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Preface

These notes are based on six lectures given in March 2010 at the Institute
of Mathematical Sciences in the Chinese University of Hong Kong as part of
the JCAS Lecture Series. They were mainly targeted at graduate students.
They are not intended to be a comprehensive treatment of the subject of
generalized geometry, but instead I have attempted to present the general
features and to focus on a few topics which I have found particularly interest-
ing and which I hope the reader will too. The relatively new material consists
of an account of Goto’s existence theorem for generalized Kähler structures,
examples of generalized holomorphic bundles and the B-field action on their
moduli spaces.

Since the publication of the first paper on the subject [11], there have
been many articles written within both the mathematical and theoreti-
cal physics communities, and the reader should be warned that different
authors have different conventions (or occasionally this author too!). For
other accounts of generalized geometry, I should direct the reader to the
papers and surveys (e.g. [2], [8]) of my former students Marco Gualtieri and
Gil Cavalcanti who have developed many aspects of the theory.

I would like to thank the IMS for its hospitality and for its invitation to
give these lectures, and Marco Gualtieri for useful conversations during the
preparation of these notes.
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1. The Courant bracket, B-fields and metrics

1.1. Linear algebra preliminaries. Generalized geometry is based
on two premises – the first is to replace the tangent bundle T of a manifold
M by T ⊕T ∗, and the second to replace the Lie bracket on sections of T by
the Courant bracket. The idea then is to use one’s experience of differential
geometry and by analogy to define and develop the generalized version.
Depending on the object, this may or may not be a fertile process, but the
intriguing fact is that, by drawing on the intuition of a mathematician, one
may often obtain this way a topic which is also of interest to the theoretical
physicist.

We begin with the natural linear algebra structure of the generalized
tangent bundle T ⊕ T ∗. If X denotes a tangent vector and ξ a cotangent
vector then we write X + ξ as a typical element of a fibre (T ⊕ T ∗)x. There
is a natural indefinite inner product defined by

(X + ξ,X + ξ) = iXξ (= 〈ξ,X〉 = ξ(X))

using the interior product iX , or equivalently the natural pairing 〈ξ,X〉 or
the evaluation ξ(X) of ξ ∈ T ∗

x on X. This is to be thought of as replacing
the notion of a Riemannian metric, even though on an n-manifold it has
signature (n, n).
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In block-diagonal form, a skew-adjoint transformation of T ⊕ T ∗ at a
point can be written as (

A β
B −At

)
.

Here A is just an endomorphism of T and B : T → T ∗ to be skew-adjoint
must satisfy

(B(X1 + ξ1), X2 + ξ2) = (B(X1), X2) = −(B(X2), X1)

so that B is a skew-symmetric form, or equivalently B ∈ Λ2T ∗, and its action
is X + ξ �→ iXB. Since (

0 0
B 0

)2

= 0

exponentiating gives

(1) expB(X + ξ) =X + ξ + iXB

This B-field action will be fundamental, yielding extra transformations in
generalized geometries. It represents a breaking of symmetry in some sense
since the bivector β ∈ Λ2T plays a lesser role.

1.2. The Courant bracket. We described above the pointwise struc-
ture of the generalized tangent bundle. Now we consider the substitute for
the Lie bracket [X,Y ] of two vector fields. This is the Courant bracket which
appears in the literature in two different formats – here we adopt the original
skew-symmetric one:

Definition 1. The Courant bracket of two sections X + ξ, Y + η of
T ⊕ T ∗ is defined by

[X + ξ, Y + η] = [X,Y ] + LXη − LY ξ − 1
2
d(iXη − iY ξ).

This has the important property that it commutes with the B-field action
of a closed 2-form B:

Proposition 1. Let B be a closed 2-form, then

expB([X + ξ, Y + η]) = [expB(X + ξ), expB(Y + η)].

Proof. We need to prove that [X + ξ + iXB, Y + η + iYB] = [X +
ξ, Y + η] + i[X,Y ]B and we shall make use of the Cartan formula for the Lie
derivative of a differential form α: LXα= d(iXα) + iXdα. First expand

[X + ξ + iXB, Y + η + iYB] = [X + ξ, Y + η] + LXiYB − LY iXB

− 1
2
d(iXiYB − iY iXB).
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The last two terms give d(iY iXB) = LY iXB− iY d(iXB) by the Cartan for-
mula, and so yield

[X + ξ + iXB, Y + η + iYB] = [X + ξ, Y + η] + LXiYB − iY d(iXB)

= [X + ξ, Y + η] + i[X,Y ]B + iY LXB

− iY d(iXB)

= [X + ξ, Y + η] + i[X,Y ]B + iY iXdB

by the Cartan formula again. So if dB = 0 the bracket is preserved. �

The inner product and Courant bracket naturally defined above are
clearly invariant under the induced action of a diffeomorphism of the mani-
fold M . However, we now see that a global closed differential 2-form B will
also act, preserving both the inner product and bracket. This means an over-
all action of the semi-direct product of closed 2-forms with diffeomorphisms

Ω2(M)cl � Diff(M).

This is a key feature of generalized geometry – we have to consider B-field
transformations as well as diffeomorphisms.

The Lie algebra of the group Ω2(M)cl � Diff(M) consists of sections
X + B of T ⊕ Λ2T ∗ where B is closed. If we take B = −dξ, then the Lie
algebra action on Y + η is

(X − dξ)(Y + η) = LX(Y + η) − iY dξ = [X,Y ] + LXη − LY ξ + d(iY ξ).

It is then easy to see that we can reinterpret the Courant bracket as the
skew-symmetrization of this:

[X + ξ, Y + η] =
1
2
((X − dξ)(Y + η) − (Y − dη)(X + ξ)).

However, although the Courant bracket is derived this way from a Lie
algebra action, it is not itself a bracket of any Lie algebra – the Jacobi
identity fails. More precisely we have (writing u=X+ξ, v = Y +η, w = Z+ζ)

Proposition 2.

[[u, v], w] + [[v, w], u] + [[w, u], v] =
1
3
d(([u, v], w) + ([v, w], u) + ([w, u], v))

Proof. If u=X + ξ, let ũ=X − dξ be the corresponding element in
the Lie algebra of Ω2(M)cl �Diff(M). We shall temporarily write uv for the
action of ũ on v (this is also called the Dorfman “bracket” of u and v) so
that the Courant bracket is (uv − vu)/2. We first show that

(2) u(vw) = (uv)w + v(uw).

To see this note that u(vw) − v(uw) = ũṽ(w) − ṽũ(w) = [ũ, ṽ](w) since ũ, ṽ
are Lie algebra actions, and the bracket here is just the commutator. But
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(uv)w is the Lie algebra action of uv = ũv = [X,Y ] + LXη − iY dξ which
acts as [X,Y ] − d(LXη − iY dξ) = [X,Y ] − LXdη + LY dξ using the Cartan
formula and d2 = 0. This however is just the bracket [ũ, ṽ] in the Lie algebra
of Ω2(M)cl � Diff(M).

To prove the Proposition we note now that the symmetrization (uv +
vu)/2 is

1
2
(LXη − iY dξ + LY ξ − iXdη) =

1
2
d(iXη + iY ξ) = d(u, v)

while we have already seen that the skew-symmetrization (uv − vu)/2 is
equal to [u, v]. So we rewrite the left hand side of the expression in the
Proposition as one quarter of

(uv − vu)w − w(uv − vu)

+ (vw − wv)u− u(vw − wv)

+ (wu− uw)v − v(wu− uw)

Using (2) we sum these to get (−1) times the sum r of the right-hand column.
If � is the sum of the left-hand column then this means �+ r = −r. But then
�−r = 3(�+r) is the sum of terms like (uv−vu)w+w(uv−vu) = 4([u, v], w).
The formula follows directly. �

There are two more characteristic properties of the Courant bracket
which are easily verified:

(3) [u, fv] = f [u, v] + (Xf)v − (u, v)df

where f is a smooth function, and as usual u=X + ξ, and

(4) X(v, w) = ([u, v] + d(u, v), w) + (v, [u,w] + d(u,w)).

1.3. Riemannian geometry. The fact that we introduced the inner
product on T ⊕T ∗ as the analogue of the Riemannian metric does not mean
that Riemannian geometry is excluded from this area – we just have to treat
it in a different way. We describe a metric g as a map g : T → T ∗ and consider
its graph V ⊂ T ⊕T ∗. This is the set of pairs (X, gX) or in local coordinates
(and the summation convention, which we shall use throughout) the span of

∂

∂xi
+ gijdxj .

The subbundle V has an orthogonal complement V ⊥ consisting of elements
of the form X− gX. The inner product on T ⊕T ∗ restricted to X+ gX ∈ V
is iXgX = g(X,X) which is positive definite and restricted to V ⊥ we get the
negative definite −g(X,X). So T⊕T ∗ with its signature (n, n) inner product
can also be written as the orthogonal sum V ⊕ V ⊥. Equivalently we have
reduced the structure group of T ⊕ T ∗ from SO(n, n) to S(O(n) ×O(n)).
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The nondegeneracy of g means that g : T → T ∗ is an isomorphism so
that the projection from V ⊂ T ⊕ T ∗ to either factor is an isomorphism.
This means we can lift vector fields or 1-forms to sections of V . Let us call
X+ the lift of a vector field X to V and X− its lift to V ⊥, i.e. X± =X±gX.
We also have the orthogonal projection πV : T ⊕ T ∗ → V and then

πV (X) = πV
1
2
(X + gX +X − gX) =

1
2
X+.

