now suppose we made different choices in our construction (of the sub-
space J , of the extensions with maximal vanishing order, of the summands
Iμ). We get another collection of sections, σ∗β say, and by the preceding
Lemma we can write

σ∗β =
∑

gβα(t)σα,

for a holomorphic matrix-value function (gαβ(t)). Symmetrically the inverse
is also holomorphic, so defines an automorphism of P(J∗)×Δ, covering the
identity on Δ. It follows from the definition that this automorphism takes
the family X ′, constructed using one set of choices, to that constructed using
the other set of choices. So we have

Corollary 1. The family X ′ ⊂ P(J∗) × Δ is uniquely defined, up to
automorphisms of P(J∗) × Δ covering the identity on Δ.

We record three simple properties of this construction.

Proposition 4. 1. The birational map from X to X ′ maps B to a
component B′ ⊂W ′ which it is reduced at its generic point.

2. We have

deg(B′)
deg(W ′)

≥ deg(B)
deg(W )

.

3. Suppose we start with X ′
p and perform the same construction with

an integer q, so we obtain a family (X ′
p)

′
q say. Then (W ′

p)
′
q is iso-

morphic to W ′
pq.

The proof is sketched in (5.6). (The author is grateful to Julius Ross for
pointing out item (3) above.)

To sum up as p varies we get a collection of flat families, say X ′
p → Δ

with central fibres W ′
p, all derived from the original family X . This is very

likely a standard construction in algebraic geometry but the authors lack
of expertise in that field limits our treatment to the rather pedestrian but
self-contained account above. Let us just include two remarks.

1. There is a discussion in the language of graded rings. Let RW =⊕
pRp (notice that the definition makes sense for any p ≥ 0). This

is a graded ring with the functions on Δ as the sub-ring R0. We
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can also evaluate elements of Rp on B: this gives a vector space,
Qp, say, of meromorphic functions on B and Q =

⊕
Qp is a graded

ring. Now we can ask whether either
• The ring R is finitely generated over R0;
• The ring Q is finitely generated.
It seems reasonable to expect that there properties should be

related to the question of the stabilisation of Xp or Wp as p tends
to infinity (or perhaps tends to infinity through multiples of some
given integer). We do not go into the matter further here, but
see (5.5).

2. There is a discussion from the point of view of line bundles over the
total space of the family. Consider the component B as a subset of
the X . At least in favourable situations this defines a line bundle
LB → X whose local sections correspond to functions with a pole
along B. Likewise, at least in favourable situations, the remainder
R of W defines a line bundle LR and LB ⊗ LR is trivial, since
B ∪ R is the divisor of the holomorphic function t on X . Given
p, let ν = ν(p) be the maximal order of vanishing as considered
above and consider the line bundle L′ = Lp ⊗Lν

B = Lp ⊗L−ν
R . Our

construction of X ′
p amounts to considering the birational image of

X defined by the sections of L′.

3.2. b-stability. Let (X,L) be a polarised manifold and fix m such
that Lm is very ample. We can also choose m large enough so that the
sections of Lm generate those of Lpm for all p. Let X ⊂ P(U) × Δ (where
U = H0(X,Lm)∗) be a projective degeneration with central fibre W . We say
that X is “admissible”if it contains a component B, as considered above,
which is “large” in that the degree (i.e. volume) of B is greater than half
the degree of X. Then we call W an admissible limit at multiplicity m. For
large enough p we can apply the construction of the previous subsection to
get a new degeneration X ′

p with central fibre W ′
p. We call W ′

p a descendant
of W at the power p. We define a “web of descendants” at multiplicity m to
be a sequence of schemes (W ′

1,W
′
2,W

′
3, . . . ) such that

1. For each p, the scheme W ′
p is an admissible limit at multiplicity pm.

2. For all p, q the scheme W ′
pq is a descendant at the power q of W ′

p.

(Remark. Note that this definition includes the statement thatW = W ′
1

is a descendant of itself, which just means that B ⊂ W does not lie in any
hyperplane.)

Thus by Proposition 4, any family X , and in particular any test con-
figuration, defines a web of descendants and if AutW = C∗ any web of
descendants beginning with W is obtained in this way. We define the “bira-
tionally modified Futaki invariant” of a web of descendants to be

Fb = lim sup
p→∞

p1−nΨ(W ′
p).
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We define a destabilising object for (X,L), at multiplicity m, to be a web of
descendants at multiplicity m with Fb ≤ 0.

