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1. Introduction

The action of the reparametrization group Gk, consisting of k-jets of
germs of biholomorphisms of (C, 0), on the bundle Jk = JkT

∗X of k-jets at 0
of germs of holomorphic curves f : C → X in a complex manifold X has been
a focus of investigation since the work of Demailly [5] which built on that
of Green and Griffiths [13]. Here Gk is a non-reductive complex algebraic
group which is the semi-direct product Gk = Uk � C∗ of its unipotent radical
Uk with C∗; it has the form

Gk
∼=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎝

α1 α2 α3 · · · αk

0 α2
1 · · ·

0 0 α3
1 · · ·

· · · · ·
0 0 0 · · · αk

1

⎞
⎟⎟⎟⎟⎠ : α1 ∈ C∗, α2, . . . , αk ∈ C

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

where the entries above the leading diagonal are polynomials in α1, . . . , αk,
and Uk is the subgroup consisting of matrices of this form with α1 = 1. The
bundle of Demailly-Semple jet differentials of order k over X has fibre at
x ∈ X given by the algebra O((Jk)x)Uk of Uk-invariant polynomial func-
tions on the fibre (Jk)x = (JkT

∗X)x of JkT
∗X. More generally following

[25] we can replace C with Cp for p ≥ 1 and consider the bundle Jk,pT
∗X of

k-jets at 0 of holomorphic maps f : Cp → X and the reparametrization group
Gk,p consisting of k-jets of germs of biholomorphisms of (Cp, 0); then Gk,p is
the semi-direct product of its unipotent radical Uk,p and the complex reduc-
tive group GL(p), while its subgroup G′

k,p = Uk,p � SL(p) (which equals Uk,p

when p = 1) fits into an exact sequence 1 → G′
k,p → Gk,p → C∗ → 1. The gen-

eralized Demailly-Semple algebra is then O((Jk,p)x)G′
k,p .
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The Demailly-Semple algebras O(Jk)Uk and their generalizations have
been studied for a long time. The invariant jet differentials play a crucial
role in the strategy devised by Green, Griffiths [13], Bloch [4], Demailly
[5, 6], Siu [28, 29, 30] and others to prove Kobayashi’s 1970 hyperbolicity
conjecture [19] and the related conjecture of Green and Griffiths in the
special case of hypersurfaces in projective space. This strategy has been
recently used successfully by Diverio, Merker and Rousseau in [7] and then
by the first author in [1] to give effective lower bounds for the degrees of
generic hypersurfaces in Pn for which the Green-Griffiths conjecture holds.

In particular it has been a long-standing problem to determine whether
the algebras of invariants O((Jk,p)x)G′

k,p and bi-invariants O((Jk,p)x)G′
k,p×Un,x

(where Un,x is a maximal unipotent subgroup of GL(TxX) ∼= GL(n)) are
finitely generated as graded complex algebras, and if so to provide explicit
finite generating sets. In [20] Merker showed that when p = 1 and both k
and n = dim X are small then these algebras are finitely generated, and for
p = 1 and all k and n he provided an algorithm which produces finite sets of
generators when they exist. In this paper we will describe methods inspired
by [2] and the approach of [9] to non-reductive geometric invariant theory
(GIT) to prove the finite generation of O((Jk)x)Uk for all n and k ≥ 2 (from
which the finite generation of the corresponding bi-invariants follows). In
fact we will show that Uk is a Grosshans subgroup of SL(k), so that the
algebra O(SL(k))Uk is finitely generated and hence every linear action of Uk

which extends to a linear action of SL(k) has finitely generated invariants.
We will also give a geometric description of a finite set of generators for
O(SL(k))Uk , and a geometric description of the associated affine variety

SL(k)//Uk = Spec(O(SL(k))Uk)

which leads to a geometric description of the affine variety

(Jk)x//Uk = Spec(O((Jk)x)Uk)

as a GIT quotient
((Jk)x × (SL(k)//Uk))//SL(k)

by the reductive group SL(k), in the sense of classical geometric invariant
theory [23]. Similarly we expect that if p > 1 and k is sufficiently large
(depending on p) then G′

k,p is a subgroup of SL(sym≤k(p)), where

sym≤k(p) =
k∑

i=1

dim SymiCp,

such that the algebra O(SL(sym≤k(p)))G′
k,p is finitely generated, and thus

that the algebra and O((Jk,p)x)G′
k,p is also finitely generated, and we have a

geometric description of the associated affine variety

(Jk,p)x//G′
k,p.
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The layout of this paper is as follows. §2 reviews the reparametrization
groups Gk and Gk,p and their actions on jet bundles and jet differentials
over a complex manifold X. Next §3 reviews some of the results of [9] on
non-reductive geometric invariant theory. In §4 we recall from [2] a geomet-
ric description of the quotients by Uk and Gk of open subsets of (Jk)x, and
in §5 this is used to find explicit affine and projective embeddings of these
quotients and explicit embeddings of SL(k)/Uk. In §6 we see that the com-
plement of SL(k)/Uk in its closure for a suitable embedding in an affine space
has codimension at least two. In §7 we conclude that Uk is a Grosshans sub-
group of SL(k) when k ≥ 2, so that O(SL(k))Uk and O((Jk)x)Uk are finitely
generated, and provide a geometric description of a finite set of generators
of O(SL(k))Uk . Finally §8 and §9 discuss how to extend the results of §6
and §7 to the action of Gk,p on the jet bundle Jk,p → X of k-jets of germs
of holomorphic maps from Cp to X for p > 1.

2. Jets of curves and jet differentials

Let X be a complex n-dimensional manifold and let k be a positive inte-
ger. Green and Griffiths in [13] introduced the bundle Jk → X of k-jets of
germs of parametrized curves in X; its fibre over x ∈ X is the set of equiv-
alence classes of germs of holomorphic maps f : (C, 0) → (X, x), with the
equivalence relation f ∼ g if and only if the derivatives f (j)(0) = g(j)(0) are
equal for 0 ≤ j ≤ k. If we choose local holomorphic coordinates (z1, . . . , zn)
on an open neighbourhood Ω ⊂ X around x, the elements of the fibre Jk,x

are represented by the Taylor expansions

f(t) = x + tf ′(0) +
t2

2!
f ′′(0) + · · · + tk

k!
f (k)(0) + O(tk+1)

up to order k at t = 0 of Cn-valued maps

f = (f1, f2, . . . , fn)

on open neighbourhoods of 0 in C. Thus in these coordinates the fibre is

Jk,x =
{

(f ′(0), . . . , f (k)(0)/k!)
}

= (Cn)k,

which we identify with Cnk. Note, however, that Jk is not a vector bundle
over X, since the transition functions are polynomial, but not linear.

Let Gk be the group of k-jets at the origin of local reparametrizations
of (C, 0)

t �→ ϕ(t) = α1t + α2t
2 + · · · + αkt

k, α1 ∈ C∗, α2, . . . , αk ∈ C,

in which the composition law is taken modulo terms tj for j > k. This group
acts fibrewise on Jk by substitution. A short computation shows that this is
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a linear action on the fibre:

f ◦ ϕ(t) = f ′(0) · (α1t + α2t
2 + · · · + αkt

k)

+
f ′′(0)

2!
· (α1t + α2t

2 + · · · + αkt
k)2

+ · · · + f (k)(0)
k!

· (α1t + α2t
2 + · · · + αkt

k)k (modulo tk+1)

so the linear action of ϕ on the k-jet (f ′(0), f ′′(0)/2!, . . . , f (k)(0)/k!) is given
by the following matrix multiplication:

(f ′(0), f ′′(0)/2!, . . . , f (k)(0)/k!)

·

⎛
⎜⎜⎜⎜⎝

α1 α2 α3 · · · αk

0 α2
1 2α1α2 · · · α1αk−1 + · · · + αk−1α1

0 0 α3
1 · · · 3α2

1αk−2 + · · ·
· · · · ·
0 0 0 · · · αk

1

⎞
⎟⎟⎟⎟⎠(1)

where the matrix has general entry

(Gk)i,j =
∑

s1≥1,...,si≥1, s1+···+si=j

αs1 . . . αsi

for i, j ≤ k.
There is an exact sequence of groups:

(2) 1 → Uk → Gk → C∗ → 1,

where Gk → C∗ is the morphism ϕ → ϕ′(0) = α1 in the notation used above,
and

Gk = Uk � C∗

is a semi-direct product. With the above identification, C∗ is the subgroup
of Gk consisting of diagonal matrices satisfying α2 = · · · = αk = 0 and Uk is
the unipotent radical of Gk, consisting of matrices of the form above with
α1 = 1. The action of λ ∈ C∗ on k-jets is thus described by

λ · (f ′(0), f ′′(0)/2!, . . . , f (k)(0)/k!) = (λf ′(0), λ2f ′′(0)/2!, . . . , λkf (k)(0)/k!)

Let En
k,m denote the vector space of complex valued polynomial functions

Q(u1, u2, . . . , uk)

of u1 = (u1,1, . . . , u1,n), . . . , uk = (uk,1, . . . , uk,n) of weighted degree m with
respect to this C∗ action, where ui = f (i)(0)/i!; that is, such that

Q(λu1, λ
2u2, . . . , λ

kuk) = λmQ(u1, u2, . . . , uk).
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Thus elements of En
k,m have the form

Q(u1, u2, . . . , uk) =
∑

|i1|+2|i2|+···+k|ik|=m

ui1
1 ui2

2 . . . uik
k ,

where i1 = (i1,1, . . . , i1,n), . . . , ik = (ik,1, . . . , ik,n) are multi-indices of length
n. There is an induced action of Gk on the algebra

⊕
m≥0 En

k,m. Following
Demailly (see [5]), we denote by En

k,m (or Ek,m) the Demailly-Semple bundle
whose fibre at x consists of the Uk-invariant polynomials on the fibre of Jk

at x of weighted degree m, i.e those which satisfy

Q((f ◦ ϕ)′(0), (f ◦ ϕ)′′(0)/2!, . . . , (f ◦ ϕ)(k)(0)/k!)

= ϕ′(0)m · Q(f ′(0), f ′′(0)/2!, . . . , f (k)(0)/k!),

and we let En
k = ⊕mEn

k,m denote the Demailly-Semple bundle of graded alge-
bras of invariants.

We can also consider higher dimensional holomorphic surfaces in X, and
therefore we fix a parameter 1 ≤ p ≤ n, and study germs of maps Cp → X.

Again we fix the degree k of our map, and introduce the bundle Jk,p → X
of k-jets of maps Cp → X. The fibre over x ∈ X is the set of equivalence
classes of germs of holomorphic maps f : (Cp, 0) → (X, x), with the equiva-
lence relation f ∼ g if and only if all derivatives f (j)(0) = g(j)(0) are equal
for 0 ≤ j ≤ k.

We need a description of the fibre Jk,p,x in terms of local coordinates
as in the case when p = 1. Let (z1, . . . , zn) be local holomorphic coordinates
on an open neighbourhood Ω ⊂ X around x, and let (u1, . . . , up) be local
coordinates on Cp. The elements of the fibre Jk,p,x are Cn-valued maps

f = (f1, f2, . . . , fn)

on Cp, and two maps represent the same jet if their Taylor expansions around
z = 0

f(z) = x + zf ′(0) +
z2

2!
f ′′(0) + · · · + zk

k!
f (k)(0) + O(zk+1)

coincide up to order k. Note that here

f (i)(0) ∈ Hom ( Sym iCp, Cn)

and in these coordinates the fibre is a finite-dimensional vector space

Jk,p,x =
{

(f ′(0), . . . , f (k)(0)/k!)
}∼= Cn(k+p−1

k−1 ).
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Let Gk,p be the group of k-jets of germs of biholomorphisms of (Cp, 0).
Elements of Gk,p are represented by holomorphic maps

u → ϕ(u) = Φ1u + Φ2u2 + · · · + Φkuk

=
∑

i∈Zp\0
ai1...ipu

i1
1 . . . u

ip
p , Φ1 is non-degenerate(3)

where Φi ∈ Hom ( Sym iCp, Cp). The group Gk,p admits a natural fibrewise
right action on Jk,p, by reparametrizing the k-jets of holomorphic p-discs. A
computation similar to that in [2] shows that

f ◦ ϕ(u) = f ′(0)Φ1u +
(

f ′(0)Φ2 +
f ′′(0)

2!
Φ2

1

)
u2 + · · ·

+
∑

i1+···+il=d

f (l)(0)
l!

Φi1 . . .Φilu
l.

This defines a linear action of Gk,p on the fibres Jk,p,x of Jk,p with the matrix
representation given by

(4)

⎛
⎜⎜⎜⎜⎜⎝

Φ1 Φ2 Φ3 . . . Φk

0 Φ2
1 Φ1Φ2 . . .

0 0 Φ3
1 . . .

. . . . .
Φk

1

⎞
⎟⎟⎟⎟⎟⎠ ,

where

• Φi ∈ Hom ( Sym iCp, Cp) is a p × dim(SymiCp)-matrix, the ith
degree component of the map Φ, which is represented by a map
(Cp)⊗i → Cp;

• Φi1 . . .Φil is the matrix of the map Symi1+···+il(Cp) → SymlCp,
which is represented by∑

σ∈Sl

Φi1 ⊗ · · · ⊗ Φil : (Cp)⊗i1 ⊗ · · · ⊗ (Cp)⊗il → (Cp)⊗l;

• the (l, m) block of Gk,p is
∑

i1+···+il=m φi1 . . .Φil . The entries in
these boxes are indexed by pairs (τ, μ) where τ ∈ (p+l−1

l−1

)
, μ ∈(

p+m−1
m−1

)
correspond to bases of Sym l(Cp) and Sym m(Cp).

