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3.4. A Proof of the Poincaré-Birkhoff Fixed Point Theorem 153
3.5. A Proof of a Theorem of Franks and Handel 157

4. Asymptotic Foliations for Disk Maps 163
4.1. Detecting Invariant Circles 164
4.2. Speculations on Pseudo-Rotations 169
4.3. Questions about the Asymptotic Behavior of Finite

Energy Foliations and Disk Maps 172
Acknowledgment 173
References 174

1. What Should Symplectic Dynamics be?

Many interesting physical systems have mathematical descriptions as
finite-dimensional or infinite-dimensional Hamiltonian systems. According
to A. Weinstein, [76], Lagrange was the first to notice that the dynamical
systems occurring in the mathematical description of the motion of the plan-
ets can be written in a particular form, which we call today a Hamiltonian
system. Poincaré who started the modern theory of dynamical systems and
symplectic geometry developed a particular viewpoint combining geometric
and dynamical systems ideas in the study of Hamiltonian systems. After
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128 B. BRAMHAM AND H. HOFER

Poincaré the field of dynamical systems and the field of symplectic geome-
try developed separately. Both fields have rich theories and the time seems
ripe to develop the common core with highly integrated ideas from both
fields. Given the state of both fields this looks like a promising undertaking.
Though it is difficult to predict what “Symplectic Dynamics” ultimately will
be, it is not difficult to give examples which show how dynamical systems
questions and symplectic ideas come together in a nontrivial way.

Assume we have a cylinder, where the flow on the boundary is standard.
The flow-lines enter in a standard way on the left and leave in a standard
way on the right, see Figure 1. Here is the question: What must happen in
the tube, assuming there are no rest points, so that not all flow-lines entering
on the left will leave on the right?

It is easy to modify the flow by introducing a pair of periodic orbits with
the desired properties, see Figure 2.

One could ask next whether we can achieve the desired effect without
periodic orbits. That turns out to be a very hard question and is closely
related to the Seifert conjecture, [71]. It was solved in the category of
smooth vector fields by K. Kuperberg in 1993, [54]. One can modify the flow
smoothly (even real analytically), without rest points and periodic orbits, so
that not all orbits go through. In the category of volume-preserving flows,
G. Kuperberg, [53], showed that the same holds on the C1-level. Modulo the
question of whether G. Kuperberg’s example can be made smooth it seems
that there cannot be any interesting additional contribution. However, it
is precisely here where things become even more interesting and where we
obtain a first glimpse of a “Symplectic Dynamics”.

Fix on a compact three-manifold M (perhaps with boundary) a volume
form Ω. A vector field X is volume preserving provided LXΩ = 0. By the
Cartan homotopy formula this means that

0 = iXdΩ + diXΩ = d(iXΩ).

Let us assume for the moment that H1(M) = H2(M) = 0. Then we find a
1-form Γ0 with

iXΩ = dΓ0

Figure 1. A flow tube with a flow being standard at the boundary.
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Figure 2. Two periodic orbits are introduced in order to
have a flow without rest points, but not all flow lines entering
left leave on the right.

and any 1-form Γ with that property can be written as

Γ = Γ0 + dh

for a smooth map h.
Consider the collection V of all smooth nowhere vanishing Ω-preserving

vector fields. Among these there is the interesting subset V∗ consisting of
those vector fields X for which there exists a Γ with dΓ = iXΩ, and so that
Γ(X) > 0. Observe that if X ′ ∈ V is close to X we still have that iX′Ω = dΓ′
for a Γ′ close to Γ and consequently Γ′(X ′) > 0 (by the compactness of M).
So we see that V∗ is open in V, in for example the C1-topology, provided
H1(M) = H2(M) = 0.

Definition 1.1. Let (M,Ω) be a closed three-manifold equipped with
a volume form. An Ω-preserving vector field X is called Reeb-like pro-
vided there exist a one-form Γ satisfying dΓ = iXΩ and Γ(X) > 0 at all
points of M .

Assume thatX is Reeb-like, so that Γ(X) > 0 for some Γ with dΓ = iXΩ.
Note that this implies that Γ ∧ dΓ is a volume form. In other words Γ is a
contact form.

Define a positive function f by

f =
1

Γ(X)
.
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Then Y = fX satisfies Γ(Y ) = 1 and dΓ(Y, .) = iY dΓ = fiXiXΩ = 0. In
particular

LY (Γ ∧ dΓ) = 0.

So Y is Reeb-like for the modified volume form Γ ∧ dΓ, but satisfies the
stronger condition Γ(Y ) = 1. Observe that Y and X have the same unpa-
rameterized flow lines. So for many questions one can study Y rather thanX.

Definition 1.2. Let M be a compact three-manifold. A Reeb vector
field on M is a vector field for which there exists a contact form λ with
λ(X) = 1 and dλ(X, .) = 0.

In [23] it was shown that if for a Reeb-like vector field not all orbits
pass through, then there exists a periodic orbit. More precisely the method
of proof in this paper shows the following result, where D is the closed unit
disk in R2.

Theorem 1.3 (Eliashberg-Hofer). Let Z = [0, 1] × D with coordinates
(z, x, y) equipped with a contact form λ which near z = 0 or z = 1 and
x2 + y2 = 1 has the form dz+xdy, so that close to the boundary the associ-
ated Reeb vector field is given by (1, 0, 0). Then, if not all entering orbits go
through, there has to be a periodic orbit inside Z.

In other words, complicated Reeb dynamics produces periodic orbits.
But even much more is true as we shall see. There is a holomorphic curve
theory, in the spirit of [36], related to the dynamics of Reeb-like vector
fields, see [41]. The holomorphic curves allow to quantify the complexity
of the dynamics in terms of periodic orbits and relations between them.
The latter are again expressed in terms of holomorphic curves. Symplectic
field theory (SFT), [22], uses the same ingredients to derive contact and
symplectic invariants. However, it is possible to shift the focus onto the
dynamical aspects. The already strongly developed SFT gives an idea of the
possible richness of the theory one might expect. This is precisely the key
observation which indicates that there should be a field accurately described
as “Symplectic Dynamics” with ideas and techniques based on the close
relationship between dynamics and associated holomorphic curve theories,
as they occur in symplectic geometry and topology. Our paper describes
some of the observations.

2. Holomorphic Curves

In the first subsection we introduce the holomorphic curve theory asso-
ciated to a contact form on a three-dimensional manifold. This can also
be done in higher dimensions. However, we shall restrict ourselves to low
dimensions. Here the results which can be obtained look the strongest.
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2.1. Contact Forms and Holomorphic Curves. Consider a three-
manifoldM equipped with a contact form λ. The Reeb vector field associated
to λ is denoted by X and, as previously explained, defined by

iXλ = 1 and iXdλ = 0.

There is another piece of data associated to λ. Namely the contact structure
ξ defined as the kernel bundle associated to λ. The form dλ defines on the
fibers of ξ →M a symplectic structure. Consequently, λ gives us a canonical
way to split the tangent space TM of M into a line bundle L with preferred
section X and a symplectic vector bundle (ξ, dλ):

TM ≡ (L,X) ⊕ (ξ, dλ).

We can pick a complex structure J for ξ, so that dλ(h, Jh) > 0 for h �= 0.
Then we can extend J to an R-invariant almost complex structure J̃ on
R×M by requiring that the standard tangent vector (1, 0) at (a,m) ∈ R×M
is mapped to (0, X(m)). At this point we have equipped R ×M with an
R-invariant almost complex structure that couples the Reeb vector field
with the R-direction. We will refer to such as an almost complex structure
compatible with λ.

It is natural to ask about the existence of holomorphic maps from Rie-
mann surfaces with image in R × M and raise the question whether the
geometry of these curves reflect in some way the dynamics of X, since J̃
couples the Reeb vector field with the R-direction. That in fact turns out
to be true and was used by the second author to prove certain cases of
the Weinstein conjecture, [41]. This approach was in part motivated by
Gromov’s pseudoholomorphic curve theory for symplectic manifolds. How-
ever, the extension for contact manifolds is by no means straight forward,
since the compactness issues for solution spaces are tricky, see [41, 10].

The Weinstein conjecture was formulated in [75] and stipulates that
on a closed manifold a Reeb vector field has a periodic orbit. The first
breakthrough came in [74] followed by [27]. In [42] it was shown that this
conjecture can sometimes be solved if holomorphic spheres are present and
this paper was the starting point of linking the Weinstein conjecture to

Figure 3. A contact structure.
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Gromov-Witten theory, before it really existed, which was completed in [63].
The conjecture in dimension three was recently settled by Taubes, [73], and
uses a relationship between Seiberg-Witten theory and holomorphic curve
theory. The conjecture in higher dimensions is open. For example it is not
known if every Reeb vector field on S5 has a periodic orbit. The only result
in higher dimensions, which proves the existence of periodic orbits for a
class of Reeb vector fields on every closed manifold (which admits a Reeb
vector field), is given in [2]. Let us begin with a detailed discussion of the
holomorphic curve theory.

As it turns out one should study tuples (S, j,Γ, ũ) with (S, j) being a
closed Riemann surface, Γ a finite set of punctures, and ũ := (a, u) : S \Γ →
R ×M a smooth map with non-removable singularities at Γ satisfying the
first order elliptic system

T ũ ◦ j = J̃ ◦ T ũ.
This is a nonlinear Cauchy-Riemann-type equation. It also turns out to be
useful to consider two tuples (S, j,Γ, ũ) and (S′, j′,Γ′, ũ′) equivalent if there
exists a biholomorphic map φ : (S, j) → (S′, j′) with φ(Γ) = Γ′ and ũ′◦φ = ũ.
We denote an equivalence class by [S, j,Γ, ũ]. Note that in symplectic field
theory we consider a somewhat different equivalence also incorporating the
natural R-action on R ×M .

In a first step let us show that the dynamics of X can be viewed as
a part of the theory. Given a solution x : R → M of ẋ = X(x) we can
consider [S2, i, {∞}, ũ] with ũ(s+ it) = (s, x(t)). Here (S2, i) is the standard
Riemann sphere and S2\{∞} is identified with C with coordinates s + it.
Observe that if y is another solution of ẏ = X(y) with y(0) = x(t0), then
[S2, i, {∞}, ṽ] with ṽ(s + it) = (s + c, y(t)) is the same class. Indeed take
φ(s+ it) = (s+ c) + i(t+ t0) which defines a biholomorphic map S2 → S2

fixing ∞. Then

ũ ◦ φ(s+ it) = ũ((s+ c) + i(t+ t0)) = (s+ c, x(t+ t0))

= (s+ c, y(t)) = ṽ(s+ it).

Hence
[S2, i, {∞}, ṽ] = [S2, i, {∞}, ũ].

We call this particular type of class an orbit plane, or a plane over a Reeb
orbit.

If an orbit x is periodic, say x(t + T ) = x(t), then it also gives us the
class

[S2, i, {0,∞}, ũ]
where S2\{0,∞} can be identified with R × (R/Z), and

ũ(s, [t]) = (Ts, x(Tt)).

We call this an orbit cylinder, or a cylinder over a periodic Reeb orbit.
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R × M

M

Figure 4. A cylinder over a periodic orbit.

That there is an interesting theory, which still has to be explored much
further, comes from the fact that there are many holomorphic curves which
interrelate these simple building blocks. When M is compact, these are the
curves satisfying a finite energy condition.

2.2. Notions of Energy. Let us introduce two important quantities,
which are certain energy measurements.

Definition 2.1. Let [S, j,Γ, ũ] be a pseudoholomorphic curve. We
assume that the punctures are non-removable. Then we say it is a finite
energy curve provided

E(ũ) := sup
ϕ

∫
S\Γ

ũ∗d(ϕλ) <∞.

Here the supremum is taken over the collection Σ of all smooth maps ϕ :
R → [0, 1] with ϕ′(s) ≥ 0.

If we compute the energy E of a cylinder over a T -periodic orbit we
obtain the identity

E = T.

However, for the energy of a plane over a Reeb orbit we find

E = ∞.

There is another useful energy which can be introduced.

Definition 2.2. The dλ-energy is defined by

Edλ(ũ) =
∫
S\Γ

u∗dλ.
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This energy turns out to be 0 in both the previous cases. However, there
are in general many interesting holomorphic curves which have a positive
dλ-energy. These are in fact the curves used to establish relations between
the periodic orbits. The easiest examples are finite energy planes.

Definition 2.3. A finite energy plane is an equivalence class [S2, j, {∞},
ũ] for which ∞ is (as usual) not removable and 0 < E <∞.