We can use these lifts and projections together with the Courant bracket
to give a convenient way of working out the Levi-Civita connection of g.

First we show:

Proposition 3. Let v be a section of V and X a vector field, then

∇Xv = πV [X−, v]

defines a connection on V which preserves the inner product induced from
T ⊕ T ∗.

Proof. Write v = Y + η, then observe that

∇fXv = πV [fX−, v] = πV (f [X−, v] − (Y f)X− + (v,X−)df)

using Property (3) of the Courant bracket. But V and V ⊥ are orthogonal
so πVX

− = 0 = (v,X−) and hence ∇fXv = f∇Xv.
Now using the same property we have

∇Xfv = πV (f [X−, v] + (Xf)v − (v,X−)df) = f∇Xv + (Xf)v

since (v,X−) = 0 and πV v = v. These two properties define a connection.
To show compatibility with the inner product take v, w sections of V ,

then

(∇Xv, w) + (v,∇Xw) = (πV [X−, v], w) + (v, πV [X−, w])

= ([X−, v], w) + (v, [X−, w])

since πV is the orthogonal projection onto V and v, w are sections of V . Now
use Property (4) of the Courant bracket to see that

X(v, w) = ([X−, v] + d(X−, v), w) + (v, [X−, w] + d(X−, w)).

But (X−, v) = 0 = (X−, w) and we get X(v, w) = (∇Xv, w) + (v,∇Xw) as
required. �

Using the isomorphism of V with T (or T ∗) we can directly use this to
find a connection on the tangent bundle. Directly, we take coordinates xi

and then from the definition of the connection, the covariant derivative of
∂/∂xj

+ in the direction ∂/∂xi is

πV

[
∂

∂xi
− gikdxk,

∂

∂xj
+ gj�dx�

]
.
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Expanding the Courant bracket gives

∂gj�

∂xi
dx� − ∂(−gik)

∂xj
dxk − 1

2
d(gji − (−gij)) =

∂gj�

∂xi
dx� +

∂gik

∂xj
dxk − ∂gij

∂xk
dxk.

Projecting on V we get

1
2
(dxk+gk� ∂

∂x�
)
(
∂gjk

∂xi
+
∂gik

∂xj
− ∂gij

∂xk

)
=

1
2
gk�

(
∂gjk

∂xi
+
∂gik

∂xj
− ∂gij

∂xk

)
∂

∂x�

+

which is the usual formula for the Christoffel symbols of the Levi-Civita
connection.

Example: Here is another computation – the so-called Bianchi IX type met-
rics (using the terminology for example in [5]). These are four-dimensional
metrics with an SU(2) action with generic orbit three-dimensional and in
the diagonal form

g = (abc)2dt2 + a2σ2
1 + b2σ2

2 + c2σ2
3

where a, b, c are functions of t and σi are basic left-invariant forms on the
group, where dσ1 = −σ2 ∧ σ3 etc. If Xi are the dual vector fields then
[X1, X2] =X3 and LX1σ2 = σ3 etc.

Because of the even-handed treatment of forms and vector fields in gen-
eralized geometry, it is as easy to work out covariant derivatives of 1-forms
as vector fields. Here we shall find the connection matrix for the orthonormal
basis of 1-forms e0 = abc dt, e1 = aσ1, e2 = bσ2, e3 = cσ3. By symmetry it is
enough to work out derivatives with respect to X1 and ∂/∂t. First we take
X1, so that X−

1 =X1 − a2σ1.
For the covariant derivative of e0 consider the Courant bracket

[X1 − a2σ1,
∂

∂t
+ (abc)2dt] = 2aa′σ1.

But e+0 = (abc)−1(∂/∂t+(abc)2dt) and using Property (3) of the bracket and
the orthogonality of X−

1 , e
+
0 we have

[X−
1 , e

+
0 ] =

2a′

bc
σ1 =

2a′

abc
e1

Projecting on V and using πV e1 = e+1 /2, we have

(5) ∇X1e0 =
a′

abc
e1.
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For the 1-form e1 note that, since LX1σ1 = 0

[X−
1 , X

+
1 ] = [X1 − a2σ1, X1 + a2σ1] = −1

2
d(a2 + a2) = −2aa′dt.

But e1 = a−1X+
1 , and again using Property (3) and the orthogonality of

X−
1 , X

+
1 we have [X−

1 , e
+
1 ] = −2a′dt. Projecting onto V gives πV (−2a′dt) =

−(a′dt+ a′(abc)−2∂/∂t). So

(6) ∇X1e1 = − a′

abc
e0.

(Note that with (5) this checks with the fact that the connection preserves
the metric.)

For e+2 = b−1X+
2 we have

[X−
1 , X

+
2 ] = [X1 − a2σ1, X2 + b2σ2] = [X1, X2] + LX1b

2σ2 + LX2a
2σ1 − 0

=X3 + (b2 − a2)σ3

and so [X−
1 , e

+
2 ] = b−1(X3 + (b2 − a2)σ3). Projecting onto V ,

πV [X−
1 , e

+
2 ] =

1
2
b−1(X3 + c2σ3) +

1
2
b−1(b2 − a2)(σ3 + c−2X3)

so that

(7) ∇X1e2 =
1

2bc
(c2 + b2 − a2)e3.

Now we covariantly differentiate with respect to t.[
∂

∂t
− (abc)2dt, e+0

]
=

[
∂

∂t
− (abc)2dt, (abc)−1 ∂

∂t
+ (abc)dt

]

= − (abc)′

(abc)2
∂

∂t
+ (abc)′dt+ (abc)′dt− 1

2
d(2(abc))

=
(abc)′

(abc)2

(
− ∂

∂t
+ (abc)2dt

)

so projecting onto V gives

(8) ∇ ∂
∂t
e0 = 0.

and finally (similar to the first case above)[
∂

∂t
− (abc)2dt,X1 + a2σ1

]
= 2aa′σ1 − 0 − 0

so that [
∂

∂t
− (abc)2dt, e+1

]
=

[
∂

∂t
− (abc)2dt, a−1(X1 + a2σ1)

]

= 2a′σ1 − a′

a2
(X1 + a2σ1)
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and projecting onto V we get

(9) ∇ ∂
∂t
e1 =

a′

a
e1.

The point to make here is that the somewhat mysterious Courant bracket
can be used as a tool for automatically computing covariant derivatives in
ordinary Riemannian geometry.

2. Spinors, twists and skew torsion

2.1. Spinors. In generalized geometry, the role of differential forms is
changed. They become a Clifford module for the Clifford algebra generated
by T ⊕T ∗ with its indefinite inner product. Recall that, given a vector space
W with an inner product ( , ) the Clifford algebra Cl(W ) is generated by
1 and W with the relations x2 = (x, x)1 (in positive definite signature the
usual sign is −1 but this is the most convenient for our case).

Consider an exterior differential form ϕ ∈ Λ∗T ∗ and define the action of
X + ξ ∈ T ⊕ T ∗ on ϕ by

(X + ξ) · ϕ= iXϕ+ ξ ∧ ϕ
then

(X + ξ)2 · ϕ= iX(ξ ∧ ϕ) + ξ ∧ iXϕ= iXξϕ= (X + ξ,X + ξ)ϕ

and so Λ∗T ∗ is a module for the Clifford algebra.
We have already remarked that we can regard T⊕T ∗ as having structure

group SO(n, n) and if the manifold is oriented this lifts to Spin(n, n). The
exterior algebra is almost the basic spin representation of Spin(n, n), but
not quite. The Clifford algebra has an anti-involution – any element is a sum
of products x1x2 . . . xk of generators xi ∈W and

x1x2 . . . xk �→ xkxk−1 . . . x1

defines the anti-involution. It represents a “transpose” map a �→ at arising
from an invariant bilinear form on the basic spin module. In our case the
spin representation is strictly speaking

S = Λ∗T ∗ ⊗ (ΛnT ∗)−1/2.

Another way of saying this is that there is an invariant bilinear form on Λ∗T ∗
with values in the line bundle ΛnT ∗. Because of its appearance in another
context it is known as the Mukai pairing. Concretely, given ϕ1, ϕ2 ∈ Λ∗T ∗,
the pairing is

〈ϕ1, ϕ2〉 =
∑

j

(−1)j(ϕ2j
1 ∧ ϕn−2j

2 + ϕ2j+1
1 ∧ ϕn−2j−1

2 )

where the superscript p denotes the p-form component of the form.
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The Lie algebra of the spin group (which is the Lie algebra of SO(n, n))
sits inside the Clifford algebra as the subspace {a ∈ Cl(W ) : [a,W ] ⊆W and
a= −at} where the commutator is taken in the Clifford algebra. Consider a
2-form B ∈ Λ2T ∗. The Clifford action of a 1-form ξ is exterior multiplication,
so B · ϕ=

∑
bijξi · ξj · ϕ=

∑
bijξi ∧ ξj ∧ ϕ defines an action on spinors.