Example 2.1. For p = 2, k = 3, using the standard basis

{ei, eiej , eiejek : 1 ≤ i ≤ j ≤ k ≤ 2}
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of (J3,2)x, we get the following 9 × 9 matrix for a general element of G3,2:⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α10 α01 α20 α11 α02 α30

β10 β01 β20 β11 β02 β30

0 0 α2
10 α10α01 α2

01 α10α20

0 0 α10β10 α10β01 + α01β10 α01β01 α10β20 + α20β10

0 0 β2
10 β10β01 β2

01 β10β20

0 0 0 0 0 α3
10

0 0 0 0 0 α2
10β10

0 0 0 0 0 α10β
2
10

0 0 0 0 0 β3
10

a21 α12 α03

β21 β12 β03

α10α11 + α01α20 α10α02 + α11α01 α01α02

P Q α01β02 + α02β01

β10β11 + β20β01 β01β11 + β02β10 β01β02

α2
10α01 α10α

2
01 α3

01

α10α10β01 α10α01β01 α01β
2
01

α10β10β01 α10β01β01 α01β
2
01

β2
10β01 β10β

2
01 β3

01

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5)

where

P = α10β11 + α11β10 + α20β01 + α01β20 and
Q = α01β11 + α11β01 + α02β10 + α10β02.

This is a subgroup of the standard parabolic P2,3,4 ⊂ GL(9). The diagonal
blocks are the representations SymiC2 for i = 1, 2, 3 of GL(2), where C2 is
the standard representation of GL(2).

In general the linear group Gk,p is generated along its first p rows; that
is, the parameters in the first p rows are independent, and all the remaining
entries are polynomials in these parameters. The assumption on the param-
eters is that the determinant of the smallest diagonal p×p block is nonzero;
for the p = 2, k = 3 example above this means that

det
(

α10 α01

β10 β01

)
�= 0.

The parameters in the (1, m) block are indexed by a basis of Sym m(Cp)×
Cp, so they are of the form αl

ν where ν ∈ (p+m−1
m−1

)
is an m-tuple and 1 ≤ l ≤ p.

An easy computation shows that:

Proposition 2.2. The polynomial in the (l, m) block and entry
indexed by

τ = (τ [1], . . . , τ [l]) ∈
(

p + l − 1
l − 1

)
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and ν ∈ (p+m−1
m−1

)
is

(6) (Gk,p)τ,ν =
∑

ν1+···+νl=ν

ατ [1]
ν1

ατ [2]
ν2

. . . ατ [l]
νl

Note that Gk,p is an extension of its unipotent radical Uk,p by GL(p);
that is, we have an exact sequence

1 → Uk,p → Gk,p → GL(p) → 1,

and Gk,p is the semi-direct product Uk,p � GL(p). Here Gk,p has dimension
p × sym≤k(p) where sym≤k(p) = dim(⊕k

i=1SymiCp), and is a subgroup of
the standard parabolic subgroup Pp,sym2(p),...,symk(p) of GL(sym≤k(p)) where
symi(p) = dim(SymiCp). We define G′

k,p to be the subgroup of Gk,p which
is the semi-direct product

G′
k,p = Uk,p � SL(p)

(so that G′
k,p = Uk,p when p = 1) fitting into the exact sequence

1 → Uk,p → G′
k,p → SL(p) → 1.

The action of the maximal torus (C∗)p ⊂ GL(p) of the Levi subgroup of
Gk,p is

(7) (λ1, . . . , λp) · f (i) =

(
λi

1

∂if

∂ui
1

, . . . , λi1
1 · · ·λip

p
∂if

∂ui1
1 · · · ∂u

ip
p

. . . λi
p

∂if

∂ui
p

)

We introduce the Green-Griffiths vector bundle EGG
k,p,m → X, whose fibres

are complex-valued polynomials

Q(f ′(0), f ′′(0)/2!, . . . , f (k)(0)/k!)

on the fibres of Jk,p, having weighted degree (m, . . . , m) with respect to the
action (7) of (C∗)p. That is, for Q ∈ EGG

k,p,m

Q(λf ′(0), λf ′′(0)/2!, . . . , λf (k)(0)/k!) = λm
1 · · ·λm

p

Q(f ′(0), f ′′(0)/2!, . . . , f (k)(0)/k!)

for all λ ∈ Cp and (f ′(0), f ′′(0)/2!, . . . , f (k)(0)/k!) ∈ Jk,p,m.

Definition 2.3. The generalized Demailly-Semple bundle Ek,p,m → X
over X has fibre consisting of the G′

k,p-invariant jet differentials of order
k and weighted degree (m, . . . , m); that is, the complex-valued polynomials
Q(f ′(0), f ′′(0)/2!, . . . , f (k)(0)/k!) on the fibres of Jk,p which transform under
any reparametrization φ ∈ Gk,p of (Cp, 0) as

Q(f ◦ φ) = (Jφ)mQ(f) ◦ φ,
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where Jφ = det Φ1 denotes the Jacobian of φ at 0. The generalized Demailly-
Semple bundle of algebras Ek,p = ⊕m≥0Ek,p,m is the associated graded algebra
of G′

k,p-invariants, whose fibre at x ∈ X is the generalized Demailly-Semple

algebra O((Jk,p)x)G′
k,p.

The determination of a suitable generating set for the invariant jet dif-
ferentials when p = 1 is important in the longstanding strategy to prove
the Green-Griffiths conjecture. It has been suggested in a series of papers
[13, 5, 27, 20, 7, 21] that the Schur decomposition of the Demailly-
Semple algebra, together with good estimates of the higher Betti numbers
of the Schur bundles and an asymptotic estimation of the Euler charactris-
tic, should result in a positive lower bound for the global sections of the
Demailly-Semple jet differential bundle.

3. Geometric invariant theory

Suppose now that Y is a complex quasi-projective variety on which a
linear algebraic group G acts. For geometric invariant theory (GIT) we need
a linearization of the action; that is, a line bundle L on Y and a lift L of the
action of G to L. Usually L is ample, and hence (as it makes no difference
for GIT if we replace L with L⊗k for any integer k > 0) we can assume that
for some projective embedding Y ⊆ Pn the action of G on Y extends to an
action on Pn given by a representation ρ : G → GL(n + 1), and take for L
the hyperplane line bundle on Pn.

For classical GIT developed by Mumford [23] (cf. also [8, 22, 24, 26]) we
require the complex algebraic group G to be reductive. Let Y be a projective
complex variety with an action of a complex reductive group G and lineariza-
tion L with respect to an ample line bundle L on Y . Then y ∈ Y is semistable
for this linear action if there exists some m > 0 and f ∈ H0(Y, L⊗m)G not
vanishing at y, and y is stable if also the action of G on the open subset

Yf := {x ∈ Y | f(x) �= 0}
is closed with all stabilizers finite. Y ss has a projective categorical quotient
Y ss → Y//G, which restricts on the set of stable points to a geometric quo-
tient Y s → Y s/G (see [23] Theorem 1.10). The morphism Y ss → Y//G is
surjective, and identifies x, y ∈ Y ss if and only if the closures of the G-orbits
of x and y meet in Y ss; moreover each point in Y//G is represented by
a unique closed G-orbit in Y ss. There is an induced action of G on the
homogeneous coordinate ring

ÔL(Y ) =
⊕
k≥0

H0(Y, L⊗k)

of Y . The subring ÔL(Y )G consisting of the elements of ÔL(Y ) left invariant
by G is a finitely generated graded complex algebra because G is reductive,
and the GIT quotient Y//G is the projective variety Proj(ÔL(Y )G) [23].
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The subsets Y ss and Y s of Y are characterized by the following properties
(see [23, Chapter 2] or [24]).

Proposition 3.1. (Hilbert-Mumford criteria) (i) A point x ∈ Y is semi-
stable (respectively stable) for the action of G on Y if and only if for every
g ∈ G the point gx is semistable (respectively stable) for the action of a fixed
maximal torus of G.
(ii) A point x ∈ Y with homogeneous coordinates [x0 : . . . : xn] in some coor-
dinate system on Pn is semistable (respectively stable) for the action of a
maximal torus of G acting diagonally on Pn with weights α0, . . . , αn if and
only if the convex hull

Conv{αi : xi �= 0}
contains 0 (respectively contains 0 in its interior).

Similarly if a complex reductive group G acts linearly on an affine variety
Y then we have a GIT quotient

Y//G = Spec(O(Y )G)

which is the affine variety associated to the finitely generated algebra O(Y )G

of G-invariant regular functions on Y . In this case Y ss = Y and the inclusion
O(Y )G ↪→O(Y ) induces a morphism of affine varieties Y → Y//G.

Now suppose that H is any complex linear algebraic group, with unipo-
tent radical U �H (so that R = H/U is reductive and H is isomorphic to the
semi-direct product U � R), acting linearly on a complex projective variety
Y with respect to an ample line bundle L. Then Proj(ÔL(Y )H) is not in
general well-defined as a projective variety, since the ring of invariants

ÔL(Y )H =
⊕
k≥0

H0(Y, L⊗k)H

is not necessarily finitely generated as a graded complex algebra, and so it
is not obvious how GIT might be generalised to this situation (cf. [9, 11,
10, 14, 15, 18]). However in some cases it is known that ÔL(Y )U is finitely
generated, which implies that

ÔL(Y )H =

⎛
⎝⊕

k≥0

H0(Y, L⊗k)U

⎞
⎠H/U

is finitely generated and hence the enveloping quotient in the sense of [9] is
given by the associated projective variety

Y//H = Proj(ÔL(Y )H).

Similarly if Y is affine and H acts linearly on Y with O(Y )H finitely gener-
ated, then we have the enveloping quotient

Y//H = Spec(O(Y )H).
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There is a morphism
q : Y ss → Y//H,

from an open subset Y ss of Y (where Y ss = Y when Y is affine), which
restricts to a geometric quotient

q : Y s → Y s/H

for an open subset Y s ⊂ Y ss. However in contrast with the reductive case,
the morphism q : Y ss → Y//H is not in general surjective; indeed the image
of q is not in general a subvariety of Y//H, but is only a constructible subset.

If there is a complex reductive group G containing the unipotent radical
U of H such that the algebra O(G)U is finitely generated and the action of
U on Y extends to a linear action of G, then

O(Y )U ∼= (O(Y ) ⊗O(G)U )G

is finitely generated and hence so is

O(Y )H = (O(Y )U )H/U

(or if Y is projective with an ample linearisation L then ÔL(Y )U is finitely
generated and hence so is ÔL(Y )H). In this situation we say that U is
a Grosshans subgroup of G (cf. [16, 17]). Then geometrically G/U is a
quasi-affine variety with O(G/U) ∼= O(G)U , and it has a canonical affine
embedding as an open subvariety of the affine variety

G//U = Spec(O(G)U )

with complement of codimension at least two. Moreover if a linear action of
U on an affine variety Y extends to a linear action of G then

Y//U ∼= (Y × G//U)//G

(and a corresponding result is true if Y is projective). Conversely if we can
find an embedding of G/U as an open subvariety of an affine variety Z with
complement of codimension at least two, then

O(G)U ∼= O(Z)

is finitely generated and G//U ∼= Z.
Suppose that U is a unipotent group with a reductive group R of auto-

morphisms of U given by a homomorphism φ : R → Aut(U) such that R
contains a central one-parameter subgroup λ : C∗ → R for which the weights
of the induced C∗ action on the Lie algebra u of U are all nonzero. Then we
can form the semi-direct product

Û = C∗ � U ⊆ R � U

given by C∗ × U with group multiplication

(z1, u1).(z2, u2) = (z1z2, (λ(z−1
2 )(u1))u2).
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The groups Gk = Uk � C∗ and Gk,p = Uk,p � GL(p) which act on the fibres
of the jet bundles Jk and Jk,p are of this form. We will use this structure
to study the Demailly-Semple algebras of invariant jet differentials En

k and
En

k,p and prove

Theorem 3.2. The fibres O((Jk)x)Uk and O((Jk,p)x)G′
k,p of the bundles

En
k and En

k,p are finitely generated graded complex algebras.

Thus we have non-reductive GIT quotients

(Jk)x//Uk = Spec(O((Jk)x)Uk)

and
(Jk,p)x//G′

k,p = Spec(O((Jk,p)x)G′
k,p)

and we would like to understand them geometrically. There is a crucial
difference here from the case of reductive group actions, even though the
invariants are finitely generated: when H is a non-reductive group we can-
not describe Y//H geometrically as Y ss modulo some equivalence relation.
Instead our aim is to use methods inspired by [2] to study these geometric
invariant theoretic quotients and the associated algebras of invariants.

Here a crucial ingredient would be to find an open subset W of (Jk,p)x

with a geometric quotient W/G′
k,p embedded as an open subset of an affine

variety Z such that the complement of W/G′
k,p in Z has (complex) codi-

mension at least two, and the complement of W in (Jk,p)x has codimension
at least two. For then we would have

O((Jk,p)x) = O(W )

and
O((Jk,p)x)G′

k,p = O(W )G′
k,p = O(W/G′

k,p) = O(Z),

and it follows that O((Jk,p)x)G′
k,p is finitely generated since Z is affine, and

that
Z = Spec(O(Z)) = Spec(O((Jk,p)x)G′

k,p) = ((Jk,p)x)//G′
k,p.

Similarly if we can find a complex reductive group G containing G′
k,p as a

subgroup, and an embedding of G/G′
k,p as an open subset of an affine variety

Z with complement of codimension at least two, then O(G)G′
k,p is finitely

generated. It follows as above that if Y is any affine variety on which G acts
linearly then

O(Y )G′
k,p ∼= (O(Y ) ⊗O(G)G′

k,p)G

is finitely generated, and hence so is O(Y )Gk,p = (O(Y )G′
k,p)C∗

, and similarly
ÔL(Y )G′

k,p and ÔL(Y )Gk,p are finitely generated if Y is any projective variety
wtih an ample line bundle L on which G acts linearly.

