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A survey of geometric structure
in geometric analysis

Shing-Tung Yau*

The subject of geometric analysis evolves according to our understanding
of geometry and analysis. However, one should say that ideas of algebraic
geometry and representation theory have been extremely powerful in both
global and local geometry.

In fact, the spectacular idea of using geometry to understand Diophan-
tine problem has already widened our concept of space. The desire to find
suitable geometry to accommodate unified field theory in physics would cer-
tainly drastically change the scope of geometry in the near future.

In the following lectures, we shall focus on an important branch of geo-
metric analysis: the construction of geometric structures over a given topo-
logical space.

1. Part I

There are many kinds of geometric structures; most of them can be
classified through the theory of groups and their representations. Some of
their structures are motivated by physical science.

The idea of classifying geometric structures through group theory dated
back to the famous Erlangen Program of Felix Klein and the later work of
E. Cartan.

Most geometric structures are defined by a family of special coordinate
charts such that the coordinate transformations or the Jacobian of the coor-
dinate transformations respect some algebraic structure, such as a complex
structure, an affine structure, a projective structure or a foliated structure.

Special coordinate systems give connections on natural bundles such as
the tangent bundles or some bundles construct from tangent bundles. (Pro-
jective structure is related to tangent bundle plus the trivial line bundle, for
example.) Connections provide ways to covariantly differentiate vector fields
along any curve. For any closed loop at a fixed point, parallel transportation
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along the loop gives rise to a linear transformation of the tangent space at
the point to itself.

The totality of such transformations forms a group called the holonomy
group of the connection. This group reflects the algebraic aspects of the geo-
metric structure. Therefore, a necessary condition for the geometric struc-
ture to exist is the existence of a connection with a special holonomy group
on some natural bundle.

On the other hand, connections give rise to a torsion tensor. In order
for the existence of a connection with special holonomy group to become
sufficient condition for existence of preferred coordinate systems, we usually
require the torsion tensor of the connection to be trivial.

In fact, Cartan-Kéhler developed an extensive theory of exterior differ-
ential systems to provide proofs that, in the real analytic category, existence
of a torsion-free connection with special holonomy group is indeed sufficient
for the existence of local coordinate systems for most geometric structures.

The smooth version of Cartan-K&hler theory has not been established in
general. The most spectacular work to date was due to Newlander-Nirenberg
[49] on the existence of an integrable complex structure, assuming the
complex Frobenius condition. In accordance with our previous discussion,
Newlander-Nirenberg proved that if the tangent bundle admits a connection
with holonomy group U(n) and the torsion form equal to zero, then the
manifold admits a complex structure.

The paper of Newlander-Nirenberg is the first application of nonlinear
partial differential equations to constructing geometric structures. Cartan-
Kéhler theory and Newlander-Nirenberg theory are key contributions to the
local theory of geometry.

The global theory of geometric structures is quite complicated and is far
from being completed. Deformation theory of global structure was initiated
by Kodaira-Spencer [32]. Calabi-Vesentini [6] and Kuranishi [33] studied
deformations of complex structures based on Hodge theory. Calabi, Weil,
Borel, Matsushima and others studied deformations of geometric structures
on deformation of discrete group which eventually lead to the global rigidity
theorems of Mostow [47] and Margulis [45] for locally symmetric spaces.

The approaches of using periods of holomorphic forms (Torelli) and geo-
metric invariant theory (Mumford) to study global algebraic structures are
very powerful. Geometric invariant theory has modern interpretations in
terms of moment maps of group actions on symplectic manifold. Moment
maps and symplectic reductions have important consequence on the theory
of nonlinear differential equations.

The idea is that stability arose from actions of noncompact groups and
based on this, I proposed the following point of view. If there is a non-
compact group acting behind a system of nonlinear differential equations,
the existence question of such system will be related to the question of the
stability of some algebraic structure that defines this system of nonlinear
equations.
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An important example is the existence of the Kahler-Einstein metric on
Fano manifolds where I conjectured [68] to be equivalent to the stability of
the algebraic manifolds in the sense of geometric invariant theory.

I shall only touch on the part of geometric structures that can be studied
by nonlinear differential equations. They are questions that I am fond of.

The basic idea is to use nonlinear differential equations to build geomet-
ric structures which in turn can be used to solve problems in topology or
algebraic geometry.

Historically the first global question on geometric structure is the uni-
formization of conformal structure for domains in the plane. This question
dates back to Riemann. It is still an important problem. For instance, we are
still trying to understand the structure of moduli space of complex structures
over manifolds.

For two dimensional domains, the uniformization theorem of conformal
structure gives a description of canonical domains which are bounded by
circular arcs. Any finitely connected domain must be conformal to such
canonical domains. (The moduli space of such canonical domains can be
described easily.)

On the other hand, we can say that any finitely connected domain admits
a conformal metric which is flat and whose boundary has constant geodesic
curvature. The question of uniformization is then reduced to proving exis-
tence and classifying such conformal metrics. Such differential geometric
interpretations of problems in conformal geometry is the approach that we
shall follow.

For surfaces with higher genus, there are natural conformal metrics that
have constant negative curvature. Poincaré was the first to demonstrate that
every metric can be conformally deformed to a unique metric with curvature
equal to —1. The construction of the Poincaré metric has been fundamental
in the understanding of the moduli space of Riemann surfaces.

The cotangent space of the moduli space are represented by holomorphic
quadratic differentials. Using the Poincaré metric, one can define an inner
product among such quadratic differentials and integrate the product over
the surface. The resulting metric can be proved to be a Kéhler metric called
the Weil-Petersson metric.

On the Riemann surface, there are simple closed geodesics that will
decompose the Riemann surface into a planar domain. The function defined
by minus log of the sum of the length of these geodesic defines a convex
function along geodesics of the Weil-Petersson geometry. This was observed
by Scott Wolpert [66] who used this to re-prove the fact that the universal
cover of the moduli space is contractible and is a Stein manifold.

