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Generalized Donaldson–Thomas invariants

Dominic Joyce

Abstract. This is a survey of the book [16] with Yinan Song.
Donaldson–Thomas invariants DTα(τ) ∈ Z ‘count’ τ -(semi)stable
coherent sheaves with Chern character α on a Calabi–Yau 3-foldX.
They are unchanged under deformations of X. The conventional
definition works only for classes α with no strictly τ -semistable
sheaves. Behrend showed thatDTα(τ) can be written as a weighted
Euler characteristic χ

(
Mα

st(τ), νMα
st(τ)

)
of the stable moduli scheme

Mα
st(τ) by a constructible function νMα

st(τ) we call the ‘Behrend
function’.

We discuss generalized Donaldson–Thomas invariants
D̄Tα(τ) ∈ Q. These are defined for all classes α, and are equal
to DTα(τ) when it is defined. They are unchanged under deforma-
tions of X, and transform according to a known wall-crossing for-
mula under change of stability condition τ . We conjecture that they
can be written in terms of integral BPS invariants D̂Tα(τ) ∈ Z
when the stability condition τ is ‘generic’.

We extend the theory to abelian categories mod-CQ/I of rep-
resentations of a quiver Q with relations I coming from a super-
potential W on Q, and connect our ideas with Szendrői’s non-
commutative Donaldson–Thomas invariants, and work by Reineke
and others on invariants counting quiver representations. The book
[16] has significant overlap with a recent, independent paper of
Kontsevich and Soibelman [18].

1. Introduction

This is a survey of the book [16] by the author and Yinan Song. Let
X be a Calabi–Yau 3-fold over C, and OX(1) a very ample line bundle on
X. Our definition of Calabi–Yau 3-fold requires X to be projective, with
H1(OX) = 0. Write coh(X) for the abelian category of coherent sheaves
on X, and K(X) for the numerical Grothendieck group of coh(X). Let τ
denote Gieseker stability of coherent sheaves w.r.t. OX(1). If E is a coherent
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126 D. JOYCE

sheaf on X then [E] ∈K(X) is in effect the Chern character ch(E) of E
in Heven(X; Q).

For α ∈K(X) we can form the coarse moduli schemes Mα
ss(τ), Mα

st(τ) of
τ -(semi)stable sheaves E with [E] = α. Then Mα

ss(τ) is a projective
C-scheme whose points correspond to S-equivalence classes of τ -semistable
sheaves, and Mα

st(τ) is an open subscheme of Mα
ss(τ) whose points corre-

spond to isomorphism classes of τ -stable sheaves.
For Chern characters α with Mα

ss(τ) = Mα
st(τ), following Donaldson and

Thomas [4, §3], Thomas [33] constructed a symmetric obstruction theory
on Mα

st(τ) and defined the Donaldson–Thomas invariant to be the virtual
class

DTα(τ) =
∫
[Mα

st(τ)]
vir 1 ∈ Z,

an integer which ‘counts’ τ -semistable sheaves in class α. Thomas’ main
result [33, §3] is that DTα(τ) is unchanged under deformations of the
underlying Calabi–Yau 3-foldX. Later, Behrend [1] showed that Donaldson–
Thomas invariants can be written as a weighted Euler characteristic

DTα(τ) = χ
(
Mα

st(τ), νMα
st(τ)

)
,

where νMα
st(τ)

is the Behrend function, a constructible function on Mα
st(τ)

depending only on Mα
st(τ) as a C-scheme.

Conventional Donaldson–Thomas invariants DTα(τ) are only defined
for classes α with Mα

ss(τ) = Mα
st(τ), that is, when there are no strictly

τ -semistable sheaves. Also, although DTα(τ) depends on the stability con-
dition τ , that is, on the choice of very ample line bundle OX(1) on X,
this dependence was not understood until now. The main goal of [16] is to
address these two issues.

For a Calabi–Yau 3-fold X over C we will define generalized Donaldson–
Thomas invariants D̄Tα(τ) ∈ Q for all α ∈K(X), which ‘count’
τ -semistable sheaves in class α. These have the following important proper-
ties:

• D̄Tα(τ) ∈ Q is unchanged by deformations of the Calabi–Yau
3-fold X.

• If Mα
ss(τ) = Mα

st(τ) then D̄Tα(τ) lies in Z and equals the conven-
tional Donaldson–Thomas invariant DTα(τ) defined by Thomas
[33].

• If Mα
ss(τ) �= Mα

st(τ) then conventional Donaldson–Thomas invari-
ants DTα(τ) are not defined for class α. Our generalized invariant
D̄Tα(τ) may lie in Q because strictly semistable sheaves E make
(complicated) Q-valued contributions to D̄Tα(τ). For ‘generic’ τ
we have a conjecture that writes the D̄Tα(τ) in terms of other,
integer-valued invariants D̂Tα(τ).

• If τ, τ̃ are two stability conditions on coh(X), there is an explicit
change of stability condition formula giving D̄Tα(τ̃) in terms of the
D̄T β(τ).
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These invariants are a continuation of the author’s programme [9–15].
We begin in §2 with some background material on constructible functions

and stack functions on Artin stacks, taken from [9,10]. Then §3 summarizes
ideas from [11–14] on Euler-characteristic type invariants Jα(τ) counting
sheaves on Calabi–Yau 3-folds and their wall-crossing under change of stabil-
ity condition, and facts on Donaldson–Thomas invariants from Thomas [33]
and Behrend [1].

Section 4 summarizes [16, §5–§6], and is the heart of the paper. Let X
be a Calabi–Yau 3-fold, and M the moduli stack of coherent sheaves on X.
Write χ̄ :K(X)×K(X) → Z for the Euler form of coh(X). We will explain
that the Behrend function νM of M satisfies two important identities

νM(E1 ⊕ E2) = (−1)χ̄([E1],[E2])νM(E1)νM(E2),∫
[λ]∈P(Ext1(E2,E1)):
λ⇔ 0→E1→F→E2→0

νM(F )dχ−
∫

[λ′]∈P(Ext1(E1,E2)):
λ′ ⇔ 0→E2→F ′→E1→0

νM(F ′)dχ

=
(
dim Ext1(E2, E1) − dim Ext1(E1, E2)

)
νM(E1 ⊕ E2).

We use these to define a Lie algebra morphism Ψ̃ : SFind
al (M) → L̃(X), where

SFind
al (M) is a special Lie subalgebra of the Ringel–Hall algebra SFal(M) of

X, a large algebra with a universal construction, and L̃(X) is a much smaller
explicit Lie algebra, the Q-vector space with basis λ̃α for α ∈K(X), and Lie
bracket

[λ̃α, λ̃β ] = (−1)χ̄(α,β)χ̄(α, β)λ̃α+β .

If τ is Gieseker stability in coh(X) and α ∈K(X), we define an element
ε̄α(τ) in SFind

al (M) which ‘counts’ τ -semistable sheaves in class α in a special
way. We define the generalized Donaldson–Thomas invariant D̄Tα(τ) ∈ Q by

Ψ̃
(
ε̄α(τ)

)
= −D̄Tα(τ)λ̃α.

By results in [14], the ε̄α(τ) transform according to a universal transforma-
tion law in the Lie algebra SFind

al (M) under change of stability condition.
Applying Ψ̃ shows that −D̄Tα(τ)λ̃α transform according to the same law
in L̃(X). This yields a wall-crossing formula for two stability conditions τ, τ̃
on coh(X):

(1)

D̄Tα(τ̃) =∑
iso.

classes
of finite
sets I

∑
κ:I→C(X):∑
i∈I

κ(i)=α

∑
connected,
simply-
connected
digraphs Γ,
vertices I

(−1)|I|−1V (I,Γ, κ; τ, τ̃) ·
∏

i∈I D̄T
κ(i)(τ)

·(−1)
1
2

∑
i,j∈I |χ̄(κ(i),κ(j))| ·

∏
edges

i•→ j• in Γ

χ̄(κ(i), κ(j)),

where V (I,Γ, κ; τ, τ̃) ∈ Q are combinatorial coefficients, and there are only
finitely many nonzero terms.
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To prove that D̄Tα(τ) is unchanged under deformations of X, we intro-
duce auxiliary invariants PIα,n(τ ′) ∈ Z counting ‘stable pairs’ s : O(−n) →
E, for n� 0 and E ∈ coh(X) τ -semistable in class α ∈K(X). The moduli
space Mα,n

stp (τ ′) of such stable pairs is a proper fine moduli C-scheme with
a symmetric obstruction theory, so by the same proof as for Donaldson–
Thomas invariants [33], the virtual count PIα,n(τ ′) of Mα,n

stp (τ ′) is
deformation-invariant. By a wall-crossing proof similar to that for (1) we
find that

PIα,n(τ ′) =
∑

α1,...,αl∈C(X),
l�1: α1+···+αl=α,
τ(αi)=τ(α), all i

(−1)l

l!

l∏
i=1

[
(−1)χ̄([OX(−n)]−α1−···−αi−1,αi)

χ̄
(
[OX(−n)]−α1−· · ·−αi−1, αi

)
D̄Tαi(τ)

]
.

Using deformation-invariance of the PIα,n(τ ′) and induction on rankα we
find that D̄Tα(τ) is deformation-invariant.

Examples show that in general the D̄Tα(τ) lie in Q rather than Z. So
it is an interesting question whether we can rewrite the D̄Tα(τ) in terms of
some system of Z-valued invariants, just as Q-valued Gromov–Witten invari-
ants of Calabi–Yau 3-folds are (conjecturally) written in terms of Z-valued
Gopakumar–Vafa invariants [7]. We define new BPS invariants D̂Tα(τ) for
α ∈ C(X) to satisfy

D̄Tα(τ) =
∑

m�1, m|α

1
m2

D̂Tα/m(τ),

and we conjecture that D̂Tα(τ) ∈ Z for all α if the stability condition τ is
‘generic’. Evidence for this conjecture is given in [16, §6.1–§6.5 & §7.6].

Section 5 summarizes [16, §7], which develops an analogue of Donaldson–
Thomas theory for representations of quivers with relations coming from a
superpotential. This provides a kind of toy model for Donaldson–Thomas
invariants using only polynomials and finite-dimensional algebra, and is a
source of many simple, explicit examples. Counting invariants for quivers
with superpotential have been studied by Nakajima, Reineke, Szendrői and
other authors for some years [5,24–27,29,30,32], under the general name of
‘noncommutative Donaldson–Thomas invariants’. Curiously, the invariants
studied so far are the analogues of our pair invariants PIα,n(τ ′), and the
analogues of D̄Tα(τ), D̂Tα(τ) seem to have received no attention, although
they appear to the author to be more fundamental.

A recent paper by Kontsevich and Soibelman [18], summarized in [19],
has considerable overlap with both [16] and the already published [9–15].
The two were completed largely independently, and the first versions of [16,
18] appeared on the arXiv within a few days of each other. Kontsevich and
Soibelman are far more ambitious than us, working in triangulated categories
rather than abelian categories, over general fields K rather than C, and with
general motivic invariants rather than the Euler characteristic. But for this
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reason, almost every major result in [18] depends explicitly or implicitly on
conjectures. The author would like to acknowledge the contribution of [18]
to the ideas on D̂Tα(τ) and integrality in §4.4 below, and to the material on
quivers with superpotential in §5. The relationship between [16] and [18] is
discussed in detail in [16, §1.6].

Acknowledgements. The author would like to thank Tom Bridgeland,
Richard Thomas, Balázs Szendrői, and his co-author Yinan Song. This
research was supported by EPSRC grant EP/D077990/1.

2. Constructible functions and stack functions

We begin with some background material on Artin stacks, constructible
functions, and stack functions, drawn from [9,10]. We restrict to the field
K = C.

2.1. Artin stacks and constructible functions. Artin stacks are a
class of geometric spaces, generalizing schemes and algebraic spaces. For a
good introduction to Artin stacks see Gómez [6], and for a thorough treat-
ment see Laumon and Moret-Bailly [20]. We work throughout over the field
C. We make the convention that all Artin stacks in this paper are locally
of finite type, with affine geometric stabilizers, that is, all stabilizer groups
IsoF(x) are affine algebraic C-groups, and substacks are locally closed.

Artin C-stacks form a 2-category. That is, we have objects which are
C-stacks F,G, and also two kinds of morphisms, 1-morphisms φ, ψ : F → G
between C-stacks, and 2-morphisms A : φ→ ψ between 1-morphisms.

Definition 2.1. Let F be a C-stack. Write F(C) for the set of
2-isomorphism classes [x] of 1-morphisms x : Spec C → F. Elements of F(C)
are called C-points of F. If φ : F → G is a 1-morphism then composition with
φ induces a map of sets φ∗ : F(C) → G(C).