We will see in Theorem 2.5 that finite energy planes behave very differ-
ently to the (infinite) energy planes over orbits that we just encountered.
Interesting properties of finite energy planes were used in [41] to prove cases
of the Weinstein conjecture, [75].

It takes some analysis to show that if ũ = (a, u) : C → R×M represents
a finite energy plane, then its R-component a is proper. That means that
a(z) → ∞ for |z| → ∞. Then, as a consequence of Stokes’ theorem one
easily verifies

Lemma 2.4. For a finite energy plane ũ we have the equality

E(ũ) = Edλ(ũ).

The finite energy planes have some nice properties. For example they
detect contractible periodic orbits of the Reeb vector field.

Theorem 2.5. Assume that ũ := (a, u) : C → R ×M is smooth and
satisfies the differential equation

T ũ ◦ i = J̃ ◦ T ũ.
Assume further that ũ is nonconstant and E(ũ) < ∞. Then T := E(ũ) ∈
(0,∞) and for every sequence rk → ∞ there exists a subsequence rkj and a
solution x : R →M of

ẋ = X(x) and x(0) = x(T )

so that in addition

lim
j→∞

u(rkj · e2πit) = x(Tt) in C∞(R/Z,M).

In other words, non-constant solutions on the 1-punctured Riemann
sphere are related to periodic orbits for the Reeb vector field. The period in
fact being the quantity

T =
∫

C

u∗dλ = Edλ(ũ).

The main idea in [41] was to show that for the nonlinear Cauchy-
Riemann problem associated to the Reeb vector field of an overtwisted con-
tact form there always exists a finite energy plane, showing the existence of
a periodic orbit.
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R × M

M

Figure 5. A finite energy plane asymptotic to a cylinder
over a periodic orbit, and the projected disk in the contact
manifold.

2.3. Global Systems of Surfaces of Section. Assume that λ is a
contact form on the closed three-manifold M . Suppose we have fixed a
compatible almost complex structure J̃ on R ×M as described before. If
[S, j,Γ, ũ] is an equivalence class of solutions associated to the nonlinear
Cauchy-Riemann equation, we can associate to it its image F defined by

F[S,j,Γ,ũ] = ũ(S\Γ).

This definition does not depend on the representative we have picked. We
call [S, j,Γ, ũ] an embedded solution provided the map

ũ : S\Γ → R ×M

is an embedding. Let us also observe that for a given solution [S, j,Γ, ũ] and
real constant c ∈ R we obtain another solution [S, j,Γ, ũ]c defined by

[S, j,Γ, ũ]c := [S, j,Γ, ũc],

where (a, u)c = (a + c, u) and ũ = (a, u). Observe that the image of [S, j,
M, ũ]c is the image of [S, j,Γ, ũ] shifted by c via the obvious R-action on
R ×M .

Definition 2.6. Let λ be a contact form on the three-manifold M and
J̃ a compatible almost complex structure. A finite energy foliation F̃ associ-
ated to this data is a smooth foliation of R×M by the images of embedded
curves, having finite energy, with the property that if F is a leaf, each Fc is
also a leaf*.

*We will sometimes emphasize this last property by referring to a finite energy foli-
ation as being “R-invariant”. In this article we will not consider finite energy foliations
without this invariance under the R-translations.
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Let us observe that if we drop the requirement of finite energy we always
have the following object.

Definition 2.7. Let λ be a contact form on the three-manifold M . The
vertical foliation F̃ν(M,λ) is defined to be the foliation of R ×M whose
leaves take the form R × φ(R) over all Reeb trajectories φ : R →M .

Note that the leaves of the vertical foliation are pseudoholomorphic for
any almost complex structure compatible with λ, and they are invariant
under R-translations. However, the vertical foliation is only a finite energy
foliation when every Reeb orbit is periodic. This simple observation will be
crucial in Section 3.5.

Finite energy foliations, when they exist, have important consequences
for the Reeb flow. Recall that a surface of section* for a flow on a three-
manifold is an embedded surface, possibly with boundary, with the property
that the flow is transverse to the interior of the surface while each boundary
circle is a periodic orbit, called a binding or spanning orbit. Poincaré used
this notion to great effect, constructing such surfaces locally “by hand”. It
was observed in [44] that a finite energy foliation gives rise to a filling of the
entire three-manifold by surfaces of section, simply by projecting the leaves
down via the projection map

pr : R ×M →M.

The resulting filling F of the three-manifold was therefore called in [44, 45]
a global system of surfaces of section, which we loosely define as follows.

Definition 2.8. Let M be a three-manifold with a nowhere vanishing
vector field X having a globally defined flow. A global system of surfaces of
section for this data is a finite collection of periodic orbits P of the flow,
called the spanning orbits, and a smooth foliation of the complement

M\P
by embedded punctured Riemann surfaces S, such that each leaf in S con-
verges to a spanning orbit at each of its punctures, and such that the closure
of each leaf in M is a surface of section for the flow.

An adapted open book associated to a contact three-manifold [35] pro-
vides a familiar example of a global system of surfaces of section, but in
contrast to the situation we describe here, one only knows there exists a
Reeb flow making the leaves surfaces of section. A further distinction, is
that in an open book all leaves lie in a single S1 family, in particular they
all have the same collection of spanning orbits.

*Contrast this definition with that of a global surface of section which has the addi-
tional property that every orbit, other than the bindings or spanning orbits, hits the
surface in forward and backward time.
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Proposition 2.9 (Hofer-Wysocki-Zehnder,[46, 45]). Suppose that a
three-manifold M equipped with a contact form λ admits an associated finite
energy foliation F̃ (with respect to some almost complex structure compatible
with λ). Then the projection of the leaves down to M is a singular foliation

F := {pr(F ) |F ∈ F̃ }
with the structure of a global system of surfaces of section for the Reeb flow.

Note that in this context, where the dynamics comes from a Reeb vector
field, each surface of section in F comes naturally equipped with an area
form of finite volume, preserved by the flow. Indeed, that the Reeb vector
field is transverse to the interior of a surface S ∈ F implies that dλ restricts
to a non-degenerate 2-form on S, while the embeddedness of the leaf up to
the boundary yields that the total volume, i.e. the dλ-energy of the corre-
sponding holomorphic curve, is finite. In fact, by Stokes theorem the area of
each leaf is equal to the sum of the periods of the positive punctures minus
the sum of the periods of the negative punctures.

Proposition 2.9 can be seen as follows. If F is a leaf in F̃ , then either
F is a cylinder over a periodic orbit, or it is disjoint from each of its R-
translates, Fc, c �= 0. In the former case the projection of F down to M is
just the periodic orbit it spans. In the latter case, the leaf F must be nowhere
tangent to (1, 0) in T (R×M), and since (1, 0) is coupled by J̃ with the Reeb
vector field X, the leaf is transverse to the complex line R(1, 0)⊕RX. This
amounts to the projection of the leaf being transverse to X in M . A variety
of necessary and sufficient conditions for the projection of a curve to be
embedded are given in [72].

A global system of surfaces of section F inherits a certain amount of
other structure from the finite energy foliation F̃ . In particular, if the contact
form has only non-degenerate periodic orbits, there are only two possibilities
for the local behavior near each spanning orbit, depending on the parity of
its Conley-Zehnder index. Local cross-sections are illustrated in Figure 6*.

For a global illustration of a global system of surfaces of section on S3

see Figures 7 and 8, and on a solid torus see 10, 11, 12, 13.
It is not clear at all if in any given situation a finite energy foliation

exists. However, it turns out, that quite often they do. The first such result
appeared in [44] and was generalized further in [46]. These papers study
tight Reeb flows on S3. According to a classification result every positive
tight contact form λ on S3 is, after a smooth change of coordinates, of the
form fλ0, where f : S3 → (0,∞) is a smooth map and λ0 = 1

2 [q · dp− p · dq]
is the standard contact form on S3 whose associated contact structure is the

*In general, the picture on the left of Figure 6 could happen at a spanning orbit
having even parity Conley-Zehnder index if the orbit has a constraint in the form of an
asymptotic “weight”. But in all the examples in this paper, there are only weights on odd
index orbits so this doesn’t happen.
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Figure 6. Illustrating the two forms of behavior possible
in a neighborhood of a spanning orbit in a global system of
surfaces of section F that arises as the projection of a finite
energy foliation F̃ , for a non-degenerate contact form. On the
left all surfaces which enter the neighborhood converge to the
spanning orbit. This occurs when the spanning orbit has odd
parity Conley-Zehnder index (see also the footnote on previ-
ous page). In the second case precisely four leaves entering a
neighborhood of the orbit connect to it. This occurs when-
ever the spanning orbit has even Conley-Zehnder index. The
Reeb trajectories are transversal to the page and to the leaves
in the direction of the arrows. In an open book the picture is
as on the left at every spanning orbit.

line bundle of complex lines in TS3, where S3 is seen as the unit sphere in
C2 and q + ip are the coordinates. The flow lines of X on S3 associated to
fλ0 are conjugated to the Hamiltonian flow on the energy surface

N = {
√
f(z)z | |z| = 1},

where we indentify C2 with R4 via q+ ip→ (q1, p1, q2, p2), and the latter has
the standard symplectic form ω = dq1∧dp1 +dq2∧dp2. So we can formulate
the results in terms of star-shaped energy surfaces in R4, i.e. energy surfaces
bounding domains which are star-shaped with respect to 0.

Theorem 2.10 (Hofer-Wysocki-Zehnder,[44]). Assume that N bounds a
strictly convex domain containing zero and is equipped with the contact form
λ0|N . For a generic admissible complex multiplication J on the associated
contact structure there exists a finite energy foliation with precisely one leaf
which is a cylinder over a periodic orbit and all other leaves are finite energy
planes asymptotic to it.

After projecting down to the 3-manifold N , each plane-like leaf gives
rise to a disk-like surface of section with boundary the spanning orbit, and
finite volume. The convexity implies that the generalized Conley-Zehnder
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index of the spanning orbit is at least 3. This implies that the orbits nearby
intersect all the leaves of the projected foliation transversally enough that all
orbits, besides the spanning orbit, hit each leaf in forwards and backwards
time. Thus, fixing any leaf, we obtain a well defined return map, which is
an area-preserving diffeomorphism of the open disk. By an important result
of Franks we obtain that the disk map, if it has at least two periodic points
must have infinitely many periodic orbits. Hence we obtain the following
corollary.

Corollary 2.11 (Hofer-Wysocki-Zehnder). On an energy surface in
R4 which bounds a strictly convex bounded domain, we have either precisely
two geometrically distinct periodic orbits or infinitely many.

We would like to emphasize that no kind of genericity is assumed.
When we go to the most general case, namely that of an energy surface

bounding a starshaped domain, we in general still need some genericity

Figure 7. A global system of surfaces of section of S3,
obtained as the projection of a finite energy foliation of
R × S3. The 3-sphere is viewed as R3 ∪ {∞}, and the figure
shows the trace of the surfaces of section cut by a plane. The
dots represent the spanning periodic orbits; they are perpen-
dicular to the page and two dots belong to the same periodic
orbit. The white dots represent periodic orbits of index 2
and the black dots periodic orbits of index 3. The leaves are
disk-like and annuli-like. The rigid surfaces are represented
by bold curves. The grey arrows indicate the Reeb flow.
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3

3

Figure 8. A second example, illustrating a finite energy foli-
ation associated to S3. The grey dots represent a periodic
orbit of index 1, the white dots periodic orbits of index 2
and the black dots periodic orbits of index 3. The leaves are
again disk-like and annuli-like surfaces. The rigid surfaces
are represented by bold curves. Dotted and dashed surfaces
represent families of annuli-like surfaces connecting periodic
orbits of index 3 with periodic orbits of index 1. Thin curves
represent disk-like surfaces asymptotic to periodic orbits
with index 3. The grey arrows picture the flow of the Reeb
vector field.

assumption*. For example assuming that all periodic orbits are non-
degenerate and the stable and unstable manifolds of hyperbolic orbits are
transversal where they intersect. This can always be obtained by a C∞-small
perturbation of the energy surface. Alternatively we may consider generic
contact forms fλ0 on S3, so that the associated star-shaped energy surface
has the previously described genericity properties.

Theorem 2.12 (Hofer-Wysocki-Zehnder,[46]). Let λ = fλ0 be a generic
contact form on S3. Then for a generic complex multiplication on ξ with
associated R-invariant almost complex structure J̃ on R × S3, there exists

*This is only a technical assumption and one should be able to remove it. However, it
might not be so easy to draw the same conclusions about the dynamics of the Reeb vector
field.
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an associated finite energy foliation. Besides finitely many cylinders over
periodic orbits the other leaves are parameterized by punctured finite energy
spheres with precisely one positive puncture, but which can have several neg-
ative punctures. The asymptotic limits at the punctures are simply covered.