However, the moduli space of curves are such important object that
their global geometry need to be studied in depth. The recent works of
Mumford conjecture due to I. Madsen and M. Weiss [44] is an important
example. There are also works on intersection theory of Chern classes of
various bundles over the moduli space which has deep algebraic geometric
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meaning. Many of these works such as Witten conjecture, Faber conjecture,
etc. are all exciting developments.

Holomorphic quadratic differential is very important in classical surface
theory. For example, if a map from a Riemann surface into another manifold
is harmonic (the map is a critical map of the energy), the pulled back metric
> hijdacidxj gives rise to a holomorphic quadratic differential

hi1 — haa + 2V —1hy2.

This well known statement allows one to apply harmonic map to study
the geometry of Teichmiiller space. Michael Wolf [65] made use of them to
give a compactification which is equivalent to the Thurston compactification
of the Teichmiiller space, which depends on the theory of measured foliation.

Another interesting application of holomorphic quadratic differential is
to solve the vacuum Einstein equation for spacetime with dimensional two
plus one. Given a conformal structure on a Riemann surface and a holo-
morphic quadratic differential, the Einstein equation gives a path in the
cotangent space of the Teichmiiller space of the Riemann surface.

The Weil-Petersson metric is not complete in general. However, the neg-
ative of its Ricci tensor is complete. Liu, Sun and myself [40, 41] proved
that it is equivalent to the Teichmiiller metric which is obtained by consid-
ering extremal quasiconformal maps between Riemann surfaces. It is also
equivalent to the canonical Kahler-Einstein metric that I shall discuss later.

There has been attempts to find a good representation of Teichmiiller
space or the moduli space of Riemann surfaces. For genus greater than 23,
Harris-Mumford [27] proved that moduli space is of general type. Hence
there is no good parametrization of moduli space.

Teichmiiller space has an embedding into C39~2 due to Bers [3]. However,
it is not explicit and it is not known how smooth the boundary is. If a
bounded domain is smooth, the curvature of the canonical Kéahler-Einstein
metric must be asymptotic to constant negative curvature in a neighborhood
of the point where the domain is convex. This was observed by Cheng-
Yau [9].

Since the moduli space of Riemann surfaces have a compactification
where the divisor at infinity cannot be blown down to a point, the Kéahler-
Einstein metric cannot be asymptotic to constant negative curvature in any
neighborhood. Hence there is no representation of the Teichmiiller space as
a smooth domain.

The question of how to represent a conformal structure on a Riemann
surface is quite interesting. Of course one can compute periods of holo-
morphic differentials over cycles and Torelli theorem asserts that they can
determine the conformal structure of a generic surface. However, how to
construct the Riemann surface explicitly from the period is not clear. This
is especially true if we want to recognize it in R3. Can we find canonical
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surfaces in three space that represent different conformal structures of the
surface?

There is another important geometric structure over a two dimensional
surface with higher genus. This is the projective structure. They are defined
by coordinate neighborhoods whose coordinate transformations are given by
projective transformations. There is a map from the universal cover of the
surface to RP? which preserves the projective structures. If the image is a
convex domain, we call the projective structure convex. It turns out that
convex projective structures are classified by Riemann surfaces with a cubic
holomorphic differentials.

Since this classification is a good illustration of how we construct geo-
metric structures, I shall discuss the construction little more detail.

Convex projective structure on a manifold has an invariant metric
obtained in the following way:

The structure is obtained by the quotient of a bounded convex domain
Q in R™ quotiented by a discrete group of projective transformations. A pro-
jectively invariant metric on € is obtained by solving the following equation

u n+2
det (:2) = (~3)
u=0 on of.

The following metric

1 0%u ; ;
_= i J
Z( u> c%ciaa:jdm A dx

is observed by Loewner and Nirenberg [42] to be invariant under projective
transformation. It generalizes the Hilbert model of the Poincaré disk.

Loewner-Nirenberg proved the existence and completeness of the met-
ric for n = 2. The general case was proved by Cheng-Yau [8]. The Ricci
curvature of the metric can be proved to be negative [5].

A Legendre transformation will transform the graph (z,u(z)) to a new
convex surface which is an affine sphere ) . (Affine sphere is a hypersur-
face where all affine normals converge to a point. Affine normal is a vector
transversal to the tangent space invariant under the affine group.) The dis-
crete group of projective transformation become affine group of R3 acting
on Y. (This construction was observed by Calabi [5].)

The affine metric can be written as e’ds? where ds? = e? | dz |? is the
hyperbolic metric on a Riemann surface.

Using the structure equation for affine sphere, C.P. Wang observed [64]
that the Pick cubic form in affine geometry is an holomorphic cubic differ-
ential Udz3 on the Riemann surface defined by the affine metric so that

Av + dexp(—20) || ¥ || —2exp(v) — 2K =0,

where K is the Gauss curvature of the conformal metric. (This formulation
is essentially due to Tzitzeica [62] in 1908.) Conversely, given a holomorphic
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cubic differential on a Riemann surface, a solution v of the above equation
can be used to define an affine sphere in R? which in turn gives rise to the
projective structure.

The projective connection is in fact given by

ov + 9¢ Uexp(—v — ¢)dz
Uexp(—v — ¢)dz ov + 0¢

with respect to the basis {%, % .

Hence we have a good classification of convex projective structure over
a Riemann surface. In general, there are projective structures which are not
convex.

Choi has proved that projective structures on surfaces can be uniquely
decomposed into several pieces [11, 12]. However, we do not have good
understanding of the nonconvex part of the projective structure. The study
of the moduli space of convex projective structure on surfaces was due to
Hitchin [29], Goldman [18], Labourie [34] and Loftin [43] using different
approaches. The above approach relating it to affine spheres was due to
Loftin.