For a 1-morphism x : Spec C → F, the stabilizer group IsoF(x) is the
group of 2-morphisms A : x→ x. When F is an Artin C-stack, IsoF(x) is an
algebraic C-group, which we assume is affine. If φ : F → G is a 1-morphism,
composition induces a morphism of C-groups φ∗ : IsoF([x]) → IsoG

(
φ∗([x])

)
,

for [x] ∈ F(C).

We discuss constructible functions on C-stacks, following [9].

Definition 2.2. Let F be an Artin C-stack. We call C ⊆ F(C) con-
structible if C =

⋃
i∈I Fi(C), where {Fi : i ∈ I} is a finite collection of finite

type Artin C-substacks Fi of F. We call S⊆F(C) locally constructible if S ∩C
is constructible for all constructible C ⊆ F(C). A function f : F(C) → Q is
called constructible if f(F(C)) is finite and f−1(c) is a constructible set in
F(C) for each c ∈ f(F(C)) \ {0}. A function f : F(C) → Q is called locally
constructible if f · δC is constructible for all constructible C ⊆ F(C), where
δC is the characteristic function of C. Write CF(F) and LCF(F) for the
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Q-vector spaces of Q-valued constructible and locally constructible func-
tions on F.

Following [9, §4–§5] we define pushforwards and pullbacks of constructible
functions along 1-morphisms.

Definition 2.3. Let F,G be Artin C-stacks and φ : F → G a repre-
sentable 1-morphism. For f ∈ CF(F), define CFstk(φ)f : G(C) → Q by

CFstk(φ)f(y) = χ
(
F ×φ,G,y Spec C, π∗F(f)

)
for y ∈ G(C),

where F×φ,G,ySpec C is a C-scheme (or algebraic space) as φ is representable,
and χ(· · · ) is the Euler characteristic of this C-scheme weighted by π∗F(f).
Then CFstk(φ) : CF(F) → CF(G) is a Q-linear map called the stack pushfor-
ward.

Let θ : F → G be a finite type 1-morphism. The pullback θ∗ : CF(G) →
CF(F) is given by θ∗(f) = f ◦ θ∗. It is a Q-linear map.

Here [9, §4–§5] are some properties of these.

Theorem 2.4. Let E,F,G,H be Artin C-stacks and β : F → G, γ : G →
H be 1-morphisms. Then

CFstk(γ ◦ β) = CFstk(γ) ◦ CFstk(β) : CF(F) → CF(H),(2)

(γ ◦ β)∗ = β∗ ◦ γ∗ : CF(H) → CF(F),(3)

supposing β, γ representable in (2), and of finite type in (3). If

E η
��

θ
��

G

ψ
��

F
φ �� H

is a Cartesian square with
η, φ representable and
θ, ψ of finite type, then
the following commutes:

CF(E)
CFstk(η)

�� CF(G)

CF(F)
CFstk(φ)��

θ∗
��

CF(H).

ψ∗
��

2.2. Stack functions. Stack functions are a universal generalization
of constructible functions introduced in [10, §3]. Here [10, Def. 3.1] is the
basic definition.

Definition 2.5. Let F be an Artin C-stack. Consider pairs (R, ρ), where
R is a finite type Artin C-stack and ρ : R → F is a representable 1-morphism.
We call two pairs (R, ρ), (R′, ρ′) equivalent if there exists a 1-isomorphism
ι : R → R′ such that ρ′◦ι and ρ are 2-isomorphic 1-morphisms R → F. Write
[(R, ρ)] for the equivalence class of (R, ρ). If (R, ρ) is such a pair and S is a
closed C-substack of R then (S, ρ|S), (R \ S, ρ|R\S) are pairs of the same
kind.

Define SF(F) to be the Q-vector space generated by equivalence classes
[(R, ρ)] as above, with for each closed C-substack S of R a relation

(4) [(R, ρ)] = [(S, ρ|S)] + [(R \ S, ρ|R\S)].
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Elements of SF(F) will be called stack functions. We relate CF(F) and
SF(F).

Definition 2.6. Let F be an Artin C-stack and C ⊆ F(C) be con-
structible. Then C =

∐n
i=1 Ri(C), for R1, . . . ,Rn finite type C-substacks

of F. Let ρi : Ri → F be the inclusion 1-morphism. Then [(Ri, ρi)] ∈ SF(F).
Define δ̄C =

∑n
i=1[(Ri, ρi)] ∈ SF(F). We think of this as the analogue of the

characteristic function δC ∈ CF(F) of C. Define a Q-linear map ιF : CF(F) →
SF(F) by ιF(f) =

∑
0�=c∈f(F(C)) c · δ̄f−1(c). Define Q-linear πstk

F : SF(F) →
CF(F) by

πstk
F

(∑n
i=1 ci[(Ri, ρi)]

)
=

∑n
i=1 ci CFstk(ρi)1Ri ,

where 1Ri is the function 1 ∈ CF(Ri). Then πstk
F ◦ιF is the identity on CF(F).

The operations on constructible functions in §2.1 extend to stack func-
tions.

Definition 2.7. Let φ : F→G be a representable 1-morphism of Artin
C-stacks. Define the pushforward φ∗ : SF(F)→SF(G) by

(5) φ∗ :
∑m

i=1 ci[(Ri, ρi)] 
−→
∑m

i=1 ci[(Ri, φ ◦ ρi)].

Let φ : F→G be of finite type. Define the pullback φ∗ : SF(G)→SF(F) by

(6) φ∗ :
∑m

i=1 ci[(Ri, ρi)] 
−→
∑m

i=1 ci[(Ri ×ρi,G,φ F, πF)].

The tensor product ⊗ : SF(F) × SF(G) → SF(F × G) is

(7)
(∑m

i=1 ci[(Ri, ρi)]
)
⊗

(∑n
j=1 dj [(Sj , σj)]

)
=

∑
i,j cidj [(Ri×Sj , ρi×σj)].

Here [10, Th. 3.5] is the analogue of Theorem 2.4.

Theorem 2.8. Let E,F,G,H be Artin C-stacks and β : F → G, γ : G →
H be 1-morphisms. Then

(γ◦β)∗=γ∗◦β∗ : SF(F)→SF(H), (γ◦β)∗=β∗◦γ∗ : SF(H)→SF(F),

for β, γ representable in the first equation, and of finite type in the second.
If

E η
��

θ��

G
ψ

��
F

φ �� H

is a Cartesian square with
θ, ψ of finite type and
η, φ representable, then
the following commutes:

SF(E) η∗
�� SF(G)

SF(F)
φ∗ ��

θ∗
��

SF(H).
ψ∗ ��
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In [10, §3] we relate pushforwards and pullbacks of stack and con-
structible functions using ιF, πstk

F .

Theorem 2.9. Let φ : F → G be a 1-morphism of Artin C-stacks. Then
(a) φ∗◦ιG=ιF◦φ∗ : CF(G)→SF(F) if φ is of finite type;
(b) πstk

G ◦ φ∗ = CFstk(φ) ◦ πstk
F : SF(F) → CF(G) if φ is representable;

and
(c) πstk

F ◦ φ∗ = φ∗ ◦ πstk
G : SF(G) → CF(F) if φ is of finite type.

We define some projections Πvi
n : SF(F) → SF(F), [10, §5].

Definition 2.10. For any Artin C-stack F we will define linear maps
Πvi
n : SF(F) → SF(F) for n� 0. Now SF(F) is generated by [(R, ρ)] with R

1-isomorphic to a quotient [X/G], for X a quasiprojective C-variety and G
a special algebraic C-group, with maximal torus TG.

Let S(TG) be the set of subsets of TG defined by Boolean operations
upon closed C-subgroups L of TG. Define a measure dμn : S(TG) → Z to be
additive upon disjoint unions of sets in S(TG), and to satisfy dμn(L) = 1 if
dimL= n and dμn(L) = 0 if dimL �= 0 for all algebraic C-subgroups L of
TG. Define

Πvi
n

(
[(R, ρ)]

)
=∫

t∈TG

|{w ∈W (G,TG) : w · t= t}|
|W (G,TG)|

[(
[X{t}/CG({t})], ρ ◦ ι{t}

)]
dμn.

(8)

Here X{t} is the subscheme of X fixed by t, and CG({t}) is the centralizer
of t in G, and ι{t} : [X{t}/CG({t})] → [X/G] is the obvious 1-morphism.

The integrand in (8), regarded as a function of t ∈ TG, is a constructible
function taking only finitely many values. The level sets of the function lie
in S(TG), so they are measurable w.r.t. dμn, and the integral is well-defined.
In [10, §5] we show (8) induces a unique linear map Πvi

n : SF(F) → SF(F).

Here [10, §5] are some properties of the Πvi
n .

Theorem 2.11. In the situation above, we have:
(i) (Πvi

n )2 = Πvi
n , so that Πvi

n is a projection, and Πvi
m ◦ Πvi

n = 0 for
m �= n.

(ii) For all f ∈ SF(F) we have f =
∑

n�0 Πvi
n (f), where the sum makes

sense as Πvi
n (f) = 0 for n� 0.

(iii) If φ : F → G is a 1-morphism of Artin C-stacks then Πvi
n ◦ φ∗ =

φ∗ ◦ Πvi
n : SF(F) → SF(G).

(iv) If f ∈ SF(F), g ∈ SF(G) then Πvi
n (f⊗g) =

∑n
m=0 Πvi

m(f)⊗Πvi
n−m(g).

Roughly speaking, Πvi
n projects [(R, ρ)] ∈ SF(F) to [(Rn, ρ)], where Rn is

the substack of points r ∈ R(C) whose stabilizer groups IsoR(r) have rank n.
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2.3. Stack function spaces S̄F(F, χ, Q). We will also need another
family of spaces S̄F(F, χ,Q), from [10, §5–§6].

Definition 2.12. Let F be an Artin C-stack. Consider pairs (R, ρ),
where R is a finite type Artin C-stack and ρ : R → F is a representable
1-morphism, with equivalence as in Definition 2.5. Define S̄F(F, χ,Q) to
be the Q-vector space generated by equivalence classes [(R, ρ)], with the
following relations:

(i) Given [(R, ρ)] as above and S a closed C-substack of R we have
[(R, ρ)] = [(S, ρ|S)] + [(R \ S, ρ|R\S)], as in (4).

(ii) Let R be a finite type Artin C-stack, U a quasiprojective C-variety,
πR : R×U→R the natural projection, and ρ : R → F a 1-morphism.
Then [(R × U, ρ ◦ πR)] = χ([U ])[(R, ρ)].
Here χ(U) ∈ Z is the Euler characteristic of U . It is a motivic invari-
ant of C-schemes, that is, χ(U) = χ(V )+χ(U \V ) for V ⊂ U closed.

(iii) Given [(R, ρ)] as above and a 1-isomorphism R ∼= [X/G] for X a
quasiprojective C-variety and G a very special algebraic C-group
acting on X with maximal torus TG, we have

[(R, ρ)] =
∑

Q∈Q(G,TG) F (G,TG, Q)
[(

[X/Q], ρ ◦ ιQ
)]
,

where ιQ :[X/Q]→R∼=[X/G] is the natural projection 1-morphism.

Here Q(G,TG) is a certain finite set of C-subgroups of TG, and F (G,TG,
Q) ∈ Q are a system of rational coefficients defined in [10, §6.2]. Define Π̄χ,Q

F :
SF(F) → S̄F(F, χ,Q) by Π̄χ,Q

F :
∑

i∈I ci[(Ri, ρi)] 
→
∑

i∈I ci[(Ri, ρi)]. Define
pushforwards φ∗, pullbacks φ∗, tensor products ⊗ and projections Πvi

n on
the spaces S̄F(∗, χ,Q) as in §2.2. The important point is that (5)–(8) are
compatible with the relations defining S̄F(∗, χ,Q), or they would not be well-
defined. The analogues of Theorems 2.8, 2.9 and 2.11 hold for S̄F(∗, χ,Q).

Here [10, §5–§6] is a useful way to represent these spaces. It means that
by working in S̄F(F, χ,Q), we can treat all stabilizer groups as if they are
abelian.

Proposition 2.13. S̄F(F, χ,Q) is spanned over Q by [(U×[Spec C/
T ], ρ)], for U a quasiprojective C-variety and T an algebraic C-group iso-
morphic to Gk

m ×K for k � 0 and K finite abelian. Moreover

Πvi
n

(
[(U × [Spec C/T ], ρ)]

)
=

{
[(U × [Spec C/T ], ρ)], dimT = n,

0, otherwise.
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3. Background material on Calabi–Yau 3-folds

We now summarize some facts on Donaldson–Thomas invariants and
other sheaf-counting invariants on Calabi–Yau 3-folds prior to our book [16].
Sections 3.1–3.3 review material from the author’s series of papers [11–14],
and §3.4 explains results on Donaldson–Thomas theory from Thomas [33]
and Behrend [1]. For simplicity we restrict to Calabi–Yau 3-folds and to the
field K = C, although much of [1,11–14,33] works in greater generality.