The precise result also contains some more technical information about
the Conley-Zehnder indices of the periodic spanning orbits and we refer the
reader to [46]. The Figures 7 and 8, taken from [45], describe some of the
structure.

From this result again one can derive that there are either two or infin-
itely many periodic orbits, given the described genericity. We now sketch
the proof of this.

If we have only one spanning orbit, then we have a global disk-like sur-
face of section, meaning a surface of section, homeomorphic to the open disk,
with a well defined return map, preserving a finite volume form. The asser-
tion then follows from Franks’ theorem. Assume that we have two spanning
orbits. In that case we must have at least one hyperbolic spanning orbit of
period T say. One can show quite easily that there exists a heteroclinic chain
connecting several hyperbolic spanning orbits. Using our genericity assump-
tion we can use symbolic dynamics to construct infinitely many periodic
orbits. The heteroclinic chain follows immediately from the fact that we
only have finitely many spanning orbits and that the stable and unstable
manifold of a hyperbolic orbit intersect the nearby leaves of the finite energy
foliation in loops which have λ-integral equal to the period T . Essentially
for area reasons the assertion follows. The reader should take any of the two
Figures 7 or 8 and try to carry out the argument.

In recent papers Hryniewicz and Hryniewicz-Salomoa, [47, 48, 49] have
been able to give a necessary and sufficient condition for when a sphere-like
energy surface possesses a global disk-like surface of section.

Recent work by Albers, Frauenfelder, van Koert and Paternain, [1] and
Cieliebak, Frauenfelder and van Koert, [17] make it feasible to use finite
energy foliations in the study of the classical restricted circular planar three-
body problem.

Using quite different singular foliations in a symplectic setting note
recent work of Pelayo and Vũ Ngo.c [68, 69]. They combined symplectic
and dynamical ideas to prove surprising classification results for semitoric
integrable systems.

Finally let us note that finite energy foliations have important applica-
tions in contact geometry as well, see [77, 78, 79].

3. Holomorphic Curves and Disk Maps

We saw in the last section, Theorem 2.10, that finite energy foliations
exist for generic Reeb flows on the tight 3-sphere. It turns out that not
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just one, but many such foliations can be constructed if we replace the 3-
sphere with a solid torus and restrict to generic Reeb flows which have no
contractible periodic orbits.

Any area preserving diffeomorphism of the disk can be put into this
framework, with different iterates giving rise to genuinely different global
systems of surfaces of section. The question arises how one can profit, dynam-
ically speaking, from this perspective. One could hope that the holomorphic
curves provide a book-keeping tool for tracking the history and future of the
orbits of a disk map.

As a first step in this direction, we outline how these can be used to
prove the Poincaré-Birkhoff fixed point theorem, and a complementary result
“Theorem” 3.20 which says that maps with two periodic orbits have some
iterate which either has a “twist” or is the identity map. This latter state-
ment might be new. Combining these one recovers, albeit currently with an
additional boundary condition, a celebrated theorem of Franks [30] in the
smooth category, a more recent result of Franks and Handel [32], along with
sharp growth estimates on periodic orbits known to follow from results of
Le Calvez [61].

These applications due to the first author depend on more recent devel-
opments [13, 14] in which it is shown how to construct finite energy foli-
ations with a prescribed spanning orbit. See “Theorem” 3.13 for a precise
statement. This is a surprising novelty, implying that in general there are
many more finite energy foliations than might naively be expected. This
result is labelled “theorem” as it is not completely written up. Results
depending on this one are also labelled in quotation marks.

This section explains the existence statements for finite energy foliations,
and outlines proofs of the mentioned dynamical applications.

3.1. Reeb-like Mapping Tori. Let Z∞ = R×D be the infinite tube
equipped with coordinates (z̄, x̄, ȳ). There is a Z-action generated by the
“1-shift” automorphism τ(z̄, x̄, ȳ) = (z̄ + 1, x̄, ȳ). Quotienting out by some
iterate τn gives us a solid torus Zn of “length” n. We denote by (z+nZ, x, y)
the induced coordinates on Zn, and write z to mean z+nZ when the context
is clear.

Definition 3.1. For n ∈ N, a Reeb-like mapping torus will refer to a
contact form λn on Zn, for which the disk slice D0 := {z = 0} is a global sur-
face of section for the Reeb flow, and which lifts to a contact form λ∞ on Z∞
having the following properties: it is invariant under pull-back by the 1-shift
automorphism, and has contact structure ker{cdz+xdy−ydx}, some c > 0.

By a global surface of section is meant that the trajectory through any
point in the solid torus passes through D0 in forwards and backwards time,
and does so transversely to D0. In particular, dλn restricts to an area form
on D0, and the flow induces a first return map.



FIRST STEPS TOWARDS A SYMPLECTIC DYNAMICS 143

From a Reeb-like mapping torus λn on Zn one can lift and project to
obtain a sequence of mapping tori

(Z1, λ1), (Z2, λ2), (Z3, λ3) . . . .

The first return map of the flow on (Z1, λ1) is a diffeomorphism ψ : D → D
preserving the area form ι∗dλ1, where ι : D ↪→ D0 = {0} ×D is inclusion,
and the first return map on (Zn, λn) is then the n-th iterate ψn.

In this situation, we will say that (Z1, λ1) generates the disk map ψ, and
that (Zn, λn) generates ψn.

Lemma 3.2. Let ψ : D → D be any orientation preserving, C∞-diffeo-
morphism preserving dx ∧ dy. Then there exists a Reeb-like mapping torus
(Z1, λ1) having first return map ψ for which ι∗dλ1 = dx ∧ dy, the standard
Euclidean volume form.

A proof of this under the assumption that ψ restricts to a rotation on
the boundary of the disk is contained in [11].

Identifying Zn with R/nZ×D, the product structure gives us a canonical
way to assign linking numbers to pairs of homologous periodic orbits, and,
along with the S1-symmetry of the contact structure, canonically assign
Conley-Zehnder indices to individual periodic orbits. We explain this now.

There is a canonical basis of H1(∂Zn; Z) � Z ⊕ Z we will denote by
{Ln, [∂D]}, which are the unique elements represented by closed oriented
loops of the form R/nZ × {pt} and {pt} × ∂D respectively. We call Ln the
canonical longitude on Zn, and [∂D] the canonical meridian on Zn. With a
little elementary algebraic topology, one can show that if γ is an immersed
closed loop in Zn, disjoint from ∂Zn, and homologous to Ln, then

{Ln, [∂D]}

is also a basis for H1(Zn\γ(S1); Z) after applying the inclusion ∂Zn ↪→
Zn\γ(S1). (This is not true if we replace homology groups by homotopy
groups in case γ is knotted). Thus the following is well defined.

Definition 3.3. Let γ1, γ2 : S1 → Zn be two continously embed-
ded closed loops having degree 1 after projecting onto the S1-factor of
Zn = R/nZ × D. Assume that their images are disjoint from each other
and from ∂Zn. Then γ1 determines an homology class in the complement of
γ2. Define the linking number to be the unique integer lk(γ1, γ2) such that
γ1 is homologous to

Ln + lk(γ1, γ2)[∂D] ∈ H1(Zn\γ2(S1); Z)

where {Ln, [∂D]} is the canonical basis, longitude and meridian, that we
just defined.
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γ1

γ2

Figure 9. γ1 and γ2 represent two disjoint continuously
embedded closed loops in the solid torus Z2. Their linking
number is lk(γ1, γ2) = 1.

The linking number turns out to be symmetric, that is lk(γ1, γ2) =
lk(γ2, γ1). Moreover, with these conventions one has linear growth under
iterates: if γki : S1 → Zkn represents the unique lift of γi to the longer
mapping torus (Zkn, λkn), for i ∈ {0, 1}, then lk(γk1 , γ

k
2 ) = k · lk(γ2, γ1) if

k ∈ N.
Making use of further symmetry of the contact structure we also obtain

canonical Conley-Zehnder indices for periodic orbits of the Reeb flow. Recall
that usually, on a general manifold M equipped with a contact form λ,
at a periodic orbit γ of the Reeb flow one requires a choice of symplectic
trivialization, up to homotopy type, of the contact structure ξ := kerλ
along γ to be able to assign a Conley-Zehnder index to γ. In the cases at
hand the contact manifold Zn is covered by Z∞ = R × D on which the
contact structure ξ := kerλ∞ is invariant under the R-action c · (z̄, x̄, ȳ) =
(z̄ + c, x̄, ȳ) (and hence also globally trivializable). This descends to a circle
action c · (z, x, y) = (z + c, x, y) on Zn. There is a unique homotopy class
of trivializations on Zn admitting a representative which is invariant under
this circle action.

Definition 3.4. Let γ be a periodic orbit of the Reeb flow of (Zn, λn).
Then we take the Conley-Zehnder index of γ to be with respect to the unique
homotopy class of global trivializations of the contact structure which admit
an S1-invariant representative. We will denote this by

μ(γ) ∈ Z.

3.2. Notions of Rotation Number. For a more sophisticated
approach to rotation numbers of surface maps see [30, 31, 32, 60], in which
the area preserving property of the map is used to make sense of the rate
at which almost all orbits rotate about a given fixed point, via the Birkhoff
ergodic theorem.

For our discussion it will suffice to talk of the total rotation number of a
smooth area preserving diffeomorphism of the disk associated to its restric-
tion to the boundary circle and associated to a periodic point, in the latter
intuitively describing the infinitesimal rate at which points nearby rotate
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around the periodic orbit. By total, we mean that the rotation numbers are
real valued, as opposed to merely circle valued*.

Recall that any orientation preserving homeomorphism of the circle has
a well defined value in R/Z called its rotation number. Any choice of lift to a
homeomorphism of the real line can be assigned a real valued rotation num-
ber, but this depends on the choice of lift. Similarly, any choice of homotopy
of the circle map to the identity determines a unique lift and thus allows
to assign a real valued rotation number. Indeed, if F : [0, 1] × S1 → S1,
is a homotopy from id = F (0, ·) to f = F (1, ·), there is a unique lift
F̄ : [0, 1] × R → R of F satisfying F̄ (0, ·) = idR, giving us a canonical
lift F̄ (1, ·) of f .

More generally, if one has a diffeomorphism of a surface one can assign a
circle valued rotation number to the restriction to any boundary component,
and to each fixed point via the differential at the fixed point. But we can
obtain the more useful real valued rotation numbers if the map is isotopic
to the identity and we choose such an isotopy class. Moreover, this gives a
canonical way to assign integer valued linking numbers to pairs of periodic
orbits of the same period.

In the framework we are working with here, we are always in the situation
of having a diffeomorphism of the disk for which we have chosen a mapping
torus generating it as the first return map. This is similar to fixing an isotopy
class from the disk map to the identity, and indeed, the choice of a mapping
torus allows us to define real valued rotation numbers (and linking numbers
as we already saw). Although for all of this it is unnecessary that the map
be area preserving, we will nevertheless make use of this to make a short
route to a workable definition.

Consider a Reeb-like mapping torus (Z1, λ1) generating a disk map ψ :
D → D. Let f : ∂D → ∂D denote the restriction of ψ to the boundary. The
choice of mapping torus gives us a canonical lift f̄ : R → R of f as follows.

Restricting the Reeb-flow to the boundary of the disk slice D0 = {0} ×
D ⊂ Z1, gives us a smooth map φ : R × ∂D0 → ∂Z1. Reparameterising if
necessary, we may assume that all points in ∂D0 have first return time 1.
Then φ restricts to a map φ : [0, 1]× ∂D0 → ∂Z1 whose projection onto the
∂D factor of ∂Z1 = R/Z × ∂D gives us a homotopy

F : [0, 1] × ∂D → ∂D

from F (0, ·) = id to F (1, ·) = f . As described above, F has a unique lift to
a homotopy of R starting at the identity and ending at a lift of f , which we
take to be f̄ .

*What we refer to here as total rotation numbers are perhaps better described as
translation numbers. The difference between this concept and rotation number is explained
nicely in Franks [33] for example.
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Definition 3.5. For each n ∈ N define the total rotation number of ψn

on the boundary to be the real number

Rotψn(∂D) := Rot(ψ̄n),

where ψ̄n : R → R is the canonical lift, just described, of ψn : ∂D → ∂D
induced by the flow on the boundary of Zn.

It is easy to show that for each n ∈ N, Rotψn(∂D) = nRotψ(∂D).