Definition 2. The polarised manifold (X,L) is b-stable at multiplicity
m if there are no destabilising objects for (X,L) at multiplicity m. We say
that (X,L) is b-stable if it is b-stable at multiplicity m for all large enough m.

The upshot of all this is that we can formulate a new precise form of
Yau’s conjecture: that the existence of a Kahler-Einstein metric should be
equivalent to b-stability. Of course this is in the case of a Fano manifold X
with positive line bundle L = K−1

X .

Discussion
1. The definition of b-stability may seem a little complicated, but much of

the complication arises from the fact that we take account of the possibility
of different degenerations with the same central fibre, and hence (perhaps)
different descendants of W at the same power p. In the case of a web of
descendants derived from a W with AutW = C∗ things are much simpler.
Then by Proposition 1 we only need to consider a test configuration and
its web of descendants. Suppose we are in the case when B is the whole of
W . Then our birational modification construction becomes vacuous and the
descendant W ′

p is isomorphic to W but embedded by the linear system O(p).
The C∗-action on the sections of O(p) over W has a generator Ap and it is
a standard fact that ‖Ap‖ = p‖A1‖. So

Ψ(W ′
p) = p−1‖A1‖−1ν(Wp)

and hence p1−nΨ(W ′
p) tends to the limit ‖A1‖−1F (X ), as p→ ∞, where F

is the usual Futaki invariant. So, up to the fixed positive factor ‖A1‖, our
definition reproduces the usual Futaki invariant in this case. It is possible
that for any web of descendants p1−nΨ(W ′

p) has a limit as p tends to infinity,
but because we do not know this we take lim sup instead, in the definition.

2. The definition of b-stability is meant to have a provisional character.
Modifying the definition of an “admissible” degeneration allows us to adjust
the definition of b-stability by a notch or two, making the notion less strin-
gent or more. For example we could consider imposing a condition that the
degree of the complement of B is very small relative to that of B, or that the
automorphism group of W is reductive. As we explained in the introduction,
such adjustments shift the difficulty from one side of the problem (b-stable
=⇒ KE metric) to the other (KE metric =⇒ b-stable).

3.3. Families over a general base. So far, we have considered fam-
ilies over a 1-dimensional base, in fact the disc Δ. Now we want to discuss
the general situation of a flat family X over a general variety N with a base
point which we write as 0 ∈ N . As usual, we are really working with germs,
so we can shrink the neighbourhood if necessary. We suppose, first, that the
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fibre W over 0 contains a component B and, second, that there is a dense
open set N0 ⊂ N such that the fibres over N0 are smooth, just as before.
It is not possible to directly extend our construction to define a new family
X ′ over N but this can be dome after blowing up N suitably. Thus given a
positive integer p we want to construct a variety N̂ with a regular birational
isomorphism q : N̂ → N and a family X ′

p → N̂ which is characterised by the
following property. Any map γ : Δ → N with γ(0) = 0 lifts to γ̂ : Δ → N̂
and the pull-back by γ̂ of X ′

p is isomorphic to the family we have constructed
in (3.1), beginning with the pull back γ∗X of X to Δ.

This construction of X̂ → N̂ is most likely rather routine, as a matter
of algebraic geometry, but we will develop it in a way which is adapted to
our differential-geometric application in the next section.

We begin with a basic general fact.

Lemma 5. Let Ω be a connected complex manifold and let f0, . . . fm

be holomorphic functions on Ω × N . For y ∈ Cm+1 write fy =
∑
yαfα.

Given a pre-compact open subset Ω0 ⊂ Ω we can find a finite set of points
z1, . . . zr ∈ Ω0, a neighbourhood A of 0 in N and C > 0 such that for all
z ∈ Ω0, τ ∈ A and y ∈ Cm+1 we have

|fy(z, τ)| ≤ C
r∑

i=1

|fy(zi, τ)|.

To begin note that it suffices to prove this for [X] in a small neigh-
bourhood in CPm, using the compactness of projective space. So write
X = (1, y1, . . . , ym) and define a function S on Cm × Ω ×N by

S(y, z, τ) = f0(z, τ) +
∑

yifi(z, τ).

For each fixed z ∈ Ω we get a function S(y, z, τ) on Cm × N , let I be the
ideal generated by all of these functions. Now restrict to the local ring of
germs of functions about (0, 0) ∈ Cm × N . This is Noetherian so the ideal
is generated by a finite number of functions ψi(y, τ) = S(y, zi, τ). It is clear
that we can choose the zi to lie in any given open set, in particular in Ω0.
Now let ζ be any fixed point of Ω0. Let J be the ideal of functions g(y, z, τ)
in the local ring at (0, ζ, 0) such that for each fixed z the function g(y, z, τ)
lies in I. Then J is finitely generated and by Nakayama’s lemma we can take
the generators to be polynomials in z. The co-efficients of these polynomials
must lie in I and it follows that any g ∈ J can be written in the form

g(y, z, τ) =
∑

χi(y, z, τ)ψi(y, τ).