Moreover, being skew-symmetric in ξi it satisfies Bt = −B. Now take X+ξ ∈
W = T ⊕ T ∗ and the commutator [B,X + ξ] in the Clifford algebra:

B ∧ (iX + ξ∧)ϕ− (iX + ξ∧)B∧ =B ∧ iXϕ− iX(B ∧ ϕ) = −iXB ∧ ϕ.
So this action preserves T ⊕T ∗ and so defines an element in the Lie algebra
of SO(n, n). But the Lie algebra action of B ∈ Λ2T ∗ on T ⊕T ∗ was X+ξ �→
iXB, so we see from the above formula that the action of a B-field on spinors
is given by the exponentiation of −B in the exterior algebra :

ϕ �→ e−B∧ϕ.

One may easily check, for example, that the Mukai pairing is invariant under
the action: 〈e−Bϕ1, e

−Bϕ2〉 = 〈ϕ1, ϕ2〉.
This action, together with the natural diffeomorphism action on forms,

gives a combined action of the group Ω2(M)cl�Diff(M) and a corresponding
action of its Lie algebra. We earlier considered the map u �→ ũ given by
X+ ξ �→X−dξ and on any bundle associated to T ⊕T ∗ by a representation
of SO(n, n) we have an action of ũ. We regard this now as a “Lie derivative”
Lu in the direction of a section u of T ⊕T ∗. In the spin representation there
is a “Cartan formula” for this:

Proposition 4. The Lie derivative of a form ϕ by a section u of T ⊕T ∗
is given by

Luϕ= d(u · ϕ) + u · dϕ.

Proof.

d(X + ξ) · ϕ+ (X + ξ) · dϕ= diXϕ+ d(ξ ∧ ϕ) + iXdϕ+ ξ ∧ dϕ
= LXϕ+ dξ ∧ ϕ

using the usual Cartan formula and the fact that B=−dξ acts as
−B = dξ. �

In fact replacing the exterior product by the Clifford product is a com-
mon feature of generalized geometry whenever we deal with forms.

The Lie derivative acting on sections of T ⊕ T ∗ is the Lie algebra action
we observed in the first lecture so

(10) Luv − Lvu= 2[u, v]

where [u, v] is the Courant bracket.
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2.2. Twisted structures. We now want to consider a twisted version
of T ⊕ T ∗. Suppose we have a nice covering of the manifold M by open
sets Uα and we give ourselves a closed 2-form Bαβ = −Bβα on each two-fold
intersection Uα ∩ Uβ. We can use the action of Bαβ to identify T ⊕ T ∗ on
Uα with T ⊕ T ∗ on Uβ over the intersection. This will be compatible over
threefold intersections if

(11) Bαβ +Bβγ +Bγα = 0

on Uα ∩ Uβ ∩ Uγ .
We have seen in the first lecture that the action of a closed 2-form on

T ⊕T ∗ preserves both the inner product and the Courant bracket, so by the
above identifications this way we construct a rank 2n vector bundle E over
M with an inner product and a bracket operation on sections. And since the
B-field action is trivial on T ∗ ⊂ T ⊕ T ∗, the vector bundle is an extension:

0 → T ∗ → E
π→ T → 0.

Such an object is called an exact Courant algebroid. It can be abstractly
characterized by the Properties (3) and (4) of the Courant bracket, where the
vector field X is πu, together with the Jacobi-type formula in Proposition 2.

The relation (11) says that we have a 1-cocycle for the sheaf Ω2
cl of closed

2-forms on M . There is an exact sequence of sheaves

0 → Ω2
cl → Ω2 d→ Ω3

cl → 0

and since Ω2 is a flabby sheaf, we have

H1(M,Ω2
cl) ∼=H0(M,Ω3

cl)/dH
0(M,Ω2) = Ω3

cl/dΩ
2 =H3(M,R)

so that such a structure has a characteristic degree 3 cohomology class.

Example: The theory of gerbes fits into the twisted picture quite readily.
Very briefly, a U(1) gerbe can be defined by a 2-cocycle with values on
the sheaf of C∞ circle-valued functions – so it is given by functions gαβγ

on threefold intersections satisfying a coboundary condition. In the exact
sequence of sheaves of C∞ functions

1 �→ Z �→ R
exp 2πi→ U(1) → 1

the 2-cocycle defines a class in H3(M,Z).
If we think of the analogue for line bundles, we have the transition

functions gαβ and then a connection on the line bundle is given by 1-forms
Aα on open sets such that

Aβ −Aα = (g−1dg)αβ

on twofold intersections (where we identify the Lie algebra of the circle
with R).
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A connective structure on a gerbe is similarly a collection of 1-forms Aαβ

such that
Aαβ +Aβγ +Aγα = (g−1dg)αβγ

on threefold intersections. Clearly Bαβ = dAαβ defines a Courant algebroid,
and its characteristic class is the image of the integral cohomology class in
H3(M,R).

An example of this is a Hermitian structure on a holomorphic gerbe on a
complex manifold (defined by a cocycle of holomorphic functions hαβγ with
values in C∗). A Hermitian structure on this is a choice of a cochain kαβ of
positive functions with |hαβγ | = kαβkβγkγα. Then Aαβ = (h−1dch)αβ defines
a connective structure. Here dc = I−1dI = −i(∂ − ∂̄).

The bundle E has an orthogonal structure and so an associated spinor
bundle S. By the definition of E, S is obtained by identifying Λ∗T ∗ over Uα

with Λ∗T ∗ over Uβ by
ϕ �→ e−Bαβϕ.

A global section of S is then given by local forms ϕα, ϕβ such that ϕα =
e−Bαβϕβ on Uα ∩ Uβ. Since Bαβ is closed and even,

dϕα = d(e−Bαβϕβ) = −dBαβ ∧ e−Bαβϕβ + e−Bαβdϕβ = e−Bαβdϕβ

and so we have a well-defined operator

d : C∞(Sev) → C∞(Sod).

The Z2-graded cohomology of this is the twisted cohomology. There is a more
familiar way of writing this if we consider the inclusion of sheaves Ω2

cl ⊂ Ω2.
Since Ω2 is a flabby sheaf, the cohomology class of Bαβ is trivial here and
we can find 2-forms Fα such that on Uα ∩ Uβ

Fβ − Fα =Bαβ .

Since Bαβ is closed dFβ = dFα is the restriction of a global closed 3-form H
which represents the characteristic class in H3(M,R).

But then
e−Fαϕα = e−FβeBαβϕα = e−Fβϕβ

defines a global exterior form ψ. Furthermore

dψ = d(e−Fαϕα) = −H ∧ ψ + e−Fαdϕα.

Thus the operator d above defined on S is equivalent to the operator

d+H : Ωev → Ωod

on exterior forms.

Example: For gerbes the full analogue of a connection is a connective
structure together with a curving, which is precisely a choice of 2-form Fα



LECTURES ON GENERALIZED GEOMETRY 91

such that Fβ − Fα = dAαβ . In this case the 3-form H such that H/2π has
integral periods is the curvature.

Remark: Instead of thinking in cohomological terms about writing a cocy-
cle of closed 2-forms Bαβ as a coboundary Fβ−Fα in the sheaf of all 2-forms,
there is a more geometric interpretation of this choice which can be quite
convenient. The B-field action of Fα gives an isomorphism of T ⊕ T ∗ with
itself over Uα and the relation Fβ − Fα =Bαβ says that this extends to an
isomorphism

E ∼= T ⊕ T ∗.

More concretely, X over Uα is mapped to X+ iXFα ∈ E and defines a split-
ting (in fact an isotropic splitting) of the extension 0 → T ∗ → E→ T → 0.

With the same coboundary data, we identified the spinor bundle S with
the exterior algebra bundle and now we note that

(X + iXFα) · e−Fαϕα = −e−FαiXϕα

so the two are compatible. We have a choice – either consider E,S with
their standard local models of T ⊕ T ∗ and Λ∗T ∗, or make the splitting and
give a global isomorphism. The cost is that we replace the ordinary exterior
derivative by d + H and, as can be seen from the proof of Proposition 1,
replace the standard Courant bracket by the twisted version

(12) [X + ξ, Y + η] + iY iXH.

2.3. Skew torsion. If we replace T ⊕ T ∗ by its twisted version E we
may ask how to incorporate a Riemannian metric as we did in the first
lecture. Here is the definition:

Definition 2. A generalized metric is a subbundle V ⊂ E of rank n on
which the induced inner product is positive definite.

Since the inner product on T ∗ ⊂ E is zero and is positive definite on V ,
V ∩ T ∗ = 0 and so in a local isomorphism E ∼= T ⊕ T ∗, V is the graph of a
map hα : T → T ∗. So, splitting into symmetric and skew symmetric parts

hα = gα + Fα.

On the twofold intersection

hα(X) = hβ(X) + iXBαβ .

Thus hα(X)(X) = hβ(X)(X) = g(X,X) for a well-defined Riemannian met-
ric g, but Fα = Fβ + Bαβ . Associated with a generalized metric we thus
obtain a natural splitting.