Definition 3.6. Let n ∈ N. For p ∈ Fix(ψn) we define the infinitesimal
rotation number of ψn at p to be

Rotψn(p) :=
1
2

lim
k→∞

μ(γkp )
k

where γp : S1 → Zn is the periodic orbit passing through the disk slice D0

at the point p, and μ(γ) denotes the Conley-Zehnder index of γ as described
in 3.4.

Again, it is easy to show that for each k ∈ N, Rotψkn(p) = kRotψn(p).

Definition 3.7. Let p ∈ Fix(ψn) be an interior fixed point. Define the
twist interval of p, as a fixed point of ψn, to be the open interval of real
numbers

twistψn(p) :=
(

min{Rotψn(p),Rotψn(∂D)} , max{Rotψn(∂D),Rotψn(p)}
)
.

This interval could be empty.

We emphasize, that all three definitions above are implicitely with respect
to a choice of data (Z1, λ1), that is, a Reeb-like mapping torus generating
the disk map ψ.

3.3. Finite Energy Foliations for Mapping Tori. In our discus-
sion here of finite energy foliations associated to Reeb-like mapping tori, as
opposed to more general three-manifolds (see definition 2.6), the leaves will
come in only two forms; cylinders and half cylinders.

Consider a Reeb-like mapping torus (Zn, λn). Let J̃n be an almost com-
plex structure on R × Zn that is compatible with λn in the sense described
in Section 2.1.

Remark 3.8. It is possible to do everything that follows under the addi-
tional assumption that J̃n is the lift of an almost complex structure J̃1 on
R × Z1 that is compatible with λ1. In other words, that the lift J̃∞ to
R × Z∞ is invariant under the 1-shift automorphism, or deck transforma-
tion, (a, z̄, x̄, ȳ) �→ (a, z̄+1, x̄, ȳ). This is potentially a very useful symmetry,
giving us positivity of intersections between leaves of foliations associated
to different iterates. But we do not use this for any of the arguments or
applications in this paper except for Theorem 4.1.
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A cylinder will refer to a finite energy pseudoholomorphic curve of the
form

[S2, i, {0,∞}, ũ],
so called because S2\{0,∞} can be identified with R × S1. In other words,
a cylindrical leaf in a finite energy foliaton F̃ associated to a Reeb-like
mapping torus (Zn, λn) with compatible almost complex structure J̃n, will
mean the image of an embedded solution ũ : R × S1 → R × Zn to the
non-linear Cauchy-Riemann equation, having finite E-energy.

A half cylinder leaf in F̃ will refer to a finite energy pseudoholomorphic
curve (with boundary) of the form

[D, i, {0}, ṽ]

where D = {z ∈ C| |z| ≤ 1}, because D\{0} can be holomorphically identi-
fied with the half infinite cylinder [0,∞) × S1. As this is our first reference
to pseudoholomorphic curves with boundary, let us be more precise. Any
representative of a half cylinder leaf can be identified with an embedded
solution

ṽ = (b, v) : [0,∞) × S1 → R × Zn

to the differential equation T ṽ ◦ i = J̃n ◦ T ṽ, having finite energy, and
satisfying the following boundary condition, that there exists a constant
c ∈ R such that

ṽ({0} × S1) ⊂ {c} × ∂Zn.

The constant c depends on the leaf. Indeed, if F = ṽ([0,∞) × S1) is a leaf
with boundary in {c} × ∂Zn, then translation in the R-direction to Fc′ is a
leaf with boundary in {c+ c′} × ∂Zn.

For the elliptic theory to work well, a pseudoholomorphic curve with
boundary is typically required to have each boundary component lie in a
prescribed surface in R×M having suitable properties. For example surfaces
of the form {const} × L where λ restricts to a closed form on L, is one
possibility. This is the situation we work with here, where L = ∂Zn.

A finite energy foliation F̃ associated to a Reeb-like mapping torus
(Zn, λn), must have a non-empty collection of half cylinder leaves. These
determine a unique element in H1(∂Z; Z). That is, if ṽ = (b, v) : [0,∞) ×
S1 → R × Zn represents a leaf, then the restriction v(0, ·) : S1 → ∂Zn is a
closed loop representing an homology class that is the same for all leaves in
F̃ . This homology class we will refer to as the boundary condition of F̃ .

We can visualize the finite energy foliations of a Reeb-like mapping torus
as in Figures 10 and 11.

The boundary condition can be described more succinctly in terms of a
single integer.

Definition 3.9. Let F̃ be a finite energy foliation associated to a Reeb-
like mapping torus (Zn, λn). We will say that F̃ has boundary condition
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Figure 10. A global system of surfaces of section of a Reeb-
like mapping torus. On the right a disk-like cross-section,
where the spanning orbits are the dots. This can be com-
pared with Figures 7 and 8, although here each spanning
orbit corresponds to a single dot rather than a pair.

Figure 11. An opened out view of a global system of sur-
faces of section of a mapping torus. Inside, we see that the
closure of each leaf is an embedded copy of S1 × [0, 1]. The
flow is transversal to the interior of each leaf, and tangent to
those components of the boundary which lie in the interior
of the solid torus. These are the spanning orbits.

k ∈ Z if every half cylinder leaf F ∈ F̃ has boundary representing the
homology class

Ln + k[∂D] ∈ H1(∂Zn; Z)

where Ln and [∂D] are the canonical longitude and meridian introduced
earlier.

A variety of boundary conditions are illustrated in Figure 12.

Remark 3.10. The projected leaves from the finite energy foliations
always intersect the disk-slice

D0 = {0} ×D ∈ Z1,
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Figure 12. From left to right, the boundary condition is
represented by the integers −1, 0, and 1 respectively. The
winding of the leaves is measured relative to the canonical
longitude Ln ∈ H1(∂Zn; Z).

transversally in the solid torus. Hence the nice cross-sectional pictures in
the figures. We justify this now.

It is a simple matter to prescribe the almost complex structure J1 on a
neighborhood of D0, without losing the necessary genericity. This way one
can arrange that there exists an embedded pseudoholomorphic disk ṽ : D →
R × Z1 with boundary ṽ(∂D) = {0} × ∂D0 ⊂ {0} × Z1 ⊂ R × Z1, such
that the projection of ṽ to Z1 is a parameterization of the disk slice D0. By
taking R-translates of ṽ we foliate the whole hypersurface R×D0 ⊂ R×Z1

by a 1-parameter family of embedded holomorphic disks D.
Let F̃ ∈ F̃ be a leaf in a finite energy foliation. Let F = pr(F̃ ) denote

the projection down to Z1. We claim that F is transverse to D0. Indeed, F̃
has topological intersection number 1 with each leaf in D, so by positivity of
intersections must also intersect each such leaf transversally in R × Z1 and
at a unique point. The upshot is that F̃ intersects the hypersurface R ×D0

transversally in R × Z1, and so the projection F = pr(F̃ ) ⊂ Z1 intersects
D0 transversally in Z1. So F ∩ D0 is in each case a connected, compact,
non-empty, zero or 1-dimensional embedded submanifold of D0.

The following was proven in [11].

Theorem 3.11 (Bramham). Let (Z1, λ1) be a Reeb-like mapping torus
generating a non-degenerate disk map ψ, which coincides with an irrational
rotation on the boundary of D. Let β ∈ R denote the total rotation number
of ψ on the boundary, as determined by the mapping torus. For each n ∈ N

let kn, kn + 1 be the two closest integers to nβ. Then there exists an almost
complex structure J̃1 compatible with λ1, such that for each n ∈ N, there exist
two finite energy foliations, we will denote by F̃kn

n and F̃kn+1
n , associated to

(Zn, λn, J̃n), where J̃n is the lift of J̃1, which have the following properties:
(1) Spanning orbits: They share a unique spanning orbit. That is,

|P(F̃kn
n )∩P(F̃kn+1

n )| = 1. The shared orbit has odd Conley-Zehnder
index 2kn + 1.

(2) Boundary conditions: The boundary condition for the leaves in
F̃ j
n, for j ∈ {kn, kn + 1}, is precisely the integer j.

The following is a basic observation.
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Lemma 3.12. Any two distinct spanning orbits γ1, γ2 of a finite energy
foliation F̃ have linking number lk(γ1, γ2) = k where k is the integer repre-
senting the boundary condition of F̃ .

The next existence result is far more useful, although it already assumes
the existence of a periodic orbit. For the following, note that the orbit γ
having odd Conley-Zehnder index, is equivalent to a fixed point of the iter-
ate ψn that is either elliptic, or is hyperbolic with unorientable stable and
unstable manifolds.

“Theorem” 3.13 (Bramham). Let (Z1, λ1) be a Reeb-like mapping torus
generating a non-degenerate disk map ψ, which coincides with an irrational
rotation on the boundary of D*. Then there exists an almost complex struc-
ture J̃1 compatible with λ1, such that for each n ∈ N, the data (Zn, λn, J̃n)
admits “many” finite energy foliations, where J̃n is the lift of J̃1: Let γ be
any periodic orbit in (Zn, λn) homologous to the longitude Ln, and having
odd parity Conley-Zehnder index. Then for each k ∈ Z, there exists a finite
energy foliation F̃k(γ) associated to (Zn, λn, J̃n) with the following two prop-
erties.

(1) Spanning orbits: γ is a spanning orbit. Equivalently R × γ is a
leaf.

(2) Boundary conditions: The boundary condition for the leaves in
F̃k(γ) is the chosen integer k.

The strength of this statement is that it allows to choose a spanning
orbit. Additional subtleties enter the proof when the boundary condition
k ∈ Z lies in the twist interval of the pre-selected periodic orbit γ, which
will appear in [14]. In this case it seems that the only way around certain
difficulties is to use a refinement of contact homology developed by Momin
[65, 66]. The simpler boundary conditions will be covered in [13].

Here is a simple way to see that Theorem 3.13 really does produce many
different finite energy foliations, even with the same boundary conditions,
provided there exist enough periodic orbits. Suppose that γ1 and γ2 are two
distinct periodic orbits in (Zn, λn) that are homologous to the longitude Ln.
They have a linking number lk(γ1, γ2) ∈ Z. Now, by Lemma 3.12, for any
integer k ∈ Z not equal to lk(γ1, γ2), any finite energy foliation associated
to (Zn, λn) that contains γ1 as a spanning orbit cannot contain γ2, unless
the boundary condition is equal to lk(γ1, γ2). Thus if F̃k(γ1) and F̃k(γ2)
are finite energy foliations with boundary condition k ∈ Z where k is not
equal to lk(γ1, γ2), and having γ1 and γ2 as spanning orbits respectively,
then F̃k(γ1) �= F̃k(γ2).

The discussion of integrable disk maps in Section 4.1 makes it clear in
certain situations what kinds of different finite energy foliations one can

*Added in proof: all boundary assumptions in this result, and hence in all the appli-
cations here now appear to be unnecessary.
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Figure 13. On the left a simple finite energy foliation. On
the right the center spanning orbit is not connected directly
to the boundary of the mapping torus by any leaf, so this
example is not simple.

expect to find. For example, a finite energy foliation for a given (Zn, λn) is
in general not uniquely determined by its boundary condition and a single
spanning orbit alone.

For the proofs in the next section it seems useful to distinguish the
following feature for finite energy foliations of a Reeb-like mapping torus.

Definition 3.14. Suppose that F̃ is a finite energy foliation associated
to a Reeb-like mapping torus on Zn. We will say that F̃ is simple if every
spanning orbit is connected directly to the boundary of Zn by a leaf in F̃ .

The following are equivalent characterizations of simple:
• The projection down to Zn of the rigid leaves intersects the disk

slice D0 in a tree-like graph. Refer also to remark 3.10.
• There are no closed “cycles” of leaves.
• There are no Fredholm index-2 whole cylinders.

Perhaps the simplest example of a situation where one finds a non-simple
finite energy foliation is the following.

Figure 14 depicts the flow lines of some autonomous smooth Hamiltonian
H : A→ R on the closed annulus A = R/Z × [0, 1]. The time-T map of the
flow, for T > 0, is an area preserving twist map φ in the sense of Poincaré
and Birkhoff. In fact for T > 0 sufficiently small φ is a monotone twist map,
meaning that φ = (φ1, φ2) : A→ A where ∂φ1

∂x2
> 0 in coordinates (x1, x2).

Let us now consider the disk map ψ : D → D which one obtains by
shrinking the inner circle to a point, which then corresponds to an elliptic
fixed point of ψ at the origin. Let (Z1, λ1) be a Reeb-like mapping torus gen-
erating ψ, chosen so that the induced total rotation number on the boundary
lies in the interval (0, 1). Let us denote by γ0 the periodic orbit correspond-
ing to the fixed point 0 ∈ D. Then a finite energy foliation F̃ associated
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Figure 14

to (Z1, λ1) that has γ0 as a spanning orbit, and has boundary condition
0, would, it turns out, have to look as in Figure 15, which is a non-simple
foliation.