In particular S lies in J , by construction so we can write

S(y, z, τ) =
∑

χi(y, z, τ)S(y, zi, τ),



218 S. K. DONALDSON

for points z in a small neighbourhood of ζ and for small y, τ . Then for
such points the desired inequality holds, with C = max |χi(y, z, τ)|. Now use
the precompact hypothesis to cover Ω0 with a finite number of such small
neighbourhoods.

Now we proceed with our construction. Just as before we can fix a sub-
space J ⊂ sp(U) and an embedding of X in P (J∗)×N . Choose an open set Ω,
biholomorphic to a polydisc say, whose closure lies in the smooth part of B.
Then the family X → N can be trivialised around Ω, in the sense that, after
possibly restricting to a smaller neighbourhood of 0 ∈ N , there is a holomor-
phic embedding ι : Ω ×N → X compatible with the projection π : X → N .
We also fix a trivialisation of ι∗(O(p)). Then any element s of J defines a
holomorphic function s(z, τ) on Ω ×N . We choose a large finite set F in Ω
as in the Lemma above, adapted to these functions s(z, τ). For each τ ∈ N
we have a linear map eτ : J → Cr defined by eτ (s) = (s(z1, τ), . . . s(zr, τ)).
When τ is in the open dense subset N0 this map eτ is injective, because an
element of the kernel has to vanish on all of Ω by our choice of F and hence
on the whole fibre of X (since this is irreducible). Thus, taking the images
of the eτ , we get a map from N0 to the Grassmannian of m+ 1 dimensional
subspaces of Cr. This map need not extend to N but taking the closure of
the graph, we can find a blow-up N̂ containing a copy of N0, to which the
map does extend. Let E be the pull-back to N̂ of the tautological bundle
over the Grassmannian. From this point of view the maps eτ give a triviali-
sation of E over N0. Thus for τ ∈ N0 we can map the fibre π−1(τ) ⊂ X into
P(E∗)τ . So we get a subvariety X ′

0 in the projective bundle P(E∗) over N0.
After perhaps blowing up N̂ further, the closure of this defines a flat family
X ′ over N̂ .

Suppose that we make this construction in the case whenN is the disc Δ,
so no blowing up is required and we get a map from Δ to the Grassmannian.
Clearly this maps 0 to the subspace of Cr with basis fα(zi), in the notation
of (3.1), and one sees that this construction agrees with the previous one.
Likewise for the case when we pull back X ′ by a map from Δ to N̂ .

We can make this construction in the case when N is the closure of the
orbit of X in the Hilbert scheme, N0 is the orbit and 0 corresponds to some
limiting scheme W . Then the descendants of W at the power p are exactly
the schemes parametrised by q−1(0) ⊂ N̂ . For, in one direction, an arc Γ
through 0 has a unique lift to Γ̂ and we take Γ̂(0) which is a point in q−1(0).
In the other direction, given a point τ̂ in q−1(0) we can find an arc Γ̃ through
τ̂ and we obtain the corresponding scheme as a descendant by starting with
the arc q ◦ Γ̃ in N .

Remark. Suppose that we adjoin an extra point zr+1 to F . Then it is
clear that the family X ′ we construct will be the same, up to isomorphism.
It follows easily that the construction does not depend on the choice of the
set F , the choice of trivialisations etc.
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4. Applications of the definition

In this section we will outline the relevance of the definitions above to the
existence problem for Kahler-Einstein metrics. So we consider a Fano mani-
fold X and take L = K−1

X . For simplicity we assume that the automorphism
group of X is finite.

4.1. KE metric =⇒ b-stability. We have

Proposition 5. If X has a Kahler-Einstein metric then (X,K−1
X ) is

K-stable.