Now the definition of a connection in Proposition 3 makes perfectly good
sense in the twisted case. To see what we get, let us redo the calculation
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using local coordinates. In this case V is defined locally by X + gX + iXFα

and V ⊥ by X − gX + iXFα (we are just transforming the V and V ⊥ of the
metric g by the orthogonal transformation of the local B-field Fα.) So the
appropriate Courant bracket is

[
∂

∂xi
− gikdxk + Fikdxk,

∂

∂xj
+ gj�dx� + Fj�dx�

]

and this gives the terms for the Levi-Civita connection plus a term1

∂Fj�

∂xi
dx� − ∂Fik

∂xj
dxk − 1

2
d(Fji − Fij) =

(
∂Fj�

∂xi
− ∂Fi�

∂xj
+
∂Fij

∂x�

)
dx�.

(We could also have used the twisted bracket as in (12).)
Writing the skew bilinear form Fα as

∑
i<j Fijdxi ∧ dxj , and dFα =∑

i<j<k Hijkdxi ∧ dxj ∧ dxk, this last term is Hji�dx� and represents a con-
nection with skew torsion: recall that the torsion of a connection on the
tangent bundle is

T (X,Y ) = ∇XY −∇YX − [X,Y ]

and is said be skew if g(T (X,Y ), Z) is skew-symmetric. In our case, with
X = ∂/∂xi, Y = ∂/∂xj , we use as before the projection onto V to get

T

(
∂

∂xi
,
∂

∂xj

)
=Hji�g

�k ∂

∂xk
.

Remark: We could have interchanged the roles of V and V ⊥ in the above
argument – this would give a connection with opposite torsion −H.

Examples:

1. The standard example of a connection with skew torsion is the flat con-
nection given by trivializing the tangent bundle on a compact Lie group
by left translation, i.e. for all X ∈ g, ∇X = 0. Then T (X,Y ) = [X,Y ].

2. The second class of examples is given by the Bismut connection on the tan-
gent bundle of a Hermitian manifold. In [1] it is shown that any Hermitian
manifold has a unique connection with skew torsion which preserves the
complex structure and the Hermitian metric. In the Kähler case it is
the Levi-Civita connection, but in general the skew torsion is defined by
the 3-form dcω where ω is the Hermitian form.

1In a parallel discussion in [12] the third term in this expansion was unfortunately
omitted.
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3. Generalized complex manifolds

3.1. Generalized complex structures. There are many ways of
defining a complex manifold other than by the existence of holomorphic coor-
dinates. One is the following: an endomorphism J of T such that J2 = −1
and such that the +i eigenspace of J on the complexification T ⊗ C is
Frobenius-integrable. Of course it needs the Newlander-Nirenberg theorem
to find the holomorphic coordinates from this definition, but it is one that
we can adapt straightforwardly to the generalized case. The only extra con-
dition is compatibility with the inner product. So we have:

Definition 3. A generalized complex structure on a manifold is an
endomorphism J of T ⊕ T ∗ such that

• J2 = −1
• (Ju, v) = −(u, Jv)
• Sections of the subbundle E1,0 ⊂ (T ⊕ T ∗) ⊗ C defined by the +i

eigenspaces of J are closed under the Courant bracket.

Remarks:
1. It is not immediately obvious that the obstruction to integrability is ten-

sorial, i.e. if [u, v] is a section of E1,0 then so is [u, fv], but this is indeed
so. It depends on the fact that E1,0 is isotropic with respect to the inner
product. In fact if Ju= iu then

i(u, u) = (Ju, u) = −(u, Ju) = −i(u, u).
Then recall Property (3) of the Courant bracket: [u, fv] = f [u, v]+(Xf)v−
(u, v)df . If u, v are sections of E1,0 then (u, v) = 0 so

[u, fv] = f [u, v] + (Xf)v

and if u, v and [u, v] are sections, so is [u, fv].
2. The definition obviously extends to the twisted case, replacing
T ⊕ T ∗ by E.

3. The data of J is equivalent to giving an isotropic subbundle E1,0 ⊂ (T ⊕
T ∗) ⊗ C of rank n such that E1,0 ∩ Ē1,0 = 0. This is the way we shall
describe examples below, and we shall write E0,1 for Ē1,0.

4. The endomorphism J reduces the structure group of T ⊕ T ∗ from SO
(2m, 2m) to the indefinite unitary group U(m,m).

Examples:
1. An ordinary complex manifold is an example. We take E1,0 to be spanned

by (0, 1) tangent vectors and (1, 0) forms:

∂

∂z̄1
,
∂

∂z̄2
, . . . , dz1, dz2, . . .

The integrability condition is obvious here.
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2. A symplectic form ω defines a generalized complex structure. Here E1,0

is spanned by sections of (T ⊕ T ∗) ⊗ C of the form

∂

∂xj
− iωjkdxk.

This is best seen as the transform of T ⊂ T ⊕ T ∗ by the complex B-field
−iω. Since T is isotropic and its sections are obviously closed under the
Courant bracket (which is just the Lie bracket on vector fields) the same
is true of its transform by a closed 2-form.

3. A holomorphic Poisson manifold is an example. Recall that a Poisson
structure on a manifold is a section σ of Λ2T , which therefore defines
a homomorphism σ : T ∗ → T . For a function f , σ(df) =X is called a
Hamiltonian vector field and X(g) = σ(df, dg) is defined to be the Pois-
son bracket {f, g} of the two functions. The integrability condition for a
Poisson structure is

σ(d{f, g}) = [X,Y ]

where Y is the Hamiltonian vector field of g.

If M is a complex manifold and σ ∈ Λ2T 1,0 a holomorphic Poisson struc-
ture then E1,0 is spanned by

∂

∂z̄1
,
∂

∂z̄2
, . . . , dz1 − σ(dz1), dz2 − σ(dz1), . . .

Because σ is holomorphic the only potentially non-trivial Courant brackets
are of the form

[dzi − σ(dzi), dzj − σ(dzj)] = [σ(dzi), σ(dzj)] − d{zi, zj} + d{zj , zi}
+

1
2
d({zi, zj} − {zj , zi}).

But the Courant bracket on vector fields is the Lie bracket so by integrability
of the Poisson structure [σ(dzi), σ(dzj)] = σ(d{zi, zj}) and hence the bracket
above is

σ(d{zi, zj}) − d{zi, zj}
which again lies in E1,0.

There is another way to describe the integrability which can be very
useful. The subbundle E1,0 has rank n and is isotropic in a 2n-dimensional
space. For a non-degenerate inner product this is the maximal dimension.
Given any spinor ψ, the space of x ∈W such that x · ψ = 0 is isotropic
because 0 = x · x · ψ = (x, x)ψ. A maximal isotropic subspace is determined
by a special type of spinor called a pure spinor.

So to any maximal isotropic subspace we can associate a one-dimensional
space of pure spinors it annihilates. Hence a generalized complex manifold
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has a complex line subbundle of Λ∗T ∗ ⊗ C (called the canonical bundle)
consisting of multiples of a pure spinor defining J . The condition E1,0 ∩
Ē1,0 = 0 is equivalent to the Mukai pairing 〈ψ, ψ̄〉 for the spinor and its
conjugate being non-zero.

Examples:

1. For an ordinary complex manifold the subspace

∂

∂z̄1
,
∂

∂z̄2
, . . . , dz1, dz2, . . .

annihilates dz1∧dz2∧· · ·∧dzm. This generates the usual canonical bundle
of a complex manifold.

2. The tangent space T annihilates 1 by Clifford multiplication (interior
product). Hence for a symplectic manifold the transform of T by −iω
annihilates the form eiω. Here the canonical bundle is trivialized by this
form.
Here is integrability in this context:

Proposition 5. Let ψ be a form which is a pure spinor with 〈ψ, ψ̄〉 �= 0.
Then it defines a generalized complex structure if and only if dψ = w ·ψ for
some local section w of (T ⊕ T ∗) ⊗ C.

Proof. First assume dψ = w · ψ. Suppose u · ψ = 0 = v · ψ. Then, since
the Lie derivative Lv acts via the Lie algebra action and so preserves the
Clifford product, we have 0 = Lv(u · ψ) = Lvu · ψ + u · Lvψ.

Using the Cartan formula Lvψ = d(v ·ψ)+v ·dψ = v ·dψ = v ·w ·ψ and so

Lvu · ψ + u · v · w · ψ = 0

Now use the Clifford relations,

u · v · w · ψ = u · (2(v, w) − w · v) · ψ = 0

since u ·ψ = 0 = v ·ψ. We deduce that Lvu ·ψ = 0. Hence, interchanging the
roles of u and v and subtracting,

0 = Lvu · ψ − Luv · ψ = 2[v, u] · ψ
from (10).

The Courant bracket therefore preserves the annihilator of ψ and we
have the integrability condition for a generalized complex structure.