The property of F̃ having a chain of rigid leaves surrounding the span-
ning orbit γ0 and the “twisting” property going on about the fixed point
0 relative to the boundary behavior, are not coincidental. In the following
precise sense there is a twist fixed point if and only if there is a non-simple
finite energy foliation.

Lemma 3.15. Suppose that F̃ is a finite energy foliation associated to a
Reeb-like mapping torus (Zn, λn). Let k ∈ Z be the boundary condition for
F̃ . Then:

(1) If there exists a spanning orbit that is not connected directly to the
boundary of Zn by a leaf in F̃ (i.e. if F̃ is not simple), then there

−1 10

γ0

Figure 15. In a simple example. On the left the dynamics,
with Conley-Zehnder indices, on the right one of the corre-
sponding finite energy foliations.
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exists a spanning orbit, not necessarily the same one, having k ∈ Z

in its twist interval.
(2) Every spanning orbit in F̃ that is connected directly to the boundary

of Zn by at least one leaf, corresponds to a fixed point of ψn that
does not have k ∈ Z in its twist interval. In particular, this implies
the converse to (1).

Proof. (Of part (2) by pictures) Suppose that there exists a spanning
orbit γ which has k in its twist interval. We will argue there cannot be a
leaf in F̃ which connects γ directly to the boundary of Z.

Due to the twist, the infinitesimal rotation number of γ lies on the
opposite side of the value k to the rotation number describing the bound-
ary behavior. The behavior of the leaves and the flow near γ and near the
boundary are as in the figure.

There is no way to complete the picture by connecting a leaf from the
spanning orbit γ to the boundary without contradicting the transversal-
ity of the flow to the leaf; near the spanning orbit the flow winds around
slower than the leaves, while the flow winds faster than the leaves near the
boundary. �

The example in Figure 15 is just a special case of the integrable maps
which are discussed in generality in Section 4.1.

3.4. A Proof of the Poincaré-Birkhoff Fixed Point Theorem.
In 1913 Birkhoff in [8] proved the following conjecture of Poincaré* known
as the Poincaré-Birkhoff fixed point theorem. See also [9]. Here A denotes
the closed annulus R/Z × [0, 1] and Ã the universal covering R × [0, 1] with
respect to the projection map π(x, y) = ([x], y).

Theorem 3.16 (Birkhoff). Let ψ : A→ A be an area preserving, orien-
tation preserving, homeomorphism of the closed annulus with the following
“twist” condition. There exists a lift ψ̃ = (ψ̃1, ψ̃2) : Ã→ Ã such that for all
x ∈ R,

ψ̃1(x, 0) > x and ψ̃1(x, 1) < x.

Then ψ has at least two fixed points which also lift to fixed points of ψ̃.

*Allegedly the effort cost Birkhoff 30 pounds in weight [5].
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In our framework we consider a smooth disk map ψ : D → D represented
as the first return map of a Reeb-like mapping torus (Z1, λ1). We observed in
Section 3.2 that the choice of a mapping torus allows us to assign canonical
twist intervals to each fixed point of ψ, and an integer to pairs of distinct
fixed points, called the linking number. Recall that the twist interval of ψ
at a fixed point p was defined as the open interval of real numbers bounded
by the (real valued) rotation number of ψ on the boundary of D and the
(real valued) infinitesimal rotation number of ψ at p.

We will prove the following reformulation of Theorem 3.16.

Theorem 3.17. Suppose that ψ : D → D is a C∞-smooth orientation
preserving, area preserving, diffeomorphism. Let (Z1, λ1) be a Reeb-like map-
ping torus generating ψ. If ψ has an interior fixed point p ∈ D, for which
there exists an integer k ∈ Z such that

k ∈ twistψ(p),

then ψ has at least two fixed points x1, x2, distinct from p, such that the cor-
responding periodic orbits γ1, γ2 : S1 → Z1 have linking numbers lk(γ1, γp) =
lk(γ2, γp) = k. (In fact one also finds that lk(γ1, γ2) = k.)

The Poincaré-Birkhoff theorem, also in more general formulations than
the statement in Theorem 3.16, has a long and beautiful history. We mention
just a few references [16, 19, 20, 21, 28, 29, 37, 38, 52, 62, 67, 70]. It is
perhaps not surprising that a variational approach in the spirit of Floer or
Conley and Zehnder should produce a proof in the smooth category. Indeed
we recall that this statement led Arnol’d to make his famous conjecture.

Nevertheless, we present now a proof by the first author of Theorem 3.17
using finite energy foliations, which is vaguely reminiscient of the simple
argument that applies only to monotone twist maps. The existence of a
second fixed point arises in a surprising way*, and not by using indices of
fixed points.

Proof. (Of Theorem 3.17) We wish to apply Theorem 3.13 which gives
us the existence of certain finite energy foliations. Currently to use this result
requires that the behavior of the disk map be a rigid (irrational) rotation on
the boundary circle. So we first make an elementary argument to reduce the
general case to this one. The reader who wishes to skip this should jump to
step 1.

We are given a C∞-smooth orientation preserving, area preserving, dif-
feomorphism ψ : D → D with an interior fixed point p, and an integer k
lying in the twist interval of p. Observe that on any ε-neighborhood of the
boundary of D we can modify ψ to obtain a new map ψ′ with the following

*We later learned that there is some similarity in this part of the argument with that
of Cotton-Clay [20] in his proof of a generalization of the Poincaré-Birkhoff theorem that
uses symplectic Floer homology.
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properties. ψ′ agrees with ψ outside of the boundary strip, is a rigid rotation
on the boundary of D, and is still a C∞-smooth orientation preserving, area
preserving, diffeomorphism. For example by composing ψ with a suitable
Hamiltonian diffeomorphism for a Hamiltonian that is constant outside of
the ε-neighborhood of ∂D. Moreover, one can do this in such a way that on
the open ε-neighborhood ψ′ sends points around in one direction further,
in an angular sense, than ψ does, and “speeding up” as you approach the
boundary circle. Pick this direction so as to enlarge the twist interval. If
one does this for ε > 0 sufficiently small, one can arrange that ψ′ has the
property that any fixed points within the ε-neighborhood of the boundary
have linking number with p different from k. To say all this rigorously one
should of course work with a lift, on the complement of p, to the universal
covering, but the idea is simple. Thus, it suffices to prove the assertion for
this modified map ψ′, because the two fixed points we find will automatically
be fixed points of the unmodified map ψ.

Similarly, to apply the existence Theorem 3.13 it will be convenient to
assume that the fixed point p is elliptic. A similar argument to the one just
described allows to modify the disk map ψ on an ε-punctured-neighborhood
of the fixed point p, this time so as to send points around p faster in the
opposite direction, in an angular sense, increasing the twist interval still
further. This way we can arrange that for the new map the eigenvalues
of the linearization Dψ′(p) lie on the unit circle, so that p is elliptic. The
upshot is that without loss of generality we can assume that our disk map
is a rigid rotation on the boundary of the disk (with any rotation number,
in particular we may take it to be irrational), and that the fixed point p
is elliptic. For the rest of the argument we will make these assumptions
on ψ.

Pick a Reeb-like mapping torus (Z1, λ1) generating the disk map ψ. Let
γp : S1 → Z1 be the simply covered periodic orbit corresponding to the fixed
point p. Since p is elliptic, γp has odd parity Conley-Zehnder index.

Step 1 The non-degenerate case: If the disk map, equivalently the Reeb
flow, is non-degenerate, then the existence Theorem 3.13 applies immedi-
ately and provides a finite energy foliation F̃ associated to (Z1, λ1) which
has the odd index orbit γp for a spanning orbit, and has boundary condition
the integer k.

By part (2) of Lemma 3.15 γp cannot be connected to the boundary of
Z1 by a leaf in F̃ because k ∈ twistψ(p). Thus γp is “enclosed” by a chain
of rigid leaves, as for example in Figure 16.

Note that the chain of rigid leaves has to include at least two spanning
orbits, else the enclosed region has the property that points move in only one
direction normal to its boundary, which would contradict the area preserving
property of ψ.

Any two spanning orbits besides γp have linking number k with γp
because this is the boundary condition for the foliation F̃ . Thus the the-
orem is proven provided ψ is non-degenerate.
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γp

C1

C2

Figure 16. A chain of rigid leaves C1 and C2 enclosing γp.

Step 2 It is not immediately obvious how to complete the proof to
the degenerate case while retaining two new fixed points. This part really
uses compactness of the holomorphic curves, and not merely positivity of
intersections.

Suppose ψ has possibly degenerate fixed points. Carrying out the above
argument for a sequence of non-degenerate perturbations of ψ, keeping p
fixed, we obtain a sequence of finite energy foliations {F̃j}j ∈ N having γp
as a spanning orbit and boundary condition k. By the argument in step 1
each F̃j has at least two spanning orbits besides γp. These have uniformly
bounded period, so as j goes to infinity they must converge to periodic orbits
for the unperturbed mapping torus (Z1, λ1) that correspond to fixed points
for ψ. The only concern is that all the spanning orbits might collapse onto
a single limiting orbit, when the theorem requires two.

We argue as follows. Figure 17 illustrates the key idea. Suppose that
indeed all spanning orbits from the sequence F̃j , besides γp, converge to a
single periodic orbit σ in the limit as j → ∞. Note first that the twist con-
dition prevents σ from coinciding with γp. Indeed, the sequence of binding
orbits which converge to σ have linking number k with γp, and this pre-
vents them entering a small neighborhood of γp on which all points rotate
either much faster or must slower than k depending on the direction of the
infinitesimal twisting at p. So σ �= γp.

For each j there exists a closed cycle of rigid leaves in F̃j , surrounding
γp. Let Sj denote the intersection of such a closed cycle with the disk slice
D0. Each Sj is a continuously embedded closed loop in D0, see remark
3.10. In particular each is non-empty, compact and connected. Taking a
subsequence, we may assume that the sequence of sets Sj converges in the
Hausdorff metric sense, to a non-empty compact set S∞ ⊂ D. Each Sj is
connected implies that S∞ is connected. (Although the path connectedness
need not pass to the limit.) Moreover, if S∞ is disjoint from p and from ∂D,
it is not hard to see that p and ∂D must both lie in different components of
D\S∞. We will establish that S∞ ∩ ({p} ∪ ∂D) = ∅ in a moment.

As j → ∞ the spanning orbits corresponding to fixed points in Sj con-
verge to σ. This means that all their periods converge to that of σ. Which
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Sj

γp

σ

γp

Figure 17. Illustrating the worst case scenario when the
only two spanning orbits, besides the twist orbit γp, collapse
onto a single orbit σ when taking a limit of a sequence of
non-degenerate perturbations.

means, by Stokes’ theorem, that the dλj-energy of the leaves in the Sj cycles
converge uniformly to zero as j → ∞. Thus if Fj ∈ F̃j is any sequence of
leaves for which the projection pr(Fj) meets D0 in a point in Sj , then any
convergent subsequence gives in the limit a pseudoholomorphic whole cylin-
der C having zero dλ-energy, and finite E-energy. Such a solution C is either
constant or is a spanning cylinder for a periodic orbit (even though the peri-
odic orbits are not necessarily non-degenerate). From the homology class
of C we find that it is non-constant, and moreover that its spanning orbit
corresponds to a fixed point of ψ.

Applying this idea to various R-translates of such leaves Fj ∈ Sj , we can
achieve every point in the set S∞ as such a limiting fixed point. It follows
that every point q ∈ S∞ is a fixed point of ψ and satisfies the following two
alternatives: either q = p, or if q �= p then it must have linking number k
with p. The twist condition implies that on a small punctured neighborhood
of p there are no fixed points having this linking number k with p, and so S∞
is disjoint from some punctured neighborhood of p. Moreover, S∞ contains
at least one point distinct from p because it contains the periodic orbit σ.
It follows, since S∞ is connected, that it is also disjoint from p. Similar
arguments show that S∞ is disjoint from the boundary of D.

Thus, as mentioned above, since p and ∂D are disjoint from S∞, they
lie in different components of the complement D\S∞. The set S∞ must
therefore have infinitely many points. In particular at least two points. These
are fixed points with the desired linking number k. �

3.5. A Proof of a Theorem of Franks and Handel. We could
summarize the last section by saying loosely that if an area preserving disk
map has “twisting” in a suitable sense, then one can find periodic orbits and
distinguish them by topological means, namely by their linking numbers.