This is a consequence of the results of the author [5], Arezzo-Pacard
[2] and Stoppa [10]. For, according to Arezzo and Pacard, the blow up
of X admits a constant scalar curvature metric when the parameter γ is
sufficiently large. Then [5] shows that the blow-up is at least K-semistable
and the refinement of Stoppa shows that it is actually K-stable. (The proof
of this refinement will involve blowing up a second time.) In short: KE =⇒
K-stable. It seems reasonable to hope that the argument of Stoppa in [10]
can be extended to show that

K − stability =⇒ b − stability,

and, assuming this can be done, we get KE =⇒ b-stability.
In fact one might hope ultimately to prove the chain

KE metric =⇒ K − stable =⇒ b − stable =⇒ KEmetric,

and if this could be done it would be just as good to take a formulation
of the main conjecture involving K-stability in place of b-stability. This
means that the result in one direction (KE =⇒ K-stability) is already in
place, but exactly the same work is involved in the extra difficulty of proving
the converse (K-stability =⇒ KE). So it is really a matter of taste which
formulation one prefers. The definition of K-stability is quicker to state but
puts into prominence the blow-up, which we prefer to see as a device used
in the proofs, rather than something fundamental to the problem.

4.2. b-stability =⇒ KE metric. Here we will discuss a model prob-
lem which does not bear immediately on the general existence question but
which illustrates ideas which apply in other, more complicated, situations.
We suppose that we have a sequence of Kahler-metrics ωi on X, in the
class c1(X) and that Ric(ωi)−ωi tends to zero in C∞, in the sense that for
all l ≥ 0

max
X

|∇l(Ric(ωi − ωi)|
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tends to zero as i tends to infinity. (Here ∇l denotes the iterated covariant
derivative.) We will also assume that X has complex dimension 3, although
this is not fundamental. Then we have

Theorem 1. If X is b-stable then it admits a Kahler-Einstein metric

This statement is not intended to be optimal (for example, the argu-
ments could probably be made to work if we restrict to l = 0), but it has
some content. If X is a suitable small deformation of the Mukai-Umemura
manifold X0, then Tian showed in [14] that X does not admit a Kahler-
Einstein metric, but since X0 has a Kahler-Einstein metric (as explained in
[6]), there is a sequence ωi on X satisfying the condition above. (See also
the related results of Sun and Wang [11] in terms of Ricci flow.)

We do not give a complete proof of the Theorem here, but we will give
the part of the argument which brings in the b-stability condition, taking
as input four “Hypotheses”.

Before beginning it may be helpful to emphasise an elementary but
important general point. Suppose we have a sequence of projective spaces
Pi, all of the same dimension N . Suppose we have varieties Vi ⊂ Pi, all of
the same degree. Does it make sense to take the “limit” of the Vi? Certainly
we can choose isomorphisms χi from Pi to the standard model CPN and
then (at least after passing to a subsequence) we can take a limit of the
χi(Vi). But if we change the isomorphisms by automorphisms gi of CPm

then the limit of the sequence giχiVi may be completely different. So, as the
questions stands, the limit has no intrinsic meaning. Suppose now that the
Pi are “metrized projective spaces” i.e. projectivisations of hermitian vector
spaces. Then we can choose the isomorphisms χi to preserve metrics, the
automorphisms are reduced to the compact group PU(N) and the limits we
get are isomorphic. So the answer to the question is positive if we work with
metrised projective spaces. Essentially, for the purposes of taking limits, we
can treat metrized projective spaces as being canonically isomorphic.

Now we begin the proof. For each i and all k > 0 we get a standard
L2-norm ‖ ‖i,k on H0(X,Lk), using the metric ωi. For large enough k, these
sections give a “Tian embedding” Tk,i : X → PNk of X in a metrized
projective space of dimension Nk. Of course, as above, we can identify this
with the standard space CPNk with the standard metric. For fixed k and
varying i these embeddings differ by the action of SL(Nk + 1,C) so Tk,i =
gk,i ◦ Tk,0 say.

Hypothesis 1. We can fix a large m so that if the sequence gm,i has a
bounded subsequence, then X admits a Kahler-Einstein metric.

For any self-adjoint endomorphism A, with respect to the L2 metric, A
we have a Chow number Ch(Tk,iX,A).
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Hypothesis 2. There is a function ε(k) with ε(k) → 0 as k → ∞ such
that, for all A and k we have

|Ch(Tk,iX,A)| ≤ ‖A‖ε(k).

(We recall that ‖A‖ denotes the operator norm: the modulus of the largest
eigenvalue.)

Now focus attention on the case k = m. By compactness of the Hilbert
scheme we can suppose (taking a subsequence) that the projective varieties
Tm,iX have a limit W which is a subscheme of CPNm. If W is projectively
equivalent to Tp,0X then the gm,i are bounded and we conclude that X has
a Kahler-Einstein metric, by Hypothesis 1. So we suppose the contrary, that
W is not equivalent to X and we want to show that X is not b-stable.