3.1. The Ringel–Hall algebra of a Calabi–Yau 3-fold. We will
use the following notation for the rest of the paper.

Definition 3.1. A Calabi–Yau 3-fold is a smooth projective 3-fold X
over C, with trivial canonical bundle KX . In §4 we will also assume that
H1(OX) = 0. The Grothendieck group K0(X) of coh(X) is the abelian group
generated by all isomorphism classes [E] of objects E in coh(X), with the
relations [E]+ [G] = [F ] for each short exact sequence 0 → E→ F →G→ 0.
The Euler form χ̄ :K0(X) ×K0(X) → Z is a biadditive map satisfying

(9) χ̄
(
[E], [F ]

)
=

∑
i�0(−1)i dim Exti(E,F )

for all E,F ∈ coh(X). As X is a Calabi–Yau 3-fold, Serre duality gives
Exti(F,E) ∼= Ext3−i(E,F )∗, so dim Exti(F,E) = dim Ext3−i(E,F ) for all
E,F ∈ coh(X). Therefore χ̄ is also given by

χ̄
(
[E], [F ]

)
=

(
dim Hom(E,F ) − dim Ext1(E,F )

)
−

(
dim Hom(F,E) − dim Ext1(F,E)

)
.

(10)

Thus the Euler form χ̄ on K0(X) is antisymmetric.
The numerical Grothendieck group K(X) is the quotient of K0(X) by

the kernel of χ̄. Then χ̄ on K0(X) descends to a nondegenerate, biadditive
Euler form χ̄ :K(X) ×K(X) → Z.

Define the ‘positive cone’ C(X) in K(X) to be

C(X) =
{
[E] ∈K(X) : 0 �∼= E ∈ coh(X)

}
⊂K(X).

Write M for the moduli stack of objects in coh(X). It is an Artin C-stack,
locally of finite type. Points of M(C) correspond to isomorphism classes [E]
of objects E in coh(X), and the stabilizer group IsoM([E]) in M is isomorphic
as an algebraic C-group to the automorphism group Aut(E). For α ∈ C(X),
write Mα for the substack of objects E ∈ coh(X) in class α in K(X). It is
an open and closed C-substack of M.

Write Exact for the moduli stack of short exact sequences 0 → E1 →
E2 → E3 → 0 in coh(X). It is an Artin C-stack, locally of finite type. For j =
1, 2, 3 write πj : Exact → M for the 1-morphism projecting 0 → E1 → E2 →
E3 → 0 to Ej . Then π2 is representable, and π1 × π3 : Exact → M × M is of
finite type.

In [12] we define Ringel–Hall algebras, using stack functions.
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Definition 3.2. Define bilinear operations ∗ on SF(M), S̄F(M, χ,Q) by

f ∗ g = (π2)∗
(
(π1 × π3)∗(f ⊗ g)

)
,

using pushforwards, pullbacks and tensor products in Definition 2.7. They
are well-defined as π2 is representable, and π1 × π3 is of finite type. By [12,
Th. 5.2], whose proof uses Theorem 2.8, this * is associative, and makes
SF(M), S̄F(M, χ,Q) into noncommutative Q-algebras, called Ringel–Hall
algebras, with identity δ̄[0], where [0] ∈ M is the zero object. The projection
Π̄χ,Q

M : SF(M) → S̄F(M, χ,Q) is an algebra morphism.
As these algebras are inconveniently large for some purposes, in [12,

Def. 5.5] we define subalgebras SFal(M), S̄Fal(M, χ,Q) using the algebra
structure on stabilizer groups in M. Suppose [(R, ρ)] is a generator of
SF(M). Let r ∈ R(C) with ρ∗(r) = [E] ∈ M(C), for some E ∈ coh(X). Then
ρ induces a morphism of stabilizer C-groups ρ∗ : IsoR(r) → IsoM([E])
∼= Aut(E). As ρ is representable this is injective, and induces an isomorphism
of IsoR(r) with a C-subgroup of Aut(E). Now Aut(E) = End(E)× is the
C-group of invertible elements in a finite-dimensional C-algebra End(E) =
Hom(E,E). We say that [(R, ρ)] has algebra stabilizers if whenever r ∈
R(C) with ρ∗(r) = [E], the C-subgroup ρ∗

(
IsoR(r)

)
in Aut(E) is the C-

group A× of invertible elements in a C-subalgebra A in End(E). Write
SFal(M), S̄Fal(M, χ,Q) for the subspaces of SF(M), S̄F(M, χ,Q) spanned
over Q by [(R, ρ)] with algebra stabilizers. Then [12, Prop. 5.7] shows that
SFal(M), S̄Fal(M, χ,Q) are subalgebras of the Ringel–Hall algebras SF(M),
S̄F(M, χ,Q).

Now [12, Cor. 5.10] shows that SFal(M), S̄Fal(M, χ,Q) are closed under
the operators Πvi

n on SF(M), S̄F(M, χ,Q) defined in §2.2. In [12, Def. 5.14]
we define SFind

al (M), S̄Find
al (M, χ,Q) to be the subspaces of f in SFal(M)

and S̄Fal(M, χ,Q) with Πvi
1 (f) = f . We think of SFind

al (M), S̄Find
al (M, χ,Q)

as stack functions ‘supported on virtual indecomposables’.
In [12, Th. 5.18] we show that SFind

al (M), S̄Find
al (M, χ,Q) are closed

under the Lie bracket [f, g] = f ∗ g− g ∗ f on SFal(M), S̄Fal(M, χ,Q). Thus,
SFind

al (M), S̄Find
al (M, χ,Q) are Lie subalgebras of SFal(M), S̄Fal(M, χ,Q).

As in [12, Cor. 5.11], Proposition 2.13 simplifies to give:

Proposition 3.3. S̄Fal(M, χ,Q) is spanned over Q by elements of the
form [(U × [Spec C/Gk

m], ρ)] with algebra stabilizers, for U a quasiprojec-
tive C-variety and k � 0. Also S̄Find

al (M, χ,Q) is spanned over Q by [(U ×
[Spec C/Gm], ρ)] with algebra stabilizers, for U a quasiprojective C-variety.

All the above except (10) works for X an arbitrary smooth projective C-
scheme, but our next result uses the Calabi–Yau 3-fold assumption on X in
an essential way. We follow [12, §6.5–§6.6], but use the notation of [16, §3.4].
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Definition 3.4. Define an explicit Lie algebra L(X) over Q to be the
Q-vector space with basis of symbols λα for α ∈K(X), with Lie bracket

(11) [λα, λβ] = χ̄(α, β)λα+β

for α, β ∈K(X). As χ̄ is antisymmetric, (11) satisfies the Jacobi identity
and makes L(X) into an infinite-dimensional Lie algebra over Q.

Define a Q-linear map Ψχ,Q : S̄Find
al (M, χ,Q) → L(X) by

(12) Ψχ,Q(f) =
∑

α∈K(X) γ
αλα,

where γα ∈ Q is defined as follows. Proposition 3.3 says S̄Find
al (M, χ,Q) is

spanned by elements [(U × [Spec C/Gm], ρ)]. We may write

(13) f |Mα =
∑n

i=1 δi[(Ui × [Spec C/Gm], ρi)],

where δi ∈ Q and Ui is a quasiprojective C-variety. We set

γα =
∑n

i=1 δiχ(Ui).

This is independent of the choices in (13). Now define Ψ : SFind
al (M) → L(X)

by Ψ = Ψχ,Q ◦ Π̄χ,Q
M .

In [12, Th. 6.12], using equation (10), we prove:

Theorem 3.5. Ψ : SFind
al (M)→L(X) and Ψχ,Q : S̄Find

al (M, χ,Q)→L(X)
are Lie algebra morphisms.

3.2. Stability conditions on coh(X) and invariants Jα(τ). Next
we discuss material in [13] on stability conditions. We continue to use the
notation of §3.1, with X a Calabi–Yau 3-fold.

Definition 3.6. Suppose (T,�) is a totally ordered set, and τ : C(X) →
T a map. We call (τ, T,�) a stability condition on coh(X) if whenever
α, β, γ ∈ C(X) with β = α + γ then either τ(α)< τ(β)< τ(γ), or τ(α)>
τ(β)> τ(γ), or τ(α) = τ(β) = τ(γ). We call (τ, T,�) a weak stability con-
dition on coh(X) if whenever α, β, γ ∈ C(X) with β = α + γ then either
τ(α) � τ(β) � τ(γ), or τ(α) � τ(β) � τ(γ). For such (τ, T,�), we call a
nonzero sheaf E in coh(X)

(i) τ -stable if for all S⊂E with S �∼= 0, E we have τ([S])< τ([E/S]);
and

(ii) τ -semistable if for all S⊂E with S �∼=0, E we have τ([S]) �
τ([E/S]).

For α ∈ C(X), write Mα
ss(τ),M

α
st(τ) for the moduli stacks of τ -(semi)

stable E ∈ A with class [E] = α in K(X). They are open C-substacks of
Mα. We call (τ, T,�) permissible if:

(a) coh(X) is τ -artinian, that is, there exist no infinite chains of sub-
objects · · ·�E2�E1�E0 =X in A and τ([En+1])�τ([En/En+1])
for all n; and

(b) Mα
ss(τ) is a finite type substack of Mα for all α ∈ C(X).
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Here are two important examples:

Example 3.7. Define G to be the set of monic rational polynomials in
t of degree at most 3:

G=
{
p(t) = td + ad−1t

d−1 + · · · + a0 : d= 0, 1, 2, 3, a0, . . . , ad−1 ∈ Q
}
.

Define a total order ‘�’ on G by p� p′ for p, p′ ∈G if either

(a) deg p > deg p′, or
(b) deg p= deg p′ and p(t) � p′(t) for all t� 0.

We write p < q if p� q and p �= q.
Fix a very ample line bundle OX(1) on X. For E ∈ coh(X), the Hilbert

polynomial PE is the unique polynomial in Q[t] such that PE(n) = dimH0

(E(n)) for all n� 0. Equivalently, PE(n) = χ̄
(
[OX(−n)], [E]

)
for all n ∈ Z.

Thus, PE depends only on the class α ∈K(X) of E, and we may write
Pα instead of PE . Define τ : C(X) →G by τ(α) = Pα/rα, where Pα is the
Hilbert polynomial of α, and rα is the (positive) leading coefficient of Pα.
Then (τ,G,�) is a permissible stability condition on coh(X) [13, Ex. 4.16],
called Gieseker stability.

Gieseker stability is studied in [8, §1.2]. Write Mα
ss(τ),Mα

st(τ) for the
coarse moduli schemes of τ -(semi)stable sheaves E with class [E] = α in
K(X). By [8, Th. 4.3.4], Mα

ss(τ) is a projective C-scheme whose C-points
correspond to S-equivalence classes of Gieseker semistable sheaves in class
α, and Mα

st(τ) is an open C-subscheme whose C-points correspond to iso-
morphism classes of Gieseker stable sheaves in class α.

Example 3.8. In the situation of Example 3.7, define

M =
{
p(t) = td + ad−1t

d−1 : d= 0, 1, 2, 3, ad−1 ∈ Q, a−1 = 0
}
⊂G

and restrict the total order � on G to M . Define μ : C(X) →M by μ(α) =
td + ad−1t

d−1 when τ(α) = Pα/rα = td + ad−1t
d−1 + · · · + a0, that is, μ(α)

is the truncation of the polynomial τ(α) in Example 3.7 at its second term.
Then as in [13, Ex. 4.17], (μ,M,�) is a permissible weak stability condition
on coh(X). It is called μ-stability, and is studied in [8, §1.6].

In [13, §8] we define interesting stack functions δ̄αss(τ), ε̄
α(τ) in SFal(M).

Definition 3.9. Let (τ, T,�) be a permissible weak stability condition
on coh(X). Define stack functions δ̄αss(τ) = δ̄Mα

ss(τ)
in SFal(M) for α ∈ C(X).

That is, δ̄αss(τ) is the characteristic function, in the sense of Definition 2.6, of
the moduli substack Mα

ss(τ) of τ -semistable sheaves in M. In [13, Def. 8.1]
we define elements ε̄α(τ) in SFal(M) by

ε̄α(τ) =
∑

n�1, α1,...,αn∈C(X):
α1+···+αn=α, τ(αi)=τ(α), all i

(−1)n−1

n
δ̄α1
ss (τ) ∗ δ̄α2

ss (τ) ∗ · · · ∗ δ̄αn
ss (τ),(14)
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where ∗ is the Ringel–Hall multiplication in SFal(M). Then [13, Th. 8.2]
proves

δ̄αss(τ) =
∑

n�1, α1,...,αn∈C(X):
α1+···+αn=α, τ(αi)=τ(α), all i

1
n!

ε̄α1(τ) ∗ ε̄α2(τ) ∗ · · · ∗ ε̄αn(τ).(15)

There are only finitely many nonzero terms in (14)–(15).