Compact Riemann surface with higher genus cannot admit affine struc-
tures. But open surfaces may admit such a structure. In general, we are
interested in affine structures over a compact manifold which may be singu-
lar along a codimensional two complex. The coordinate transformations are
linear whose Jacobian has determinant equal to one.

Motivated by our study of real Monge-Ampere equations and Kéhler
geometry, S.Y. Cheng and I [10] considered in 1979 affine manifolds which
may support a metric which we called affine Kéhler metric. This is a Rie-
mannian metric which has the property that in each affine chart, there is a
convex potential V,, where the metric can be written as

g
———dx;dx;.
Z 8:018% v x]

Note that the potentials are well defined up to a linear function.
The equation
dot (L) _ 4
e =
Oxiaxj

is well-defined and can be considered as an analogue of the correspond-
ing equation for Calabi-Yau Ké&hler metrics. In fact, one simply introduces
coordinates y; and define z; = x; + v/—1y;. Then we can extend u, to be a
function on z; and obtain a Kéahler metric with zero Ricci curvature.

Note that the equation and the affine structures are defined only on the
complement of a codimensional two complex. There is a monodromy asso-
ciated to the equation. The study of existence for the equation with a given
monodromy can be considered as an nonlinear analogue of the Riemann-
Hilbert correspondence.
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If the monodromy preserves some lattice structure, we can define a torus
bundle over the affine manifold where the total space is a Ricci flat Kéahler
manifold. Strominger, Zaslow and myself [58] conjectured that for those
Calabi-Yau manifolds that admit mirror partner, the total space can be
deformed to a complex manifold admitting a (singular) fibration structure,
whose fibers are special Lagrangian torus. These are minimal Lagrangian
submanifolds and were studied by Harvey and Lawson [28] from different
point of view.

There is another geometric structure that is of importance in surface
theory. This is the line field structure (with singularity) on a surface. An
important case is the line field defined by holomorphic quadratic differential
and a polynomial vector field. The former case is used by Thurston to form a
compactification of the Teichmiiller space and the later case is related to the
famous Hilbert sixteenth problem which asked the number of limit cycles
associated to the vector field. The behavior of the singular points of the line
field has practical importance also, e.g., in the study of finger print.

The attempts to generalize these structures on Riemann surfaces to
higher dimensional manifolds have occupied the activities of geometric ana-
lysts in the past thirty years. The fact that there are much more freedom in
higher dimensional manifolds mean that there are many different varieties
of geometric structures.

2. Part II

The concept of geometric structure has been enriched continuously. It
has been found that metrics with special holonomy group may not be enough
to describe the structure. In order to explain this, I will motivate the idea
through the concept of duality in string theory. Let us start with some
classical examples.

The theory of Lie groups and their discrete subgroups gives rise to Car-
tan’s theory of locally symmetric and homogeneous spaces. They provide
examples with rich properties for geometers and analysts. many important
properties of these spaces were obtained when we consider them to be moduli
space of other geometric objects.

For example, the Siegel upper space can be considered as moduli space
of abelian varieties. Occasionally, moduli space of some algebraic manifolds
can be locally Hermitian symmetric: Such manifolds include K 3-surfaces,
Calabi-Yau manifolds obtained by taking branched cover over CP? along
eight hyperplanes or cubic surfaces. Many hyperKéhler manifolds such as
symmetric products of K3 surfaces can be considered as moduli space of
semi-stable vector bundles over hyperKéhler manifolds.

On the other hand, to understand geometric structures, it is important
to understand nonlinear transformations between these spaces that are of
geometric importance. For example, if H and K are two closed subgroup in
a Lie group G, one can construct a natural map from sheaves or cohomology
classes of the space G/H to the space G/K by pulling back the objects from
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G/H to G/(HNK). After twisting by some universal object on G/(H N K),
one can push the product to objects on G/K:

G/(HNK)

N

G/H G/K

As was observed by Chern, the classical Kinematic Formulae of Poincaré,
Santalo and Blaschke can be formulated in terms of the above transformation
by taking G to be the group of motions on the homogeneous space where
incidence relations of submanifolds are considered.

This kind of transformations also appeared in many places. A very
important one is the case of four dimensional manifold M and we consider
the moduli space M of rank two bundles over M whose curvature is self-
dual. On the product space M x M, there is a rank two universal bundle V'
and we can use the second Chern class of V' to transform second cohomology
of M to M and obtain the Donaldson polynomials.

Another important case is the T-duality that has played an important
role in number theory and algebraic geometry.

Let T™ = R"/Z, be a torus and (T")* = R"/(Z,)* be the dual torus,
which can be considered as the moduli space of complex flat line bundles
over T™. Then we have the following diagram

L
i
T" % (T™)*
/ \
™ (T™)*

There is a universal complex line bundle L over T™ x (T™)* so that L
restricted to T x {q} is isomorphic to g. We can pull back cohomology classes
from T™ to T™ x (T™)* where we multiply the class by exp(c1(L)). Then we
can push the product class to (77)*. Such a transform can be considered as
a nonlinear transform between the torus 7" and its dual (7™)*. It is called
T—duality in the recent developments in string theory.

Note that when n = 1, this is the duality between circle of radius r to
circle of radius %

Strominger-Yau-Zaslow [58] found that a certain algebraic manifold M
(Calabi-Yau) admits a T? fiber structure over S® where generic fibers are
T3. By replacing T2 by (T3)*, we obtain another algebraic manifold M*
which is also Calabi-Yau.
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By performing a family version of the above T'—duality and a Legendre
transformation on some affine structures on the base, one obtains a trans-
form that maps one geometric structure over the algebraic manifold M to
another geometric structure over M*. (The affine structure on the base space
is the one described previously where we have a potential for the metric and
the Legendre transform acts on those potentials.)