Conversely, assume the structure is integrable. If u · ψ = 0 = v · ψ then
from the definition of integrability [u, v] ·ψ = 0 and so Lvu ·ψ−Luv ·ψ = 0.
But then from the above algebra we have (u · v − v · u) · dψ = 0 or, since
u · v = −v · u+ 2(u, v)1 = −v · u,

u · v · dψ = 0.
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As far as the linear algebra is concerned, any two endomorphisms J satisfying
the conditions of a generalized complex structure are equivalent under the
action of SO(2m, 2m) – they form the orbit SO(2m, 2m)/U(m,m). Hence
to proceed, we can use the linear algebra of the standard complex structure
where ψ = dz1 ∧ · · · ∧ dzm to determine those ϕ which satisfy u · v · ϕ= 0.

Taking u= dzi and v = ∂/∂z̄j , the condition that u · v · ϕ= 0 for all i
means that ϕ is a sum of forms of type (m, q) or (p, 0). Taking u= dzi, v =
dzj we must have p=m or m − 1. Taking u= ∂/∂z̄i, v = ∂/∂z̄j we need
q = 0 or 1. Thus ϕ is a sum of (m, 0), (m, 1) and (m − 1, 0) terms. But dψ
has opposite parity to ψ so it must be (m, 1) and (m−1, 0) terms. However,
these are generated by dz̄i ∧ dz1 ∧ · · · ∧ dzm and i∂/∂zj

dz1 ∧ · · · ∧ dzm, that
is w · ψ, as required. �

Example: The simplest use of this integrability is when there is a global
closed form which is a pure spinor. Such manifolds are called generalized
Calabi-Yau manifolds and include ordinary Calabi-Yau manifolds where the
holomorphic m-form is ψ, or symplectic manifolds where ψ = eiω.

3.2. Symmetries and twisting. At first sight, there seems little com-
mon ground when we think of the symmetries of symplectic manifolds or
complex manifolds. In the first case, any smooth function defines a Hamil-
tonian vector field, in the second the Lie algebra of holomorphic vector fields
is at most finite-dimensional and often zero. In generalized geometry, how-
ever, we use the extended group Ω2(M)cl � Diff(M) and this restores the
balance between the two.

Proposition 6. Let J be a generalized complex structure and f a smooth
function. Then if X + ξ = J(df), X − dξ in the Lie algebra of Ω2(M)cl �

Diff(M) preserves J .

Proof. If u= Jdf , then decompose u= u1,0+u0,1 into its ±i eigenspace
components of J , so that −df = Ju= iu1,0 − iu0,1. Let ψ be a local section
of the canonical bundle, then u1,0 · ψ = 0 and hence

u · ψ = u0,1 · ψ = −idf · ψ = −idf ∧ ψ.
Thus, using Proposition 5 and the Cartan formula

Luψ = d(u · ψ) + u · dψ = d(−idf ∧ ψ) + u · dψ = (idf + u) · w · ψ.
But idf + u= u1,0 − u0,1 + u1,0 + u0,1 = 2u1,0 and so

Luψ = 2u1,0 · w · ψ = 4(u1,0, w)ψ

using the Clifford identity u1,0 · w + w · u1,0 = 2(u1,0, w)1 and u1,0 · ψ = 0.
It follows that the Lie derivative of ψ is a multiple of ψ and so preserves

the generalized complex structure. �
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From this proposition we can see how a complex manifold acquires sym-
metries from smooth functions, for in this case Jdf =X + ξ = −dcf and
exponentiating we have the B-field action of the closed 2-form ddcf .

Slightly more generally, any real closed (1, 1)-form is a symmetry of an
ordinary complex structure thought of as a generalized complex structure,
since the interior product with a (0, 1)-vector ∂/∂z̄i is a (1, 0) form – a linear
combination of dzjs. It follows that, if we take a 1-cocycle of such forms and
construct an extension E as in Section 2.2, we obtain a twisted generalized
complex structure on E.

In particular, given a closed 3-form H of type (1, 2) we can write this on
a small enough open set Uα as ∂∂̄Aα for a (0, 1)-form Aα. Then on a twofold
intersection ∂∂̄Aα − ∂∂̄Aβ = 0 and hence d(∂̄Aα − ∂̄Aβ) = 0. Defining Bαβ

to be the real part of ∂̄(Aβ −Aα) gives such a cocycle.

3.3. The ∂̄-operator. On a manifold with generalized complex struc-
ture J we have the eigenspace decomposition (T ⊕ T ∗) ⊗ C = E1,0 ⊕ E0,1,
and given a function f we define ∂̄Jf to be the (0, 1)-component. Note that
in the twisted case we have T ∗ ⊂ E and so we can do the same.

Examples:
1. For an ordinary complex manifold

∂̄Jf = ∂̄f.

2. For a symplectic structure ω

∂̄Jf =
1
2
(iX + df)

where X is the Hamiltonian vector field of f i.e. iXω = df . Note that in
this case ∂̄Jf = 0 implies that f is constant, so we can’t approach gener-
alized complex geometry purely in terms of sheaves of local holomorphic
functions.

3. For a holomorphic Poisson structure σ

∂̄Jf = ∂̄f + σ(∂f) − σ̄(∂̄f)

The ∂̄-operator maps functions to sections of E0,1, and we want to extend
it to a complex just like the Dolbeault complex of a complex manifold. For
this we need to extend to an operator

∂̄J : C∞(E0,1) → C∞(Λ2E0,1).

There is an obvious formula, analogous to the usual definition of the exterior
derivative, but using the Courant bracket instead of the Lie bracket. Note
first that because E1,0 is maximal isotropic, the inner product identifies
E0,1 with the dual of E1,0, so ΛpE0,1 is the space of alternating multilinear
p-forms on E1,0.
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The extended operator is then given, for sections u=X + ξ, v = Y + η
of E1,0 by the usual formula, but with the Courant bracket [u, v]:

(13) 2∂̄Jα(u, v) =X(α(v)) − Y (α(u)) + α([u, v]).

Given this, there is an obvious extension to an operator

∂̄J : C∞(ΛpE0,1) → C∞(Λp+1E0,1)

which satisfies the property

∂̄J(fα) = ∂̄Jf ∧ α+ f∂̄Jα.

The only point to make here is that the relation ∂̄2
J = 0 requires the

Jacobi identity for the Courant bracket which we know doesn’t hold in gen-
eral. However, its failure as in Proposition 2 is due to the term

d(([u, v], w) + ([v, w], u) + ([w, u], v)).

But by the definition of a generalized complex structure the Courant bracket
[u, v] of two sections of E1,0 is also a section, and as we have seen, E1,0 is
isotropic. It follows that this expression is zero for such sections and the
Jacobi identity holds.
Examples:
1. In the case of an ordinary complex structure E0,1 = T̄ ∗⊕T where T here

denotes the holomorphic tangent bundle. Hence

ΛmE0,1 =
⊕

p+q=m

ΛpT ⊗ ΛqT̄ ∗.

The ∂̄J complex is then the direct sum over p of the Dolbeault complexes
for polyvector fields:

→ Ω0,q(ΛpT ) ∂̄→ Ω0,q+1(ΛpT ) →
2. Now consider a twisted version of this example. The ∂̄J operator is now a

twisted version of the Dolbeault complex, similar to the twisted exterior
derivative in Section 2.2. It is easiest to describe if we choose an isotropic
splitting. Then we have to add onto the Courant bracket in equation (13)
the H-term, evaluated on (0, 1)-vectors. It gives us

∂̄J = ∂̄ −H1,2

where ∂̄ is the usual Dolbeault operator

∂̄ : Ω0,q(ΛpT ) → Ω0,q+1(ΛpT )

and the 3–form H1,2 acts by contraction in the (1, 0) factor and exterior
product on the (0, 2) part:

H1,2 : Ω0,q(ΛpT ) → Ω0,q+2(Λp−1T ).

Note that the total degree is unchanged (q + 1) + p= (q + 2) + (p− 1).
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4. Generalized Kähler manifolds

4.1. Bihermitian metrics. Given that a complex structure I and a
symplectic structure ω are both types of generalized complex structure, it
makes sense to consider the analogue of a Kähler structure. The compat-
ibility of I and ω is that ω should be of type (1, 1) with respect to I (an
algebraic condition) and also that the resulting Hermitian inner product
should be positive definite. The algebraic condition when translated into a
condition on two generalized complex structures J1, J2 is that they should
commute. We make this then a definition, and see what more we can find
beyond ordinary Kähler metrics:

Definition 4. A generalized Kähler structure on a manifold consists
of a pair of commuting generalized complex structures J1, J2 such that the
inner product (J1J2u, v) is positive definite.

Note that (J1J2u, v) = −(J2u, J1v) = (u, J2J1v) = (u, J1J2v) so that
(J1J2u, v) does define a symmetric bilinear form.

This is a natural definition in generalized geometry, but it gives in general
the notion of a bihermitian metric. This is the theorem of Gualtieri:

Theorem 7. A generalized Kähler structure on a manifold gives rise to
the following:

• a Riemannian metric g
• two integrable complex structures I+, I−, Hermitian with respect

to g
• affine connections ∇± with skew torsion ±H which preserve the

metric and the complex structure I±.

Conversely, given this data, we can define a generalized Kähler structure,
unique up to the action of a B-field.