Equations (14) and (15) are inverse, so that knowing the ε̄α(τ) is equiv-
alent to knowing the δ̄αss(τ). If Mα

ss(τ) = Mα
st(τ) then ε̄α(τ) = δ̄αss(τ). The

difference between ε̄α(τ) and δ̄αss(τ) is that ε̄α(τ) ‘counts’ strictly semistable
sheaves in a special, complicated way. Here [13, Th. 8.7] is an important
property of the ε̄α(τ), which does not hold for the δ̄αss(τ). The proof is highly
nontrivial, using the full power of the configurations formalism of [11–14].

Theorem 3.10. ε̄α(τ) lies in the Lie subalgebra SFind
al (M) in SFal(M).

In [14, §6.6] we define invariants Jα(τ) ∈ Q for all α ∈ C(X) by

(16) Ψ
(
ε̄α(τ)

)
= Jα(τ)λα.

This is valid by Theorem 3.10. These Jα(τ) are rational numbers ‘counting’
τ -semistable sheaves E in class α. When Mα

ss(τ) = Mα
st(τ) we have

(17) Jα(τ) = χ
(
Mα

st(τ)
)
,

that is, Jα(τ) is the Euler characteristic of the moduli space Mα
st(τ). In the

notation of §3.4, this is not weighted by the Behrend function νMα
st(τ)

, and
so is not the Donaldson–Thomas invariant DTα(τ). As in [16, Ex. 6.9], the
Jα(τ) are in general not unchanged under deformations of X.

3.3. Changing stability conditions and algebra identities. In
[14] we prove transformation laws for the δ̄αss(τ), ε̄

α(τ) under change of sta-
bility condition. These involve combinatorial coefficients S(∗; τ, τ̃) ∈ Z and
U(∗; τ, τ̃) ∈ Q defined in [14, §4.1].

Definition 3.11. Let (τ, T,�),(τ̃ , T̃ ,�) be weak stability conditions on
coh(X). Let n� 1 and α1, . . . , αn ∈ C(X). If for all i= 1, . . . , n− 1 we have
either

(a) τ(αi) � τ(αi+1) and τ̃(α1 + · · · + αi)> τ̃(αi+1 + · · · + αn) or
(b) τ(αi)> τ(αi+1) and τ̃(α1 + · · · + αi) � τ̃(αi+1 + · · · + αn),
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then define S(α1, . . . , αn; τ, τ̃) = (−1)r, where r is the number of i= 1, . . . ,
n− 1 satisfying (a). Otherwise define S(α1, . . . , αn; τ, τ̃) = 0. Now define

U(α1, . . . , αn; τ, τ̃) =∑
1�l�m�n, 0=a0<a1<···<am=n, 0=b0<b1<···<bl=m:
Define β1, . . . , βm ∈ C(X) by βi = αai−1+1 + · · · + αai .

Define γ1, . . . , γl ∈ C(X) by γi = βbi−1+1 + · · · + βbi
.

Then τ(βi) = τ(αj), i= 1, . . . ,m, ai−1 < j � ai,
and τ̃(γi) = τ̃(α1 + · · · + αn), i= 1, . . . , l

(−1)l−1

l
·
∏l

i=1
S(βbi−1+1, βbi−1+2, . . . , βbi ; τ, τ̃)

·
m∏
i=1

1
(ai − ai−1)!

.

Then in [14, §5] we derive wall-crossing formulae for the δ̄αss(τ), ε̄
α(τ)

under change of stability condition from (τ, T,�) to (τ̃ , T̃ ,�):

Theorem 3.12. Let (τ, T,�), (τ̃ , T̃ ,�) be permissible weak stability con-
ditions on coh(X). Then under some mild extra conditions, for all α ∈ C(X)
we have

δ̄αss(τ̃) =
∑

n�1, α1,...,αn∈C(X):
α1+···+αn=α

S(α1, . . . , αn; τ, τ̃)·
δ̄α1
ss (τ) ∗ δ̄α2

ss (τ) ∗ · · · ∗ δ̄αn
ss (τ),

(18)

ε̄α(τ̃) =
∑

n�1, α1,...,αn∈C(X):
α1+···+αn=α

U(α1, . . . , αn; τ, τ̃)·
ε̄α1(τ) ∗ ε̄α2(τ) ∗ · · · ∗ ε̄αn(τ),

(19)

where there are only finitely many nonzero terms in (18)–(19).

The ‘mild extra conditions’ in the theorem are required to ensure that
there are only finitely many nonzero terms in (18)–(19). In fact the author
expects that this always holds when (τ, T,�), (τ̃ , T̃ ,�) are of Gieseker or μ-
stability type, but for irritating technical reasons has not been able to prove
this. As in [14, §5.1], the author can show that one can go between any
two (weak) stability conditions on coh(X) of Gieseker or μ-stability type by
finitely many applications of Theorem 3.12. In [14, Th. 5.4] we prove:

Theorem 3.13. Equation (19) may be rewritten as an equation in
SFind

al (M) using the Lie bracket [ , ] on SFind
al (M), rather than as an equation

in SFal(M) using the Ringel–Hall product ∗.

Therefore we may apply the Lie algebra morphism Ψ of §3.1 to equation
(19). As (19) is not expressed explicitly in terms of Lie brackets, it is helpful
to write this in the universal enveloping algebra U(L(X)). This gives

(20)
Jα(τ̃)λα =

∑
n�1, α1,...,αn∈C(X):
α1+···+αn=α

U(α1, . . . , αn; τ, τ̃) ·
∏n
i=1 J

αi(τ) ·
λα1 � λα2 � · · · � λαn ,

where � is the product in U(L(X)).
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Now in [12, §6.5], a basis is given for U(L(X)) in terms of symbols λ[I,κ],
and multiplication � in U(L(X)) is written in terms of the λ[I,κ] as a sum over
graphs. Here I is a finite set, κ maps I → C(X), and when |I| = 1, so that
I = {i}, we have λ[I,κ] = λκ(i). Then [14, eq. (127)] gives an expression for
λα1 � · · ·�λαn in U(L(X)), in terms of sums over directed graphs (digraphs):

λα1 � · · · � λαn = terms in λ[I,κ], |I|> 1,(21)

+
[

1
2n−1

∑
connected, simply-connected digraphs Γ:

vertices {1, . . . , n}, edge
i•→ j• implies i < j

∏
edges
i•→ j•
in Γ

χ̄(αi, αj)
]
λα1+···+αn .

Substitute (21) into (20). The terms in λ[I,κ] for |I|> 1 all cancel, as
(20) lies in L(X) ⊂ U(L(X)). So equating coefficients of λα yields

(22)

Jα(τ̃) =
∑

n�1, α1,...,αn∈C(X):
α1+···+αn=α

∑
connected, simply-connected digraphs Γ:

vertices {1, . . . , n}, edge
i•→ j• implies i < j

1
2n−1

U(α1, . . . , αn; τ, τ̃)
∏

edges
i•→ j• in Γ

χ̄(αi, αj)
n∏
i=1

Jαi(τ).

Following [14, Def. 6.27], we define combinatorial coefficients V (I,Γ,
κ; τ, τ̃):

Definition 3.14. In the situation above, let Γ be a connected, simply-
connected digraph with finite vertex set I, where |I| = n, and κ : I → C(X)
be a map. Define V (I,Γ, κ; τ, τ̃) ∈ Q by

(23) V (I,Γ, κ; τ, τ̃) =
1

2n−1n!

∑
orderings i1, . . . , in of I:

edge
ia• → ib• in Γ implies a < b

U(κ(i1), κ(i2), . . . , κ(in); τ, τ̃).

Then as in [14, Th. 6.28], using (23) to rewrite (22) yields a transfor-
mation law for the Jα(τ) under change of stability condition:

(24)
Jα(τ̃)=

∑
iso.

classes
of finite
sets I

∑
κ:I→C(X):∑

i∈I κ(i)=α

∑
connected,
simply-connected
digraphs Γ,
vertices I

V (I,Γ, κ; τ, τ̃) ·
∏
edges

i•→ j• in Γ

χ̄(κ(i), κ(j))

·
∏

i∈I J
κ(i)(τ).

3.4. Donaldson–Thomas invariants of Calabi–Yau 3-folds.
Donaldson–Thomas invariants DTα(τ) were defined by Richard Thomas

[33], following a proposal of Donaldson and Thomas [4, §3].
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Definition 3.15. Let X be a Calabi–Yau 3-fold. Fix a very ample line
bundle OX(1) on X, and let (τ,G,�) be Gieseker stability on coh(X) w.r.t.
OX(1), as in Example 3.7. For α ∈K(X), write Mα

ss(τ),Mα
st(τ) for the

coarse moduli schemes of τ -(semi)stable sheaves E with class [E] = α. Then
Mα

ss(τ) is a projective C-scheme, and Mα
st(τ) an open subscheme.

Thomas [33] constructs a symmetric obstruction theory on Mα
st(τ). Sup-

pose that Mα
ss(τ) = Mα

st(τ). Then Mα
st(τ) is proper, so using the obstruc-

tion theory Behrend and Fantechi [2] define a virtual class [Mα
st(τ)]

vir ∈
A0(Mα

st(τ)). The Donaldson–Thomas invariant [33] is defined to be

(25) DTα(τ) =
∫
[Mα

st(τ)]
vir 1.

Note that DTα(τ) is defined only when Mα
ss(τ) = Mα

st(τ), that is, there are
no strictly semistable sheaves E in class α. One of our main goals is to
extend the definition to all α ∈K(X). Thomas’ main result [33, §3] is that

Theorem 3.16. DTα(τ) is unchanged by continuous deformations of
the underlying Calabi–Yau 3-fold X.

An important advance in Donaldson–Thomas theory was made by
Behrend [1], who found a way to rewrite the definition (25) of Donaldson–
Thomas invariants as a weighted Euler characteristic. Let F be an Artin
C-stack, locally of finite type. Then F has a unique Behrend function νF :
F(C) → Z, a Z-valued locally constructible function on F. The definition,
which we do not give, can be found in [1, §1] when F is a finite type C-scheme,
and in [16, §4.1] in the general case. Here are some important properties of
Behrend functions from [1,16].

Theorem 3.17. Let F,G be Artin C-stacks locally of finite type. Then:

(i) If F is a smooth of dimension n then νF ≡ (−1)n.
(ii) If ϕ : F→G is smooth with relative dimension n then νF ≡ (−1)n

ϕ∗(νG).
(iii) νF×G = νF�νG in LCF(F×G), where (νF�νG)(x, y) = νF(x)νG(y).
(iv) Suppose M is a proper C-scheme and has a symmetric obstruction

theory, and [M]vir ∈A0(M) is the corresponding virtual class from
[2]. Then ∫

[M]vir 1 = χ(M, νM) ∈ Z,

where χ(M, νM) =
∫
M(C) νMdχ is the weighted Euler charac-

teristic of M, weighted by the constructible function νM. In par-
ticular,

∫
[M]vir 1 depends only on the C-scheme structure of M, not

on the choice of symmetric obstruction theory.
(v) Let M be a C-scheme, let x ∈M(C), and suppose there exist a

complex manifold U, a holomorphic function f : U → C, and a point
u ∈ Crit(f) ⊆ U such that locally in the analytic topology, M(C)
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near x is isomorphic as a complex analytic space to Crit(f) near
u. Then

νM(x) = (−1)dimU
(
1 − χ(MFf (u))

)
,

where χ(MFf (u)) is the Euler characteristic of the Milnor fibre
MFf (u).

Here the Milnor fibre in (v) is defined as follows:

Definition 3.18. Let U be a complex analytic space, locally of finite
type, f : U → C a holomorphic function, and u ∈ U . Let d( , ) be a metric
on U near u induced by a local embedding of U in some CN . For u ∈ U and
δ, ε > 0, consider the holomorphic map

Φf,u :
{
v ∈ U : d(u, v)<δ, 0<|f(v)−f(u)|<ε

}
−→

{
z ∈ C : 0<|z|<ε

}
given by Φf,u(v) = f(v)−f(u). Then Φf,u is a smooth locally trivial fibration
provided 0< ε� δ� 1. The Milnor fibre MFf (u) is the fibre of Φf,u. It is
independent of the choice of 0< ε� δ� 1.

Theorem 3.17(iv) implies that DTα(τ) in (25) is given by

(26) DTα(τ) = χ
(
Mα

st(τ), νMα
st(τ)

)
.

This is similar to the expression (17) for Jα(τ) when Mα
ss(τ) = Mα

st(τ).
There is a big difference between the two equations (25) and (26) defining
Donaldson–Thomas invariants. Equation (25) is non-local, and non-motivic,
and makes sense only if Mα

st(τ) is a proper C-scheme. But (26) is local, and
(in a sense) motivic, and makes sense for arbitrary finite type C-schemes
Mα

st(τ). It is tempting to take (26) to be the definition of Donaldson–Thomas
invariants even when Mα

ss(τ) �= Mα
st(τ), but in [16, §6.5] we show that this

is not a good idea, as then DTα(τ) would not be unchanged under defor-
mations of X.