We can use the ideas of [2] to look for suitable affine varieties Z as above,
and in particular to prove
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Theorem 3.3. G′
k,p is a subgroup of the special linear group SL(sym≤kp)

where

sym≤kp =
k∑

i=1

dim SymiCp =
(

k + p − 1
k − 1

)
such that the algebra of invariants O(SL(sym≤kp))G′

k,p is finitely generated,
and every linear action of G′

k,p or Gk,p on an affine or projective variety
(with an ample linearisation) which extends to a linear action of GL(sym≤kp)
has finitely generated invariants.

Theorem 3.2 is an immediate consequence of this theorem, since the
action of Gk,p on (Jk,p)x extends to an action of the general linear group
GL(sym≤kp). Moreover we will find a geometric description of

SL(sym≤kp)//G′
k,p

∼= Spec(O(SL(sym≤kp))G′
k,p)

and thus a geometric description of

(Jk,p)x//G′
k,p

∼= ((Jk,p)x × SL(sym≤kp)//G′
k,p)//SL(sym≤kp).

4. A description via test curves

In [2] the action of Gk on jet bundles is studied using an idea coming
from global singularity theory. The construction goes as follows.

If u, v are positive integers, let Jk(u, v) denote the vector space of
k-jets of holomorphic maps (Cu, 0) → (Cv, 0) at the origin; that is, the set
of equivalence classes of maps f : (Cu, 0) → (Cv, 0), where f ∼ g if and only
if f (j)(0) = g(j)(0) for all j = 1, . . . , k.

With this notation, the fibres of Jk are isomorphic to Jk(1, n), and the
group Gk is simply Jk(1, 1) with the composition action on itself.

If we fix local coordinates z1, . . . , zu at 0 ∈ Cu we can again identify the
k-jet of f , using derivatives at the origin, with (f ′(0), f ′′(0)/2!, . . . ,
f (k)(0)/k!), where f (j)(0) ∈ Hom(SymjCu, Cv). This way we get an iden-
tification

Jk(u, v) = ⊕k
j=1Hom(SymjCu, Cv).

We can compose map-jets via substitution and elimination of terms of degree
greater than k; this leads to the composition maps

Jk(v, w) × Jk(u, v) → Jk(u, w),

(Ψ2, Ψ1) �→ Ψ2 ◦ Ψ1 modulo terms of degree > k.(8)

When k = 1, J1(u, v) may be identified with u-by-v matrices, and (8) reduces
to multiplication of matrices.

The k-jet of a curve (C, 0) → (Cn, 0) is simply an element of Jk(1, n).
We call such a curve ϕ regular if ϕ′(0) �= 0. Let us introduce the notation
J reg

k (1, n) for the set of regular curves:

J reg
k (1, n) =

{
γ ∈ Jk(1, n); γ′(0) �= 0

}
.
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Note that if n > 1 then the complement of J reg
k (1, n) in Jk(1, n) has codi-

mension at least two. Let N ≥ n be any integer and define

Υk =
{
Ψ ∈ Jk(n, N) : ∃γ ∈ J reg

k (1, n) : Ψ ◦ γ = 0
}

to be the set of those k-jets which take at least one regular curve to zero. By
definition, Υk is the image of the closed subvariety of Jk(n, N) × J reg

k (1, n)
defined by the algebraic equations Ψ ◦ γ = 0, under the projection to the
first factor. If Ψ ◦ γ = 0, we call γ a test curve of Ψ.

This term originally comes from global singularity theory, where this is
called the test curve model of Ak-singularities. In global singularity theory
singularities of polynomial maps f : (Cn, 0) → (Cm, 0) are classified by their
local algebras, and

Σk = {f ∈ Jk(n, m) : C[x1, . . . , xn]/〈f1, . . . , fm〉 � C[t]/tk+1}
is called a Morin singularity, or Ak-singularity. The test curve model of
Gaffney [12] tells us that

Σk = Υk

in Jk(n, m).
A basic but crucial observation is the following. If γ is a test curve of

Ψ ∈ Υk, and ϕ ∈ J reg
k (1, 1) = Gk is a holomorphic reparametrization of C,

then γ ◦ ϕ is, again, a test curve of Ψ:

C
ϕ � C

γ � Cn Ψ � CN(9)

Ψ ◦ γ = 0 ⇒ Ψ ◦ (γ ◦ ϕ) = 0.

In fact, we get all test curves of Ψ in this way from a single γ if the following
open dense property holds: the linear part of Ψ has 1-dimensional kernel.
Before stating this more precisely in Proposition 4.3 below, let us write
down the equation Ψ ◦ γ = 0 in coordinates in an illustrative case. Let γ =
(γ′, γ′′, . . . , γ(k)) ∈ J reg

k (1, n) and Ψ = (Ψ′, Ψ′′, . . . ,Ψ(k)) ∈ Jk(n, N) be the k-
jets. Using the chain rule, the equation Ψ ◦ γ = 0 reads as follows for k = 4:

Ψ′(γ′) = 0,(10)
1
2!Ψ

′(γ′′) + Ψ′′(γ′, γ′) = 0,
1
3!Ψ

′(γ′′′) + 2
2!Ψ

′′(γ′, γ′′) + Ψ′′′(γ′, γ′, γ′) = 0,
1
4!Ψ

′(γ′′′′) + 2
3!Ψ

′′(γ′, γ′′′) + 1
2!2!Ψ

′′(γ′′, γ′′) + 3
2!Ψ

′′′(γ′, γ′, γ′′)
+ Ψ′′′′(γ′, γ′, γ′, γ′) = 0.

Definition 4.1. To simplify our formulas we introduce the following
notation for a partition τ = [i1 . . . il] of the integer i1 + · · · + il:

• the length: |τ | = l,
• the sum:

∑
τ = i1 + · · · + il,
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• the number of permutations: perm(τ) is the number of different
sequences consisting of the numbers i1, . . . , il (e.g. perm
([1, 1, 1, 3]) = 4),

• γτ =
∏l

j=1 γ(ij) ∈ Sym lCn and Ψ(γτ ) = Ψl(γ(i1), . . . , γ(il)) ∈ CN .

Lemma 4.2. Let γ = (γ′, γ′′, . . . , γ(k)) ∈ J reg
k (1, n) and Ψ = (Ψ′, Ψ′′, . . . ,

Ψ(k)) ∈ Jk(n, N) be k-jets. Then the equation Ψ ◦ γ = 0 is equivalent to the
following system of k linear equations with values in CN :

(11)
∑

τ∈Π[m]

perm(τ)∏
i∈τ i!

Ψ(γτ ) = 0, m = 1, 2, . . . , k,

where Π[m] denotes the set of all partitions of m.

For a given γ ∈ J reg
k (1, n) let Sγ denote the set of solutions of (11); that is,

Sγ = {Ψ ∈ Jk(n, N); Ψ ◦ γ = 0} .

The equations (11) are linear in Ψ, hence

Sγ ⊂ Jk(n, N)

is a linear subspace of codimension kN . Moreover, the following holds:

Proposition 4.3. ( [2], Proposition 4.4)

(i) For γ ∈ J reg
k (1, n), the set of solutions Sγ ⊂ Jk(n, N) is a linear

subspace of codimension kN .
(ii) Set

Jo
k(n, N) =

{
Ψ ∈ Jk(n, N)|dim ker(Ψ′) = 1

}
.

For any γ ∈ J reg
k (1, n), the subset Sγ ∩ Jo

k(n, N) of Sγ is dense.
(iii) If Ψ ∈ Jo

k(n, N), then Ψ belongs to at most one of the spaces Sγ.
More precisely,

if γ1, γ2 ∈ J reg
k (1, n), Ψ ∈ Jo

k(n, N) and Ψ ◦ γ1 = Ψ ◦ γ2 = 0,

then there exists ϕ ∈ J reg
k (1, 1) such that γ1 = γ2 ◦ ϕ.

(iv) Given γ1, γ2 ∈ J reg
k (1, n), we have Sγ1 = Sγ2 if and only if there is

some ϕ ∈ J reg
k (1, 1) such that γ1 = γ2 ◦ ϕ.

By the second part of Proposition 4.3 we have a well-defined map

ν : J reg
k (1, n) → Grass(codim = kN, Jk(n, N)), γ �→ Sγ
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to the Grassmannian of codimension-kN subspaces in Jk(n, N). From the
last part of Proposition 4.3 it follows that:

Proposition 4.4. ( [2]) ν is Gk-invariant on the J reg
k (1, 1)-orbits, and

the induced map on the orbits

(12) ν̄ : J reg
k (1, n)/Gk ↪→ Grass(codim = kN, Jk(n, N))

is injective.

5. Embedding into the flag of equations

In this section we will recast the embedding (12) of J reg
k (1, n)/Gk given

by Proposition 4.4 into a more useful form, still following [2]. Let us rewrite
the linear system Ψ ◦ γ = 0 associated to γ ∈ J reg

k (1, n) in a dual form. The
system is based on the standard composition map (8):

Jk(n, N) × Jk(1, n) −→ Jk(1, N),

which, via the identification Jk(n, N) = Jk(n, 1) ⊗ CN , is derived from
the map

Jk(n, 1) × Jk(1, n) −→ Jk(1, 1)

via tensoring with CN . Observing that composition is linear in its first argu-
ment, and passing to linear duals, we may rewrite this correspondence in
the form

(13) φ : Jk(1, n) −→ Hom (Jk(1, 1)∗, Jk(n, 1)∗).

If γ = (γ′, γ′′, . . . , γ(k)) ∈ Jk(1, n) = (Cn)k is the k-jet of a curve, we can
put γ(j) ∈ Cn into the jth column of an n × k matrix, and

• identify Jk(1, n) with Hom (Ck, Cn);
• identify Jk(n, 1)∗ with Sym≤kCn = ⊕k

l=1 Sym lCn;
• identify Jk(1, 1)∗ with Ck.

Using these identifications, we can recast the map φ in (13) as

(14) φk : Hom (Ck, Cn) −→ Hom (Ck, Sym≤kCn),

which may be written out explicitly as follows

(γ′, γ′′, . . . , γ(k))

�−→
⎛
⎝γ′, γ′′ + (γ′)2, . . . ,

∑
i1+i2+···+is=d

1
i1! . . . is!

γ(i1)γ(i2) . . . γ(is)

⎞
⎠ .

The set of solutions Sγ is the linear subspace orthogonal to the image of
φk(γ′, . . . γ(k)) tensored by CN ; that is,

Sγ = im(φk(γ))⊥ ⊗ CN ⊂ Jk(n, N).
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Consequently, it is straightforward to take N = 1 and define

(15) Sγ = im(φk(γ)) ∈ Grass(k, Sym≤kCn).

Moreover, let Bk ⊂ GL(k) denote the Borel subgroup consisting of upper
triangular matrices and let

Flagk(C
n) = Hom (Ck, Sym≤kCn)/Bk

= {0 = F0 ⊂ F1 ⊂ · · · ⊂ Fk ⊂ Cn, dim Fl = l}
denote the full flag of k-dimensional subspaces of Sym≤kCn. In addition to
(15) we can analogously define

(16) Fγ = (im(φ(γ1)) ⊂ im(φ(γ2)) ⊂ · · · ⊂ im(φ(γk))) ∈ Flagk(Sym≤kCn).

Using these definitions Proposition 4.3 implies the the following version
of Proposition 4.4, which does not contain the parameter N .

Proposition 5.1. The map φ in (14) is a Gk-invariant algebraic mor-
phism

φ : J reg
k (1, n) → Hom (Ck, Sym≤kCn),

which induces
• an injective map on the Gk-orbits to the Grassmannian:

φGr : J reg
k (1, n)/Gk ↪→ Grass(k, Sym≤kCn)

defined by φGr(γ) = Sγ;
• an injective map on the Gk-orbits to the flag manifold:

φFlag : J reg
k (1, n)/Gk ↪→ Flagk(Sym≤kCn)

defined by φFlag(γ) = Fγ.
In addition,

φGr = φFlag ◦ πk

where πk : Flag(k, Sym≤kCn) → Grassk(Sym≤kCn) is the projection to the
k-dimensional subspace.

Composing φGr with the Plücker embedding

Grass(k, Sym≤kCn) ↪→ P(∧kSym≤kCn)

we get an embedding

(17) φProj : J reg
k (1, n)/Gk ↪→ P(∧k(Sym≤kCn)).

The image
φGr(J reg

k (1, n))/Gk ⊂ Grass(k, Sym≤kCn)

is a GL(n)-orbit in Grass(k, Sym≤kCn), and therefore a nonsingular quasi-
projective variety. Its closure is, however, a highly singular subvariety of
Grass(k, Sym≤kCn), which when k ≤ n is a finite union of GL(n) orbits.
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Definition 5.2. Recall that we can identify Jk(1, n) with Hom(Ck, Cn)
and then

J reg
k (1, n) = {ρ ∈ Hom(Ck, Cn) : ρ(e1) �= 0}.

Let
Jnondeg

k (1, n) = {ρ ∈ Hom(Ck, Cn) : rankρ = max{k, n}}
and let

Xn,k = φProj(Jnondeg
k (1, n)), Yn,k = φProj(J reg

k (1, n)),

so that if n ≤ k then

Xn,k ⊂ Yn,k ⊂ Grass(n, Sym≤kCn) ⊂ P(∧k(Sym≤kCn)).

It is clear that Jnondeg
k (1, n) is an open subset of J reg

k (1, n). If we identify
the elements of Jk(1, n) with n×k matrices whose columns are the derivatives
of the map germs f = (f ′, . . . , f (n)) : C → Cn, then Jnondeg

k (1, n) is the set of
such matrices of maximal rank and J reg

k (1, n) consists of the matrices with
nonzero first column.