Note M and M* may be topologically distinct. This transformation has
many important properties. For example, holomorphic bundles V over M
are supposed to be mapped to special Lagrangian cycles C' in M*.

In terms of cohomology, the class Ch(V)+/Tod(M) in H*(M)®H?*(M)®
H*(M)@ H%(M) is mapped to cohomology class of [C] in H3(M*). The fact
that the algebraic bundles of M are mapped to H?(M*) raise the following
question:

If M and M* are defined over some number field, will the Frobenius
action on the Etale cohomology of H 3(M) be mapped to certain action on
the K groups defined by algebraic vector bundles? Will the Adams operation
play a role?

SYZ argued that the above nonlinear transform is the same as the myste-
rious mirror symmetry that was initiated by Greene-Plesser [19], Candelas-
de la Ossa-Green-Parkes [7] based on speculations of conformal field theory.

Both the analytic and algebraic properties of the mirror transform are
spectacular. However, they are not yet well-understood. It would be very
useful to understand the above construction to map even dim cohomology
of M to odd dim cohomology of M*.

On the other hand, it has already produced a powerful method in geom-
etry. For example, it allows algebraic geometers to calculate the number of
algebraic curves in a Calabi-Yau manifold. This was a major classical prob-
lem in algebraic geometry. It was solved by Candelas et. al., in that they
found the right formula. The rigorous mathematical proof came from the
works of Liu-Lian-Yau [38] and Givental [17].

In principle, we can extend the above T-duality to a more general situ-
ation. For example, T can be replaced by a K 3-surface or other algebraic
manifold and (7™)* can be replaced by the moduli space of semi-stable holo-
morphic bundles over that manifold. In this case, L can be replaced by the
universal bundle. Gukov-Yau-Zaslow [22] observed that certain manifolds
with holonomy group G have a fiber structure with fiber given by K3 sur-
faces and they are dual to algebraic manifolds which are Calabi-Yau.

The arguments of SYZ and GYZ are based on brane theory, a quantized
version of string theory. The belief that the transformation should work
well for fibrations with singularities comes from intuition that arose from
physics. Mirror symmetry gives rise to many conjectures in geometry which
were proved later by rigorous mathematics. The mathematical proof in turn
justifies the intuition of the physicists.

Let us now examine how submanifolds can help the construction of geo-
metric structures. It has been an open problem in geometry to construct



334 S.-T. YAU

an explicit metric on a K3-surface with holonomy group SU(2). Greene,
Shapere, Vafa, and I [20] found an explicit metric (with SU(2) holonomy)
on the K 3-surface fibered over the two sphere with torus fiber. All the fibers
have flat metric.

However, our metric is singular along the singular fiber. One can perturb
this singular metric to be a smooth one with SU(2) holonomy. The perturba-
tion series is believed to be expressible in terms of areas of holomorphic disks
with boundary specified to be a subset of the fiber torus. The motivation
comes from the interpretation of our metric as a semi-classical approxima-
tion to the quantum theory based on the K3 surface. The holomorphic disks
are instanton corrections.

There is a similar picture for three-dimensional Calabi-Yau manifolds.

In the process of performing the mirror transform, the metric and the
complex structure is perturbed by quantities that come from holomorphic
cycles or bundles. Hence, it is reasonable to believe that a good geometric
structure should include a metric with a certain holonomy group, a space
of bundles that have special holonomy group, and a space of cycles such
as holomorphic cycles or special Lagrangian cycles. (The Lagrangian that
appeared in low energy string theory includes all these quantities and some
scalar functions.)

Philosophically, we know that certain subspace of functions can deter-
mine the space where they are defined. In fact, algebraic geometers use the
rings of algebraic functions to determine the algebraic structure of the man-
ifold. Analytically, we can use solutions of differential equations constructed
from the metric to determine the geometric structure.

Obvious functions are harmonic functions, eigenfunctions, eigenforms or
spinors. But there are many naturally defined nonlinear differential operators
such as the Monge-Ampere operator. Solutions of these nonlinear operators
can be directly related to the construction of the metric.

The moduli space of self-dual Yang-Mills bundles or Seiberg-Witten
equations have been used by Donaldson et. al. to detect the topological
structure of the manifold. One expects that more refined properties of
geometric structures can be determined by special bundles or special
cycles.

Intuitions from physics have been very useful. In fact, an ultimate goal of
geometry is to find a geometric structure that can describe quantum physics
when distance is small and general relativity when distance is large. For
such a picture, the classical view of spacetime is expected to be changed
drastically.

Classical relativity has been verified successfully. The large scale struc-
ture of spacetime is therefore in reasonable good shape. However, curvature
(or gravity) can drive spacetime to form singularities, which may have to
be understood and resolved by quantum physics. The famous conjecture of
Penrose says that generic singularity in classical relativity has to be of black
hole type.
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Singularities are places where physical laws do not hold. What it means
is that classical concept of spacetime is not adequate to describe physics at
small scale. For small scale structure of spacetime, quantum field theory has
to be brought in and it is likely that all the quantities such as bundles and
cycles will contribute.

Let me now discuss the approach from the point of view of geometric
analysis to construct geometric structures. Two major ways had been devel-
oped: one is by gluing structures together and the other one is by calculus
of variation or deformation by parabolic equations.

Given a smooth manifold, how does one construct geometric structures
over such a manifold? Ideally we would like to find necessary and sufficient
conditions in terms of algebraic topological data such as homology classes,
homotopy groups and characteristic classes of the manifold.

This is indeed possible for questions such as the existence of almost
complex structure by studying the classifying map of the manifold into
the classifying space BU(n). The question is reduced to study the lifting
of the map to B(SO(2n)) which classifies the tangent bundle to a map
into BU(n). It is a homotopic question and is completely understood when
n < 4.