Equation (26) was the inspiration for [16]. It shows that Donaldson–
Thomas invariants DTα(τ) can be written as motivic invariants, like those
studied in [11–15], and suggests extending the results of [11–15] to
Donaldson–Thomas invariants by including Behrend functions as weights.

4. Generalized Donaldson–Thomas invariants

We now summarize [16, §5–§6]. All this section is joint work with Yinan
Song. Let X be a Calabi–Yau 3-fold over C, and OX(1) a very ample line
bundle over X. We now assume that H1(OX) = 0, which was not needed in
§3. We use the notation of §3, with M the moduli stack of coherent sheaves
on X, and so on.
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4.1. Local description of the moduli of coherent sheaves. In [16,
Th. 5.5] we give a local characterization of an atlas for the moduli stack M
as the critical points of a holomorphic function on a complex manifold.

Theorem 4.1. Let X be a Calabi–Yau 3-fold over C, and M the moduli
stack of coherent sheaves on X. Suppose E is a coherent sheaf on X, so that
[E] ∈ M(C). Let G be a maximal compact subgroup in Aut(E), and GC its
complexification. Then GC is an algebraic C-subgroup of Aut(E), a maximal
reductive subgroup, and GC = Aut(E) if and only if Aut(E) is reductive.

There exists a quasiprojective C-scheme S, an action of GC on S, a point
s ∈ S(C) fixed by GC, and a 1-morphism of Artin C-stacks Φ : [S/GC] → M,
which is smooth of relative dimension dim Aut(E) − dimGC, where [S/GC]
is the quotient stack, such that Φ(sGC) = [E], the induced morphism on
stabilizer groups Φ∗ : Iso[S/GC](sGC) → IsoM([E]) is the natural morphism
GC ↪→ Aut(E) ∼= IsoM([E]), and dΦ|sGC : TsS ∼= TsGC [S/GC] → T[E]M ∼=
Ext1(E,E) is an isomorphism. Furthermore, S parametrizes a formally ver-
sal family (S,D) of coherent sheaves on X, equivariant under the action of
GC on S, with fibre Ds

∼= E at s. If Aut(E) is reductive then Φ is étale.
Write San for the complex analytic space underlying the C-scheme S.

Then there exists an open neighbourhood U of 0 in Ext1(E,E) in the ana-
lytic topology, a holomorphic function f : U → C with f(0) = df |0 = 0, an
open neighbourhood V of s in San, and an isomorphism of complex analytic
spaces Ξ : Crit(f) → V, such that Ξ(0) = s and dΞ|0 : T0 Crit(f) → TsV is
the inverse of dΦ|sGC : TsS→ Ext1(E,E). Moreover we can choose U, f, V
to be GC-invariant, and Ξ to be GC-equivariant.

The proof of Theorem 4.1 comes in two parts. First we show in [16, §8]
that M near [E] is locally isomorphic, as an Artin C-stack, to the mod-
uli stack Vect of algebraic vector bundles on X near [E′] for some vector
bundle E′ →X. The proof uses algebraic geometry, and is valid for X an
Calabi–Yau m-fold for any m> 0 over any algebraically closed field K. The
local morphism M → Vect is the composition of shifts and m Seidel–Thomas
twists by OX(−n) for n� 0.

Thus, it is enough to prove Theorem 4.1 with Vect in place of M. We do
this in [16, §9] using gauge theory on vector bundles overX, motivated by an
idea of Donaldson and Thomas [4, §3], [33, §2], and results of Miyajima [21].
Let E→X be a fixed complex (not holomorphic) vector bundle over X.
Write A for the infinite-dimensional affine space of smooth semiconnections
(∂̄-operators) on E, and G for the infinite-dimensional Lie group of smooth
gauge transformations of E. Then G acts on A , and B = A /G is the space
of gauge-equivalence classes of semiconnections on E.

We fix ∂̄E in A coming from a holomorphic vector bundle structure on E.
Then points in A are of the form ∂̄E +A for A ∈ C∞(

End(E)⊗C Λ0,1T ∗X
)
,

and ∂̄E + A makes E into a holomorphic vector bundle if F 0,2
A = ∂̄EA +

A ∧A is zero in C∞(
End(E) ⊗C Λ0,2T ∗X

)
. Thus, the moduli space (stack)
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of holomorphic vector bundle structures on E is isomorphic to {∂̄E + A ∈
A : F 0,2

A = 0}/G . Thomas observes that when X is a Calabi–Yau 3-fold,
there is a natural holomorphic function CS : A → C called the holomorphic
Chern–Simons functional, invariant under G up to addition of constants,
such that {∂̄E + A ∈ A : F 0,2

A = 0} is the critical locus of CS. Thus, Vect
is (informally) locally the critical points of a holomorphic function CS on
an infinite-dimensional complex stack B = A /G . To prove Theorem 4.1 we
show that we can find a finite-dimensional complex submanifold U in A and
a finite-dimensional complex Lie subgroup GC in G preserving U such that
the theorem holds with f = CS|U .

In [16, Th. 5.11] we prove identities on the Behrend function of M, as
in §3.4.

Theorem 4.2. Let X be a Calabi–Yau 3-fold over C, and M the moduli
stack of coherent sheaves on X. The Behrend function νM : M(C) → Z
is a natural locally constructible function on M. For all E1, E2 ∈ coh(X), it
satisfies:

νM(E1 ⊕ E2) = (−1)χ̄([E1],[E2])νM(E1)νM(E2),(27) ∫
[λ]∈P(Ext1(E2,E1)):
λ⇔ 0→E1→F→E2→0

νM(F ) dχ−
∫

[λ′]∈P(Ext1(E1,E2)):
λ′ ⇔ 0→E2→F ′→E1→0

νM(F ′) dχ

=
(
dim Ext1(E2, E1) − dim Ext1(E1, E2)

)
νM(E1 ⊕ E2).

(28)

Here χ̄([E1], [E2]) in (27) is defined in (9), and in (28) the correspondence
between [λ] ∈ P(Ext1(E2, E1)) and F ∈ coh(X) is that [λ] ∈ P(Ext1(E2, E1))
lifts to some 0 �= λ ∈ Ext1(E2, E1), which corresponds to a short exact seq-
uence 0 → E1 → F → E2 → 0 in coh(X) in the usual way. The function
[λ] 
→ νM(F ) is a constructible function P(Ext1(E2, E1)) → Z, and the inte-
grals in (28) are integrals of constructible functions using the Euler charac-
teristic as measure.

We prove Theorem 4.2 using Theorem 4.1 and the Milnor fibre descrip-
tion of Behrend functions from Theorem 3.17(v). We apply Theorem 4.1 to
E = E1 ⊕ E2, and we take the maximal compact subgroup G of Aut(E) to
contain the subgroup

{
idE1 +λ idE2 : λ ∈ U(1)

}
, so that GC contains

{
idE1 +

λ idE2 : λ ∈ Gm

}
. Equations (27) and (28) are proved by a kind of localiza-

tion using this Gm-action on Ext1(E1 ⊕ E2, E1 ⊕ E2).
Note that Theorem 4.2 makes sense as a statement in algebraic geometry,

for Calabi–Yau 3-folds over an algebraically closed field K of characteristic
zero, and the author expects it to be true in this generality. However, our
proof of Theorem 4.2 uses gauge theory, and transcendental complex analytic
geometry methods, and is valid only over K = C.
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4.2. A Lie algebra morphism Ψ̃ : SFind
al (M) → L̃(X), and gene-

ralized Donaldson–Thomas invariants D̄T α(τ). In §3.1 we defined
an explicit Lie algebra L(X) and Lie algebra morphisms Ψ : SFind

al (M) →
L(X) and Ψχ,Q : S̄Find

al (M, χ,Q) → L(X). We now define modified versions
L̃(X), Ψ̃, Ψ̃χ,Q, with Ψ̃, Ψ̃χ,Q weighted by the Behrend function νM of M.
We continue to use the notation of §2–§3.

Definition 4.3. Define a Lie algebra L̃(X) to be the Q-vector space
with basis of symbols λ̃α for α ∈K(X), with Lie bracket

(29) [λ̃α, λ̃β ] = (−1)χ̄(α,β)χ̄(α, β)λ̃α+β ,

which is (11) with a sign change. As χ̄ is antisymmetric, (29) satisfies the
Jacobi identity, and makes L̃(X) into an infinite-dimensional Lie algebra
over Q.

Define a Q-linear map Ψ̃χ,Q : S̄Find
al (M, χ,Q) → L̃(X) by

Ψ̃χ,Q(f) =
∑

α∈K(X) γ
αλ̃α,

as in (12), where γα ∈ Q is defined as follows. Write f |Mα in terms of δi, Ui, ρi
as in (13), and set

(30) γα =
∑n

i=1 δiχ
(
Ui, ρ

∗
i (νM)

)
,

where ρ∗i (νM) is the pullback of the Behrend function νM to a constructible
function on Ui×[Spec C/Gm], or equivalently on Ui, and χ

(
Ui, ρ

∗
i (νM)

)
is the

Euler characteristic of Ui weighted by ρ∗i (νM). One can show that the map
from (13) to (30) is compatible with the relations in S̄Find

al (Mα, χ,Q), and
so Ψ̃χ,Q is well-defined. Define Ψ̃ : SFind

al (M) → L̃(X) by Ψ̃ = Ψ̃χ,Q ◦ Π̄χ,Q
M .

The reason for the sign change between (11) and (29) is the signs involved
in Behrend functions, in particular, the (−1)n in Theorem 3.17(ii), which is
responsible for the factor (−1)χ̄([E1],[E2]) in (27). Here [16, Th. 5.14] is the
analogue of Theorem 3.5.

Theorem 4.4. Ψ̃ : SFind
al (M)→ L̃(X) and Ψ̃χ,Q : S̄Find

al (M, χ,Q)→ L̃(X)
are Lie algebra morphisms.

We can now define generalized Donaldson–Thomas invariants.

Definition 4.5. Let X be a projective Calabi–Yau 3-fold over C, let
OX(1) be a very ample line bundle on X, and let (τ,G,�) be Gieseker
stability and (μ,M,�) be μ-stability on coh(X) w.r.t. OX(1), as in Examples
3.7 and 3.8. As in (16), define generalized Donaldson–Thomas invariants
D̄Tα(τ) ∈ Q and D̄Tα(μ) ∈ Q for all α ∈ C(X) by

(31) Ψ̃
(
ε̄α(τ)

)
= −D̄Tα(τ)λ̃α and Ψ̃

(
ε̄α(μ)

)
= −D̄Tα(μ)λ̃α.

Here ε̄α(τ), ε̄α(μ) are defined in (14), and lie in SFind
al (M) by Theorem

3.10, so D̄Tα(τ), D̄Tα(μ) are well-defined. In [16, Prop. 5.17] we show that
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if Mα
ss(τ) = Mα

st(τ) then D̄Tα(τ) =DTα(τ). That is, our new generalized
Donaldson–Thomas invariants D̄Tα(τ) are equal to the original Donaldson–
Thomas invariants DTα(τ) of [33] whenever the DTα(τ) are defined.

We can now repeat the argument of §3.3 to deduce transformation laws
for generalized Donaldson–Thomas invariants under change of stability con-
dition. In the situation of Theorem 3.12, equation (19) is an identity in the
Lie algebra SFind

al (M), so we can apply the Lie algebra morphism Ψ̃ to trans-
form (19) into an identity in the Lie algebra L̃(X), and use (31) to write
this in terms of generalized Donaldson–Thomas invariants. As for (20), this
gives an equation in the universal enveloping algebra U(L̃(X)):

D̄Tα(τ̃)λ̃α =
∑

n�1, α1,...,αn∈C(X):
α1+···+αn=α

U(α1, . . . , αn; τ, τ̃) · (−1)n−1
∏n
i=1 D̄T

αi(τ)·
λ̃α1 � λ̃α2 � · · · � λ̃αn .

Following the proof of (24) in §3.3 with sign changes, in [16, Th. 5.18] we
obtain:

Theorem 4.6. In the situation of Theorem 3.12, for all α ∈ C(X) we
have

(32)

D̄Tα(τ̃) =∑
iso.

classes
of finite
sets I

∑
κ:I→C(X):∑
i∈I

κ(i)=α

∑
connected,
simply-
connected
digraphs Γ,
vertices I

(−1)|I|−1V (I,Γ, κ; τ, τ̃) ·
∏

i∈I D̄T
κ(i)(τ)

·(−1)
1
2

∑
i,j∈I |χ̄(κ(i),κ(j))| ·

∏
edges

i•→ j• in Γ

χ̄(κ(i), κ(j)),

with only finitely many nonzero terms.