Definition 5.3. Let e1, . . . , en be the standard basis of Cn; then

{ei1,i2,...,is = ei1 . . . eis : 1 ≤ i1 ≤ · · · ≤ is ≤ n, 1 ≤ s ≤ k}
is a basis of Sym≤kCn, and

{eε1 ∧ · · · ∧ eεn : εl ∈ Π≤n}
is a basis of P(∧n(Sym≤kCn)), where

Π≤n = {(i1, i2, . . . , is) : 1 ≤ i1 ≤ · · · ≤ is ≤ n, 1 ≤ s ≤ k}.
The corresponding coordinates of x ∈ Sym≤kCn will be denoted by xε1,ε2,...,εd

.
Let An,k ⊂ P(∧k(Sym≤kCn)) consist of the points whose projection to ∧k(Cn)
is nonzero. This is the subset where xi1,i2,...,ik �= 0 for some 1 ≤ i1 ≤ · · · ≤
ik ≤ n.

Remark 5.4. If n = k then An,n ⊂ P(∧k(Sym≤kCn)) is the affine chart
where x1,2,...,n �= 0.

Let us take a closer look at the space Grass(n, Sym≤kCn), which has an
induced GL(n) action coming from the GL(n) action on Sym≤kCn. Since
φProj is a GL(n)-equivariant embedding, we conclude that

Lemma 5.5. (i) For k ≤ n Xn,k is the GL(n) orbit of

(18) z = φProj(e1, . . . , ek) =

⎡
⎣e1 ∧ (e2 + e2

1) ∧ · · · ∧
⎛
⎝ ∑

i1+···is=k

ei1 . . . eis

⎞
⎠
⎤
⎦
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in P(∧k(Sym≤kCn)). For arbitrary g ∈ GL(n) with column vectors v1, . . . , vn

the action is given by

g · z = φProj(g) = φProj(v1, . . . , vn)

=

[
v1 ∧ (v2 + v2

1) ∧ · · · ∧
( ∑

i1+···+is=n

vi1 . . . vis

)]
.

(ii) For k ≤ n Yn,k is a finite union of GL(n) orbits.
(iii) For k > n the images Xn,k and Yn,k are GL(n)-invariant quasi-

projective varieties with no dense GL(n) orbit.

Lemma 5.6. If k ≤ n then
(i) An,k is invariant under the GL(n) action on P(∧k(Sym≤kCn)).
(ii) Xn,k ⊂ An,k; however, Yn,k � An,k.

Proof. To prove the first part take a lift

z̃ = z̃1 ⊕ z̃2 ∈ Hom (Cn, Sym≤kCn)

of z ∈ Grass(n, Sym≤kCn), where

z1 ∈ Hom (Cn, Cn) and z2 ∈ Hom (Cn,⊕n
i=2 Sym i(Cn))

Then z ∈ An,k if and only if x1,2,...,n(z) = det(z̃1) �= 0, which is preserved by
the GL(n) action. For the second part note that for (v1, . . . , vk) ∈
Jnondeg

k (1, n) we have v1∧· · ·∧vk �= 0 so by definition φProj(v1, . . . , vk) ∈ An,k.
On the other hand

φProj(e1, 0, . . . , 0) = e1 ∧ e2
1 ∧ · · · ∧ ek

1 ∈ Yn,k \ An,k. �

When k = n we have

Lemma 5.7. Xk,k
∼= GL(k)/Gk is embedded in the affine space Ak,k ⊂

P(∧kSym≤kCk) as the GL(k) orbit of [e1 ∧ (e2 + e2
1) ∧ · · · ∧ (

∑
i1+···+is=k

ei1 . . . eis)].

6. Affine embeddings of SL(k)/Uk

In the last section we embedded GL(k)/Gk in the affine space Ak,k ⊂
P(∧k( Sym≤kCk)) as the GL(k) orbit of⎡

⎣e1 ∧ (e2 + e2
1) ∧ · · · ∧

⎛
⎝ ∑

i1+···+is=k

ei1 . . . eis

⎞
⎠
⎤
⎦ ∈ P(∧k( Sym≤kCk)).

Equivalently we have

SL(k)/SL(k) ∩ Gk = SL(k)/Uk � Fk
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embedded in ∧k( Sym≤kCk) as the SL(k) orbit of

pk = e1 ∧ (e2 + e2
1) ∧ · · · ∧

⎛
⎝ ∑

i1+···+is=k

ei1 . . . eis

⎞
⎠ ,

where SL(k) ∩ Gk is the semi-direct product Uk � Fk of Uk by the finite
group Fk of �kth roots of unity in C for �k = 1+ · · ·+k =

(
k+1
2

)
, embedded in

SL(k) as

ε �→

⎛
⎜⎜⎜⎝

ε 0 . . . 0
0 ε2 . . . 0

. . .
0 0 . . . εk

⎞
⎟⎟⎟⎠ ∈ SL(k).

In this section we will look for affine embeddings of SL(k)/Uk in spaces of
the form

Wk,K = ∧k( Sym≤kCk) ⊗ (Ck)⊗K

for suitable K and study their closures.

Lemma 6.1. Let K = M(1+2+ · · ·+k)+1 =
(
k+1
2

)
M +1 where M ∈ N.

Then the point

pk ⊗ e⊗K
1 ∈ ∧k( Sym≤kCk) ⊗ (Ck)⊗K

where

pk = e1 ∧ (e2 + e2
1) ∧ · · · ∧

⎛
⎝ ∑

i1+···+is=k

ei1 . . . eis

⎞
⎠ ∈ ∧k( Sym≤kCk)

has stabiliser Uk in SL(k).

Proof. By Proposition 5.1 the stabiliser of

[pk] ∈ P(∧k( Sym≤kCk)) ∼= P(∧k( Sym≤kCk) ⊗ (Ce1)⊗K) ⊆ P(Wk,K)

in GL(k) is Gk = Uk � C∗, so the stabiliser of

pk ⊗ e⊗K
1 ∈ ∧k( Sym≤kCk) ⊗ (Ck)⊗K

is contained in Gk. Moreover by the proof of Proposition 5.1 the stabiliser
of pk ⊗ e⊗K

1 contains Uk. Finally⎛
⎜⎜⎜⎝

z 0 . . . 0
0 z2 . . . 0

. . .
0 0 . . . zk

⎞
⎟⎟⎟⎠ ∈ C∗ ⊆ Gk

acts on pk ⊗ e⊗K
1 as multiplication by

z1+2+···+k+K = z(M+1)(1+2+···+k)+1
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and has determinant 1 if and only if z1+2+···+k = 1, so it lies in SL(k) and
fixes pk ⊗ e⊗K

1 if and only if z = 1. �

We will prove

Theorem 6.2. If k ≥ 4 and K = M(1 + 2 + · · ·+ k) + 1 where M ∈ N is
sufficiently large, then the orbit of pk ⊗ e⊗K

1 where

pk = e1 ∧ (e2 + e2
1) ∧ · · · ∧

⎛
⎝ ∑

i1+···+is=k

ei1 . . . eis

⎞
⎠ ∈ ∧k( Sym≤kCk)

under the natural action of SL(k) on

Wk,K = ∧k( Sym≤kCk) ⊗ (Ck)⊗K

is isomorphic to SL(k)/Uk, and its complement in its closure
SL(k)(pk ⊗ e⊗K

1 ) in Wk,K has codimension at least two.

This theorem has an immediate corollary.

Corollary 6.3. If k ≥ 2 then Uk is a Grosshans subgroup of SL(k), so
that every linear action of Uk which extends to a linear action of SL(k) has
finitely generated invariants.

Proof. This follows directly from Theorem 6.2 when k ≥ 4. When k = 2
and k = 3 it is already known (cf. [27]). �

The remainder of this section will be devoted to proving Theorem 6.2.

It follows directly from Lemma 6.1 that the SL(k)-orbit of pk ⊗ e⊗K
1 in

Wk,K = ∧k( Sym≤kCk) ⊗ (Ck)⊗K is isomorphic to SL(k)/Uk.
Recall that

Uk =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎜⎝

1 α2 α3 · · · αk

0 1 2α2 · · · 2αk−1 + · · ·
0 0 1 · · · 3αk−2 + · · ·
· · · · ·
0 0 · · · 1 (k − 1)α2

0 0 0 · · · 1

⎞
⎟⎟⎟⎟⎟⎟⎠ : α2, . . . , αk ∈ C

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

so that Uk is generated along its last column as well as along its first row.
Let Bk ⊂ SL(k) denote the standard Borel subgroup of SL(k) which sta-

bilises the filtration Ce1 ⊂ Ce1 ⊕ Ce2 ⊂ · · ·Ck. Then Bk = Bk−1 · Uk where
the Borel subgroup Bk−1 of GL(k − 1) = GL(Ce1 ⊕ Ce2 ⊕ · · · ⊕ Cek−1) is
embedded diagonally in SL(k) via

A �→
(

A 0
0 (detA)−1

)
.
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Since Uk stabilises pk and e1 we have

Bk(pk ⊗ e⊗K
1 ) = Bk−1(pk ⊗ e⊗K

1 ),

and since SL(k)/Bk is projective we have

SL(k)(pk ⊗ e⊗K
1 ) = SL(k)Bk(pk ⊗ e⊗K

1 ) = SL(k)Bk−1(pk ⊗ e⊗K
1 ).

Since the closure SL(k)(pk ⊗ e⊗K
1 ) of the SL(k)-orbit of pk ⊗ e⊗K

1 in Wk,K

is the union of finitely many SL(k)-orbits, to prove Theorem 6.2 it suffices
to prove

Lemma 6.4. Suppose that k ≥ 4 and a and b are strictly positive integers
with b/a large enough and that x lies in the closure in

(∧k( Sym≤kCk))⊗a ⊗ (Ck)⊗b

of the orbit Bk(p⊗a
k ⊗e⊗b

1 ) of p⊗a
k ⊗e⊗b

1 under the natural action of the Borel
subgroup Bk of SL(k). Then either x ∈ Bk(p⊗a

k ⊗ e⊗b
1 ) or the stabiliser of x

in SL(k) has dimension at least k + 1.

We will split the proof of this lemma into two parts. Let Tk denote
the standard maximal torus of SL(k) consisting of the diagonal matrices in
SL(k). Lemma 6.4 follows immediately from Lemmas 6.5 and 6.6 below.

Lemma 6.5. Suppose that k ≥ 4 and a and b are strictly positive integers
with b/a large enough and that x lies in the closure Tk(p⊗a

k ⊗ e⊗b
1 ) in

(∧k( Sym≤kCk))⊗a ⊗ (Ck)⊗b

of the orbit Tk(p⊗a
k ⊗ e⊗b

1 ) of p⊗a
k ⊗ e⊗b

1 under the natural action of the
maximal torus Tk of SL(k). Then either x ∈ Tk(p⊗a

k ⊗ e⊗b
1 ) or the stabiliser

of x in SL(k) has dimension at least k + 1.

Lemma 6.6. Suppose that k ≥ 2 and a and b are strictly positive integers
and that x lies in the closure in

(∧k( Sym≤kCk))⊗a ⊗ (Ck)⊗b

of the orbit Bk(p⊗a
k ⊗e⊗b

1 ) of p⊗a
k ⊗e⊗b

1 under the natural action of the Borel

subgroup Bk of SL(k). Then either x ∈ BkTk(p⊗a
k ⊗ e⊗b

1 ) or the stabiliser of
x in SL(k) has dimension at least k + 1.

We will start with the proof of Lemma 6.6.

Proof. We have

x ∈ Bk(p⊗a
k ⊗ e⊗b

1 ) = Bk−1(p⊗a
k ⊗ e⊗b

1 )
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as above, so there is a sequence of matrices

b(m) =

⎛
⎜⎜⎜⎜⎜⎝

b
(m)
11 b

(m)
12 . . . b

(m)
1k−1 0

0 b
(m)
22 . . . b

(m)
2k−1 0

. . .
0 0 . . . 0 b

(m)
kk

⎞
⎟⎟⎟⎟⎟⎠ ∈ Bk−1 ⊂ SL(k)

such that b(m)(p⊗a
k ⊗e⊗b

1 ) → x as m →∞. Now expanding the wedge product
in the definition of pk we get

b(m)(p⊗a
k ) =

(
e1 ∧ · · · ∧ en + · · · + (b(m)

11 )1+2+···+ke1 ⊗ e2
1 ⊗ · · · ⊗ ek

1

)⊗a

while
b(m)(e⊗b

1 ) = (b(m)
11 )be⊗b

1 ,

so by considering the coefficient of (e1 ∧ · · · ∧ en)⊗a ⊗ e⊗b
1 we see that (b(m)

11 )b

tends to a limit in C as m →∞. Thus, by replacing the sequence (b(m)) with
a subsequence if necessary, we can assume that

b
(m)
11 → b

(∞)
11 ∈ C

as m →∞.
First suppose that k = 2. Then Sym≤kCk = C2 ⊕ Sym2C2 and

(∧k( Sym≤kCk))⊗a ⊗ (Ck)⊗b = (∧2(C2 ⊕ Sym2C2))⊗a ⊗ (C2)⊗b

and
pk = e1 ∧ (e2 + e2

1),
so if

b(m) =

⎛
⎝ b

(m)
11 b

(m)
12

0 b
(m)
22

⎞
⎠ ∈ SL(2)

then b
(m)
11 b

(m)
22 = 1 and

b(m)(p⊗a
2 ⊗ e⊗b

1 ) = (b(m)
11 )b(e1 ∧ (e2 + (b(m)

11 )3e2
1)))

⊗a ⊗ e⊗b
1

→ x = (b(∞)
11 )b(e1 ∧ (e2 + (b(∞)

11 )3e2
1)))

⊗a ⊗ e⊗b
1

as m →∞. If b
(∞)
11 �= 0 then x ∈ SL(2)((p⊗a

2 ⊗ e⊗b
1 ), while if b

(∞)
11 = 0 then

x = 0 is fixed by SL(2) which has dimension 3 = k + 1.
Now suppose that k > 2, and assume first that b

(∞)
11 �= 0. We have that

b(m)(p⊗a
k ⊗ e⊗b

1 ) = (b(m)
11 )b(b(m)pk)⊗a) ⊗ e⊗b

1 → x

and b
(m)
11 → b

(∞)
11 ∈ C \ {0} as m →∞, so by replacing the sequence (b(m))

with a subsequence if necessary, we can assume that

(b(m)
11 )b/ab(m)pk → p∞k ∈ ∧k( Sym≤kCk)
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as m →∞, where

b(m)pk = b
(m)
11 e1 ∧ (b(m)

22 e2 + (b(m)
11 )2e2

1) ∧ · · · ∧ (b(m)
ii ei + b

(m)
i−1iei−1(19)

+ · · · + b
(m)
1i e1 +

i−1∑
s=2

∑
i1+···+is=i

(b(m)
i1i1

ei1 + · · · + b
(m)
1i1

e1) · · ·

× (b(m)
isis

eis + · · · + b
(m)
1is

e1) + (b(m)
11 )iei

1) ∧ · · ·
Looking at the coefficient of

e1 ∧ e2
1 ∧ · · · ∧ ei−1

1 ∧ ej ∧ ei+1
1 ∧ · · · ∧ ek

1

when 1 ≤ j ≤ i ≤ k, we see that

(b(m)
11 )1+2+···+(i−1)+(i+1)+···+kb

(m)
ji

tends to a limit in C as m →∞, and so since b
(∞)
11 �= 0

b
(m)
ji → b

(∞)
ji ∈ C.