Hypothesis 3. The scheme W is an admissible degeneration, that is,
it contains a component B of degree greater than one half the degree of W
which is reduced at its generic point.

Now consider the universal family U over a neighbourhood N of 0 (the
point corresponding to W ) in the closure of the orbit of X in the Hilbert
scheme. So the sequence Tp,iX yields a sequence τi ∈ N converging to 0. Fix
an open set Ω ⊂ B as in (3.3), whose closure lies in the reduced, smooth part
of B. Then (after perhaps shrinking N) we can trivialise the universal family
U in a neighbourhood of B and define an analytic embedding Ω × N → U
compatible with the projection U → N . Thus we have an open set Ωτ in the
fibre of U over τ and in particular open sets Ωτi = Ωi in Tp,iX which, in an
obvious sense, tend to Ω as i→ ∞. Now we define a norm ‖ ‖Ω,i on sections
of Lpm by restricting to Ωi and using the L2 norm induced by the standard
fibre metric and the Fubini-Study volume form.

Hypothesis 4. The L2 norm defined by ωi and the norm ‖ ‖Ω,i are
uniformly equivalent (i.e. with constants independent of i).

Remark. Note that this implies that the exact choice of Ω is unim-
portant: any two choices give equivalent norms. Similarly for the choice of
trivialisations etc.

Now we are all set up to state:

Proposition 6. Assuming Hypotheses (1)–(4) above, if X does not
admit a Kahler-Einstein metric then it is not b-stable at multiplicity m.

This will be a consequence of the following, which is the central result
of this paper. For each p > 0 we can suppose that the sequence Tpm,iX
converges to some scheme W ′′

p .
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Proposition 7. The sequence W ′′
p is a web of descendants.

We give the proof of Proposition 6 assuming Proposition 7. For any self-
adjoint endomorphism A we have Ch(W ′′

p , A) ≤ ε(pm)|A| and this implies
by (5) that p1−nΨ(W ′′

p ) ≤ ε(pm). Since ε(pm) tends to 0 as p tends to
infinity we see that Fb ≤ 0, so this web of descendants is a destabilising
object.

The proof of Proposition 6 is also easy, given the background we have
developed. It suffices to show that each W ′′

p is a descendant of W . (For
the other conditions for a web of descendants follow by replacing m by
a multiple.) The orbit of X yields an open subset N0 of N . We have a
blow up q : N̂ → N and a lift L : N0 → N̂ . We know that points of
q−1(0) correspond to descendants of W . Our sequence τi is a sequence in N0

converging to 0 and we thus have a sequence Lτi in N̂ . Taking a subsequence
we can suppose that Lτi converges in N̂ to some descendant W ′

p. What we
need to show is that this limit is isomorphic to the “differential geometric”
limit W ′′

p .
Now recall that the family Û over N̂ is defined by taking the closure of a

family over q−1N0. For each point τ in N0 we have a map eτ : J → Cr. The
standard Hermitian metric on Cr restricts to a metric on the image of eτ .
On the other hand we can identify J∗ with the space of sections of Lpm over
the fibre Vτ in U . In particular we can do all this for the points τi so that
Vτi is Tm,iX. Then for each i we have three norms on the space of sections
H0(X,Lpm).

1. The standard L2 norm defined by ωi.
2. The norm ‖ ‖Ω,i defined by the L2 norm over Ω.
3. The norm defined by the map eτi : J → Cr, as above.

Unwinding the constructions, to prove that W ′
p and W ′′

p are isomorphic it
suffices to show that the first and third norms are uniformly equivalent,
with constants independent of i. Hypothesis 4 states that the first norm
is equivalent to the second norm, so it suffices to show that the second
and third norms are uniformly equivalent. But this is clear from the way
the finite set F was chosen (Lemma 5). In one direction, the third norm
dominates the L∞ norm of sections over a slightly smaller open set (and we
have pointed out above that the precise choice of Ω is not important). In the
other direction the L2-norm over Ω dominates the L∞ norm over an interior
set by standard elliptic estimates.

As we mentioned above, the four Hypotheses hold for the sequence of
“approximate KE metrics” ωi, thus proving the Theorem. The proofs will
be given elsewhere. Hypotheses 1,3 and 4 are essentially known results, and
very similar statements can be found in the recent paper [15] of Tian. Thus
the main new input is Hypothesis 2. The proof of this (which leads us to
make the restriction on the dimension of X for the time being) depends in
turn on joint work with X-X Chen.
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4.3. Miscellaneous remarks.