BU(n)

|

M — BSO(2n)

In principle, we can replace U(n) by other Lie subgroups of the orthog-
onal group in the above discussion.

It would be useful to find a necessary and sufficient condition for the exis-
tence of Go-structure on a seven dimensional manifold where the associated
three form is closed.

The question of existence of geometric structures is very much related
to uniqueness. One can of course relax uniqueness to finite dimensionality
of the geometric structures. Only in such cases, techniques of elliptic or
parabolic theory of differential equations can be useful. Fortunately, most of
the geometric structures have this finite dimensionality property.

However, it should be pointed out that there can be infinitely many dis-
tinct components of complex structures on a fixed compact manifold. It will
be useful to classify all the possible Chern classes of such complex structures.
Similarly, there may be infinite number of components of symplectic struc-
tures on a given compact manifold, all of whose symplectic forms belong to
the same cohomology class.

The most direct way to construct geometric structures is to perform
surgery on manifolds: replacing one handlebody by another handlebody. In
the process, one needs to make sure that the new handlebody has compatible
geometric structure and the gluing is smooth. The detail of the geometric
structure on a manifold with boundary is thus important.
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A beautiful example is Thurston’s approach to constructing hyperbolic
metrics on atoroidal irreducible three-manifolds. Thurston found an impor-
tant generalization of the rigidity theorem of Mostow on hyperbolic mani-
folds to three-manifolds with geodesic boundary. The hyperbolic structure
is determined by its fundamental group and the conformal structure on the
boundary. The possibility of gluing two such manifolds is obtained by a fixed
point formula on the Teichmiiller space.

Another example is given by the work of Schoen-Yau [54] and Gromov-
Lawson [21] on the classification of manifolds with positive scalar curva-
ture. They prove that surgery on embedded spheres with codimension >3
preserves the existence of metrics with positive scalar curvature. (Recently
some question was raised on the formula given in [21].)

Construction of geometric structures on a manifold by surgery can be
powerful, as many tools of algebraic topology can be brought in. However,
the gluing procedure usually involves some question of convexity. For exam-
ple, a ball is convex for most geometric structures, and in order to glue it to
another manifold along the boundary, the boundary of the other manifold
has to be concave in a suitable manner. However, in conformal geometry,
inversion turns the ball inside out. Therefore, one can prove that the con-
nected sum of conformally flat manifolds is still conformally flat.

It is much more difficult to glue complex manifolds along a complex
submanifold unless the normal bundle of the submanifold is trivial. Even
in such cases, it remains to find obstructions to constructing an integrable
complex structure on the connected sum of two complex manifolds along
the complex submanifold. (If the normal bundle of the complex submanifold
is negative, one can perform a contraction and a suitable surgery can be
carried out.)

The idea of combining methods from geometric analysis and gluing a geo-
metric structure to a given manifold was initiated by the pioneering work
of Taubes. He was the first one to construct anti-self dual bundles on four
manifolds by gluing the instantons from four spheres to a given four dimen-
sional manifold. This eventually leads to the Donaldson theory, which is the
major tool in four manifold theory.

In 1992, Taubes [59] was able to perform similar procedure to construct
anti-self dual metrics on any four dimensional manifold as long as we glue
in enough copies of CP?. The twistor space of these manifolds are complex
three dimensional manifold fibered over the four manifold with S? fibers.

Similar technique was later used by Joyce [30, 31] in 1996 to construct
seven dimensional manifolds with holonomy group equal to G2 and eight
dimensional manifolds with holonomy group equal to Spin(7).

The works are all based on singular perturbation method and are very
powerful.

Unfortunately the perturbation method is not powerful enough to
provide the information of the full moduli space of the corresponding struc-
tures. And this is the most basic question in order to apply GGo manifolds to
M-theory that appeared in string theory.
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Existence and moduli space of affine, projective flat and conformally fiat
structure in higher dimension is much more difficult than two dimension, for
example, it is not known whether hyperbolic three manifolds admit affine
structures.

A well-known question whether compact affine manifolds have zero Euler
number is not solved. It is known to be true if the connection is complete.

Many of the questions are related to developing map from the universal
cover of the manifold to R™, RP™ or S™. In general, the map need not be
injective. If the map is injective, the manifold with such geometric structure
will be equivalent to study of discrete group acting on a domain. Only in
one case, we know the developing map is injective. Schoen-Yau [55] proved
in 1986, that any conformal map from a complete conformal flat manifold
with positive scalar curvature into S™ is injective.

This property is false without assuming positivity of scalar curvature.
Conformally flat manifolds with positive scalar curvature are then quotients
of domains in S™ by a discrete group of Mobius transformations. The domain
is dense in S™ with large codimension.

When symmetry is imposed, we have much better understanding of the
spacetime. In the past twenty years, the most fruitful results have been
found for spacetime with supersymmetries. The concept of supersymmetry
may not be acceptable to some physicists, but it does provide a beautiful and
elegant playing ground for geometers. Many classical questions in geometry
were resolved by supersymmetric considerations.

A good example is the Seiberg-Witten theory which was motivated by
supersymmetric Yang-Mills theory.

The invariant created by Seiberg-Witten theory has been very power-
ful for the study of four manifolds: especially for those four dimensional
symplectic four manifolds.

In the later case, Taubes proved the deep theorem that creates exis-
tence of pseudo-holomorphic curves based on the topological data of Seiberg-
Witten invariants. As a corollary, he proved that there is only one symplectic
structure on CP2.

A K. Liu [39] was also able to classify all four dimensional symplectic
manifolds that support a metric with positive scalar curvature.

3. Part III

When the topological method of surgery and gluing fails, we have to find
a method that does not depend on the detailed topological information of
the manifold. The best example is the proof of the Severi conjecture and the
Poincaré conjecture and the geometrization conjecture.