The discussion after Theorem 3.12 implies [16, Cor. 5.19]:

Corollary 4.7. Let (τ, T,�), (τ̃ , T̃ ,�) be two permissible weak stability
conditions on coh(X) of Gieseker or μ-stability type, as in Examples 3.7 and
3.8. Then the D̄Tα(τ) for all α ∈ C(X) completely determine the D̄Tα(τ̃)
for all α ∈ C(X), and vice versa, through finitely many applications of (32).

4.3. Invariants PIα,n(τ ′) counting stable pairs, and
deformation-invariance of the D̄T α(τ). We wish to prove that our
invariants D̄Tα(τ) are unchanged under deformations of X. We do this
indirectly: we first define another family of auxiliary invariants PIα,n(τ ′)
counting stable pairs on X, and show that PIα,n(τ ′) are unchanged under
deformations of X. Then we prove an identity (35) expressing PIα,n(τ ′) in
terms of the D̄T β(τ), and use it to show D̄Tα(τ) is deformation-invariant.
This approach was inspired by Pandharipande and Thomas [28], who use
invariants counting pairs to study curve counting in Calabi–Yau 3-folds.
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Definition 4.8. Let X be a Calabi–Yau 3-fold over C, with H1(OX) =
0. Choose a very ample line bundle OX(1) on X, and write (τ,G,�) for
Gieseker stability w.r.t. OX(1), as in Example 3.7.

Fix n� 0 in Z. A pair is a nonzero morphism of sheaves s : OX(−n) →
E, where E is a nonzero sheaf. A morphism between two pairs s : OX(−n) →
E and t : OX(−n) → F is a morphism of OX -modules f : E→ F , with f ◦s=
t. A pair s : OX(−n) → E is called stable if:

(i) τ([E′]) � τ([E]) for all subsheaves E′ of E with 0 �= E′ �= E; and
(ii) If also s factors through E′, then τ([E′])< τ([E]).

Note that (i) implies that if s : OX(−n) → E is stable then E is τ -semistable.
The class of a pair s : OX(−n) → E is the numerical class [E] in K(X). We
will use τ ′ to denote stability of pairs, defined using OX(1).

In [16, Th.s 5.22 & 5.23] we use results of Le Potier to prove:

Theorem 4.9. If n is sufficiently large then the moduli functor of stable
pairs has a fine moduli scheme, a projective C-scheme Mα,n

stp (τ ′), with a
symmetric obstruction theory.

Definition 4.10. In the situation above, for α ∈K(X) and n� 0,
define stable pair invariants PIα,n(τ ′) in Z by

(33) PIα,n(τ ′) =
∫
[Mα,n

stp (τ ′)]vir 1,

where [Mα,n
stp (τ ′)]vir ∈A0(Mα,n

stp (τ ′)) is the virtual class constructed by
Behrend and Fantechi [2] using the symmetric obstruction theory from The-
orem 4.9. Theorem 3.17(iv) implies that the stable pair invariants may also
be written

(34) PIα,n(τ ′) = χ
(
Mα,n

stp (τ ′), νMα,n
stp (τ ′)

)
.

In [16, Cor. 5.26] we prove an analogue of Theorem 3.16:

Theorem 4.11. PIα,n(τ ′) is unchanged by continuous deformations of
the underlying Calabi–Yau 3-fold X.

In [16, Th. 5.27] we express the pair invariants PIα,n(τ ′) above in terms
of the generalized Donaldson–Thomas invariants D̄T β(τ) of §4.2. Equation
(35) is a wall-crossing formula similar to (32), and we prove it by change of
stability condition in an auxiliary abelian category.

Theorem 4.12. For α ∈ C(X) and n� 0 we have

(35) PIα,n(τ ′) =
∑

α1,...,αl∈C(X),
l�1: α1+···+αl=α,
τ(αi)=τ(α), all i

(−1)l

l!

l∏
i=1

[
(−1)χ̄([OX(−n)]−α1−···−αi−1,αi)

χ̄
(
[OX(−n)]−α1−· · ·−αi−1, αi

)
D̄Tαi(τ)

]
,

where there are only finitely many nonzero terms in the sum.
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Equation (35) is useful for computing invariants D̄Tα(τ) in examples.
By combining Theorems 4.11 and 4.12 and using induction on the leading
coefficient of the Hilbert polynomial of α, we deduce [16, Cor. 5.28]:

Corollary 4.13. The generalized Donaldson–Thomas invariants
D̄Tα(τ) defined in §4.2 are unchanged under continuous deformations of
the underlying Calabi–Yau 3-fold X.

4.4. Integrality properties of the D̄T α(τ). This subsection is
based on ideas in Kontsevich and Soibelman [18, §2.5 & §7.1]. The following
example is taken from [16, Ex.s 6.1 & 6.2].

Example 4.14. Let X be a Calabi–Yau 3-fold over C equipped with a
very ample line bundle OX(1). Suppose α ∈ C(X), and that E ∈ coh(X)
with [E] = α is τ -stable and rigid, so that Ext1(E,E) = 0. Then mE =
�m copies �
E ⊕ · · · ⊕E for m� 2 is a strictly τ -semistable sheaf of class mα, which
is also rigid. For simplicity, assume that mE is the only τ -semistable sheaf
of class mα for all m� 1, up to isomorphism, so that Mmα

ss (τ) = {[mE]}.
A pair s : O(−n) →mE may be regarded as m elements s1, . . . , sm of

H0(E(n)) ∼= CPα(n), where Pα is the Hilbert polynomial of E. Such a pair
turns out to be stable if and only if s1, . . . , sm are linearly independent in
H0(E(n)). Two such pairs are equivalent if they are identified under the
action of Aut(mE) ∼= GL(m,C), acting in the obvious way on (s1, . . . , sm).
Thus, equivalence classes of stable pairs correspond to linear subspaces of
dimension m in H0(E(n)), so the moduli space Mmα,n

stp (τ ′) is isomorphic as a
C-scheme to the Grassmannian Gr(Cm,CPα(n)). This is smooth of dimension
m(Pα(n) − m), so that νMmα,n

stp (τ ′) ≡ (−1)m(Pα(n)−m) by Theorem 3.17(i).

Also Gr(Cm,CPα(n)) has Euler characteristic the binomial coefficient
(
Pα(n)
m

)
.

Therefore (34) gives

(36) PImα,n(τ ′) = (−1)m(Pα(n)−m)
(
Pα(n)
m

)
.

Consider (35) with mα in place of α. If α1, . . . , αl give a nonzero term
on the right hand side of (35) then mα= α1 + · · · + αl, and D̄Tαi(τ) �= 0,
so there exists a τ -semistable Ei in class αi. Thus E1 ⊕ · · · ⊕El lies in class
mα, and is τ -semistable as τ(αi) = τ(α) for all i. Hence E1⊕· · ·⊕El ∼=mE,
which implies that Ei ∼= kiE for some k1, . . . , kl � 1 with k1 + · · · + kl =m,
and αi = kiα.

Setting αi = kiα, we see that χ̄(αj , αi) = 0 and χ̄([OX(−n)], αi) =
kiPα(n), where Pα is the Hilbert polynomial of E. Thus in (35) we have
χ̄([OX(−n)]−α1−· · ·−αi−1, αi) = kiPα(n). Combining (36), and (35) with
these substitutions, and cancelling a factor of (−1)mPα(n) on both sides,
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yields

(−1)m
(
Pα(n)
m

)
=

∑
l,k1,...,kl�1:
k1+···+kl=m

(−1)l

l!

l∏
i=1

kiPα(n)D̄T kiα(τ).

Regarding each side as a polynomial in Pα(n) and taking the linear term in
Pα(n) we see that

D̄Tmα(τ) =
1
m2

for all m� 1.

Example 4.14 shows that given a rigid τ -stable sheaf E in class α, the
sheaves mE contribute 1/m2 to D̄Tmα(τ) for all m� 1. We can regard this
as a kind of ‘multiple cover formula’, analogous to the well known Aspinwall–
Morrison computation for a Calabi–Yau 3-fold X that a rigid embedded CP1

in class α ∈H2(X; Z) contributes 1/m3 to the genus zero Gromov–Witten
invariant of X in class mα for all m� 1. So we can define new invariants
D̂Tα(τ) which subtract out these contributions from mE for m> 1.

Definition 4.15. Let X be a projective Calabi–Yau 3-fold over C, let
OX(1) be a very ample line bundle on X, and let (τ, T,�) be a weak
stability condition on coh(X) of Gieseker or μ-stability type. Then Def-
inition 4.5 defines generalized Donaldson–Thomas invariants D̄Tα(τ) ∈ Q
for α ∈ C(X).

Let us define new invariants D̂Tα(τ) for α ∈ C(X) to satisfy

(37) D̄Tα(τ) =
∑

m�1, m|α

1
m2

D̂Tα/m(τ).

By the Möbius inversion formula, the inverse of (37) is

(38) D̂Tα(τ) =
∑

m�1, m|α

Mö(m)
m2

D̄Tα/m(τ),

where the Möbius function Mö : N →{−1, 0, 1} is Mö(n) = (−1)d if n=
1, 2, . . . is square-free and has d prime factors, and Mö(n) = 0 otherwise.

We take (38) to be the definition of D̂Tα(τ), and then reversing the
argument shows that (37) holds. We call D̂Tα(τ) the BPS invariants of X,
as Kontsevich and Soibelman suggest their analogous invariants Ω(α) count
BPS states.

If Mα
ss(τ) = Mα

st(τ) then Mα/m
ss (τ) = ∅ for all m� 2 dividing α, and so

D̂Tα(τ) = D̄Tα(τ) =DTα(τ), as in Definition 4.5.

We make a conjecture [16, Conj. 6.12], based on [18, Conj. 6].

Conjecture 4.16. Let X be a Calabi–Yau 3-fold over C, and (τ, T,�)
a weak stability condition on coh(X) of Gieseker or μ-stability type. Call
(τ, T,�) generic if for all α, β ∈C(X) with τ(α) = τ(β) we have χ̄(α, β) = 0.

If (τ, T,�) is generic, then D̂Tα(τ) ∈ Z for all α ∈ C(X).
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In [16, §6] we prove that Conjecture 4.16 holds in a number of examples,
and give an example [16, Ex. 6.8] in which (τ, T,�) is not generic and
D̂Tα(τ) /∈ Z. In [16, Th. 7.29] we prove the analogue of Conjecture 4.16 for
invariants counting representations of quivers without relations.

4.5. Counting dimension 0 and 1 sheaves. Let X be a Calabi–
Yau 3-fold over C with H1(OX) = 0, let OX(1) be a very ample line bundle
on X, and (τ,G,�) the associated Gieseker stability condition on coh(X).
The Chern character gives an injective group homomorphism ch :K(X) →
Heven(X; Q). So we can regard K(X) as a subgroup of Heven(X; Q), and
write α ∈K(X) as (α0, α2, α4, α6) with α2j∈H2j(X; Q). If E→X is a vector
bundle with [E] = α then α0 = rankE ∈ Z.

We will consider invariants D̄Tα(τ), D̂Tα(τ) counting pure sheaves E
of dimensions 0 and 1 on X, following [16, §6.3–§6.4]. For sheaves E of
dimension zero chE = (0, 0, 0, d) where d� 1 is the length of E. In [16, §6.3]
we observe that for dimension 0 sheaves the moduli scheme M(0,0,0,d),n

stp (τ ′) is
independent of n, and is isomorphic to the Hilbert scheme HilbdX. Therefore
(34) gives

PI(0,0,0,d),n(τ ′) = χ
(
HilbdX, νHilbd X

)
, for all n ∈ Z and d� 0.

Values for χ(HilbdX, νHilbd X) were conjectured by Maulik et al. [22,
Conj. 1], and proved by Behrend and Fantechi [3, Th. 4.12] and others.
These yield a generating function for the PI(0,0,0,d),n(τ ′):

1 +
∑

d�1 PI
(0,0,0,d),n(τ ′)sd =

[∏
k�1(1−sk)−k

]χ(X)
.

Computing using (35) then shows that

D̄T (0,0,0,d)(τ) = −χ(X)
∑

l�1, l|d

1
l2
.

So from (37)–(38) we deduce that

D̂T (0,0,0,d)(τ) = −χ(X), all d� 1.

This confirms Conjecture 4.16 for dimension 0 sheaves. It is one of several
examples in [16] in which the values of the PIα,n(τ ′) are complex, the val-
ues of the D̄Tα(τ) are simpler, and the values of the D̂Tα(τ) are simpler
still, which suggests that of the three the invariants D̂Tα(τ) are the most
fundamental.

Now let β ∈H4(X; Z) and k ∈ Z. In [16, §6.4] we study invariants
D̄T (0,0,β,k)(τ), D̂T (0,0,β,k)(τ) counting semistable dimension 1 sheaves, that
is, sheaves E supported on curves C in X. One expects these to be related to
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curve-counting invariants like Gromov–Witten invariants, as in the MNOP
Conjecture [22,23]. Here is a summary of our results:

(a) D̄T (0,0,β,k)(τ), D̂T (0,0,β,k)(τ) are independent of the choice of (τ,
T,�).