The proof below is based on that of [9]. The surprising thing about this
theorem is that it reveals a geometry considered long ago by the physicists
Gates, Hull and Roček [4].

Proof.

1. Since the two generalized complex structures are orthogonal transforma-
tions and commute, (J1J2)2 = (−1)(−1) = 1 and we have ±1 orthogonal
eigenspaces V and V ⊥. Splitting u ∈ T ⊕ T ∗ into components u+ + u−,
the positive definiteness of (J1J2u, v) means that (u+, u+) − (u−, u−) is
positive definite. So V is positive definite and V ⊥ is negative definite. But
the signature of the inner product is (n, n) so dimV = dimV ⊥ = n. This
is a generalized metric as defined in Section 2.3 and so already gives us
metric connections with skew torsion.
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2. Next we find the complex structures. Since J1 commutes with J1J2, it
preserves the eigenspaces and defines an almost complex structure I+
on M by J1X

+ = (I+X)+ (on V , J2 = −J1 and so J2 defines the oppo-
site structure). On V ⊥ J1 = J2 defines similarly a complex structure I−.
Complexifying T ⊕T ∗ we have a decomposition into four equidimensional
subbundles corresponding to the pairs of eigenvalues of ±i of J1 and J2:
V ++, V +−, V −+, V −−.

So V , where J1J2 = 1 is equal to V +− ⊕ V −+ and V +− projects to
the +i eigenspace of I+ on T ⊗ C. These subbundles are intersections of
eigenspaces of J1, J2 and hence their sections are closed under Courant
bracket. But the vector field part of the Courant bracket is just the Lie
bracket, hence the +i eigenspace of I+ is closed under Lie bracket and
hence I+ is integrable.

3. We need to show that the connection ∇ on V preserves the complex
structure I+, or in other words preserves the subbundle V +−. Since this
is maximal isotropic in V ⊗ C, we need to show that for any sections u
and v of V +− the inner product (∇Xu, v) = 0. By the Courant bracket
definition of the connection we need ([X−, u], v) = 0.

Decompose X− = x1 + x2 in V ⊥ = V ++ ⊕ V −−. Now x1, u are both
in the +i eigenspace of J1, hence so is the Courant bracket [x1, u]. Since
v is also in this eigenspace, which is isotropic, we have ([x1, u], v) = 0.
Similarly x2 is in the −i eigenspace of J2, as are u and v, so ([x2, u], v) = 0.
It follows that ([X−, u], v) = ([x1, u], v) + ([x2, u], v) = 0.

We now have a connection ∇+ with skew torsion which preserves the
metric and the complex structure, and so is the Bismut connection.

4. For the converse, assume we have the bihermitian data. Then the graph
of the metric defines V ⊂ T ⊕ T ∗ and we use the H-twisted Courant
bracket which defines the connection. A closed B-field will transform this
to another V , but defining the same connections on T , so there is an
ambiguity at this stage.

The complex structure I+ splits the complexification of V into (1, 0)
and (0, 1) parts V +− ⊕ V −+ and similarly I− splits V ⊥ complexified
into V ++ ⊕ V −−. We shall prove firstly that sections of these subbundles
V +− etc. are closed under the Courant bracket, and then that sections of
V ++ ⊕ V +− are also closed. Defining J1 as having +i eigenspace V ++ ⊕
V +−, the closure condition will then make J1 into a generalized complex
structure.

So consider first V +−. Choose local holomorphic coordinates z1, . . . ,
zm with respect to I+. Then elements of V +− can be written as

∂

∂zi
+ gij̄dz̄j =

∂

∂zi
+ iωij̄dz̄j
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where ω is the Hermitian form. As in the calculation in Section 2.3, the
Courant bracket[

∂

∂zi
+ iωik̄dz̄k,

∂

∂zj
+ iωj�̄dz̄�

]
= i(∂ω)ji�̄dz̄� −Hji�̄dz̄� −Hji�dz�.

But the connection is compatible with g and I+ and is thus the Bismut
connection, for which H = dcω. This is a form of type (2, 1) + (1, 2) and
so has no (3, 0) component so Hji� = 0; the (2, 1) component is ∂ω and so
the Courant bracket vanishes. The other three cases are similar.

5. Now consider V ++ ⊕ V +−. The Courant bracket preserves sections of
each component so we only have to check that [u, v] ∈ V ++ ⊕ V +− for
u a section of V ++ and v of V +−. Because this is maximal isotropic in
(T⊕T ∗)⊗C, we need, as above, the vanishing of ([u, v], w) for w = w++w−
a section of V ++ ⊕ V +−.

We just showed that the Courant bracket preserves V ++ so [u,w+] is
a section of V ++ and hence (v, [u,w+]) = 0 by isotropy. Property (4) of
the Courant bracket is, for any u, v, w,

X(v, w) = ([u, v] + d(u, v), w) + (v, [u,w] + d(u,w)).

Since V ++ ⊕ V +− is isotropic this means that for our u, v, w

([u, v], w) + (v, [u,w]) = 0.

In particular, since (v, [u,w+]) = 0, ([u, v], w+) = 0.
Similarly w− and v are sections of V +−, hence [v, w−] is a section of

V +−, so that (u, [v, w−]) = 0 and then ([u, v], w−) = 0.
Hence ([u, v], w) = ([u, v], w+) + ([u, v], w−) = 0 and J1 satisfies the

integrability condition; the same argument works for J2.

�

Giving examples of generalized Kähler manifolds is not so straightfor-
ward as in previous notions. There are some ad hoc explicit constructions in
the literature, some of which venture into the non-Kähler domain, such as
even-dimensional compact Lie groups, but the existence theorem of R. Goto
[6] is the most powerful method to date, and we shall describe the most
useful version of this next. The original theorem is somewhat more general
than that described here, and uses the full language of generalized geometry.

4.2. Goto’s deformation theorem. Recall that a holomorphic
Poisson structure σ gives a generalized complex structure with E1,0

spanned by

∂

∂z̄1
,
∂

∂z̄2
, . . . , dz1 − σ(dz1), dz2 − σ(dz1), . . .
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But for t ∈ C, tσ is still a Poisson structure and as t→ 0 we get a smooth
family J1(t) of generalized complex structures where J1(0) is just the stan-
dard complex structure with E1,0 defined by

∂

∂z̄1
,
∂

∂z̄2
, . . . , dz1, dz2, . . . .

Goto’s idea is to start with a holomorphic Poisson manifold together with
a Kähler structure. The complex structure gives the generalized complex
structure J1 = J1(0) and the symplectic structure of the Kähler form gives
another, J2. One then attempts to find, for small enough t, a family of gen-
eralized complex structures J2(t) which commute with J1(t) and for which
J2(0) = J2.

Of course to use this to construct generalized Kähler manifolds one needs
to start with a compact Kähler holomorphic Poisson manifold, but there are
a number of examples:

Examples:

1. Any algebraic surface with a holomorphic section of Λ2T – this is the
anticanonical line bundle. In dimension two, the integrability of σ is auto-
matic. Examples are CP2 blown up at k points on a cubic curve.

2. The Hilbert scheme of n points on a Poisson surface.
3. Any threefold with a square root K1/2 of the canonical bundle such that
K−1/2 has at least two sections: for example a Fano threefold of index 2
or 4. In this case take two sections s1, s2 of K−1/2, then the Wronskian
s1ds2 − s2ds1 is a section of T ∗(K−1) ∼= Λ2T which satisfies the integra-
bility condition.

Remark: In fact, any bihermitian manifold defines a holomorphic Pois-
son structure – the tensor g([I+, I−]X,Y ) is the real part of a holomorphic
Poisson structure with respect to either I+ or I− [13]. It means that Pois-
son geometry is a central theme in this area but it would be confusing at
this point to discuss the relationship between all three of these holomorphic
Poisson structures.

Here then is Goto’s theorem:

Theorem 8. Let M be a compact Kähler manifold with holomorphic
Poisson structure σ. Let J1(t) be the generalized complex structure defined by
tσ, then for sufficiently small t there exists an analytic family of generalized
Kähler structures (J1(t), J2(t)).

Proof. The proof uses the fact that, from a linear algebra point of view,
J1, J2 reduce the structure group of T ⊕ T ∗ to U(m) × U(m) – the unitary
structures on V and V ⊥. In particular any two such structures are pointwise
equivalent under the action of SO(2m, 2m). The idea is then to seek a formal
power series z(t) = tz1 + t2z2 + · · · of skew adjoint endomorphisms of T ⊕T ∗
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such that

• exp z(t) transforms J1(0) to J1(t) and
• d(exp z(t)eiω) = 0.

and then to

• solve the equations term-by-term and then
• prove convergence by using Green’s functions and harmonic theory.

Recall from Section 3.1 that eiω is the pure spinor which defines the sym-
plectic generalized complex structure. Then ψ = exp z(t)eiω is again pure
and satisfies 〈ψ, ψ̄〉 = 〈eiω, e−iω〉 and therefore defines a J2(t). And if dψ = 0
it follows from Proposition 5 that J2(t) satisfies the integrability condition.
The last part of the process, proving convergence, is quite standard in this
type of deformation theory, so we shall focus on the first part, which uses a
number of features of generalized geometry.