1. Uniform stability
A general difficulty which arises in applying the usual defi-

nitions of stability is that these definitions state that the Futaki
invariant is positive but do not supply any definite lower bound. In
the special case of toric manifolds (and in the context of extremal
metrics) establishing such a lower bound was one of the main points
of [4] (Proposition 5.2.2 in [4]). In general, this issue was considered
by Szekelyhidi [12] who introduced a notion of “uniform stability”.
His definition has the shape

F (X ) ≥ c‖A‖,

for all test configurations X and for an appropriate norm on the
generator of the action (and, in a general context, it could be that
different norms lead to different notions). Taking such a definition
of stability makes it easier to prove the direction “stable” ⇐= KE
metric, but it seems hard to establish the converse. Our definition
of b-stability adopts this idea to some extent: roughly it asserts
uniform stability over a restricted class of test configurations. The
fundamental point is that the result of Arezzo and Pacard gives a
little extra control of the Futaki invariants (or Chow weights).

2. Testing stability
As we mentioned in the Introduction, the impact of this whole

discussion is rather limited unless one has a way of testing “stabil-
ity” in explicit situations. The difficulty (in the case of K-stability,
say) is that the definition requires checking test configurations of
arbitrarily high multiplicity–that is to say, degenerations of X
embedded in arbitrarily large projective spaces. For a fixed, rea-
sonably small, multiplicity it may be possible to analyse all the
test configurations, but this gets more and more complicated as the
dimension grows. In this regard, it is relevant that the argument
outlined above in the direction b-stability =⇒ KE metric works
with b-stability at an explicit multiplicity m, which can be com-
puted in principle from analytical information. If this argument can
be refined to produce a multiplicity m which is reasonably small
then one could hope to verify b-stability in some explicit cases.

Again, this issue arises in the toric case. In dimension 2, there
is a straightforward test (for K-stability) involving certain “simple”
piecewise-linear functions on the polytope of the variety (see [4]).
But in higher dimensions, even in the toric case, the situation is
less clear.

3. Finite generation and Gromov-Haussdorf limits
Recall that we associated a graded ring Q to an admissible

degeneration, and we expect that the finite generation of this ring
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should be related to the stabilisation of the sequence of descendants.
It also seems likely that Q can be obtained as the limits of L2

sections over the Gromov-Hausdorff limit considered by Ding and
Tian [3]. The finite generation question could then be seen as the
problem of endowing this Gromov-Haussdorf limit with an algebraic
structure. If Q is finitely generated then the obvious candidate is
Proj(Q).

4. Extremal and constant scalar curvature metrics
The definition of b-stability is aimed at the Kahler-Einstein

case and is not intended to be appropriate, as it stands, in the more
general setting of extremal and constant scalar curvature metrics.
On the other hand an example of Apostolov et al [1] shows that
K-stability is probably not the correct criterion for the existence
of these metrics. It may be the same general idea—involving not
just one test configuration but a sequence—will be relevant in that
case too.

5. Examples and subsidiary results

5.1. Points not accessible by one-parameter subgroups. We con-
sider the action of SL(3,C) on sd(C3), polynomials in x, y, z, so points of the
projectivisation corresponds to plane curves. Suppose that a curve C meets
the line z = 0 in d points p1, . . . , pd. Then the action of the 1-parameter
group x �→ tx, y �→ ty, z �→ t−2z deforms C into the union of the d lines
Opi, where O is x = y = 0. If d > 5 then simple dimension counting shows
that a typical singular curve consisting of d lines through a point is not
projectively equivalent to one which arises in this way from the fixed curve
C. Now consider a curve C of degree 6 defined by the equation

z

5∏
i=1

(x− λiy) + p(x, y) = 0.

Thus there are 5 branches of the curve passing through x = y = 0. The
inverse of the 1-parameter subgroup above deforms this curve into the union
of the 5 lines x = λiy through O and the line at infinity. Making a projective
transformation, fixing lines through O, we can move the line at infinity to a
line x − μy = z say. Now apply the same 1-parameter subgroup to deform
this to the curve C ′ which is the union of 6 lines through O: the 5 lines
x = λiy and the sixth line x = μy. Thus C ′ is in the closure of the orbit of
C but there is no reason why this configuration of 6 lines should occur from
the intersection of C with a line, so that in general C ′ will not be accessible
by a 1-parameter subgroup.