(b) Assume Conjecture 4.16 holds. Then D̂T (0,0,β,k)(τ) ∈ Z.
(c) For any l ∈ β∪H2(X; Z) ⊆ Z we have D̄T (0,0,β,k)(τ) = D̄T (0,0,β,k+l)

(τ) and D̂T (0,0,β,k)(τ) = D̂T (0,0,β,k+l)(τ).
(d) Let C be an embedded rational curve in X with normal bun-

dle O(−1) ⊕ O(−1), and β ∈H4(X; Z) be Poincaré dual to [C] ∈
H2(X; Z). Then sheaves supported on C contribute 1/m2

to D̄T (0,0,mβ,k)(τ) if m� 1 and m | k, and contribute 0 to
D̄T (0,0,mβ,k)(τ) if m� 1 and m � k. They contribute 1 to
D̂T (0,0,β,k)(τ), and 0 to D̂T (0,0,mβ,k)(τ) if m> 1.

(e) Let C be a nonsingular embedded curve in X of genus g � 1, and
let β ∈H4(X; Z) be Poincaré dual to [C] ∈H2(X; Z). Then sheaves
supported on C contribute 0 to D̄T (0,0,mβ,k)(τ), D̂T (0,0,mβ,k)(τ) for
all m� 1 and k ∈ Z.

Motivated by these and by Katz[17, Conj. 2.3], we conjecture[16, Conj. 6.20]:

Conjecture 4.17. Let X be a Calabi–Yau 3-fold over C, and (τ, T,�)
a weak stability condition on coh(X) of Gieseker or μ-stability type. Then for
γ ∈H2(X; Z) with β ∈H4(X; Z) Poincaré dual to γ and all k ∈ Z we have
D̂T (0,0,β,k)(τ) =GV0(γ). In particular, D̂T (0,0,β,k)(τ) is independent of k, τ .

Here GV0(γ) is the genus zero Gopakumar–Vafa invariant, given in terms
of the genus zero Gromov–Witten invariants GW0(γ) ∈ Q of X by

GW0(γ) =
∑
m|γ

1
m3

GV0(γ/m).

A priori we have GV0(γ) ∈ Q, but Gopakumar and Vafa [7] conjecture that
the GV0(γ) are integers, and count something meaningful in String Theory.

5. Quivers with superpotentials

We now summarize [16, §7], which develops an analogue of the results
of §4 for representations of a quiver Q with relations I coming from a super-
potential W . In the quiver case we have no analogue of D̄Tα(τ), D̂Tα(τ),
P Iα,n(τ) in §4 being deformation-invariant, since the proof of deformation-
invariance uses the fact that the moduli scheme Mα,n

stp (τ ′) is proper (i.e.
compact), but the analogous moduli schemes Md,e

stf Q,I(μ
′) in the quiver case

need not be proper. However, all the other important aspects of the sheaf
case transfer to the quiver case.
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5.1. Background on quivers. Here are the basic definitions in quiver
theory.

Definition 5.1. A quiver Q is a finite directed graph. That is, Q is a
quadruple (Q0, Q1, h, t), where Q0 is a finite set of vertices, Q1 is a finite set
of edges, and h, t :Q1 →Q0 are maps giving the head and tail of each edge.

The path algebra CQ is an associative algebra over C with basis all paths
of length k � 0, that is, sequences of the form

v0
e1−→ v1 → · · · → vk−1

ek−→ vk,

where v0, . . . , vk ∈Q0, e1, . . . , ek ∈Q1, t(ai) = vi−1 and h(ai) = vi. Multipli-
cation is given by composition of paths in reverse order.

For n� 0, write CQ(n) for the vector subspace of CQ with basis all paths
of length k � n. It is an ideal in CQ. A quiver with relations (Q, I) is defined
to be a quiver Q together with a two-sided ideal I in CQ with I ⊆ CQ(2).
Then CQ/I is an associative C-algebra.

For v ∈Q0, write iv ∈ CQ for the path of length 0 at v. The image of iv
in CQ/I is also written iv. Then

(39) i2v = iv, iviw = 0 if v �= w ∈Q0, and
∑

v∈Q0
iv = 1 in CQ or CQ/I.

Write mod-CQ or mod-CQ/I for the abelian categories of finite-
dimensional left CQ or CQ/I-modules, respectively. If E ∈ mod-CQ or
mod-CQ/I then (39) implies a decomposition of complex vector spaces E =⊕

v∈Q0
iv(E). Define the dimension vector dimE ∈ ZQ0

�0 ⊂ ZQ0 by dimE :
v 
→ dimC(ivE). If 0 → E→ F →G→ 0 is an exact sequence in mod-CQ or
mod-CQ/I then dimF = dimE + dimG. Hence dim induces surjective
morphisms dim :K0(mod-CQ) → ZQ0 and dim :K0(mod-CQ/I) → ZQ0 .

Write K(mod-CQ) =K(mod-CQ/I) = ZQ0 , regarded as quotients of the
Grothendieck groups K0(mod-CQ),K0(mod-CQ/I) induced by dim . Write
C(mod-CQ) = C(mod-CQ/I) = ZQ0

�0 \{0}, the subsets of classes in K
(mod-CQ), K(mod-CQ/I) of nonzero objects in mod-CQ,mod-CQ/I. Here
K(mod-CQ), K(mod-CQ/I) are our substitutes for K(X) =Knum(coh(X))
in §3–§4. We do not use the numerical Grothendieck groupsKnum(mod-CQ),
Knum(mod-CQ/I), as these may be zero in interesting cases.

Definition 5.2. Let Q be a quiver. A superpotential W for Q over C
is an element of CQ/[CQ,CQ]. The cycles in Q up to cyclic permutation
form a basis for CQ/[CQ,CQ] over C, so we can think of W as a finite C-
linear combination of cycles up to cyclic permutation. We call W minimal
if all cycles in W have length at least 3. We will consider only minimal
superpotentials W .

Define I to be the two-sided ideal in CQ generated by ∂eW for all edges
e ∈Q1, where if C is a cycle in Q, we define ∂eC to be the sum over all
occurrences of the edge e in C of the path obtained by cyclically permuting
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C until e is in first position, and then deleting it. Since W is minimal, I ⊆
CQ(2), and (Q, I) is a quiver with relations. We allow W ≡ 0, so that I = 0.

Here is [16, Th. 7.6], which gives an analogue of equation (10) for quiv-
ers with superpotentials. Now (10) depended crucially on X being a Calabi–
Yau 3-fold, which implies that coh(X) has Serre duality in dimension 3. In
general the categories mod-CQ/I coming from quivers with superpotentials
do not have Serre duality in dimension 3. However, as explained in [16,
§7.2], if (Q, I) comes from a quiver with superpotential then we can embed
mod-CQ/I as the heart of a t-structure in a 3-Calabi–Yau triangulated cate-
gory T (which is usually notDbmod-CQ/I), and Serre duality in dimension 3
holds in T . This is why quivers with superpotentials are algebraic analogues
of Calabi–Yau 3-folds, and have a version of Donaldson–Thomas theory.

Theorem 5.3. Let Q= (Q0, Q1, h, t) be a quiver with relations I coming
from a minimal superpotential W on Q over C. Define χ̄ : ZQ0×ZQ0 → Z by

(40) χ̄(d, e) =
∑

e∈Q1

(
d(h(e))e(t(e)) − d(t(e))e(h(e))

)
.

Then for any D,E ∈ mod-CQ/I we have

χ̄
(
dimD,dimE

)
=

(
dim Hom(D,E) − dim Ext1(D,E)

)
−

(
dim Hom(E,D) − dim Ext1(E,D)

)
.

If Q is a quiver, the moduli stack MQ of objects E in mod-CQ is an
Artin C-stack. For d ∈ ZQ0

�0 , the open substack Md
Q of E with dimE = d

has a very explicit description: as a quotient C-stack we have

Md
Q
∼=

[∏
e∈Q1

Hom(Cd(t(e)),Cd(h(e)))/
∏
v∈Q0

GL(d(v))
]
.

If (Q, I) is a quiver with relations, the moduli stack MQ,I of objects E in
mod-CQ/I is a substack of MQ, and for d ∈ ZQ0

�0 we may write

(41) Md
Q,I

∼=
[
V d
Q,I/

∏
v∈Q0

GL(d(v))
]
,

where V d
Q,I is a closed

∏
v∈Q0

GL(d(v))-invariant C-subscheme of
∏
e∈Q1

Hom
(Cd(t(e)),Cd(h(e))) defined using the relations I.

When I comes from a superpotential W , we can improve the description
(41) of the moduli stacks Md

Q,I . Define a
∏
v∈Q0

GL(d(v))-invariant polyno-
mial

Wd :
∏
e∈Q1

Hom
(
Cd(t(e)),Cd(h(e))

)
−→ C

as follows. Write W as a finite sum
∑

i γ
iCi,where γi ∈ C and Ci is a cycle

vi0
ei
1−→ vi1 → · · · → vi

ki−1

ei
ki−→ vi

ki = vi0 in Q. Set

Wd
(
Ae : e ∈Q1

)
=

∑
i γ

i Tr
(
Aei

ki
◦Aei

ki−1
◦ · · · ◦Aei

1

)
.
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Then V d
Q,I = Crit(Wd) in (41), so that

(42) Md
Q,I

∼=
[
Crit(Wd)/

∏
v∈Q0

GL(d(v))
]
.

Equation (42) is an analogue of Theorem 4.1 for categories mod-CQ/I com-
ing from a superpotential W on Q.

We define a class of stability conditions on mod-CQ/I, [15, Ex. 4.14].

Example 5.4. Let (Q, I) be a quiver with relations. Let c :Q0 → R and
r :Q0 → (0,∞) be maps. Define μ : C(mod-CQ/I) → R by

μ(d) =

∑
v∈Q0

c(v)d(v)∑
v∈Q0

r(v)d(v)
.

Note that
∑

v∈Q0
r(v)d(v)> 0 as r(v)> 0 for all v ∈Q0, and d(v) � 0 for

all v with d(v)> 0 for some v. Then [15, Ex. 4.14] shows that (μ,R,�) is
a permissible stability condition on mod-CQ, which we call slope stability.
Write Md

ss(μ) for the open C-substack of μ-semistable objects in class d

in Md
Q,I .

A simple case is to take c≡ 0 and r ≡ 1, so that μ≡ 0. Then (0,R,�)
is a trivial stability condition on mod-CQ or mod-CQ/I, and every nonzero
object in mod-CQ or mod-CQ/I is 0-semistable, so that Md

ss(0) = Md
Q,I .

5.2. Behrend function identities, Lie algebra morphisms, and
Donaldson–Thomas type invariants. Let Q be a quiver with relations
I coming from a minimal superpotential W on Q over C. We now generalize
§4 from coh(X) to mod-CQ/I. The proof of Theorem 4.2 depends on two
things: the description of M in terms of Crit(f) in Theorem 4.1, and equation
(10). For mod-CQ/I equation (42) provides an analogue of Theorem 4.1,
and Theorem 5.3 an analogue of (10). Thus, the proof of Theorem 4.2 also
yields [16, Th. 7.11]:

Theorem 5.5. In the situation above, with MQ,I the moduli stack of
objects in a category mod-CQ/I coming from a quiver Q with superpotential
W, and χ̄ defined in (40), the Behrend function νMQ,I

of MQ,I satisfies the
identities (27)–(28) for all E1, E2 ∈ mod-CQ/I.

Here is the analogue of Definition 4.3.

Definition 5.6. Define a Lie algebra L̃(Q) to be the Q-vector space
with basis of symbols λ̃d for d ∈ ZQ0 , with Lie bracket

[λ̃d, λ̃e] = (−1)χ̄(d,e)χ̄(d, e)λ̃d+e,

as for (29), with χ̄ given in (40). This makes L̃(Q) into an infinite-dimensional
Lie algebra over Q. Define Q-linear maps Ψ̃χ,Q

Q,I : S̄Find
al (MQ,I , χ,Q) → L̃(Q)

and Ψ̃Q,I : SFind
al (MQ,I) → L̃(Q) exactly as for Ψ̃χ,Q, Ψ̃ in Definition 4.3.
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The proof of Theorem 4.4 has two ingredients: equation (10) and The-
orem 4.2. Theorems 5.3 and 5.5 are analogues of these for quivers with
superpotentials. So the proof of Theorem 4.4 also yields [16, Th. 7.14]:

Theorem 5.7. Ψ̃Q,I : SFind
al (MQ,I)→L̃(Q) and Ψ̃χ,Q

Q,I : S̄Find
al (MQ,I , χ,Q)

→ L̃(Q) are Lie algebra morphisms.

Here is the analogue of Definitions 4.5 and 4.15.