Also b
(m)
11 b

(m)
22 · · · b(m)

kk = 1 for all m, so b
(∞)
11 b

(∞)
22 · · · b(∞)

kk = 1, so b(m) → b(∞) ∈
SL(k). Therefore

x = b(∞)(p⊗a
k ⊗ e⊗b

1 )

lies in the orbit of p⊗a
k ⊗ e⊗b

1 as required.
So it remains to consider the case when b

(∞)
11 = 0. If p∞k = 0 then its

stabiliser is SL(k) which has dimension k2 − 1 ≥ k + 1, so we can assume
that p∞k �= 0. Recall that then

(b(m)
11 )b/ab(m)pk → p∞k ∈ ∧k( Sym≤kCk)

and
[b(m)pk] → [p∞k ] ∈ P(∧k( Sym≤kCk))

as m →∞, where

b(m)pk = b
(m)
11 e1 ∧ (b(m)

22 e2 + (b(m)
11 )2e2

1) ∧ · · · ∧ (b(m)
ii ei + b

(m)
i−1iei−1 + · · ·

+ b
(m)
1i e1 +

i−1∑
s=2

∑
i1+···+is=i

(b(m)
i1i1

ei1 + · · · + b
(m)
1i1

e1) · · ·

× (b(m)
isis

eis + · · · + b
(m)
1is

e1) + (b(m)
11 )iei

1) ∧ · · ·

By replacing the sequence (b(m)) with a subsequence if necessary, we can
assume that

[b(m)
ii ei +b

(m)
i−1iei−1 + · · ·+b

(m)
1i e1] → [c(∞)

ii ei +c
(∞)
i−1iei−1 + · · ·+c

(∞)
1i e1] ∈ P(Ck)
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as m →∞ for 2 ≤ i ≤ k, which implies that

[(b(m)
i1i1

ei1 + · · · + b
(m)
1i1

e1) . . . (b(m)
isis

eis + · · · + b
(m)
1is

e1)]

→ [(c(∞)
i1i1

ei1 + · · · + c
(∞)
1i1

e1) . . . (c(∞)
isis

eis + · · · + c
(∞)
1is

e1)] ∈ P(SymiCk)

whenever i1 + · · · + is = i ∈ {2, . . . , k}, and hence that

p∞k ∈ ∧k(Sym≤kD)

where D is the span in Ck of

{e1} ∪ {c(∞)
ii ei + c

(∞)
i−1iei−1 + · · · + c

(∞)
1i e1 : 2 ≤ i ≤ k}.

Moreover since b(m) ∈ Bk−1 we have b
(m)
jk = 0 if j < k so

[c(∞)
kk ek + c

(∞)
k−1kek−1 + · · · + c

(∞)
1k e1] = [ek]

so ek ∈ D.
Note that b(m) ∈ Bk−1 and Bk−1 normalises the maximal unipotent sub-

group Uk of Bk which contains the stabiliser Uk of pk. Therefore for each m
there is a (k − 1)-dimensional subgroup of Uk which stabilises b(m)pk, and
it follows that there is a (k − 1)-dimensional subgroup U∞

k of Uk which sta-
bilises p∞k . In addition by [3] Theorem 6.4 if p∞k does not lie in SL(k)pk then
it is stabilised by a nontrivial one-parameter subgroup λ∞ : C∗ → SL(k) of
SL(k). Moreover if D �= Ck then there is some j ∈ {2, . . . , k − 1} such that
ej is not in D, and then there is an automorphism of Ck which fixes every
element of D and sends ej to ej + ek. This automorphism is independent of
U∞

k (since U∞
k ⊆ Uk) and the one-parameter subgroup λ∞ of SL(k) fixing

p∞k , so the stabiliser of p∞k in SL(k) has dimension at least

dim U∞
k + 2 = k + 1.

Thus we can assume that D = Ck, and hence c
(∞)
ii �= 0 for 2 ≤ i ≤ k, so that

b
(m)
ji

b
(m)
ii

→ c
(∞)
ji

c
(∞)
ii

∈ C

as m →∞. Then by applying an element of Bk−1 to p∞k we can assume that

[c(∞)
ii ei + c

(∞)
i−1iei−1 + · · · + c

(∞)
1i e1] = [ei]

or equivalently that

[b(m)
ii ei + b

(m)
i−1iei−1 + · · · + b

(m)
1i e1] → [ei]

as m →∞ for 2 ≤ i ≤ k, and hence that

[(b(m)
i1i1

ei1 + · · ·+b
(m)
1i1

e1) . . . (b(m)
isis

eis + · · ·+b
(m)
1is

e1)] → [ei1 · · · eis ] ∈ P(SymiCk)
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whenever i1 + · · ·+ is = i ∈ {2, . . . , k}. Now by again replacing the sequence
(b(m)) with a subsequence if necessary, we can assume that

[b(m)
ii ei + b

(m)
i−1iei−1 + · · · + b

(m)
1i e1 +

i−1∑
s=2

∑
i1+···+is=i

(b(m)
i1i1

ei1 + · · · + b
(m)
1i1

e1]

→ [d∞i ] ∈ P( Sym≤kCk)

where

d∞i = γ
(∞)
i ei +

i∑
s=2

∑
i1+···+is=i

γ
(∞)
i1...is

ei1 · · · eis ∈ Sym≤kCk \ {0}

for some γ
(∞)
i1...is

∈ C. In addition {d∞i : 1 ≤ i ≤ k} is linearly independent so
that

[p∞k ] = [d∞i ∧ · · · ∧ d∞k ] ∈ P(∧k( Sym≤kCk))

and p∞k = limm→∞ t(m)pk where t(m) is the diagonal matrix with entries
b
(m)
11 , . . . , b

(m)
kk .

Thus we can assume that p∞k ∈ Tkpk where Tk is the standard maximal
torus in SL(k), which completes the proof of Lemma 6.6. �

It therefore remains to prove Lemma 6.5. We can continue with the
notation above and use the following standard result:

Lemma 6.7. Let T be an algebraic torus acting on the projective variety
Z, and z ∈ Z. Then y ∈ Tz if and only if there is τ ∈ T , and a one-parameter
subgroup λ : C∗ → T such that τy ∈ λ(C∗)z.

Hence we may assume without loss of generality that there is a one-
parameter subgroup

t �→ λ(t) =

⎛
⎜⎜⎝

tλ1 0 · · · 0
0 tλ2 0 · · · 0

· · ·
0 · · · 0 tλk

⎞
⎟⎟⎠

of SL(k) such that λ1 > 0 and tλ1b/aλ(t)pk → p∞k as t → 0. Therefore

p∞k = lim
t→0

tλ1b/ae1 ∧ (e2 + t2λ1−λ2e2
1) ∧ · · · ∧

×
(

ek +
k∑

s=2

∑
i1 + · · · + is = ktλi1

+···+λis−λkei1 · · · eis

)
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where λ1 + · · · + λk = 0. We are assuming that p∞k �= 0 so

[p∞k ] = lim
t→0

[
e1 ∧ (e2 + t2λ1−λ2e2

1) ∧ · · · ∧

×
(

ek +
k∑

s=2

∑
i1 + · · · + is = ktλi1

+···+λis−λkei1 · · · eis

)]
.

If λi1 + · · ·+λis < λj for some j ∈ {2, . . . , k− 1} and s ≥ 2 and i1, . . . , is ≥ 1
such that i1 + · · · + is = j, then [p∞k ] is independent of ej and so as above
the stabiliser of p∞k in SL(k) has dimension at least k +1. So we can assume
that

(20) λi1 + · · · + λis ≥ λj

for any j ∈ {2, . . . , k − 1} and s ≥ 2 and i1, . . . , is ≥ 1 such that i1+· · ·+is =
j, and in particular that λj ≤ jλ1 for each j ∈ {2, . . . , k − 1}. Let

(21) ρj = jλ1 − λj

for j ∈ {1, . . . , k − 1}; then ρ1 = 0 and ρj ≥ 0 and

ρi1 + · · · + ρis ≤ ρj

for any j ∈ {2, . . . , k − 1} and s ≥ 2 and i1, . . . , is ≥ 1 such that i1+· · ·+is =
j. In addition looking at the coefficient of

e1 ∧ e2 ∧ · · · ∧ ek−1 ∧ ei1 · · · eis

where i1 + · · · + is = k, we find that

0 ≤ λ1b/a + λi1 + · · · + λis − λk

= λ1(b/a + k(k + 1)/2) − (ρi1 + · · · + ρis + ρ2 + · · · + ρk−1),

and since p∞k �= 0 there is some i1, . . . , is with i1 + · · · + is = k and

(22) λ1b/a + λi1 + · · · + λis = λk

or equivalently

λ1(b/a + k(k + 1)/2) = ρi1 + · · · + ρis + ρ2 + · · · + ρk−1.
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Thus

p∞k = lim
t→0

e1 ∧ (e2 + t2λ1−λ2e2
1) ∧ · · · ∧(23)

×
⎛
⎝ek−1 +

k−1∑
s=2

∑
i1+···+is=k−1

tλi1
+···+λis−λk−1ei1 · · · eis

⎞
⎠

∧
⎛
⎝tλ1b/a

k∑
s=2

∑
i1+···+is=k

tλi1
+···+ris−rkei1 · · · eis

= e1 ∧ · · · ∧
⎛
⎝ek−1 +

k−1∑
s=2

∑
i1+···+is=k−1:ρi1

+···+ρis=ρk−1

ei1 · · · eis

⎞
⎠

∧

⎛
⎜⎜⎝ k∑

s=2

∑
i1+···+is=k

λ1(b/a+k(k+1)/2)=ρi1
+···+ρis+ρ2+···+ρk−1

ei1 · · · eis

⎞
⎟⎟⎠

is independent of ek and hence is fixed by the automorphisms of Ck which
fix e1, . . . , ek−1 and send ek to ek + ej for j ∈ {1, . . . , k − 1}, as well as by
the one-parameter subgroup

λ(t) =

⎛
⎜⎜⎝

tλ1 0 · · · 0
0 tλ2 0 · · · 0

· · ·
0 · · · 0 tλk

⎞
⎟⎟⎠

of Tk. Thus to complete the proof of Lemma 6.5 and hence of Theorem 6.2,
it suffices to find an additional one-dimensional stabiliser, which will be done
in the rest of this section.

Letting

z = [pk] =

⎡
⎣e1 ∧ (e2 + e2

1) ∧ · · · ∧
⎛
⎝ ∑

i1+···+is=k

ei1 . . . eis

⎞
⎠
⎤
⎦

as at (18) we have

λ(t)z =

⎡
⎣tλ1e1 ∧ (tλ2e2 + t2λ1e2

1) ∧ · · · ∧
⎛
⎝ ∑

i1+···+is=k

tλi1
+···+λis ei1 . . . eis

⎞
⎠
⎤
⎦

= [tλ1+···+λk(e1 ∧ · · · ∧ ek) + tλ1+2λ1+λ3+···+λk

× (e1 ∧ e2
1 ∧ e3 ∧ · · · ∧ ek) + · · · ].

The generic term in this expression is

tλε1+λε2+···λεk (eε1 ∧ · · · ∧ eεk
), Σ(εi) = i
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where

(24) λτ =
∑
i∈τ

λi and eτ = Πi∈τei if τ = (i1, . . . , is).

Definition 6.8. For any one-parameter subgroup λ as above let
• mλ = min (ε1,...εk)

1≤Σ(εi)≤k

(λε1 + λε2 + · · ·λεk
),

• zλ = [
∑

1≤Σε≤k,λε=mλ
eε],

• mλ[i] = minΣ(ε)=i λε for 1 ≤ i ≤ k,
• zλ[i] = [

∑
Σε=i,λε=mλ[i] eε].

Let Oλ denote the SL(k)-orbit of zλ.

It is clear that the one-parameter subgroup λ̃(t) = (t, t2, . . . , tk) stabilises
z, where z is defined as at (18), and therefore z = zλ̃ and its SL(k)-orbit is
equal to its GL(k)-orbit.

We need a more precise description of the orbit structure of the closure
of the orbit O0 = Oλ̃. Since λ̃i = iλ̃1 for i = 1, . . . , k, for λ �= λ̃ we have a
smallest index σ ∈ {2, . . . , k} with λσ �= σλ1.