1. Let σ be the Poisson tensor and put a= σ + σ̄. This is a section of
the real exterior power Λ2T , which is part of the bundle of skew-adjoint
endomorphisms of T ⊕ T ∗, i.e. Λ2T ⊕ EndT ⊕ Λ2T ∗.

Let b be a skew-adjoint endomorphism which preserves the generalized
complex structure J1(0), which is the ordinary complex structure. Then b is
a real section of Λ1,1T 1,0 ⊕ EndC T ⊕ Λ1,1(T 1,0)∗.

For a power series b(t), the composition exp at ◦ exp b(t) can (for small
enough t) be written as exp z for a power series z = z(t) and by construction
its action transforms J1(0) to J1(t).
2. The Clifford algebra of a vector space W has a filtration according to the
product of generators in W : Cl0 ⊂ Cl2 ⊂ Cl4 ⊂ · · · and Cl1 ⊂ Cl3 ⊂ Cl5 ⊂ . . .
(the parity is preserved because x · y+ y · x= 2(x, y)1 is of degree zero). We
saw in Section 2.1 that {a ∈ Cl(W ) : [a,W ] ⊆W and a= −at} is isomorphic
under the spin representation to the skew-adjoint endomorphisms of W , so
we consider z as lying in Cl2 and exponentiation in the group is exponenti-
ation in the Clifford algebra. It follows that in Cl(T ⊕ T ∗) we have

e−z Cl1 ez ⊆ Cl1 .

3. We need to solve d(ez · ψ) = 0 where ψ = eiω so we consider the operator
e−zd ez for z a section of Cl2 (note that if z =B in Λ2T ∗ ⊂ Λ2T ⊕ EndT ⊕
Λ2T ∗, then e−zd ez is the twisted differential d+H where H = dB which we
met in Section 2.2, but here we need the general case).

We use the formula

dϕ=
∑

i

dxi ∧ L∂/∂xi
ϕ.
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(This is trivially true on functions and the right hand side has the obvious
property d(α ∧ β) = dα ∧ β + (−1)pα ∧ dβ.) Then

e−zd ez · ϕ= e−z
∑

i

dxi ∧ L∂/∂xi
(ez · ϕ)

=
∑

i

(e−z · dxi · ez) · e−zL∂/∂xi
(ez · ϕ)

where we have rewritten the exterior product by a 1-form as a Clifford
product. This expands to

∑
i

(e−z · dxi · ez)((e−zL∂/∂xi
ez)ϕ+ L∂/∂xi

ϕ).

Now ui = e−z · dxi · ez is a local section of Cl1 and ai = (e−zL∂/∂xi
ez) is a

section of the Lie algebra bundle in Cl2, so we have

(14) e−zd ezϕ=
∑

i

ui · ai · ϕ+ ui · L∂/∂xi
ϕ

4. We need to consider the action of exp z on the pair J1(0), J2(0) and it is
convenient to see this via the pair of pure spinors (ψ,ϕ) = (eiω, dz1∧· · ·∧dzm)
– the first is global, the second only local. The Lie derivative action on
T ⊕ T ∗ preserves the inner product and the pair (ψ,ϕ) at each point lie in
an SO(2m, 2m) orbit, so

L∂/∂xi
(ψ,ϕ) = (ci · ψ, ci · ϕ)

for some local section ci of Cl2. From equation (14) we then have

e−zd ez(ψ,ϕ) = (h · ψ, h · ϕ)

for some h=
∑

i ui · (ai + ci) a section of Cl3.
But by our choice of z, ezϕ defines a generalized complex structure so

by the integrability criterion in Proposition 5 we have d(ezϕ) = w · ez ·ϕ for
some w a local section of Cl1 = T ⊕ T ∗. Putting v = e−z ·w · ez this gives us
two equations: an algebraic condition on h, a section of Cl3, that v ·ϕ= h ·ϕ
for some v a section of Cl1, and the differential equation

(15) e−zd(ezψ) = h · ψ.

The important thing to note is that there is an h satisfying these conditions
for any b(t) = tb1 + t2b2 + · · · .
5. We now need to identify the objects on the right hand side of this equation,
which is the second item in the following lemma:
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Lemma 9. Let b ∈ Cl2 and h ∈ Cl3 be real elements, then
(i) if b preserves dz1 ∧ · · · ∧ dzm up to a scalar multiple, then b · eiω ∈

(Λ0 + Λ1,1) ∧ eiω.
(ii) If h satisfies h ·dz1 ∧ · · ·∧dzm = v ·dz1 ∧ · · ·∧dzm for some v ∈ Cl1

then h · eiω ∈ (Λ1 + Λ2,1 + Λ1,2) ∧ eiω.

Proof. (i) If X is any tangent vector, iXeiω = i(iXω)∧ eiω so the action of
b can always be realized as the exterior product by some 0-form plus 2-form.
The (1, 1) forms annihilate dz1 ∧ · · · ∧ dzm and so Λ1,1 ∧ eiω is in the image.
Terms in (Λ2,0 + Λ0,2) ∧ eiω can arise from real linear combinations of the
real and imaginary parts of

∂

∂zi
· ∂

∂zj

∂

∂zi
· dz̄j dz̄i · dz̄j

But applied to dz1 ∧ · · · ∧ dzm these give non-zero terms with the respective
(p, q) types (m − 2, 0), (m − 1, 1), (m, 2) and so do not preserve the pure
spinor.
(ii) If v ∈ Cl1 then v ·dz1∧· · ·∧dzm is of type (m−1, 0) + (m, 1). As in (i), the
action of h on eiω is the exterior product of some 1-form plus 3-form. Forms
of type (2, 1) + (1, 2) annihilate dz1 ∧ · · · ∧ dzm by exterior multiplication so
(Λ2,1 + Λ1,2)∧ eiω is in the image. This time terms in (Λ3,0 + Λ0,3)∧ eiω can
arise from combinations of

∂

∂zi
· ∂

∂zj
· ∂

∂zk

∂

∂zi
· ∂

∂zj
· dz̄j ∂

∂zi
· dz̄j · dz̄k dz̄i · dz̄j · dz̄k

but these applied to dz1 ∧ · · · ∧ dzm give non-zero forms with the (p, q)
types (m − 3, 0), (m − 2, 1), (m − 1, 2), (m, 3) and not the required types
(m− 1, 0), (m, 1).

It is easy to see that when b or h are real, we can realize the action by
a real form. �

6. We now begin the term-by-term solution to the equation d(ezψ) = 0.
Recall that

ez(t) = etaeb(t) = 1 + t(a+ b1) + · · ·
and so

e−zd(ezψ) = td((a+ b1)ψ) + o(t2)

so the first task is to solve d((a+ b1)ψ) = 0 for b1. If we put all the bi = 0 in
Equation (15), and use item (ii) in Lemma 9 then we see that

d(aψ) ∈ (Ω1 + Ω2,1 + Ω1,2) ∧ ψ.
But exterior product with ψ = eiω is invertible and commutes with d, so we
have an exact form in Ω1 + Ω2,1 + Ω1,2 and, to find b1, from item (i) in the
lemma we want this to lie in d(Ω0 + Ω1,1).
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The 1-form part is obvious. Write the component in Ω2,1 + Ω1,2 as the
exact form d(α2,0 + α1,1 + α0,2) then ∂̄α0,2 = 0 so ∂α0,2 is ∂̄-closed and ∂-
exact. So by the ∂∂̄-lemma (valid for Kähler manifolds) we can write

∂α0,2 = ∂∂̄θ0,1

and so the (1, 2) component of the exact form can be written as

∂̄α1,1 + ∂α0,2 = ∂̄(α1,1 − ∂θ0,1)

and then α1,1 − ∂θ0,1 − ∂θ0,1 is the required (1, 1) form.
7. In general suppose we have inductively found b1, . . . , bk−1 so that
d(ez(t)ψ)i = 0 for i < k, then

(e−z(t)d(ez(t)ψ))k =
∑

i+j=k

(e−z(t))jd(ez(t)ψ)i = (d(ez(t)ψ))k.

Then using (15) and the ∂∂̄-lemma again we can solve for bk. �

4.3. Deformation of the bihermitian structure. According to
Gualtieri’s theorem, Goto’s result gives a pair of complex structures I+, I−
starting from a Kählerian holomorphic Poisson manifold. One may ask where
these are coming from, and we can answer this at the infinitesimal level.

Recall that given a smooth family I(t) of complex structures the deriv-
ative I ′ satisfies I ′I + II ′ = 0 and defines a ∂̄-closed section of T 1,0 ⊗ (T ∗)0,1

which gives the Kodaira-Spencer class in the Dolbeault cohomology group
[I ′] ∈H1(M,T ). More concretely, if we write

(
∂

∂z̄j

)′
= αj̄k

∂

∂zk
+ βj̄k̄

∂

∂z̄k

then the Kodaira-Spencer class is represented by

αj̄k

∂

∂zk
dz̄j

We defined the complex structure I+ in Theorem 7 in terms of the intersec-
tion of the +i eigenspace of J1 and the −i eigenspace of J2: in the Kähler
case this gives sections of (T ⊕ T ∗) ⊗ C spanned by terms of the form

uj =
∂

∂z̄j
+ iωj̄kdzk.