Definition 5.8. Let (μ,R,�) be a slope stability condition on
mod-CQ/I as in Example 5.4. As in §3.2 we have elements δ̄d

ss(μ)∈SFal(MQ,I)
and ε̄d(μ) ∈ SFind

al (MQ,I) for all d ∈ C(mod-CQ/I). As in (31), define quiver
generalized Donaldson–Thomas invariants D̄Td

Q,I(μ) ∈ Q for all d ∈ C
(mod-CQ/I) by

Ψ̃Q,I

(
ε̄d(μ)

)
= −D̄Td

Q,I(μ)λ̃d.

As in (38), define quiver BPS invariants D̂Td
Q,I(μ) ∈ Q by

(43) D̂Td
Q,I(μ) =

∑
m�1, m|d

Mö(m)
m2

D̄T
d/m
Q,I (μ),

where Mö : N → Q is the Möbius function. As for (37), the inverse of (43) is

(44) D̄Td
Q,I(μ) =

∑
m�1, m|d

1
m2

D̂T
d/m
Q,I (μ).

If W ≡ 0, so that mod-CQ/I = mod-CQ, we write D̄Td
Q(μ), D̂Td

Q(μ) for
D̄Td

Q,I(μ), D̂Td
Q,I(μ). Note that μ≡ 0 is allowed as a slope stability condi-

tion, with every object in mod-CQ/I 0-semistable, and is a natural choice.
So we have invariants D̄Td

Q,I(0), D̂Td
Q,I(0) and D̄Td

Q(0), D̂Td
Q(0).

Here is the analogue of the integrality conjecture, Conjecture 4.16.

Conjecture 5.9. Call (μ,R,�) generic if for all d, e ∈ C(mod-CQ/I)
with μ(d) = μ(e) we have χ̄(d, e) = 0. If (μ,R,�) is generic, then
D̂Td

Q,I(μ) ∈ Z for all d ∈ C(mod-CQ/I).

In [16, Th. 7.29] we prove Conjecture 5.9 when W ≡ 0, using results
of Reineke [31]. That is, if μ is generic we show D̂Td

Q(μ) ∈ Z for all d.
In [16, Th. 7.17] we prove an analogue of Theorem 4.6. It holds for arbitrary
μ, μ̃, without requiring extra technical conditions as in Theorem 3.12.

Theorem 5.10. Let (μ,R,�) and (μ̃,R,�) be any two slope stabil-
ity conditions on mod-CQ/I, and χ̄ be as in (40). Then for all d ∈ C
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(mod-CQ/I) we have

D̄Td
Q,I(μ̃) =∑

iso.
classes
of finite
sets I

∑
κ:I→C(mod-CQ/I):∑

i∈I κ(i)=d

∑
connected,
simply-
connected
digraphs Γ,
vertices I

(−1)|I|−1V (I,Γ, κ;μ, μ̃) ·
∏

i∈I D̄T
κ(i)
Q,I (μ)

· (−1)
1
2

∑
i,j∈I |χ̄(κ(i),κ(j))| ·

∏
edges

i•→ j• in Γ

χ̄(κ(i), κ(j)),

with only finitely many nonzero terms.

5.3. Pair invariants for quivers. We now discuss analogues for quiv-
ers of the moduli spaces of stable pairs Mα,n

stp (τ ′) and stable pair invariants
PIα,n(τ ′) in §4.3, and the identity (35) in Theorem 4.12 relating PIα,n(τ ′)
and the D̄T β(τ).

Definition 5.11. Let Q be a quiver with relations I coming from a
superpotential W on Q over C. Suppose (μ,R,�) is a slope stability condi-
tion on mod-CQ/I, as in Example 5.4.

Let d, e ∈ ZQ0
�0 be dimension vectors. A framed representation (E, σ)

of (Q, I) of type (d, e) consists of a representation E of mod-CQ/I with
dimE = d, together with linear maps σv : Ce(v) → iv(E) for all v ∈Q0. We
call a framed representation (E, σ) stable if

(i) μ([E′]) � μ([E]) for all subobjects 0 �= E′ ⊂ E in mod-CQ/I; and
(ii) If also σ factors through E′, that is, σv(Ce(v)) ⊆ iv(E′) ⊆ iv(E) for

all v ∈Q0, then μ([E′])< μ([E]).

We will use μ′ to denote stability of framed representations, defined using μ.

Following Engel and Reineke [5, §3] or Szendrői [32, §1.2], we can in a
standard way define moduli problems for all framed representations, and for
stable framed representations. The moduli space of all framed representa-
tions of type (d, e) is an Artin C-stack M

d,e
frQ,I with an explicit description

similar to (42), and the moduli space of stable framed representations of type
(d, e) is a fine moduli C-scheme Md,e

stf Q,I(μ
′), an open C-substack of M

d,e
frQ,I .

We can now define our analogues of invariants PIα,n(τ ′) for quivers.

Definition 5.12. In the situation above, define

(45) NDTd,e
Q,I (μ

′) = χ
(
Md,e

stf Q,I(μ
′), νMd,e

stf Q,I(μ′)

)
.

When W ≡ 0, so that mod-CQ/I = mod-CQ, we also write NDTd,e
Q (μ′) =

NDTd,e
Q,I (μ

′). Following Szendrői [32] we call NDTd,e
Q,I (μ

′), NDTd,e
Q (μ′) non-

commutative Donaldson–Thomas invariants.
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Here (45) is the analogue of (34) in the sheaf case. We have no analogue
of (33), since in general Md,e

stf Q,I(μ
′) is not proper, and so does not have

a fundamental class. These quiver analogues of Mα,n
stp (τ ′), P Iα,n(τ ′) are not

new, similar things have been studied in quiver theory by Nakajima, Reineke,
Szendrői and other authors for some years [5,24–27,29,30,32]. Here [16,
Th. 7.23] is the analogue of Theorem 4.12 for quivers.

Theorem 5.13. Suppose Q is a quiver with relations I coming from a
minimal superpotential W on Q over C. Let (μ,R,�) be a slope stability
condition on mod-CQ/I, as in Example 5.4, and χ̄ be as in (40). Then for
all d, e in C(mod-CQ/I) = ZQ0

�0 \ {0} ⊂ ZQ0 , we have

(46) NDTd,e
Q,I (μ′) =

∑
d1,...,dl∈C(mod-CQ/I),
l�1: d1+···+dl=d,
μ(di)=μ(d), all i

(−1)l

l!

l∏
i=1

[
(−1)e·di−χ̄(d1+···+di−1,di)

(
e · di − χ̄(d1+· · ·+di−1,di)

)
D̄Tdi

Q,I(μ)
]
,

with e ·di =
∑

v∈Q0
e(v)di(v), and D̄Tdi

Q,I(μ), NDTd,e
Q,I (μ

′) as in Definitions
5.8, 5.12. When W ≡ 0, the same equation holds for NDTd,e

Q (μ′), D̄Td
Q(μ).

For Donaldson–Thomas invariants in §4, we regarded the invariants
D̄Tα(τ), D̂Tα(τ) as our primary objects of study, and the pair invariants
PIα,n(τ ′) as secondary, not of that much interest in themselves. In con-
trast, in the quiver literature to date the invariants D̄Td

Q,I(μ), D̄Td
Q(μ) and

D̂Td
Q,I(μ), D̂Td

Q(μ) have not been seriously considered even in the
stable = semistable case, and the analogues NDTd,e

Q,I (μ
′), NDTd,e

Q (μ′) of pair
invariants PIα,n(τ ′) have been the central object of study.

We argue that the invariants D̄Td
Q,I(μ), . . . , D̂Td

Q(μ) should actually be
regarded as more fundamental and more interesting than the NDTd,e

Q,I (μ
′).

By (46) the NDTd,e
Q,I (μ

′) can be written in terms of the D̄Td
Q,I(μ), and hence

by (44) in terms of the D̂Td
Q,I(μ), so the pair invariants contain no more

information. The D̄Td
Q,I(μ) are simpler than the NDTd,e

Q,I (μ
′) as they depend

only on d rather than on d, e. In examples in [16, §7.5–§7.6] we find that the
values of the D̄Td

Q,I(μ) and especially of the D̂Td
Q,I(μ) may be much simpler

and more illuminating than the values of the NDTd,e
Q,I (μ

′), as in (47)–(49)
below.

Here is an example taken from [16, §7.5.2].

Example 5.14. Following Szendrői [32, §2.1], let Q= (Q0, Q1, h, t) have
two vertices Q0 = {v0, v1} and edges e1, e2 : v0 → v1 and f1, f2 : v1 → v0, as
below:

•
v0

e2
��

e1
��

•
v1
.f1��

f2

��
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Define a superpotential W on Q by W = e1f1e2f2−e1f2e2f1, and let I be the
associated relations. Then mod-CQ/I is a 3-Calabi–Yau abelian category.
Theorem 5.3 shows that the Euler form χ̄ on mod-CQ/I is zero.

Write elements d of C(mod-CQ/I) as (d0, d1) where dj = d(vj). Szendrői
[32, Th. 2.7.1] computed the noncommutative Donaldson–Thomas invari-
ants NDT (d0,d1),(1,0)

Q,I (0′) for mod-CQ/I as combinatorial sums, and using
work of Young [34] wrote their generating function as a product [32, Th.
2.7.2], giving

1 +
∑

(0,0) �=(d0,d1)∈N2

NDT
(d0,d1),(1,0)
Q,I (0′)qd00 q

d1
1

=
∏
k�1

(
1 − (−q0q1)k)

)−2k(1 − (−q0)kqk−1
1

)k(1 − (−q0)kqk+1
1

)k
.

(47)

Computing using (46) and (47) shows that

(48) D̄T
(d0,d1)
Q,I (0) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−2
∑

l�1, l|d

1
l2
, d0 = d1 = d� 1,

1
l2
, d0 = kl, d1 = (k − 1)l, k, l � 1,

1
l2
, d0 = kl, d1 = (k + 1)l, k � 0, l � 1,

0, otherwise.

Combining (44) and (48) we see that

(49) D̂T
(d0,d1)
Q,I (0) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
−2, (d0, d1) = (k, k), k � 1,

1, (d0, d1) = (k, k − 1), k � 1,
1, (d0, d1) = (k − 1, k), k � 1,
0, otherwise.

Note that the values of the D̂T (d0,d1)
Q,I (0) in (49) lie in Z, as in Conjecture

5.9, and are far simpler than those of the NDT (d0,d1),(1,0)
Q,I (0′) in (47).

This example is connected to Donaldson–Thomas theory for (noncom-
pact) Calabi–Yau 3-folds as follows. We have equivalences of derived cate-
gories

(50) Db(mod-CQ/I) ∼Db(cohcs(X)) ∼Db(cohcs(X+)),

where π :X → Y and π+ :X+ → Y are the two crepant resolutions of the
conifold Y =

{
(z1, z2, z3, z4) ∈ C4 : z2

1 + · · ·+ z2
4 = 0

}
, and X,X+ are related

by a flop. Here X,X+ are regarded as ‘commutative’ crepant resolutions
of Y , and mod-CQ/I as a ‘noncommutative’ resolution of Y , in the sense
that mod-CQ/I can be regarded as the coherent sheaves on the ‘noncom-
mutative scheme’ Spec(CQ/I) constructed from the noncommutative C-
algebra CQ/I.
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One idea in [32] is that counting invariants NDTd,e
Q,I (μ

′) for mod-CQ/I
should be related to Donaldson–Thomas type invariants counting sheaves
on X,X+ by some kind of wall-crossing formula under change of stability
condition in the derived categories, using the equivalences (50). This picture
has been worked out further by Nagao and Nakajima [25,26]. In [16, §7.5.2]
we show that in this case the situation for invariants D̄Td

Q,I(μ), D̂Td
Q,I(μ)

is actually much simpler, because they are unchanged by wall-crossing as
χ̄≡ 0, so we can identify the invariants D̄Td

Q,I(μ), D̂Td
Q,I(μ) in (48)–(49)

directly with Donaldson–Thomas invariants for X and X+.

References

[1] K. Behrend, Donaldson–Thomas type invariants via microlocal geometry, Annals of
Mathematics 170 (2009), 1307–1338. math.AG/0507523.

[2] K. Behrend and B. Fantechi, The intrinsic normal cone, Invent. Math. 128 (1997),
45–88.

[3] K. Behrend and B. Fantechi, Symmetric obstruction theories and Hilbert schemes
of points on threefolds, Algebra and Number Theory 2 (2008), 313–345.
math.AG/0512556.

[4] S.K. Donaldson and R.P. Thomas, Gauge Theory in Higher Dimensions, Chapter 3
in S.A. Huggett, L.J. Mason, K.P. Tod, S.T. Tsou and N.M.J. Woodhouse, editors,
The Geometric Universe, Oxford University Press, Oxford, 1998.

[5] J. Engel and M. Reineke, Smooth models of quiver moduli, Math. Z. 262 (2009),
817–848. arXiv:0706.4306.
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