5.2. Proof of Proposition 1. The result is similar to Luna’s slice
theorem, but the author has not found this exact statement in the literature.
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For ξ ∈ g and z in P(V ) we write ξz for the corresponding tangent vector
to P(V ) at z. We suppose that the stabiliser of y is the complexification Kc

of a compact group K. (The point of the condition is that representations
of Kc decompose as sums of irreducibles.) Then we find an equivariant slice
for the action a projective subspace P′ ⊂ P(V ) with the properties

1. P′ contains y and is preserved by Kc;
2. P′ is transverse to the G-orbit of y at y;
3. for y′ ∈ P′ near y and ξ ∈ g the tangent vector ξy′ lies in the

tangent space of P′ if and only if ξ is in k.

To do this we decompose g = kc ⊕ p as representations of Kc. The
derivative of the action at x gives us a decomposition of Kc-representations
V = Cx̂ ⊕ p ⊕ S say. Then we can take P′ = P(Cx̂ ⊕ S). Now the third
condition above implies that the identity component of the stabiliser in G of
any point in P′ close to y is a subgroup of Kc. Let V0 be the intersection of
the of the G-orbit of O of x with P′. The second condition implies that the
G-orbit of any point in P(V ) close to y meets P′ in a point which is also close
to y. It follows that y lies in the closure V of V0. The third condition implies
that if y′ is close to y and y′ is in V0 then the for small ball B around y′ the
intersection of B with V0 is equal to the intersection of B with the Kc-orbit
of y′. Since V is an algebraic variety it is clear that, near to y, V0 is contained
in a finite union of Kc orbits. So there is a single Kc orbit Kcy′ in V0 which
contains y in its closure. But the action of Kc on P′ is determined by the
linear action on S and it follows from the Hilbert-Mumford criterion, applied
to the reductive group Kc, shows that there is a 1-parameter subgroup Λ
of Kc such that y lies in the closure of the Λ-orbit of y′. Viewing Λ as a
1-parameter subgroup in G we obtain the first statement of the Proposition.

For the second statement, we see from the transversality condition (2)
that any arc through y ∈ O is equivalent to an arc mapping into V . Near
to y, we know that V0 is a finite union of C∗ orbits so the arc must map
into a single one of these orbits and it follows that the arc is equivalent to
an equivariant arc.

Remark. It seems likely that in fact V0 is, near to y, equal to a single
Kc-orbit but the author has not managed to prove this. If this were the case
it would follow that when the stabiliser is C∗ there is a unique equivalence
class of arcs through y, up to the obvious fact that we can take a covering,
replacing t by a power of t.

5.3. Proof of Proposition 3. The argument is related to ideas of
Thaddeus [13]. In one direction, it is clear that if x is stable then Ψ(y) > 0
for all y. In the other direction, suppose that x ∈ P is a point which is not
stable for the G-action. We choose some other representation of G and hence
another projective space Q on which G acts. We can choose Q to contain a
point q which is stable. We fix metrics so that we have moment maps μP, μQ.
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Now consider the G-action on the product P × Q. The notion of stability
depends on the choice of a class in H2(P×Q) which we take to be ωP +ηωQ

where η is a real parameter, and ωP, ωQ are the standard generators. When
η is irrational we move outside the algebro-geometric framework, but we can
still apply the symplectic theory of Kirwan [7]. The moment map for the
product is μP + ημQ. When η is very large the point (x, q) is stable and
there is a point in its orbit where μP + ημQ vanishes. But when η = 0 there
is no point in the orbit where μP vanishes, since x is not stable. It follows
that there is some η0 ≥ 0 and a point (y, r) in the closure of the G-orbit
in P × Q such that μP(y) + η0μQ(r) = 0. We claim that Ψ(y) ≤ 0. Let
ΓP : Δ → P be an arc through y. We can lift this to the G-orbit in P ×Q,
so we get a map (ΓP,ΓQ) : Δ → P ×Q. The maps ΓP,ΓQ define the same
weighted flag and hence the same self-adjoint endomorphism A. We have
integers νP(y), νQ(r). The inequality of Lemma 1 gives

νP(y) ≤ 〈μP(y), iA〉, νQ(r) ≤ 〈μQ(r), iA〉,
so νP(y) + η0νQ(r) ≤ 0. But the condition that q is stable implies that
νQ(r) > 0 so we see that νP ≤ 0. This implies that Ψ(y) ≤ 0, as required.