The beauty of the method of nonlinear differential equation is that we
can keep on deforming some unknown structure until we can recognize them
eventually. The control on this process of deformation depends on careful a
priori estimate of the nonlinear equation. However, if the structure is to be
changed in a large scale, standard energy estimate usually cannot be used as
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the underlying Sobolov inequality depends on the geometric structure and
need not hold in general. Hence maximum principle is used in most cases.

A fruitful idea to construct geometric structure is to construct metrics
that satisfy the Einstein equation. We demand that the Ricci tensor of the
metric be proportional to the metric itself. This can be considered as a gen-
eralization of the Poincaré metric to higher dimensions. This is an elliptic
system, if we identify metrics up to diffeomorphisms. The problem of exis-
tence of an Einstein metric is really a very difficult but central problem in
geometry.

One can obtain such metrics by a variational principle: After normaliza-
tion of the metrics by setting their volume equal to one, we minimize the
total scalar curvature in each fixed conformal class; then we vary the con-
formal class and maximize the (constant) scalar curvature. The first part is
called the Yamabe problem and was settled by the works of Trudinger [60],
Aubin [2] and Schoen [53].

The most subtle part was the case when the manifold is conformally
flat, where Schoen made use of the positive mass conjecture to control the
Green’s function of the conformally invariant operator and hence settle this
famous analytic problem. The relation of this problem with general relativity
is a pleasant surprise and should be considered as an important development
in geometric analysis. The second part of maximization among all confor-
mal structure is much more difficult. Schoen and his students, and also
M. Anderson have made contributions towards this approach.

Let me now discuss the other two major general approaches to con-
structing Einstein-metrics. The first one is to solve the equation on a space
with certain internal symmetries. For such manifolds, the ability to choose
a special gauge, such as holomorphic coordinates is very helpful. The space
with internal symmetry can be a Kéhler manifold or a manifold with special
holonomy group.

A very important example is given by the Calabi conjecture, where one
asked whether the necessary condition for the first Chern class to have def-
inite sign is also sufficient for the existence of Kéhler-Einstein metric.

Algebraic varieties are classified according to the map of the manifold
into the complex projective space by powers of the canonical line bundle. If
the map is an immersion at generic point, the manifold is called an algebraic
manifold of general type. This class of manifolds comprises the majority of
algebraic manifolds, and these manifolds can be considered as generalizations
of algebraic curves of higher genus.

In general, the above canonical map may have a “base point” and hence
be singular. However, the minimal model theory of the Italian and Japan-
ese school (Castelnuovo, Fano, Enriques, Severi, Bombieri, Kodaira, Mori,
Kawamata, Miyaoka, Inoue) showed that an algebraic manifold of general
type can be contracted to a certain minimal model, where the canonical map
has no base point. In this case, the first Chern class of the minimal model
is non-positive and negative in a Zariski open set.
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Most algebraic manifolds of general type have negative first Chern class.
In this case, Aubin and I independently proved the existence and uniqueness
of a Kahler-Einstein metric.

For the general case of minimal models of manifolds of general type,
the first Chern class is not negative everywhere. Hence it does not admit a
regular Kahler-Einstein metric.

However, it admits a canonical Kéhler-Einstein metric which may have
singularities. This statement was observed by me right after I wrote my
paper on the Calabi conjecture, where I also discussed the regularity of
degenerate Kéhler-Einstein metrics. (Tsuji [61] later reproved this theorem
in 1985 using Hamilton’s Ricci flow.)

The singularity of this canonical Kihler-Einstein metric that I con-
structed on manifolds of general type is not so easy to handle. By making
some assumption on the divisors, Cheng-Yau and later Tian-Yau contributed
to understanding of the structure of these metrics. These metrics give impor-
tant algebraic geometric informations of the manifolds.

In 1976, I [67] observed that the Kéhler-Einstein metric can be used to
settle important questions in algebraic geometry. An important contribution
is the algebraic-geometric characterization of Shimura varieties: quotients of
Hermitian symmetric domains by discrete groups. They are characterized by
the statement that certain natural bundle, constructed from tensor product
of tangent bundles, has nontrivial holomorphic section.

The other important assertions are the inequalities between Chern num-
bers for algebraic manifolds. For an algebraic surface, I proved 3Cy(M) >
C2?(M), an inequality which was independently proved by Miyaoka by alge-
braic means. I [67] proved further that equality holds only if M has constant
holomorphic sectional curvature. My inequality holds in arbitrary dimension.

It is the last assertion that enabled me to prove that there is only one
complex structure on the complex projective plane. This statement was a
famous conjecture of Severi.

The construction of Ricci flat Kéhler metric has been used extensively
in both algebraic geometry and string theory, such as Torelli theorem for
K3 surfaces and deformation of complex structure.

The construction of Kéhler-Einstein metric with positive scalar curva-
ture has been a very active field. In early eighties, I proposed its existence
in relation to stability of the manifolds.

In the hands of Donaldson, and others, we see that my proposal is close to
be realized. It gives new information about the algebraic geometric stability
of manifolds.

In general, there should be an interesting program to study Kahler-
Einstein metrics on the moduli space of either complex structures or sta-
ble bundles. It should provide some informations for the moduli space. For
example, recently, using this metric, Liu-Sun-Yau [41] proved the Mum-
ford stability of the logarithmic cotangent bundle of the moduli spaces of
Riemann surfaces.
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Hence we see that by constructing new geometric structure through non-
linear partial differential equation, one can solve problems in algebraic geom-
etry that are a priori independent of this new geometric structure.

A holomorphic coordinate system is a very nice gauge and a Kéahler
metric is a beautiful metric as it depends only on one function. When we
come to the space of Riemannian metrics, we need to understand a large
system of nonlinear equations invariant under the group of diffeomorphism.
The choice of gauge causes difficulty.