To make this precise, let us say that a diffeomorphism ψ : D → D has
“twisting” if, after making a choice that allows to define real valued rotation
numbers, for example an isotopy to the identity, or a generating mapping
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torus, there exists an interior fixed point z ∈ D such that

(1) Rotψ(z) �= Rotψ(∂D),

where the left hand side is the total infinitesimal rotation number of ψ at z,
and the right hand side is the total rotation number of ψ on the boundary
of D. One way to define these is described in Section 3.2, both real valued
numbers.

An equivalent way of saying this is that the twist interval of the fixed
point z is non-empty. The twist interval grows linearly with iterates, so that
for a high enough iterate it contains an integer,

twistψn(z) ∩ Z �= ∅.
In this situation the Poincaré-Birkhoff fixed point theorem, as stated in
Theorem 3.17, applies to ψn and we find that for each integer k ∈ twistψn(z),
there exists a fixed point x ∈ Fix(ψn) (actually two fixed points) which has
linking number k with z, lkψn(x, z) = k.

It is a simple matter to work with an unbounded sequence of iterates
ψnj , and pick integers kj in the twist interval twistψnj (z) to be primes, and
so obtain a sequence of fixed points xj for which the average linking numbers
with z,

lkψnj (xj , z)
nj

=
kj
nj
,

are already in lowest form as fractions and are therefore pairwise distinct.
Thus the sequence (xj)j ∈ N is a sequence of periodic points of ψ, lying on
pairwise distinct orbits. Moreover, xj has minimal period nj , with nj → ∞
as j → ∞. Thus, a disk map having a twist, or some iterate with a twist, has
infinitely many periodic orbits, and moreover periodic orbits of unbounded
minimal period.

In [67] the argument is pushed as far as possible. If ψ has a fixed point
with non-empty twist interval (a, b), a, b ∈ R, then for each N ∈ N, the num-
ber μψ(N) of periodic orbits of ψ having minimal period less than or equal
to N grows like |b−a|N2. Indeed, for each rational number p/q ∈ Q in (a, b)
the argument above gives us a periodic point of ψ having average linking
number p/q. So μψ(N) is at least the number of rationals in (a, b) having
denominator at most N when written in lowest form. This is equivalent to
counting lattice points in a triangle, having relatively prime coordinates,

μψ(N) ≥ |{ (p, q) ∈ Z × Z |Na < p < Nb, 1 ≤ q ≤ N and gcd(p, q) = 1}|.
A little number theory, see [67, 40], tells us precisely what the limit of
the quotient of the right hand side with N2 is, leading to the following
asymptotic estimate from below

(2) lim
N→∞

μψ(N)
N2

≥ 3|b− a|
π2

.
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To summarize: a disk map with a twist has at least quadratic growth of peri-
odic orbits. Although one might generically expect a far higher growth rate,
quadratic is the best possible for general twist maps, see examples in [67].

Birkhoff himself applied these ideas to the problem of finding infinitely
many closed geodesics on 2-spheres. In many cases he showed that the
dynamics can be related to that of an area preserving diffeomorphism of
an annulus, possibly without boundary. This holds for example whenever
the metric has everywhere positive curvature. When the so called Birkhoff
map has a twist he could apply his fixed point theorem as above to complete
the argument.

But in the absence of a twist the problem of detecting infinitely many
periodic orbits becomes much subtler. Indeed, a twist allows to conclude
periodic orbits of unbounded period and to detect them by topological
means. But this clearly does not work for example on the identity map
of the disk which has infinitely many periodic orbits but which are indis-
tinguishable by linking numbers. It was an open problem for some time,
whether every smooth Riemannian metric on S2 admits infinitely many dis-
tinct (prime) closed geodesics.

In 1992 John Franks proved the following celebrated result, [30] origi-
nally stated for annulus maps.

Theorem 3.18 (Franks). Let ψ be any area preserving, orientation pre-
serving, homeomorphism of the open or closed unit disk in the plane. If ψ
has 2 fixed points then it has infinitely many interior periodic orbits.

A remarkable aspect of this statement is that no twisting type of con-
dition is required. Let us point out that by imposing seemingly mild extra
assumptions one can unwittingly introduce a twist into the system, thereby
allowing much simpler arguments which miss the whole point of this the-
orem. Two examples which fall into this category, the first of which is a
familiar one for symplectic geometers, are the assumption of non-degeneracy
of periodic orbits, or that the rotation number on the boundary of the disk
is irrational.

Franks’ theorem completed the proof of the conjecture regarding closed
geodesics on the two-sphere, in the cases where Birkhoff’s annulus map is
well defined. At the same time Bangert found a clever way to handle the
cases where the Birkhoff map is not defined, [4]. Let us also note that shortly
thereafter Hingston found another route to the closed geodesics question,
using equivariant Morse homology [40], bypassing the part of the argument
that required Theorem 3.18.*

An interesting strengthening of Franks’ theorem is the following result
due to Franks and Handel [32] in 2003. In fact much more generally, they

*Added in proof: recently a proof of the S2-version of Theorem 3.18, in the smooth
category, using Floer homology, has been announced by Collier, Kerman, Reiniger, Tur-
munkh, and Zimmer [18].
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proved analogous statements for Hamiltonian diffeomorphisms on general
closed oriented surfaces.

We would also like to mention that the Franks-Handel result was
extended to the C0-case by Le Calvez [59] using very different techniques.
Indeed the approach taken by Le Calvez involved a surprising generalization
of the Brouwer plane translation theorem [57, 58]. Given a surface homeo-
morphism isotopic to the identity (not assumed to be area preserving), he
constructs a 1-dimensional foliation of the surface that in a certain sense is
transverse to the dynamics. It is striking that he achieves this without any
recourse to PDE’s, or variational principle. Le Calvez’ theory is also nicely
outlined in the survey [60].

Theorem 3.19 (Franks-Handel). For a C∞-smooth Hamiltonian diffeo-
morphism ψ : S2 → S2 having at least three fixed points, either there is no
bound on the minimal period of its periodic orbits, or ψ is the identity map.

In the case when the map is not the identity, they obtain in [32] the
following lower bound on the growth rate of periodic orbits. There exists a
constant c > 0, depending on ψ, such that the number of periodic orbits
μψ(N) with period less than or equal to N ∈ N satisfies

μψ(N) ≥ cN

for allN ∈ N. A significant improvement on this growth rate estimate follows
from work by Le Calvez [61]. The main result in [61] can be combined with
the Franks-Handel theorem or [59], to conclude at least quadratic growth
of periodic orbits. Namely, that there exists c > 0 such that μψ(N) ≥ cN2

for all N ∈ N.
Since this is exactly the growth rate well known for twist maps, described

in (2) above, it raises the following question:
Suppose that ψ is an area preserving, orientation preserv-
ing, diffeomorphism of the disk with at least two fixed
points. If ψ is not the identity, is some iterate of it actu-
ally a twist map?

Recall that we said that a disk map ψ is a twist map if it has the following
property: that there exists an interior fixed point p ∈ D\∂D of ψ, such that
the annulus map

ψ : D\{p} → D\{p}
has a twist in the following sense. Namely, that it admits a lift to a map
on the infinite strip F = (F1, F2) : R × (0, 1] → R × (0, 1] satisfying the
Poincaré-Birkhoff-like twist condition that the component F1 is uniformly
strictly positive on a neighborhood of the line R×{0}, and strictly negative
on R×{1} (or vice versa). Aternatively the twist interval of p, as in definition
3.7, contains an integer. Note that the question only asks for some iterate
to be a twist map. As far as the authors are aware, the following is new.
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“Theorem” 3.20 (Bramham). Let ψ : D → D be a C∞-smooth, area
preserving, orientation preserving, diffeomorphism having at least two fixed
points, and coinciding with a rigid rotation on the boundary of the disk*.
Then either ψ is the identity map, or there exists n ∈ N for which ψn is a
twist map in the sense just described above.

The quotation marks are because it relies on the unpublished “Theorem”
3.13.

Notice that this statement combined with the Poincaré-Birkhoff fixed
point theorem gives us the analogous result of Franks and Handel, Theorem
3.19, but for disk maps instead of maps on S2. By the discussion above
it also implies the sharp quadratic growth lower bound on periodic orbits.
Moreover, it allows to partition the set of area preserving diffeomorphisms
of the disk into the following three disjoint subsets:

(1) Pseudo-rotations: those maps with a single periodic orbit.
(2) Roots of unity: those maps for which some iterate is the identity.
(3) Twist maps: those maps for which some iterate has an interior

fixed point on whose complement we have the “twist” behavior just
described above.

The following proof will appear in [12].

Proof. (Of Theorem 3.20) Suppose that ψ has two fixed points, and
that for all n ∈ N, ψn has no twisting. In other words, every interior fixed
point, of every iterate, has empty twist interval. Then we will show that
ψ(z) = z for all z ∈ D, by showing that the vertical foliation (definition 2.7)
is a finite energy foliation.

Pick a suitable Reeb-like mapping torus (Z1, λ1) generating ψ. This gives
us for each n ∈ N a mapping torus (Zn, λn) generating the iterate ψn. With
respect to these choices we associate real valued rotation numbers to ψ and
its iterates at each fixed point and to the boundary of D. We proceed in
three steps.

Step 1: The (real valued) rotation number of ψ on the boundary is an
integer.

Suppose not. Then we may assume that ψ has only non-degenerate fixed
points (because a degenerate fixed point has integer infinitesimal rotation
number), and then the condition of no twisting would imply that the rotation
number on the boundary is also an integer and we would be done.

Using that ψ has at least two fixed points one can show, using the folia-
tions for example, or even just the Lefschetz fixed point formula, that there
must be a hyperbolic fixed point with orientable stable and unstable man-
ifolds. Since such a hyperbolic fixed point has integer infinitesimal rotation
number the lack of twisting implies that the rotation number on the bound-
ary is an integer.

*Added in proof: it now appears that no assumptions on the boundary are required.
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Let us say that a fixed point is odd if the eigenvalues of the lineariza-
tion lie either on the unit circle or the negative real line. Equivalently, the
corresponding periodic Reeb orbit is either degenerate or is non-degenerate
and has odd parity Conley-Zehnder index.

Step 2: In this step we show that all odd fixed points have the same
λ1-action, where we define the λ1-action of a fixed point x ∈ D to be the
value

A(x) =
∫
S1

γ∗λ1

where γ : S1 → Z1 is the periodic orbit corresponding to x.
Let k ∈ Z be the total rotation number of ψ on the boundary. Being

an integer ψ has at least one fixed point on the boundary of D. Let a0 > 0
denote the λ1-action of any of these boundary fixed points. It suffices to
show that every interior odd fixed point of ψ has λ1-action equal to a0.

Fix any interior odd fixed point x. Let ε > 0. We will show that

|A(x) − a0| < ε.

Let γx : S1 → Z1 be the corresponding closed Reeb orbit. Pick n ∈ N

large enough that Areadλ1(D)/n < ε. Take a sequence of non-degenerate
perturbations λj1 of λ1 for which γx is a closed Reeb orbit for each λj1 also,
with action converging to A(x). Since x is an odd fixed point of ψ, we may
do this in such a way that γx has odd Conley-Zehnder index with respect
to λj1. Assume that we also perturbed near the boundary of Z1 so that the
first return map ψj is a rotation on the boundary of D with rotation number
k + δj , where for each j, δj ∈ (0, 1) is irrational.

By assumption ψn has no twist fixed points. Thus every twist interval
has length zero, and Rotψn(p) = Rotψn(∂D) = nk for all p ∈ Fix(ψn).
Thus for sufficiently small perturbations, that is for j sufficiently large, we
may assume that for each fixed point p of ψnj , its twist interval is in a
neighborhood of kn. For example we may assume that

twistψn
j
(p) ⊂

(
kn− 1

2
, kn+

1
2

)
.

Recall, by part (2) of Lemma 3.15, that any finite energy foliation with
boundary condition outside of the twist interval of each of its spanning
orbits is simple. Using “Theorem” 3.13 there exists a finite energy foliation
F̃j associated to λj on Zn, having γnx as a spanning orbit and any boundary
condition we choose. Let us take the boundary condition to be kn + 1. As
this is outside of every twist interval F̃j must be simple.

It follows that there exists a half cylinder leaf in F̃j which connects γnx
to the boundary. Positivity of the dλj-energy of this leaf and Stokes theorem
give us the following estimate:∫

S1

(γnj )∗λj <
∫
Ln

λj + (nk + 1)
∫
∂D

λj
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where Ln is any representative of the canonical longitude on ∂Zn. Dividing
by n and letting j → ∞ leads to

A(x) ≤ a0 +
1
n

Areadλ1(D) < a0 + ε.

To complete the argument we need the lower bound A(x) > a0 − ε which
can be obtained in the same way by changing the boundary conditions to
nk − 1.