Definition 6.9. We call σ = Head(λ) the head of λ = (λ1, . . . , λn) if

λi = iλ1 for i < σ and λσ �= σλ1.

If λσ < σλ1 then we call λ regular ; otherwise we call λ degenerate.

We will say that a one-parameter subgroup λ is maximal if the closure
of the orbit GL(k) · zλ is a maximal boundary component of the closure of
the orbit of z.

Definition 6.10. Fix 0 < ε < 1 and 2 ≤ σ ≤ k. Let λσ = (λσ
1 , . . . , λσ

k)
and μσ = (μσ

1 , . . . , μσ
k) be the following one-parameter subgroups of GL(k):

(25) λσ
i = i −

⌊
i

σ

⌋
ε for 1 ≤ i ≤ k,

(26) μσ
i =

{
i for i �= σ, i ≤ k,

σ + ε for i = σ.

It is easy to see that Head(λσ) = Head(μσ) = σ, and λσ is regular,
whereas μσ is degenerate.

Definition 6.11. Let λ be a 1-parameter subgroup. We call

�{i : zλ[i] = ei}
the toral dimension of the limit point zλ.

Lemma 6.12. If the SL(k)-orbit of p∞k has codimension one in SL(k)pk,
then [p∞k ] lies in the orbit of one of zλ2 , . . . , zλk or zμ2 , . . . , zμk−1.
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Proof. We can assume that [p∞k ] = zλ for some one-parameter sub-
group λ. First suppose that λ is a regular one-parameter subgroup with
Head(λ) = σ and [p∞k ] = zλ. Without loss of generality we can assume that

λi = i for i < σ and λσ = σ − ε.

We will call d(i) = � i
σ � the defect of i and d(τ) = d(i1)+ · · ·+d(is) the defect

of τ = (i1, . . . , is), so that when i ≤ σ we have d(i)ε = ρi as defined at (21).
Since

λ(j,σ, . . . , σ︸ ︷︷ ︸
m

) = j + m(σ − ε) for 1 ≤ j ≤ σ − 1, m ≥ 0,

we have

(27) mλ[i] ≤ i − d(i)ε for 1 ≤ i ≤ k.

If λs < s−d(s)ε for s > i and s is the smallest index with this property then
mλ[s] = λs and zλ[s] = es, so

zλ[1] = e1, zλ[σ] = eσ, zλ[s] = es,

while zλ is independent of ek by (23), so [p∞k ] is fixed by a three-dimensional
torus in SL(k) and thus p∞k is fixed by a two-dimensional torus in SL(k) as
well as a unipotent subgroup of dimension k − 1. So we can assume that
λi ≥ i − d(i)ε for 1 ≤ i ≤ k, and therefore

mλ[i] = i − d(i)ε for 1 ≤ i ≤ k.

So

(28) eτ /∈ zλ[i] if d(τ) > d(i).

On the other hand the distinguished 1-parameter subgroup λσ is defined as
λσ

i = i − d(i)ε, and therefore

(29) zλσ [i] =
∑

Σ(τ)=i,d(τ)=d(i)

eτ .

Comparing (28) and (29) we conclude

zλ[i] ⊂ zλσ [i] for 1 ≤ i ≤ k.

Now let μ be a degenerate 1-parameter subgroup with Head(μ) = σ. Without
loss of generality we can assume again that

μi = i for i < σ and μσ = σ + ε.

Since
μ(1, . . . 1︸ ︷︷ ︸

i

) = i for 1 ≤ i ≤ k

we have

(30) mμ[i] ≤ i.
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Again, μs < s cannot happen for s > σ since in that case zμ[s] = es would
hold and the codimension of SL(k)p∞k would be at least two. So μs ≥ s and
therefore μτ ≥ Σ(τ) with strict inequality if σ ∈ τ . Therefore

(31) eτ /∈ zμ[i] if σ ∈ τ.

On the other hand μσ satisfies equality in (30), and

(32) zμσ [i] =
∑

Σ(τ)=i,σ /∈τ

eτ .

Comparing (31) and (32) we get

zμ[i] ⊂ zμσ [i] for 1 ≤ i ≤ k,

and so it remains to consider the possibility that [p∞k ] = zμk . But by (22)
there is some i1, . . . , is with i1 + · · · + is = k and

λ1b/a + λi1 + · · · + λis = λk

and hence λk > λi1 + · · · + λis . Thus [p∞k ] cannot be equal to zμk because
the coefficient of e1 ∧ e2

1 . . .∧ ek
1 is nonzero for zμk but zero for [p∞k ], and the

result follows. �

We summarize our information about the maximal boundary compo-
nents in

Proposition 6.13. We have zλσ = ∧k
i=1zλσ [i], where zλσ [i] =

⊕Σ(τ)=i,d(τ)=d(i)eτ , and zμσ = ∧k
i=1zμσ [i] where zμσ [i] = ⊕Σ(τ)=i,σ /∈τeτ .

Remark 6.14. Since the one-parameter subgroup λ̃(t) = (t, t2, . . . , tk) of
GL(k) stabilises Tkz, it follows from Lemma 6.12 that it is enough to prove
the codimension-at-least-two property we require only for the one-parameter
subgroups λ̃σ (for 2 ≤ s ≤ k) and μ̃σ (for 2 ≤ s ≤ k − 1) of SL(k) given by

λ̃σ(t) = (λσ(t)λ̃(t)qσ)nσ

and

μ̃σ(t) = (μσ(t)λ̃(t)rσ)mσ

for suitable qσ, rσ ∈ Q and nσ, mσ ∈ Z. But we observed at (20) that the
property is satisfied by a one-parameter subgroup λ of SL(k) if λi1 + · · · +
λis < λj for any j ∈ {2, . . . , k − 1} such that i1 + · · ·+ is = j, so it is enough
to consider the one-parameter subgroups λ̃σ for 2 ≤ s ≤ k.
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6.1. The limit of the stabilisers. In order to prove Lemma 6.5, it
now suffices by Remark 6.14 to find a k-dimensional unipotent subgroup of
the stabiliser Gzλσ of zλσ in GL(k) for each σ when zλσ = [p∞k ], since we
know that p∞k is fixed by a one-parameter subgroup of the maximal torus
Tk of SL(k), and any unipotent group which stabilises zλσ = [p∞k ] also sta-
bilises p∞k .

In this subsection we will study the limits limGλσ(t)z of the stabiliser
groups for the one-parameter subgroups λσ for 2 ≤ σ ≤ k, and use this to
prove Lemma 6.5, which together with Lemma 6.6 will complete the proof
of Theorem 6.2.

Proposition 6.15. Gσ = limt→0 Gλσ(t)z ⊂ GL(k) is a k-dimensional
subgroup of Gzλσ which contains a k − 1-dimensional subgroup of the maxi-
mal unipotent subgroup Uk of SL(k).

Proof. Consider the stabilizer

Gλσ(t)z = λσ(t)−1Gzλ
σ(t).

Recall that

Gz =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎜⎝

α1 α2 α3 . . . αk

0 α2
1 2α1α2 . . . 2α1αn−1 + · · ·

0 0 α3
1 . . . 3α2

1αk−2 + · · ·
0 0 0 . . . ·
· · · . . . αd

1

⎞
⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

where the polynomial in the (i, j) entry is

pi,j(α) =
∑

a1+a2+···+ai=j

αa1αa2 . . . αai .

Therefore, the (i, j) entry of the stabilizer of λs(t)z is

(33) (Gλσ(t)z)i,j = tλ
σ
i −λσ

j pi,j(α)

If ε is small enough then λσ
1 < λσ

2 < · · · < λσ
k , and we define the positive

number

(34) nσ
i = max

1≤j≤n−i+1
(λσ

j+i−1 − λσ
j ), i = 1, . . . , k.

Note that by definition nσ
1 = 0 for all σ.

Lemma 6.16. Under the substitution

βσ
i = t−nσ

i ασ
i

we have
Gλσ(t)z(β1, . . . , βk) ∈ GL(C[β1, . . . , βk][t]),

so the entries are polynomials in t with coefficients in C[β1, . . . , βk].
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Proof. Compute the substitution as follows:

(Gλσ(t)z)i,j = tλ
σ
i −λσ

j

∑
a1+a2+···+ai=j

αa1αa2 . . . αai =(35)

=
∑

a1+···ai=j

tλ
σ
i −λσ

j tn
σ
a1

+nσ
a2

+···+nσ
ai βa1βa2 . . . βai .(36)

By definition

nσ
a1

≥ λσ
i+a1−1 − λσ

i ; nσ
a2

≥ λσ
i+a1+a2−2 − λσ

i+a1−1; . . . ;
nσ

aj
≥ λσ

i+a1+···+ai−i − λσ
i+a1+···+ai−1−(i−1).

Adding up these inequalites and using a1 + · · ·+ai = j we get an alternating
sum on the left cancelling up to

nσ
a1

+ · · · + nσ
ai
≥ λσ

j − λσ
i .

Substituting this into (35) we get

(37)
(Gλσ(t)z)i,j =

∑
a1+···ai=j

tλ
σ
i −λσ

j tn
σ
a1

+nσ
a2

+···+nσ
ai βa1βa2 . . . βai ∈ C[β1, . . . , βk][t].

This proves Lemma 6.16. �
As a corollary we get the existence of

Gσ = lim
t→0

Gλσ(t)z(β1, . . . , βk) ∈ GL(C[β1, . . . , βk]).

To prove that dimGσ = k and complete the proof of Proposition 6.15, for
1 ≤ i ≤ k choose θ(i) such that

(38) nσ
i = λθ(i)+i−1 − λθ(i)

holds. Then

(39)
pθ(i),θ(i)+i−1(β1, . . . , βk) =

∑
a1+···+aθ(i)=θ(i)+i−1

t
nσ

a1
+···+nσ

aθ(i)βa1 . . . βaθ(i)

so

(Gσ)θ(i),θ(i)+i−1 = lim
t→0

t−nσ
i pθ(i),θ(i)+i−1(β1, . . . , βk) = lim

t→0
(tn

σ
i β

θ(i)−1
1 βi + · · · )

= β
θ(i)−1
1 βi + qθ(i),θ(i)+i−1(40)

where
qθ(i),θ(i)+i−1 ∈ C[β1, . . . , βk][t].

It follows that the elements d
dtA

σ(t(e1 + ei)1) ∈ Lie(Gσ) are independent,
where t(e1 + ei) = (t, 0, . . . , 0, t, 0, . . . , 0) with the t’s are in the 1st and ith
position if i > 1 but interpreted as (2t, 0, . . . , 0) if i = 1. This completes the
proof of Proposition 6.15. �
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In order to prove Lemma 6.5, it now suffices to find an extra one-
dimensional unipotent subgroup of the stabiliser Gzλσ of zλσ for each σ
when zλσ = [p∞k ], since we know that p∞k is fixed by a one-parameter sub-
group of the maximal torus Tk of SL(k) and by a k−1-dimensional unipotent
subgroup of Gσ = limθ→0 Gλσ(t)z which is contained in the standard maximal
unipotent subgroup Uk of SL(k). It turns out that we have to distinguish
three cases here.

Case 1: σ = k.

Proof. Let Tζ ∈ GL(k) denote the transformation

Tζ(ei) = ei for i �= k − 1; Tζ(ek−1) = ek−1 + ζek for ζ ∈ C.

Since ek−1 does not occur just in zλσ [k−1], Tζ stabilises p∞k . This gives us a
subgroup of SL(k) of dimension at least k + 1 which stabilises p∞k , because
Tζ is unipotent but not upper triangular if ζ �= 0. �

Case 2: σ < k and k �= −1 mod σ.

Proof. Let T be the transformation

(41) T (ei) = ei for i �= k; T (ek) = ek + ζeσ.

Since ek occurs only in zλσ [k], and zλσ [σ] = σ, we have

T · zλσ = zλσ(e1, . . . , ek−1, ek + ζeσ)

= zλσ [1] ∧ · · · ∧ zλσ [σ − 1] ∧ eσ ∧ zλσ [σ + 1] ∧ · · · ∧ zλσ [k])

+ ζ · zλσ [1] ∧ · · · ∧ zλσ [σ − 1]

∧ eσ ∧ zλσ [σ + 1] ∧ · · · ∧ zλσ [k − 1] ∧ eσ = zλσ ,(42)

so T ∈ Gzλσ .
It is slightly harder task to show that T �∈ Gσ = limθ→0 Gλσ(t)z. First, we

compute ni for i = k − σ. We claim that for k �= −1 mod σ

(43) nk−σ+1 = λσ
k − λσ

σ = λσ
k−σ+1 − λσ

1 .

Indeed,
λj+k−σ−1 − λj = · · · ≤ λσ

k − λσ
σ = λσ

k−σ+1 − λσ
1

This means that we can choose θ(k − σ + 1) = σ in (38) and substitute
into (40)

(44) (Gσ)σ,k = βσ−1
1 βk−σ+1 + qσ,k(β1, . . . , βk),

where qσ,k(β1, . . . , βk) is a polynomial, whose monomials βb1
i1

. . . βbσ
iσ

satisfy

(45) i1b1 + · · · + iσbσ = k.

Moreover, we can also choose θ(k−σ+1) = 1, by (43), and then (40) gives us

(46) (Gσ)1,k−σ+1 = βk−σ+1.
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Suppose now that T ∈ Gσ, that is

(47) T = Gσ(β1, . . . , βk) for some β1 ∈ C∗, β2, . . . , bk ∈ C.

Let (T )i,j denote the (i, j) entry of T . Then

(T )σ,k = ζ, (T )i,j = 0 for i �= j, (T )i,i = 1.

Comparing the (1, 1) and (1, k − σ + 1) entries of T and Gσ we get

(48) β1 = 1, βδ−σ+1 = 0.