The Severi conjecture can be considered as a complex analog of the
Poincaré conjecture. The fact that Einstein metrics were useful in settling
the Severi conjecture indicates that these metrics should also be useful for
the geometrization conjecture and hence the Poincaré conjecture. This was
what we believed in the late seventies.

Many methods motivated by the calculus of variation were proposed.
The most promising method was due to Hamilton who proposed to deform
any metric along the negative of its Ricci curvature. The development of the
Ricci flow has gone through several important stages of development.

The first decisive one was Hamilton’s demonstration of the global con-
vergence of the Ricci flow [23] when the initial metric has positive Ricci
curvature. This is a fundamental contribution that give confidence on the
importance of the equation.

To move further, it was immediately clear that one needs to control the
singularities of the flow. This was studied extensively by Hamilton. The nec-
essary a priori estimate was based on Hamilton’s spectacular generalization
of the works of Li-Yau [37].

Li-Yau introduced a distance function on spacetime to control the precise
behavior of the parabolic system near the singularity. The concept appears
naturally from the point of view of a priori estimate. For example, if the
equation is

% = Au— Vu.
The distance introduced by Li-Yau is given by

1
(et (o) = int{ s [ 17

+ (t2 — t1) /01 V(r(s), (1 —s)ta + stl)}.

where V' are paths joining (x,t1) to (y,t2).

The kernel of the parabolic equation can then be estimated by this dis-
tance function.

The potential V is naturally replaced by the scalar curvature in the case
of Ricci flow as it appears in the action of gravity. This is what Perelman did
later. The idea of Li-Yau-Hamilton come from the careful study of maximum
principle. The basic philosophy of LYH is to study the extreme situation. In
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the case of Ricci flow, one looks at the soliton solution and verify some equal-
ity holds along the soliton and such equality can be turned to be estimates
for general solutions of the parabolic system, via maximum principle.

In the nineties, Hamilton [24, 25, 26] was able to classify singularities
of the Ricci flow in three dimension and prove the geometrization conjec-
ture if the curvature of the flow is uniformly bounded. These are very deep
works both from the point of view of geometry and analysis. Many ideas in
geometric analysis were used. This includes the proof of the positive mass
conjecture, the injectivity radius estimate and an improved version of the
Mostow rigidity theorem. In particular, he introduced the concept of Ricci
flow with surgery.

In his classification of singularities, Hamilton could not determine the
existence or nonexistence of one type of singularity which he called cigar.
This type of singularity was proved to be non-existent by Perelman [50] in
2002 in an elegant manner. Perelman [51] then extended the work of Hamil-
ton on flows with surgery. Among many creative ideas, he found a priori
estimates for the gradient of the scalar curvature, the concept of reduced
volume and a new way to perform surgery with control.

The accumulated works of Hamilton-Perelman are spectacular. Today,
5 years after the first preprint of Perelman was available, several groups of
mathematicians have put forward their manuscripts explaining their under-
standings on how Hamilton-Perelman’s ideas can be put together to prove
the Poincaré conjecture; at the same time, other experts are still working
diligently on the proof of this century old conjecture.

Besides the Poincaré conjecture, Ricci flow has many other applications:
A very important one is the contribution due to Chau, Chen, Ni, Tam and
Zhu, towards the proof of the conjecture that every complete noncompact
Kahler manifold with positive bisectional curvature is bi-holomorphic to C™.
(I made this conjecture in 1972 as a generalization to higher dimension of
the uniformization theorem. Proceeding to the conjecture, there were impor-
tant works of Greene-Wu to proving Steinness of the complete noncompact
Kéhler manifold with positive sectional curvature.)

More recently, several old problems were solved by using the classical
results of Hamilton that were published in 1983, 1986 and 1997.

The most outstanding one is the recent result of Brendle-Schoen [4].
They proved that manifolds with pointwise quarter-pinching curvature are
diffeomorphic to manifolds with constant positive curvature.

This question has puzzled mathematicians for more than half a century.

It has been studied by many experts in differential geometry.

Back in 1950s, Rauch was the first one who introduce the concept of
pinching condition. Berger and Klingenberg proved such a manifold to be
homeomorphic to a sphere when it is simply connected.

The diffeomorphic type of the manifolds is far more difficult to under-
stand. For example, Gromoll’s thesis achieved a partial result toward settling
such a result: he assumed a much stronger pinching condition.
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The result of Brendle-Schoen achieved optimal pinching condition. More
remarkably, they only need pointwise pinching condition and do not have to
assume simply-connectivity. Both of these conditions are not accessible by
the older methods of comparison theorems.

This result partially builds on fundamental work by Béhm and Wilking
who proved that a manifold with positive curvature operator is diffeomorphic
to a spherical space form.

Therefore, the program on Ricci flow laid down by Hamilton in 1983 has
opened a new era for geometric analysts to build geometric structures.

Other obvious problems are to construct geometric structure on other
low dimensional manifolds, especially four-dimensional manifolds. Besides
the fundamental works based of Donaldson and Seiberg-Witten, we know
very little about the geometry of four manifolds. The most fundamental
structures on four manifold are complex structures and metrics with anti-
self-dual curvature. (Most four manifolds are obtained by some simple
surgery on complex surfaces. An important operation called log transfor-
mation was introduced by Kodaira. It can change the diffeomorphisim type
of the four manifold.)

The Atiyah-Singer index formula gives very important obstructions for
the existence of integrable complex structures on surfaces, as was found
by Kodaira. The moduli spaces of holomorphic vector bundles have been a
major source for Donaldson to provide invariants for smooth structures. On
the other hand, the existence of pseudoholomorphic curves based on Seiberg-
Witten invariant constructed by Taubes is a powerful tool for symplectic
topology. It seems natural that one should build geometric structures over
a smooth manifold that include all these types of information.