Step 3: In this step we show that the vertical foliation F̃ν(Z1, λ1) is
also a finite energy foliation!

See definition 2.7 to recall how we define a vertical foliation. Take any
sequence of approximating data λj1 → λ1 with the only requirement that
each be non-degenerate (for fixed points at least) and have irrational rotation
number on the boundary.

Let F̃j be a finite energy foliation associated to (Z1, λ
j
1) having boundary

condition k. Recall that k ∈ Z is the rotation number of ψ on the boundary.
There is no need to select a spanning orbit. Then we claim that the dλ-
energies of all leaves converge to zero, that is Ej → 0 where

Ej := sup
{ ∫

F
dλj1 |F ∈ F̃j

}
.

Roughly this is via the following argument: The value Ej must be achieved
by a leaf in F̃j having Fredholm index 2, since all other leaves have index 0 or
1 and lie on the boundary of a family of index-2 leaves, and the dλj1-integral
is lower semi-continuous under C∞

loc-convergence. Any leaf having Fredholm
index 2 has only odd index asymptotic orbits (or orbit). Any sequence of such
leaves has dλj1-energy decaying to zero because in the limit the asymptotic
orbits converge to odd periodic orbits of λ1, which by step (2) all have the
same action.

It follows that the sequence F̃j , which has uniformly bounded E-energy,
converges to the vertical foliation F̃ν(Z1, λ1) (one can also show that the
limiting leaves are not constants). Thus the vertical foliation is a finite energy
foliation, which means that every leaf is a cylinder over a periodic orbit.
Thus the mapping torus (Z1, λ1) is foliated by periodic orbits. Moreover,
each cylinder must be over a periodic orbit homologous to the longitude in
Z1, thus each periodic orbit represents a fixed point of ψ. �

4. Asymptotic Foliations for Disk Maps

In this final section we begin exploring the following broad question.
What is the asymptotic behavior of the foliations associated to arbitrarily
high iterates of a disk map? Do the leaves converge in a useful sense, and if
so, in what way does the limit reflect anything interesting dynamically? In
contrast, the applications in Section 3 only used the framework for arbitrarily
high, but finite numbers of iterates.
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To develop the observations we present in this section presumably
requires a serious study of what one could describe as “locally-finite” energy
foliations. The context is as follows.

Let (Z1, λ1) be a Reeb-like mapping torus, and J1 a compatible almost
complex structure on R×Z1. Let Z∞ = R×D denote the universal covering
space of Z1. The contact form and almost complex structure lift to λ∞ and
J∞ respectively, which are invariant under the 1-shift automorphism

(3)
τ : Z∞ → Z∞

(z̄, x̄, ȳ) �→ (z̄ + 1, x̄, ȳ).

One would like to take a sequence of finite energy foliations F̃n associated to
data (Zn, λn, Jn), as n runs over the natural numbers or some subsequence
thereof, and extract a limiting object F̃∞ associated to (Z∞, λ∞, J∞). One
would like to arrange this so that F̃∞ is a foliation by leaves that are the
images of properly embedded pseudoholomorphic curves, where each leaf
F ∈ F̃∞ has a parameterization that is the C∞

loc-limit of a sequence of
parameterizations of leaves Fn ∈ F̃n. The foliation F̃∞ would be invariant
under the R-action c · (a,m) �→ (a + c,m) on R × Z∞, but need not be
invariant under the Z-action generated by the transformation id×τ , or even
a finite iterate id×τ q.

When the contact manifold is compact it was discovered in [41] that
finiteness of the E-energy picks out those holomorphic curves which do not
behave too wildly, see Section 2.2. In the non-compact case (Z∞, λ∞, J∞)
there cannot be any non-constant curves with finite E-energy, since any such
curve would pick out a periodic orbit and there are no periodic orbits in
(Z∞, λ∞). So presumably another, weaker, condition than global finiteness
of the E-energy is required, perhaps some kind of averaging version of the
E-energy.

Ignoring these crucial technicalities for the moment, we now outline two
situations where nevertheless it is possible to see what happens asymptoti-
cally. In the first situation we will describe what happens when the disk map
is integrable, the second is when the disk map has only a single periodic orbit,
so called irrational pseudo-rotations which seem to have generated renewed
interest in recent years [25, 24, 26, 55, 6, 7].

4.1. Detecting Invariant Circles. KAM theory guarantees the exis-
tence of closed invariant curves near a generic elliptic fixed point, or near
to a given invariant circle with certain rotation number and torsion (infin-
itesimal twisting) conditions. In other words this is a, very successful, per-
turbation theory. Computer simulations indicate that generically, or often,
invariant circles and quasi-periodic behavior should exist in a “global” sense,
whatever this means precisely. An interesting source of pictures, numerical
observations, and many questions, is MacKay’s book [64]. More evidence
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for these global features arises in Aubry-Mather theory, which finds quasi-
periodic behavior and invariant circles for monotone twist maps of the annu-
lus. What about without the monotone twist assumption?* Note that if one
doesn’t view the annulus as a cotangent bundle then the monotone twist
condition is not symplectic. An argument against asking this question is of
course that the so called family of standard maps fτ : R/Z×R → R/Z×R,
for parameters τ ∈ R>0,

fτ (x, y) = (x+ y + τ sin(2πx), y + τ sin(2πx)),

are all monotone twists, and still there are huge open questions regarding
these very explicit examples.

In this section we do not claim any new results, or recover any known
ones. We merely describe an intriguing mechanism by which finite energy
foliations asymptotically pick out all the invariant circles of an integrable
disk map. The circles come filtered through their rotation numbers and the
elliptic periodic orbits they enclose. By integrable, we mean the time-1 map
of an autonomous Hamiltonian H : D → R. Of course, since we are in
2-dimensions, the long term behavior of integrable Hamiltonian systems is
easily understood without anything so technical as holomorphic curves. But
this mechanism uses the integrability in a very weak sense that needs to be
better understood, and holomorphic curves have little regard for local versus
global issues. One might hope therefore that more sophisticated variations
of this approach work as well in very general situations.

Let H : D → R be a smooth function, constant on the boundary of
D. Viewing the area form ω0 := dx ∧ dy as a symplectic form, we have an
induced, autonomous, Hamiltonian vector field XH uniquely solving

−dH(x, y) = ω0(XH(x, y), ·)
for all (x, y) ∈ D, and automatically XH will vanish on the boundary of D.
Let ϕtH ∈ Diffω0(D) denote the induced 1-parameter family of diffeomor-
phisms defined for each t ∈ R, and let

ψH : D → D

denote the time-1 map ϕ1
H . Then ψH is an area preserving and orientation

preserving diffeomorphism, and its long term behavior is easily understood
because its orbits remain in level curves of H.

Let us imagine that we have picked an H for which the level curves are
as in Figure 18, and suppose that λH1 is a contact form on Z1 = R/Z ×D
giving us a Reeb-like mapping torus for ψH .

Let us give names to some of the features in the figure. There are seven
isolated fixed points of ψH , six of which lie on an “island chain” and are
alternately elliptic and hyperbolic {h1, e1, h2, e2, h3, e3}, which in some sense
enclose another elliptic fixed point e4.

*Added in proof: Le Calvez finds an interesting generalization of Aubry-Mather type
phenomena, without any twist-like assumptions, in [56].
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e1

e2

e3

e4 h1

h2

h3

Figure 18. A configuration containing six fixed points
which encloses an elliptic fixed point.

No matter what the flow on Z1 is, provided it generates ψH as its first
return map, the six fixed points on the island chain are “locked together” in
the sense that any pair of them must have the same linking number. Let us
assume that the flow is arranged so that this linking number is zero. In other
words, for any distinct pair x, y ∈ {h1, e1, h2, e2, h3, e3} we have lk(x, y) = 0,
if we abbreviate lk(x, y) to mean the linking number of the corresponding
periodic orbits in (Z1, λ

H
1 ). Since the island chain lies “outside” of e4, it

follows that for any x ∈ {h1, e1, h2, e2, h3, e3} we have lk(x, e4) = 0 also.
So, since the linking number is a symmetric function of its entries, all seven
isolated fixed points have a common linking number which is zero.

Fix any one of the isolated elliptic fixed points, e.g. e1. Let γe1 : S1 → Z1

denote the periodic orbit in the mapping torus corresponding to the fixed
point e1. Let k be any integer. Potentially ψH has other non-isolated fixed
points if one of the invariant circles has rotation number an integer, in which
case Theorem 3.13 only applies to a small perturbation. But to see what
is going on imagine that we can nevertheless find a transversal foliation
F̃k(γe1) of Z1, which contains γe1 as a spanning orbit, and for which the
boundary condition is the integer k. Then, by Lemma 3.12, every spanning
orbit γ ∈ P(F̃k(γe1)) distinct from γe1 , (if such exists) must satisfy

(4) lk(γ, γe1) = k.

Let us denote by
P(Z1, λ

H)
the collection of periodic Reeb orbits in Z1 that correspond to fixed points of
ψH , in other words those which are homologous to the longitude L1. It turns
out that, provided k �= 0, we can characterize the subset of spanning orbits
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P(F̃k(γe1)) ⊂ P(Z1, λ
H) as precisely those orbits γ ∈ P(Z1, λ

H) which are
either γe1 or which satisfy equation (4)! This is not true in general, and
uses extremely weak properties of the integrability of ψH , and is not true
for k = 0 without more information about ψH . (A more general statement
along these lines, without any integrability assumptions, can be made, and
may be the subject of a future paper.)

We may carry out this procedure for all iterates. The asymptotic behav-
ior is interesting: First, fix an irrational number ω ∈ R. Now, pick any
sequence of integers kn ∈ Z such that

(5) lim
n→∞

kn
n

= ω.

Let (Z1, λ
H
1 ), (Z2, λ

H
2 , ), .... be the sequence of Reeb-like mapping tori

obtained by lifting (Z1, λ
H
1 ), where (Zn, λHn ) generates the n-th iterate ψnH .

For each n ∈ N, let
γne1 : S1 → Zn

denote the lift of γe1 . By Theorem 3.13 we find an almost complex structure
J1 compatible with (Z1, λ

H
1 ), such that for each n ∈ N there exists a finite

energy foliation F̃n associated to (Zn, λHn , Jn), where Jn denotes the lift of
J1, with the following properties.

• γne1 is a spanning orbit for F̃n.
• The boundary condition for F̃n is the integer kn.

Then the sequence of finite energy foliations F̃n converges in a C∞
loc-sense

to a locally-finite energy foliation, we will denote by F̃∞, of the symplecti-
zation of the universal covering (Z∞, λH∞, J∞), as described at the beginning
of Section 4.

What do the leaves of F̃∞ look like?
Let C1, C2, . . . , Cm ⊂ D be those invariant circles C of the disk map ψH

which are characterized by the following properties:
• When restricted to C, ψH has rotation number ω.
• C separates e1 from the boundary of the disk. That is, e1 and ∂D

lie in different components of D\C.
We can order these circles so that for each j ∈ {1, . . . ,m−1} the circle Cj+1

is closer to the boundary than Cj . Figure 19 illustrates a possible scenario.
Then it turns out that F̃∞ looks something like in Figure 20.

More precisely, the leaves in F̃∞ which have vanishing dλ∞-energy corre-
spond precisely to these circles and the fixed point e1 itself. In other words,
if F ∈ F̃∞, has ∫

F
dλ∞ = 0,

then F = R × φz(R) is the plane over an orbit φz : R → Z∞ which corre-
sponds to the ψ-orbit of a point z in {e1} ∪ C1 ∪ . . . ∪ Cm. Conversely, for
every point

z ∈ {e1} ∪ C1 ∪ . . . ∪ Cm
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e1e1
C1

C2

C3

Figure 19.

the plane with image R×φz(R), where φz is the Reeb orbit passing through
the point (0, z) ∈ Z∞, is a leaf in F̃∞.

The remaining leaves can be described schematically as follows. Let
R1, R2, . . . , Rm denote the open annular regions in the disk for which Rj
has boundary circles Cj−1, Cj , for j = 1, . . .m, and Rm+1 is the remaining
region between Cm and ∂D. (So Rm+1 includes the points in the boundary
of D unless ∂D = Cm.) For example see Figure 20. Then each leaf in F̃∞
having non-zero dλ∞-energy is a plane which projects down to an infinitely
long open strip in the three-manifold Z∞. With respect to the coordinates
(z̄, x̄, ȳ) on Z∞ = R × D, the strip extends to plus and minus infinity in
the z̄-direction. The two boundary components of the closure of the strip
are embedded copies of R. Indeed, each is the image of a Reeb orbit; one
corresponding to a point in some Cj or e1, and the other corresponding to a
point in Cj+1 or C1. Hence, each leaf with non-zero dλ∞-energy is in some
sense asymptotic to a quasi-periodic orbit of ψH , with rotation number ω
about the chosen fixed point e1.