5.4. Monotonicity of the Chow invariant. Let A be a self-adjoint
endomorphism of a Hermitian vector space U and let Z be an algebraic
cycle in P(U). For real s let Zs = eAsZ and consider the function f(s) =
Ch(Zs, A). We want to show that f is an increasing function of s. This is
a well-known fact, first proved by Zhang [Z], and there are a number of
proofs in the literature, but we include a short proof here for completeness.
Consider for the moment a more general situation of a compact Riemannian
manifold P , a real valued function h on P and a submanifold V of P . Let
φs : P → P be the gradient flow of h and let Vs = φs(V ). We consider the
function

(6) g(s) =
∫

Vs

h dμ,

where dμ is the induced Riemannian volume element. Then

g′(s) =
∫

Vs

|(grad⊥h)|2dμ+
∫

Vs

〈M, grad⊥h〉dμ,

where grad⊥h is the component of the gradient vector field normal to Vs

and M is the mean curvature vector of Vs. Here the second term arises
when we differentiate the volume element in (7). The relevance of this is
that when P is complex projective space the flow eAs is the gradient flow of
the function H. Since the mean curvature of a complex subvariety vanishes,
the second term drops out and we derive the desired monotonicity. (It is
not hard to see that the presence of singularities of Z does not affect the
argument.)
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5.5. Zariski’s example. We explain how a well-known example of
Zariski [18], fits into the framework of this paper. Let S be the blow-up
of the projective plane in 12 points qi and L be the line bundle defined by
the divisor D = 2(4H − ∑

Ei) on S. If the points are in general position
then L is very ample on S but if the points lie on a cubic C ⊂ P2 then the
proper transform C̃ has intersection number 0 with D so L is not ample.
If qi are in general position on C then no multiple Lp is trivial on C̃. All
sections of O(pD) vanish on C but, for all p, there are sections which vanish
with multiplicity 1. It follows that the ring

⊕
H0(S;Lp) is not finitely gen-

erated. Now vary qi in curves qi(t) for t ∈ Δ and hence construct a family
S → Δ. We suppose that the qi(t) are in general position for non-zero t
but qi(0) are in general position on a cubic curve, as above. We have a line
bundle L → S and the direct image is locally free so we can regard the
fibres St, for non-zero t as projective varieties in a fixed projective space.
Taking the closure we get a family X → Δ where the central fibre has two
components. One is S0, embedded by sections of Lp ⊗ [−C̃], and the other
is a P1 bundle R over C̃. For any p > 0 we can apply our construction from
(3.1) (taking B = S0) to form X ′

p. This is exactly the same as the family we
get by replacing L by Lp in the construction of X above. For all p we get
the same central fibre S0 ∪C̃ R but with a different line bundle over it. The
ratio deg(R)/deg(S0) is O(p−1) as p → ∞. The graded ring Q defined in
(3.1) is isomorphic to

⊕
H0(S0, L

p) and is not finitely generated.

Remark. In this example there is a natural family, independent of p, in
the background–the family S. The problem is that we are trying to embed
this using sections of a line bundle which is not positive on the central
fibre, and this gives rise to the infinite series of “descendants”. Whether
an example like this can occur for a degeneration of a Fano manifold and,
conversely, whether this is the only mechanism by which we can obtain an
infinite sequence of “descendants” are questions beyond the authors knowl-
edge, but which seem to be important.

5.6. Proof of Proposition 4. We can regard W as being embedded
in P(J∗). If B ⊂ W does not lie a hyperplane in P(J∗) then W ′ = W
and we are done, so suppose that there J∗ = U1 ⊕ U2 and B lies in P(U1).
Let B0 ⊂ B be the complement of the intersection of B with the other
components of W and of the support of nilpotents. Then, following through
the construction, we see that B0 maps isomorphically to B′

0 ⊂ B′ by a map
of the form x �→ (x, f(x)) ∈ P(U1 ⊕ U2) where f is a holomorphic section
of O(1) ⊗ U2 over B0. Thus it is clear that B′ is reduced at its generic
point. We can choose a linear subspace P(R) ⊂ P(U1) of complementary
dimension such that B ∩ P(R) lies in B0. Then we get the same number
of intersection points of the image of B0 with P(R ⊕ U2). Since any other
intersection points give a positive contribution to the intersection number
we see that deg(B′)

deg(W ′) ≥ deg(B)
deg(W ) .
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To see that (W ′
p)

′
q = W ′

pq we can use the approach through the norms
on sections of O(pq) defined by restricting to a large finite set F . Both
(W ′

p)
′
q and W ′

pq can be obtained as the limits of the nonzero fibres Vt under
embeddings in H0(Vt,O(pq))∗, so, as in Section 4, we have to show that two
norms on this space are uniformly equivalent (with constants independent
of t). But this is rather clear from the construction using the fact that our
local trivialisation of the family X around Ω ⊂ B maps holomorphically to
a local trivialisation of X ′

p around the image Ω′ by a map of the same form
as above.
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