Choose θ(i) for i = 2, . . . , k as in (38) and let θ(k − σ + 1) = σ. Since all
off-diagonal entries of T but the (σ, k) are zero, (47) forces the following
equations

βi + qθ(i),θ(i)+i−1 = 0 for i �= k − σ + 1,(49)

βk−σ+1 + qσ,k = ζ.(50)

By (48), these are k − 1 polynomial equations in k − 2 variables, and the
Jacobian at 0 is the origin, so we have finitely many solutions near the origin.
Therefore, for some ζ, it follows that T is not in Gσ. �

Case 3: σ < k and d = −1 mod σ.

Proof. This case works very similarly to the previous one. Suppose
k − 1 > σ, that is, if k = cσ − 1 where c ≥ 2 (this holds because k ≥ σ), the
condition is that cσ − 2 > σ, which is true for all k ≥ 4.

Let T be the transformation

(51) T (ei) = ei for i �= k, k − 1 ; T (ek−1) = ek−1 + ζeσ ; T (ek) = ek + ζeσ

First we check again that T ∈ Gzλσ . We have

zλσ [σ] = eσ ;
zλσ [σ + 1] = eσ+1 + e1eσ ;

zλσ [k] = ek +
k−1∑
i=1

eiek−i .

An easy computation shows that

T · zλσ = zλσ(e1, . . . , ek−2, ek−1 + ζeσ, ek + ζeσ+1)

= zλσ [1] ∧ · · · ∧ zλσ [k − 2] ∧ (zλσ [k − 1]

+ ζzλσ [σ]) ∧ (zλσ [k] + ζzλσ [σ + 1]

= zλσ [1] ∧ · · · ∧ zλσ [k] = zλσ .(52)

Now we prove that T �∈ Gσ in a similar way to the second case above.
Since k − 1 �= −1 mod σ we can substitute k − 1 instead of k in (43):

(53) nk−σ = λσ
k−1 − λσ

σ = λσ
k−σ − λσ

1 .
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Moreover, we also get the extra equation

(54) nk−σ = λσ
k − λσ

σ+1,

and similarly to (44) and (46) it follows that

(Gσ)σ,k−1 = βσ−1
1 βk−σ + qσ,k−1(β1, . . . , βk);(55)

(Gσ)σ+1,k = βσ
1 βk−σ + qσ+1,k(β1, . . . , βk);(56)

(Gσ)1,k−σ = βk−σ.(57)

Since T differs from the identity matrix only by the entries

(T )σ,k−1 = (T )σ+1,k = ζ,

the equality
T = Gσ(β1, . . . , βk)

forces βk−σ = 0, β1 = 1 and the analogue of (49) ,(50):

βi + qθ(i),θ(i)+i−1 = 0 for i �= k − σ(58)

βk−σ + qσ,k−1 = ζ(59)

βk−σ + qσ+1,k = ζ(60)

which are, again, k + 1 nondegenerate polynomial equations in k − 1 vari-
ables, such that for some ζ there is no solution. �

We have now proved Lemma 6.5, which together with Lemma 6.6 com-
pletes the proof of Theorem 6.2.

7. Geometric description of Demailly-Semple invariants

As an immediate consequence of Corollary 6.3, we can now prove
Theorem 3.3 in the case when p = 1.

Theorem 7.1. If k ≥ 2 then G′
k = Uk is a Grosshans subgroup of the

special linear group SL(k), so that O(SL(k)Uk)SL(k) is a finitely generated
complex algebra and moreover every linear action of Uk or Gk on an affine
or projective variety Y (with respect to an ample linearisation) which extends
to a linear action of GL(k) has finitely generated invariants.

In particular we have the special case of Theorem 3.2 when p = 1.

Theorem 7.2. The fibre O((Jk)x)Uk of the bundle En
k is a finitely gen-

erated graded complex algebra.

Proof. We have

O((Jk)x)Uk ∼= (O((Jk)x) ⊗O(SL(k)Uk)SL(k)

which is finitely generated because O(SL(k)Uk)SL(k) is finitely generated and
SL(k) is reductive. �
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Theorem 6.2 also allows us to describe the algebra O(SL(k))Uk . In §6 we
constructed an embedding of SL(k)/Uk in the affine space ∧k( Sym≤kCk)⊗
(Ck)⊗K for suitable large K, and in Theorem 6.2 we proved that the bound-
ary components of the closure SL(k)(pk ⊗ e⊗K

1 ) of its image have codimen-
sion at least two. Thus we obtain the following corollary of Theorem 6.2:

Theorem 7.3. (i) If k ≥ 4 then the canonical affine completion

SL(k)//Uk = Spec(O(SL(k))Uk)

of SL(k)/Uk is isomorphic to the closure SL(k)(pk ⊗ e⊗K
1 ) of the orbit SL(k)

(pk ⊗ e⊗K
1 ) ∼= SL(k)/Uk of pk ⊗ e⊗K

1 in ∧k( Sym≤kCk)⊗ (Ck)⊗K where K =
M(1 + 2 + · · · + k) + 1 for any strictly positive integer M ;

(ii) The algebra
O(SL(k))Uk

is generated by the Plücker coordinates on P(∧k( Sym≤kCk)), which can be
expressed as

{Δi1,...,is : s ≤ k},
where ij denotes a multi-index corresponding to basis elements of
Sym≤k(Ck), and Δi1,...,is is the corresponding minor of φ(f ′ . . . , f (k)) ∈
Hom (Ck, Sym≤k(Ck)), together with the coordinates f ′

1, . . . , f
′
k of f ′.

It follows immediately from this theorem that the non-reductive GIT
quotient

(Jk)x//Uk = Spec(O((Jk)x)Uk)

is isomorphic to the reductive GIT quotient

((Jk)x × SL(k)(pk ⊗ e⊗K
1 ))//SL(k).

This can be identified with the quotient of the open subset ((Jk)x ×
SL(k)(pk ⊗ e⊗K

1 ))ss of SL(k)-semistable points of (Jk)x × SL(k)(pk ⊗ e⊗K
1 )

by the equivalence relation ∼ such that y ∼ z if and only if the closures
of the SL(k)-orbits of y and z intersect in ((Jk)x × SL(k)(pk ⊗ e⊗K

1 ))ss.
Equivalently it can be identified with the closed SL(k)-orbits in ((Jk)x ×
SL(k)(pk ⊗ e⊗K

1 ))ss. Since SL(k)(pk ⊗ e⊗K
1 ) is the union of finitely many

SL(k)-orbits, with stabilisers H1 = Uk, H2, . . . , Hs, say, we can stratify
(Jk)x//Uk so that the stratum corresponding to Hj is identified with the Hj-
orbits in (Jk)x such that the corresponding SL(k)-orbit in (Jk)x ×
SL(k)(pk ⊗ e⊗K

1 ) is semistable and closed in ((Jk)x × SL(k)(pk ⊗ e⊗K
1 ))ss.

Example 7.4. When k = 2 we have

J reg
2 (1, 2) = {(f ′

1, f
′
2, f

′′
1 , f ′′

2 ) ∈ (C2)2; (f ′
1, f

′
2) �= (0, 0)},
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and fixing a basis {e1, e2} of C2 and the induced basis {e1, e2, e
2
1, e1e2, e

2
2} of

C2 ⊕ Sym 2C2, the map φ : J2(1, 2) = Hom (C2, C2) → Hom (C2, Sym≤2C2)
of (14) is given by

(f ′
1, f

′
2, f

′′
1 , f ′′

2 ) �→
(

f ′
1 f ′

2 0 0 0
1
2!f

′′
1

1
2!f

′′
2 (f ′

1)
2 f ′

1f
′
2 (f ′

2)
2

)
.

The 2 × 2 minors of this 2 × 5 matrix are (f ′
1)

3, (f ′
1)

2f ′
2, f ′

1(f
′
2)

2, (f ′
2)

3 and

Δ[1,2] = f ′
1f

′′
2 − f ′′

1 f ′
2.

On SL(2) we have Δ[1,2] = 1 and the algebra of invariants O(SL(2))U2 is
generated by f ′

1 and f ′
2, as expected since SL(2)/U2

∼= C2\{0} and its canon-
ical affine completion SL(2)//U2 is C2.

Example 7.5. When k = 3 the finite generation of the Demailly-Semple
algebra O((Jk)x)Uk was proved by Rousseau in [27]. We have

J reg
3 (1, 3) = {(f ′

1, f
′
2, f

′
3, f

′′
1 , f ′′

2 , f ′′
3 , f ′′′

1 , f ′′′
2 , f ′′′

3 )

∈ (C3)3; (f ′
1, f

′
2, f

′
3) �= (0, 0, 0)},

and if we fix a basis {e1, e2, e3} of C3 and the induced basis

{e1, e2, e3, e
2
1, e1e2, e

2
2, e1e3, e2e3, e

2
3, e

3
1, e

2
1e2, . . . , e

3
3}

of C3 ⊕ Sym 2C3 ⊕ Sym 3C3, the map φ : Hom (C3, C3) → Hom (C3,
Sym≤3C3) in (14) sends

(f ′
1, f

′
2, f

′
3, f

′′
1 , f ′′

2 , f ′′
3 , f ′′′

1 , f ′′′
2 , f ′′′

3 )

to a 3 × 19 matrix, whose first 9 columns (corresponding to Sym≤2C3) are⎛
⎜⎜⎝

f ′
1 f ′

2 f ′
3 0 0 0 0 0 0

1
2!f

′′
1

1
2!f

′′
2

1
2!f

′′
3 (f ′

1)
2 f ′

1f
′
2 (f ′

2)
2 f ′

1f
′
3 f ′

2f
′
3 (f ′

3)
2

1
3!f

′′′
1

1
3!f

′′′
2

1
3!f

′′′
3 f ′

1f
′′
1 f ′

1f
′′
2 + f ′′

1 f ′
2 f ′

2f
′′
2 f ′

1f
′′
3 + f ′

3f
′′
1 f ′

2f
′′
3 + f ′′

2 f ′
3 f ′

3f
′′
3

⎞
⎟⎟⎠,

and the remaining 10 columns (corresponding to Sym 3C3) are⎛
⎜⎝ 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
(f ′

1)
3 (f ′

1)
2f ′

2 f ′
1(f

′
2)

2 (f ′
2)

3 f ′
1(f

′
3)

2 (f ′
1)

2f ′
3 (f ′

2)
2f ′

3 f ′
2(f

′
3)

2 (f ′
3)

3 f ′
1f

′
2f

′
3

⎞
⎟⎠.

The 3 × 3 minors of this matrix together with f ′
1, f

′
2, f

′
3 generate the algebra

of invariants O(SL(3))U3.
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8. Generalized Demailly-Semple jet bundles

The aim of this section is to extend the earlier constructions for p = 1
to generalized Demailly-Semple invariant jet differentials when p > 1.

Let X be a compact, complex manifold of dimension n. We fix a param-
eter 1 ≤ p ≤ n, and study the maps Cp → X. Recall that as before we fix the
degree k of the map, and introduce the bundle Jk,p → X of k-jets of maps
Cp → X, so that the fibre over x ∈ X is the set of equivalence classes of germs
of holomorphic maps f : (Cp, 0) → (X, x), with the equivalence relation f ∼ g

if and only if all derivatives f (j)(0) = g(j)(0) are equal for 0 ≤ j ≤ k. Recall
also that Gk,p is the group of k-jets of germs of biholomorphisms of (Cp, 0),
which has a natural fibrewise right action on Jk,p with the matrix represen-
tation given by

(61) Gk,p =

⎛
⎜⎜⎜⎜⎜⎝

Φ1 Φ2 Φ3 . . . Φk

0 Φ2
1 Φ1Φ2 . . .

0 0 Φ3
1 . . .

. . . . .
Φk

1

⎞
⎟⎟⎟⎟⎟⎠ ,

for Gk,p ∈ Gp,k where Φi ∈ Hom ( Sym iCp, Cp) and det Φ1 �= 0. Recall also
that Gk,p is generated along its first p rows, in the sense that the parameters
in the first p rows are independent, and all the remaining entries are polyno-
mials in these parameters. The parameters in the (1, m) block are indexed
by a basis of Sym m(Cp)×Cp, so they are of the form αl

ν where ν ∈ (p+m−1
m−1

)
is an m-tuple and 1 ≤ l ≤ p, and the polynomial in the (l, m) block and entry
indexed by τ = (τ [1], . . . , τ [l]) ∈ (p+l−1

l−1

)
and ν ∈ (p+m−1

m−1

)
is given by

(62) (Gk,p)τ,ν =
∑

ν1+···+νl=ν

ατ [1]
ν1

ατ [2]
ν2

. . . ατ [l]
νl

.

Recall also that Gk,p = Uk,p � GL(p) is an extension of its unipotent rad-
ical Uk,p by GL(p), and that the generalized Demailly-Semple jet bundle
Ek,p,m → X of invariant jet differentials of order k and weighted degree
(m, . . . , m) consists of the jet differentials which transform under any
reparametrization φ ∈ Gk,p of (Cp, 0) as

Q(f ◦ φ) = (Jφ)mQ(f) ◦ φ,

where Jφ = det Φ1 denotes the Jacobian of φ, so that Ek,p = ⊕m≥0Ek,p,m is
the graded algebra of G′

k,p-invariants where G′
k,p = Uk,p � SL(p).