To summarize. A number of interesting issues arise when attempting to
generalize this approach to finding invariant circles or quasi-periodic behav-
ior. There are compactness issues when taking a limit of a sequence of finite
energy foliations because the E-energy must blow up. Before one even takes
a limit, there are questions regarding the symmetry of finite energy folia-
tions that also seem important. For example, on the one hand it is much
easier to understand symmetry of a foliation with respect to the Z-action
described in equation (3) when the map is integrable. On the another hand,
the integrability is largely irrelevant.

With the success of KAM results in mind, one knows that Diophantine
properties must play a role. It is conceivable that local KAM techniques
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e1

R1

R2

R3

R4

Figure 20. A limiting foliation for the integrable disk map
ψH from Figure 18. The leaves with vanishing dλ-energy cor-
respond to the quasi-periodic orbits in the invariant circles
which have the chosen rotation number ω and which surround
the chosen elliptic fixed point e1. Each leaf with non-zero dλ-
energy is a strip connecting two such orbits on neighboring
circles. The flow is transverse to these strips in alternating
directions as one passes through a circle, as indicated by the
grey arrows.

enter the analysis and become combined with the pseudoholomorphic curves
in this framework. In the next section we describe a more concrete situation
where this may be a possibility.

4.2. Speculations on Pseudo-Rotations. Pseudo-rotations (also
called irrational pseudo-rotations) can be defined as smooth, orientation
preserving, area preserving diffeomorphisms of the unit disk which have a
single fixed point and no other periodic points. Obvious examples are rigid
rotations with irrational rotation number, and smooth conjugacies of these.
The question arises whether these are the only examples.

As early as 1970 Anosov and Katok constructed “exotic” examples of
pseudo-rotations which are ergodic [3] and which therefore cannot be con-
jugated to a rotation. In all their examples the rotation number on the
boundary is a Liouville number - an irrational number well approximated
by rationals. Later work of Fayad and Saprykina [26] established examples
for any Liouville rotation number on the boundary. Their examples are not
only ergodic but weak mixing. Meanwhile, unpublished work of Herman
precluded such ergodic pseudo-rotations when the rotation number on the
boundary is Diophantine - those irrationals which are not Liouvillean.
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This seems to have led Herman to raise the following question at his ICM
address in ’98: is every pseudo-rotation with Diophantine rotation number
on the boundary C∞-smoothly conjugate to a rigid rotation? (That this is
even true for circle diffeomorphisms is a deep result of his from ’79 [39]).

An important step was recently taken in this direction. Fayad and Kriko-
rian [25] proved a beautiful result, that in particular answered affirmatively
a local version of Herman’s question. Their approach, using KAM methods,
was apparently to some degree based on ideas of Herman, and they referred
to the result as “Herman’s Last Geometric Theorem”. They showed, that
any pseudo-rotation that has Diophantine rotation number α on the bound-
ary is C∞-smoothly conjugate to the rigid rotation Rα, provided the disk
map is already globally sufficiently close to Rα in some Ck-topology, where
k is finite and depends on α.

The global question is apparently still open. Holomorphic curves, when
one has them, have proven successful at handling global problems in sym-
plectic geometry. Placing pseudo-rotations in the framework of this paper,
there are plenty of holomorphic curves available, and we speculate that there
might be something new to be gained from this angle. We briefly describe
where first observations lead.

Let ψ : D → D be a pseudo-rotation, which on the boundary is a
genuine rotation with rotation number α. Fix a Reeb-like mapping torus
(Z1, λ1) generating ψ as its first return map. Let γ : S1 → Z1 be the unique,
simply covered, periodic orbit of the Reeb flow. For each n ∈ N we have
the “longer” mapping torus (Zn, λn) generating ψn, and the unique simply
covered periodic orbit we denote by γn. For each such n Theorem 3.11
provides finite energy foliations F̃−

n and F̃+
n associated to (Zn, λn) which

have boundary condition �nα� and �nα� respectively. Each has the single
spanning orbit, γn. A schematic picture of F̃−

n and F̃+
n , is shown in Figure

21. In general the arcs connecting the fixed point to the boundary are not
perfect radial lines of course, although depicted as such in the figure.

The R-action on the foliations can be translated into an R-action on the
projected leaves in the three-manifold Zn, which on the disk slice D0 induces
something akin to a “radial” coordinate on the disk.

It turns out that each finite energy foliation F̃−
n and F̃+

n gives rise to a
smooth diffeomorphism of the disk, not necessarily area preserving,

ϕ−
n , ϕ

+
n : D → D,

respectively, which fix the fixed point of ψn, are each n-th roots of the iden-
tity map on D, and the rotation number of ϕ−

n on the boundary is �nα�/n,
while the rotation number of ϕ+

n on the boundary is �nα�/n. Moreover, one
has the following. A similar statement for the ϕ+

n maps holds also.

Theorem 4.1 (Bramham). Let ψ : D → D be a pseudo-rotation with
fixed point p, and coinciding with a rigid rotation on the boundary circle.
Let α ∈ R/Z be the rotation number on the boundary. Then for each n ∈ N
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F̃−
n F̃+

n

Figure 21. Two finite energy foliations associated to an
iterate of a pseudo-rotation. On the left the trajectories pass
through the leaves positively, on the right they pass through
negatively.

there exists a C∞-diffeomorphism ϕ−
n : D → D, of finite order, which fixes

the point p ∈ D, for which there exists a subsequence ϕ−
nj

which converges in
the C0-topology to ψ. More precisely, (ϕ−

n )n = idD, and the rotation number
on the boundary is the projection of �nα�/n down to R/Z.

Thus each pseudo-rotation is the C0-limit of a sequence of maps which
fill the whole disk, minus the fixed point, with smooth invariant circles. Note
that no Diophantine conditions are placed on the rotation number α in this
statement. Under the assumption that α is Diophantine one would like to
control these circles and show that the limiting map, the pseudo-rotation
being examined, also fills the disk with invariant circles.

If Herman’s question is answered affirmatively, one could also ask the
following question about Liouvillean pseudo-rotations. Does every pseudo-
rotation with Liouvillean rotation number at least lie in the closure, perhaps
in the C∞-topology, of the set

χ = {h ◦Rt ◦ h−1 | t ∈ R/Z, h ∈ Diffω0(D)}.

Here Rt denotes the rotation through angle 2πt and Diffω0(D) refers to the
smooth, area preserving, orientation preserving, diffeomorphisms. This is
apparently unknown. If this were the case, it would mean that all pseudo-
rotations which are conjugate to rotations lie in χ, while all those which are
not lie on the boundary of χ. Theorem 4.1 suggests that the finite energy
foliations might provide a way to approach this question. Both authors hope
to explore these ideas in the future.
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4.3. Questions about the Asymptotic Behavior of Finite
Energy Foliations and Disk Maps.

Question 4.2. Suppose that the area preserving disk map ψ has an
elliptic fixed point e ∈ D with irrational infinitesimal rotation number ω.
See definition 3.6. Suppose moreover that ψ has a unique invariant cir-
cle, or quasi-periodic orbit, C surrounding e. If ψ is the time-1 map of
an autonomous Hamiltonian then we described above a method by which
a suitably chosen sequence of finite energy foliations picks out C. Does the
same approach pick out C without the global integrability assumption on ψ?

Question 4.3. Can one, and if so how, recover results of Aubry-Mather
theory using the foliations? That is, assume that the disk map ψ is a mono-
tone twist map on the complement of the fixed point 0 ∈ D. How do we
find quasi-periodic orbits surrounding 0 for all rotation numbers in the
twist interval of 0? Can one do this using assumptions of monotone twist
maps which are symplectic, that is, which remain true under any symplectic
change of coordinates? For example, using only say some inequalities on the
Conley-Zehnder indices of period orbits?

Suppose that F̃j , over j ∈ N, is a sequence of finite energy foliations
associated to (Znj , λnj ), where (Z1, λ1) is a Reeb-like mapping torus gen-
erating ψ : D → D, and nj is a sequence of integers tending to +∞. Let
kj ∈ Z be the boundary condition for F̃j .

Question 4.4. Suppose that e ∈ Fix(ψ) is an interior fixed point, let
us say elliptic. Let γe : S1 → Z1 be the corresponding periodic Reeb orbit.
Suppose that for each j there exists a closed cycle Cj of rigid leaves in F̃j ,
whose projection down to Znj separates γnj

e from the boundary of Znj , and
satisfies:

(1) The sequence Ej := max{Edλnj
(F ) |F ∈ Cj} converges to zero.

(2) The ratio kj/nj converges to some irrational number ω ∈ Qc.
(3) Each Cj is invariant under the automorphism τ : R×Znj → R×Znj

where τ(a, z, x, y) = (a, z + 1, x, y), meaning that for each leaf F ∈
Cj , we have τ(F ) ∈ Cj .

Let Sj ⊂ D\{e} be the unparameterized circle given by:

Sj := {z ∈ D | there exists F ∈ Cj such that (0, z) ∈ pr(F )}
where pr : R × Znj → Znj is the projection.

The question then is: are there further conditions under which the
sequence Sj of compact connected subsets of D\{e} converges in some sense
to a closed ψ-invariant subset of D\{e} on which all points have rotation
number ω about e?

Recall the deck transformation τ : Z∞ → Z∞ given by τ(z̄, x̄, ȳ) =
(z̄ + 1, x̄, ȳ).
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Definition 4.5. For an integer q ∈ Z, let us say that an R-invariant
foliation F̃∞ by pseudoholomorphic curves associated to (Z∞, λ∞, J∞) is
q-shift invariant if for every leaf F ∈ F̃∞ we have id×τ q(F ) is also a leaf.

An easy observation is that if F̃∞ is q-shift invariant, then the subcollec-
tion of leaves having vanishing dλ∞-energy picks out a ψq-invariant subset
of the disk. Indeed, let Ω ⊂ D be the set of z ∈ D such that the plane

F = R × φz(R),

over the Reeb orbit φz : R → Z∞ characterized by φz(0) = (0, z), is a leaf
in F̃∞. Then, since τ q(R × φz(R)) = R × φψ−q(z)(R) is always true, then if
z ∈ Ω, then τ q(F ) ∈ F̃∞ implies that R × φψ−q(z)(R) is a leaf in F̃∞, and
so ψ−q(z) ∈ Ω. Thus ψ−q(Ω) ⊂ Ω. Similarly as q-shift invariance implies
(−q)-shift invariance, ψq(Ω) ⊂ Ω, and so ψq(Ω) = Ω.

Question 4.6. Is a statement along the following lines true? Consider a
sequence F̃n of finite energy foliations associated to Reeb-like mapping tori
(Z1, λ1), (Z2, λ2), . . . where (Z1, λ1) generates the area preserving disk map
ψ. Suppose that the sequence of foliations F̃n converges in a C∞

loc-sense to
a foliation F̃∞ associated to the universal covering (Z∞, λ∞). Suppose that
F̃∞ is q-shift invariant, for some q ∈ Z. Let Ω ⊂ D be the set of points
z ∈ D such that the plane

F = R × φz(R),

over the Reeb orbit φz : R → Z∞ characterized by φz(0) = (0, z), is a leaf
in F̃∞. We just saw that ψq restricts to a map on Ω. Then the question is,
are there interesting general assumptions under which ψq must have zero
topological entropy on Ω?

Note that in the last question one needs to rule out the vertical foliation
F̃ν(Z∞, λ∞), as Ω for this is the whole disk regardless of the dynamics.
Of course the vertical foliation is q-shift invariant for all q ∈ Z, so this
condition does not rule it out. This is another reason to phrase it so that
F̃∞ is achieved as a limit of finite energy foliations; then one could perhaps
place assumptions on the sequence such as uniform bounds on some average
notion of energy, or average of the boundary conditions, to rule out obtaining
this trivial foliation.
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de Poincaré-Birkhoff, Topology, 33 (1994), 331–351.

[38] L. Guillou, A simple proof of P. Carter’s theorem, Proc. Amer. Math. Soc., 125 (1997),
1555–1559.
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2006.

[61] P. Le Calvez, Pourquoi les points periodiques des homeomorphismes du plan tournent-
ils autour de certains points fixes?, Ann. Sci. Ec. Norm. Super. (4) 41 (2008), no. 1,
141–176.

[62] P. Le Calvez and J. Wang, Some remarks on the Poincaré-Birkhoff theorem. Proc.
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