The integrability condition derived from Atiyah-Singer formula for
almost complex structures in dim¢ > 3 is not powerful enough to rule out
the following conjecture:

For dimc > 3, every almost complex manifold admits an integrable
complex structure.

If this conjecture is true, we need to build geometry over such nonKéhler
complex manifolds. This is especially interesting in higher dimension. It is
possible to deform an algebraic manifold to another one with different topol-
ogy by tunneling through nonKahler structures. A good example is related
to the Clemens-Friedman construction that one can collapse rational curves
in a Calabi-Yau three manifold to conifold singularity. Then by smoothing
the singularity, one obtains nonsingular nonKé&hler manifold. Reversing the
procedure, one may get another Calabi-Yau manifold.

Reid [52] proposed that this procedure may connect all Calabi-Yau man-
ifolds in three dimension. There is perhaps no reason to restrict ourselves
only to Calabi-Yau manifolds, but to more general algebraic manifolds on a
fixed topological manifold, is there other general construction to deform one
algebraic structure from one component of the moduli space of a complex
structure to other component through nonKéhler complex structures?
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Non-Kéahler complex structures are difficult to handle geometrically.
However, there is an interesting concept of Hermitian structure that can
be useful. This is the class of balanced structure.

An Hermitian metric w is called balanced iff

dw" 1) =0.

It was first studied by M. Michelsohn [46] and Alessandrini-Bassanelli [1],
who observed that twistor space admits a balanced metric and that existence
of balanced metric is invariant under birational transformation. Recently,
it came up in the theory of Heterotic string, based on a warped product
compactification.

Strominger [57] suggests that there should be a holomorphic vector bun-
dle that should admit a Hermitian Yang-Mills connection and that there
should be Hermitian metric that is conformally balanced. To be more pre-
cise, there should be a holomorphic 3-form € so that

d(|| @ |l v*) =0,

where w is the Hermitian form. An important link between the bundle and
the metric is that connections on both structures give trivial first Chern
form and the difference between their second Chern forms can be written as
V—100w.

This geometric structure constructed for Heterotic string theory is based
on construction of parallel spinors and the anomaly equation required by
quantization of string theory.

On the other hand, general existence theorem for the Strominger system
is still not known.

An interesting mathematical question is to construct a balanced complex
three manifold with a nonvanishing holomorphic 3-form. Then we like to
construct a stable holomorphic vector bundle that satisfies all of the above
equations of Strominger.

Jun Li and I [36] proved the existence of Strominger system by perturb-
ing around the Calabi-Yau metric.

The first example on a nonKéhler manifold is due to Fu-Yau [16]. It is
obtained by forming a torus fiber bundle over K3 surface (due to Dasgupta-
Rajesh-Sethi, Becker-Becker-Dasgupta-Green and Goldstein-Prokushkin).

The construction of Strominger system over this manifold can be
achieved if we can solve the following complex Monge-Ampeére equation:

/

Ae" — gfe_“) + 4o/d
2 det g5

et U,Lj

+p=0

where f and p are given functions on K3 surface S so that f > 0 and
J gt = 0. This was achieved by Fu-Yau based on a priori estimates of u,
which is more complicated than those used in Calabi conjecture.
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There are nontrivial interpretation of the Fu-Yau example through
conformal field theory.

The supersymmetric heterotic string gives an SU(3) Hermitian connec-
tion on the tangent bundle. But the connection has torsion (which is trace
free).

If we are interested in G-structure on the tangent bundle with G C U(n),
it can be accomplished by considering the work of Donaldson-Uhlenbeck-Yau
[14, 63] on stable holomorphic bundles over Kéhler manifold. The work
generalizes the work of Narasimhan-Seshadri [48] for algebraic curves.

It was extended to nonKéhler manifolds by Li-Yau [35] where the base
complex manifold admit a Gauduchon metric w with

89(w" ) = 0.

If the tangent bundle T is stable and if some irreducible subbundles
constructed from tensor product of T" admits nontrivial holomorphic section,
the structure group can be reduced. The major question is how to control
the torsion of this connection by choosing w suitably.

In the other direction, one should mention that Smith-Thomas-Yau [56]
succeeded to construct symplectic manifold mirror to the Clemens-Friedman
construction. While the Clemens-Friedman [13, 15] construction leads to
nonKihler complex structures over connected sums S3 x S, the Smith-
Thomas-Yau construction lead to symplectic non-complex structure over
connected sums of CP? (which may not admit any integrable complex struc-
ture).

We expect a mirror structure for the Strominger system in symplectic
geometry, where we hope to build an almost complex structure compatible
to the symplectic form. They should satisfy a good system of equations. We
expect that special Lagrangian cycles and pseudoholomorphic curves will
play roles in such a new structure which is dual to the above system of
equations of Strominger.

The inspirations from string theory has given amazingly deep insight into
the structure of Calabi-Yau manifolds which are manifolds with holonomy
group SU(n).

Constructions of geometric structures by coupling metrics with vector
bundles and submanifolds should give a new direction in geometry, as they
may exhibit supersymmetry. An important idea provided by string theory
is that duality exists between supersymmetric manifolds. Duality allows us
to compute difficult geometric information by perturbation methods on the
dual objects.

General relativity and string theory have inspired a great deal of geo-
metric ideas and it has been very fruitful. Nature also tells us everything
vibrates and there should be intrinsic frequency associated to our geometric
structure. In the classical geometry, we have an elliptic operator associated
to deformation of the structure. For space of Einstein metrics, it is called
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the Lichnerowicz operator. It will be interesting to study the spectrum of
this operator.

Quantum gravity may provide a deeper concept. A successful construc-

tion of quantum geometry will change our scope of geometric structures.
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