8.1. Geometric description for p > 1. As in the case when p = 1
our goal is to prove that G′

k,p is a Grosshans subgroup of SL(sym≤k(p))
where sym≤k(p) =

∑k
i=1 dim Sym iCp by finding a suitable embedding of

the quotient SL(sym≤k(p))/G′
k,p.
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Remark 8.1. In [25] Pacienza and Rousseau generalize the inductive
process given in [5] of constructing a smooth compactification of the
Demailly-Semple jet bundles. Using the concept of a directed manifold,
they define a bundle Xk,p → X with smooth fibres, and the effective locus
Zk,p ⊂ Xk,p, and a holomorphic embedding Jreg

k,p /Gk,p ↪→ Zk,p which identifies
Jreg

k,p /Gk,p with Zreg
k,p = Xreg

k,p ∩ Zk,p, so that Zk,p is a relative compactifica-
tion of Jk,p/Gk,p. We choose a different approach, generalizing the test curve
model, resulting in a holomorphic embedding of Jk,p/Gk,p into a partial flag
manifold and a different compactification, which is a singular subvariety of
the partial flag manifold, such that the invariant jet differentials of degree
divisible by sym≤k(p) are given by polynomial expressions in the Plücker
coordinates.

Fix x ∈ X and an identification of TxX with Cn; then let Jk(p, n) = Jk,p,x

as defined in §2. Let

J reg
k (p, n) = {γ ∈ Jk(p, n) : Γ1 is non-degenerate}

where γ is represented by

u �→ γ(u) = Γ1u + Γ2u2 + · · · + Γkuk

with Γi ∈ Hom ( Sym iCp, Cp). Let N ≥ n be any integer and define

Υk,p =
{
Ψ ∈ Jk(n, N) : ∃γ ∈ J reg

k (p, n) : Ψ ◦ γ = 0
}

.

Remark 8.2. The global singularity theory description of Υk,p is

Υk,p
.= {p = (p1, . . . , pN ) ∈ Jk(n, N) : C[z1, . . . , zn]/〈p1, . . . , pN 〉
∼= C[x, y]/〈z1, . . . , zn〉k+1}.

Note, again, as in the p = 1 case, that if γ ∈ J reg
k (p, n) is a test surface of

Ψ ∈ Υk,p, and ϕ ∈ Gk is a holomorphic reparametrization of Cp, then γ ◦ ϕ
is, again, a test surface of Ψ:

Cp ϕ � Cp γ � Cn Ψ � CN(63)

Ψ ◦ γ = 0 ⇒ Ψ ◦ (γ ◦ ϕ) = 0

Example 8.3. Let k = 2, p = 2 and let Ψ(z) = Ψ′z + Ψ′′z2 for z ∈ Cn,
and

γ(u1, u2) = γ10u1 + γ01u2 + γ20u
2
1 + γ11u1u2 + γ02u

2
2, γij ∈ Cn.

Then Ψ ◦ γ = 0 has the form

Ψ′(γ10) = 0; Ψ′(γ01) = 0(64)

Ψ′(γ20) + Ψ′′(γ10, γ10) = 0, ; Ψ′(γ11) + 2Ψ′′(γ10, γ01) = 0, ;

Ψ′(γ01) + Ψ′′(γ01, γ01) = 0,
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We introduce
Sγ = {Ψ ∈ Jk(n, N) : Ψ ◦ γ = 0}

and the following analogue of Jo
k(1, n):

Jo
k(n, N) = {Ψ ∈ Jk(n, N) : dim ker Ψ = p} .

The proof of the following proposition is analogous to that of Proposition
4.7 in [2], and we omit the details. We use the notation

symi(p) = dim(SymiCp);

sym≤k(p) = dim(Cp ⊕ Sym2Cp ⊕ · · · ⊕ SymkCp) =
k∑

i=1

symip.

Proposition 8.4. (i) If γ ∈ J reg
k (p, n) then Sγ ⊂ Jk(n, N) is a linear

subspace of codimension Nsym≤k(p).
(ii) For any γ ∈ J reg

k (p, n), the subset Sγ ∩ Jo
k(n, N) of Sγ is dense.

(iii) If Ψ ∈ Jo
k(n, N), then Ψ belongs to at most one of the spaces Sγ.

More precisely, if γ1, γ2 ∈ J reg
k (p, n), Ψ ∈ Jo

k(n, N) and Ψ◦γ1 = Ψ◦
γ2 = 0, then there exists ϕ ∈ J reg

k (p, p) such that γ1 = γ2 ◦ ϕ.
(iv) Given γ1, γ2 ∈ J reg

k (1, n), we have Sγ1 = Sγ2 if and only if there is
some ϕ ∈ J reg

k (1, 1) such that γ1 = γ2 ◦ ϕ.

With the notation

Υk,p = Υk,p ∩ Jo
k(n, N),

we deduce from Proposition 8.4 the following

Corollary 8.5. Υ0
k,p is a dense subset of Υk,p, and Υ0

k,p has a fibration
over the orbit space J reg

k (p, n)/J reg
k (p, p) = J reg

k (p, n)/Gk,p with linear fibres.

Remark 8.6. In fact, Proposition 8.4 says a bit more, namely that
Υ0

k,p is fibrewise dense in Υk,p over J reg
k (p, n)/Gk,p, but we will not use this

stronger statement.

By the first part of Proposition 8.4 the assignment γ →Sγ defines a map

ν : J reg
k (p, n) → Grass(kN, Jk(n, N))

which, by the fourth part, descends to the quotient

(65) ν̄ : J reg
k (p, n)/Gk,p ↪→ Grass(kN, Jk(n, N))

(cf. Proposition 4.4). Next, we want to rewrite this embedding in terms of
the identifications introduced in §5. So we

• identify Jk(p, n) with Hom (Csym1p ⊕ · · · ⊕ Csymkp, Cn) = Hom
(Csym≤k(p), Cn) where symjp = dim SymjCp and sym≤k(p) =

∑k
j=1

symjp;
• identify Jk(n, 1)∗ with Sym≤kCn = ⊕k

l=1 Sym lCn.
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We think of an element v of Hom (Csym≤k(p), Cn) as an n×sym≤k(p) matrix,
with column vectors in Cn. These columns correspond to basis elements of
Csym1p ⊕ · · · ⊕ Csymkp, and the columns in the ith component are indexed
by i-tuples 1 ≤ t1 ≤ t2 ≤ · · · ≤ ti ≤ p, or equivalently by

(et1 + et2 + · · · + eti) ∈ Zp
≥0

where ej = (0, . . . , 1, . . . , 0) with 1 in the jth place, giving us

v = (v10,...0, v01...0, . . . , v0...0k) ∈ Hom (Csym≤k(p), Cn).

The elements of J reg
k (p, n) correspond to matrices whose first p columns

are linearly independent. When n ≥ sym≤k(p) there is a smaller dense open
subset Jnondeg

k (p, n) ⊂ J reg
k (p, n) consisting of the n × sym≤k(p) matrices of

rank sym≤k(p).
Define the following map, whose components correspond to the equations

in (64):

φ : Hom (Csym≤k(p), Cn) → Hom (Csym≤k(p), Sym≤kCn)(66)
(v10,...0, v01...0, . . . , v0...0k) �→ (. . . ,

∑
s1+s2+···+sj=s vs1vs2 . . . vsj , . . .),

where on the right hand side s ∈ Zp
≥0.

Example 8.7. If k = p = 2 then φ is given by

φ(v10, v01, v20, v11, v02) = (v10, v01, v20 + v2
10, v11 + 2v10v01, v02 + v2

01).

Let Pk,p ⊂ GLsym≤k(p) denote the standard parabolic subgroup with Levi
subgroup

GL(sym1p) × · · · × GL(symkp),

where symjp = dim SymjCp and sym≤k(p) =
∑k

j=1 symjp. Then (65) has the
following reformulation, analogous to Proposition 5.1.

Proposition 8.8. The map φ in (66) is a Gk,p-invariant algebraic mor-
phism

φ : J reg
k (p, n) → Hom (Csym(p), Sym≤kCn)

which induces an injective map φGrass on the Gk,p-orbits:

φGrass : J reg
k (p, n)/Gk,p ↪→ Grasssym≤k(p)(Sym≤kCn)

and

φFlag : J reg
k (p, n)/Gk,p ↪→ Flagsym1(p),...,symk(p)(Sym≤kCn)

↪→ Hom (Csym(p), Sym≤kCn)/Pk,p.

Composition with the Plücker embedding gives

φProj = Pluck ◦ φGrass : J reg
k (p, n)/Gk,p ↪→ P(∧sym≤k(p)Sym≤kCn).



A GEOMETRIC CONSTRUCTION FOR INVARIANT JET DIFFERENTIALS 121

As in the case when p = 1, we introduce the following notation

Xn,k,p = φProj(J reg
k (p, n)),

Yn,k,p = φProj(Jnondeg
k (p, n)) ⊂ P(∧sym≤k

(Sym≤kCn)).

Definition 8.9. Let n ≥ sym≤k(p) = sym1(p)+ · · ·+symk(p). Then the
open subset of P(∧sym≤k(p)(Sym≤kCn)) where the projection to ∧sym≤k(p)Cn

is nonzero is denoted by An,k,p.

Since φGrass and φProj are GL(n)-equivariant, and for n ≥ sym≤k(p) the
action of GL(n) is transitive on Hom nondeg(Csym≤k(p), Cn), we have

Lemma 8.10. (i) If n ≥ sym≤k(p) then Xn,k,p is the GL(n) orbit of
(67)

z = φProj(e1, . . . , eSym≤k(p)) =

⎡
⎣∧j1+···+jp≤k

∑
i1+···+is=(j1,...,jp)

ei1 . . . eis

⎤
⎦

in P(∧sym≤k(p)(Sym≤kCn)).

(ii) If n ≥ sym≤k(p) then Xn,k,p and Yn,k,p are finite unions of GL(n)
orbits.

(iii) For k > n the images Xn,k,p and Yn,k,p are GL(n)-invariant quasi-
projective varieties, though they have no dense GL(n) orbit.

Similar statements hold for the closure of the image in the Grassmannian

Grasssym≤k(p)(Sym≤kCn)

(or equivalently in the projective space P(∧sym≤k(p)(Sym≤kCn))).

Lemma 8.11. Let n ≥ sym≤k(Cn); then

(i) An,k,p is invariant under the GL(n) action on P(∧sym≤k(p)

(Sym≤kCn));
(ii) Xn,k,p ⊂ An,k,p, although Yn,k,p � An,k,p;
(iii) Xn,k,p is the union of finitely many GL(n)-orbits.

9. Affine embeddings of SL(sym≤kp)/Gk,p

In this section we study the case when n = sym≤kp and so GL(n) ⊂
J reg

k (p, n). In the previous section we embedded J reg
k (p, n)/Gk,p in the affine

space An,k,p ⊂ P(∧n Sym≤kCn), which can be restricted to GL(n) to give us
an embedding

GL(n)/Gk,p ↪→ P(∧n Sym≤kCn)
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as the GL(n) orbit of⎡
⎣· · · ∧ ∑

|s|=j

∑
s1+s2+···+sj=s

es1es2 . . . esj ∧ · · ·
⎤
⎦ .

Equivalently we have SL(n)/(SL(n) ∩ Gk,p) = SL(n)/G′
k,p � Fk,p embedded

in ∧k( Sym≤kCk) as the SL(k) orbit of

pk,p = · · · ∧
∑
|s|=j

∑
s1+s2+···+sj=s

es1es2 . . . esj ∧ · · · ,

where SL(n)∩Gk,p is the semi-direct product G′
k,p � Fk,p of G′

k,p by the finite
group Fk,p of lk,pth roots of unity in C for lk,p =

∑k
i=1 isymip. In analogy

with §6 we can consider an embedding of SL(n)/G′
k,p in

∧n( Sym≤kCn) ⊗ (∧p(Cn))⊗K

for suitable K and its closure in this affine space. We expect the following
result generalising Theorem 6.2.

Conjecture 9.1. Let K = M(
∑k

i=1 isymip)+1 where M ∈ N. Then the
point

pk,p ⊗ (e1 ∧ · · · ∧ ep)⊗K ∈ ∧n( Sym≤kCn) ⊗ (∧p(Cn))⊗K

where

pk,p = · · · ∧
∑
|s|=j

∑
s1+s2+···+sj=s

es1es2 . . . esj ∧ · · ·

has stabiliser G′
k,p in SL(n), and the closure of its SL(n) orbit

SL(n)(pk,p ⊗ (e1 ∧ · · · ∧ ep)⊗K)

is the union of the orbit of pk,p ⊗ (e1 ∧ · · · ∧ ep)⊗K and finitely many other
SL(n)-orbits, all of which have codimension at least two if k is large enough
(depending on p) and M is sufficiently large (depending on k and p).

The proof of Conjecture 9.1 should be similar to that of Theorem 6.2,
with the rôle of the Borel subgroup Bk of SL(k) played by the standard
parabolic subgroup P ⊂ SL(n) which stabilises the filtration

0 ⊂ Cp = Ce1 ⊕ · · · ⊕ Cep ⊂ Cp ⊕ Sym 2Cp ⊂ · · · ⊂ Cp ⊕ Sym 2Cp

⊕ · · · ⊕ Sym kCp = Cn.
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It follows immediately from Conjecture 9.1 that we would have

Corollary 9.2. If p ≥ 1 and k is large enough (depending on p) then
the reparametrisation group G′

k,p is a subgroup of the special linear group
SL(sym≤kp), where

sym≤kp =
k∑

i=1

dim SymiCp =
(

k + p − 1
k − 1

)
,

such that the algebra of invariants

O(SL(sym≤kp))G′
k,p

is finitely generated, so that every linear action of Gk,p or G′
k,p on an affine

or projective variety (with respect to an ample linearisation) which extends
to a linear action of GL(sym≤kp) has finitely generated invariants.

In particular we would have

Corollary 9.3. If p ≥ 1 and k is large enough (depending on p) then the
fibres O((Jk,p)x)G′

k,p of the bundle En
k,p are finitely generated graded complex

algebras.

We would also obtain geometric descriptions of the associated affine
varieties

Spec(O(SL(sym≤kp))G′
k,p)

and Spec(O((Jk,p)x)G′
k,p) generalising those in §7.
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