Deform this and we are looking for sections uj(t) such that uj · ψ = 0 and
uj ·ϕ= 0. So differentiating with respect to t at t= 0, u′j ·ψ+uj ·ψ′ = 0 and
u′j · ϕ+ uj · ϕ′ = 0. Now ϕ(t) = eatdz1 ∧ · · · ∧ dzm, so

ϕ′ = a · dz1 ∧ · · · ∧ dzm = σpqi∂/∂zp
i∂/∂zq

dz1 ∧ · · · ∧ dzm.



LECTURES ON GENERALIZED GEOMETRY 107

and hence, considering the (m−1, 0) component of the equation u′j ·ϕ+uj ·
ϕ′ = 0 we get

αj̄ki∂/∂zk
dz1 ∧ · · · ∧ dzm + iωj̄kdzk ∧ σpqi∂/∂zp

i∂/∂zq
dz1 ∧ · · · ∧ dzm = 0.

But

i∂/∂zp
(dzk ∧ i∂/∂zq

dz1 ∧ · · · ∧ dzm) = δpki∂/∂zq
dz1 ∧ · · · ∧ dzm

− dzk ∧ i∂/∂zp
i∂/∂zq

dz1 ∧ · · · ∧ dzm

and

dzk ∧ i∂/∂zq
dz1 ∧ · · · ∧ dzm = δqkdz1 ∧ · · · ∧ dzm.

It follows that

αj̄k = −2iωj̄�σ
�k.

More invariantly, the Kähler form ω defines a Dolbeault class in
H1(M,T ∗) =H1,1 and the Poisson tensor σ lies in H0(M,Λ2T ); then the
Kodaira-Spencer class in H1(M,T ) for the deformation I+(t) is the cup
product combined with contraction σω. If we do the same for I−(t) we get
the negative of this class.

Examples:

1. For CP2, the bundle Λ2T is isomorphic to O(3), and a holomorphic Pois-
son structure is defined by a section of this, which vanishes on a cubic
curve. As mentioned earlier, blowing up r points on this curve, the proper
transform is again an anticanonical divisor and so defines a Poisson struc-
ture. If E1, . . . , Er are the cohomology classes of the exceptional curves
on the blow-up and H the pull-back of a generator of H2(CP2,Z) then a
Kähler form ω has a cohomology class of the form

[ω] = aH +
r∑
1

ciEi

where a > 0 and ci < 0. In this case the Kodaira-Spencer class for I+
above consists of moving the points along the cubic curve with velocities
(relative to a trivialization of the tangent bundle of the elliptic curve)
proportional to ci. For I−, since ci have the same sign, the points all
move in the opposite direction.

2. If the cohomology class of the Kähler form is a multiple of c1(T ) then, as
we shall see in the next lecture, the Kodaira-Spencer class is zero. This is
consistent with some concrete constructions of one-parameter families of
bihermitian metrics on Fano manifolds in [14] and [7], where I+(t) and
I−(t) are all equivalent under a diffeomorphism.
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One corollary of Goto’s theorem is that a Kodaira-Spencer class of the
form just described is unobstructed – there exists a one parameter family
integrating it. This is reminiscent of the Tian-Todorov result on Calabi-Yau
manifolds. (In fact the analogy is close since Goto’s theorem is a deforma-
tion theorem of generalized Calabi-Yau manifolds: the generalized complex
structure J2(t) is defined by a closed pure spinor.) One can see this, however,
directly without the language of generalized geometry:

Proposition 10. Let M be a compact complex manifold with Kähler
form ω and holomorphic Poisson tensor σ. Then the Kodaira-Spencer class
σω ∈H1(M,T ) is unobstructed.

Proof. For the deformation of a complex structure, one looks for a
global φ ∈ Ω0,1(T ) which satisfies the equation

∂̄φ= [φ, φ]

where the bracket is the Lie bracket on vector fields together with exterior
product on (0, 1)-forms, and, as above, one solves this (if possible) term-
by-term for a series φ(t) = tφ1 + t2φ2 + · · · where φ1 represents the initial
Kodaira-Spencer class.

The coefficient of t2 requires a solution for φ2 of

(16) ∂̄φ2 = [φ1, φ1].

Now locally we have the Kähler potential

ωj̄� =
∂2f

∂z�∂z̄j

and then writing fj̄ = ∂f/∂z̄j ,

φ1 = ωj̄�σ
�k ∂

∂zk
dz̄j = σ�k ∂2f

∂z�∂z̄j

∂

∂zk
dz̄j = σ(∂fj̄)dz̄j .

Therefore
[φ1, φ1] = σ(∂{fk̄, f�̄})dz̄k ∧ dz̄�

using the integrability of σ.
The Poisson bracket expression {fk̄, f�̄}dz̄k ∧ dz̄� looks local but it is

σijfik̄fj�̄ = σijωik̄ωj�̄

or more invariantly iσ(ω ∧ ω). Since σ is holomorphic and ω is ∂̄-closed,
iσ(ω ∧ ω) is also ∂̄-closed. Thus ∂iσ(ω ∧ ω) is ∂̄-closed and ∂-exact and so,
by the ∂∂̄-lemma

∂iσ(ω ∧ ω) = ∂̄∂α

for some (0, 1)-form α. It follows that

[φ1, φ1] = σ(∂iσ(ω ∧ ω)) = σ(∂̄∂α) = ∂̄(σ(∂α))

and we take φ2 = σ(∂α) to solve Equation (16).
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The coefficient of t3 typifies the inductive process: we need

∂̄φ3 = [φ1, φ2] + [φ2, φ1] = 2[φ1, φ2].

Write α= g�̄dz̄�. Then [φ1, φ2] = σ(∂{fk̄, g�̄})dz̄k ∧ dz̄� and

{fk̄, g�̄}dz̄k ∧ dz̄� = iσ(ω ∧ ∂α).

This is ∂̄-closed, for ∂̄iσ(ω∧∂α) = −iσ(ω∧ ∂̄∂α) and ∂iσ(ω∧ω) = ∂̄∂α, thus

∂̄iσ(ω ∧ ∂α) = −iσ(ω ∧ ∂iσ(ω ∧ ω)) = −σ(∂fj̄ , ∂{fk̄, f�̄})dz̄j ∧ dz̄k ∧ dz̄�.
But σ(∂fj̄ , ∂{fk̄, f�̄}) = {fj̄ , {fk̄, f�̄}} and so by the Jacobi identity for the
Poisson bracket ∂̄iσ(ω ∧ ∂α) = 0.

It then follows, as before, that ∂({fk̄, g�̄}dz̄k ∧ dz̄�) = ∂̄∂β and we take
φ3 = 2σ(∂β). �

5. Generalized holomorphic bundles

5.1. Basic features. The analytic viewpoint of a holomorphic vector
bundle V on a complex manifold was established by Malgrange (see [3]
Section 2.2.2 for a simple proof). The existence of sufficiently many local
holomorphic sections is equivalent to the existence of a differential oper-
ator ∂̄A : Ω0(V ) → Ω0,1(V ) such that ∂̄A(fs) = ∂̄fs + f∂̄As and such that
the standard extension to forms ∂̄2

A : Ω0(V ) → Ω0,2(V ) vanishes. Gualtieri
introduced the analogous concept in generalized complex geometry:

Definition 5. A generalized holomorphic bundle on a generalized com-
plex manifold (M,J) is a vector bundle V with a differential operator D̄ :
C∞(V ) → C∞(V ⊗ E0,1) such that for a smooth function f and section s

• D̄(fs) = ∂̄Jfs+ fD̄s
• D̄2 : C∞(V ) → C∞(V ⊗ Λ2E0,1) vanishes.

Given a local trivialization s1, . . . , sk of V we obtain a “connection
matrix” Aij with values in E0,1 defined by

D̄si =Ajisj

and then the condition D̄2 = 0 is ∂̄JA+A ·A= 0.

Remark: For an ordinary holomorphic bundle we have a Dolbeault complex

→ Ω0,p(V ) ∂̄→ Ω0,p+1(V ) →
and by the same token there is a generalized version

→ C∞(V ⊗ ΛpE0,1) D̄→ C∞(V ⊗ Λp+1E0,1) → .
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A universal example of a generalized holomorphic bundle is the canonical
bundle of the generalized complex structure – the subbundle K ⊂ Λ∗T ∗⊗C
of multiples of pure spinors whose annihilator is E1,0. To see this recall
Proposition 5, where we saw that J was integrable if and only if for any
local non-vanishing section ψ of K, we have dψ = w ·ψ for some local section
w of (T ⊕ T ∗) ⊗ C. The (1, 0) component of w annihilates ψ and the (0, 1)
component is unique because E1,0 ∩ E0,1 = 0, so we may as well assume w
lies in E0,1.

A global section s of K can be written locally as fψ and we define

D̄s= (∂̄Jf)ψ + fw · ψ.

If ψ1 = gψ is another local section, then w1 = g−1dg + w, f = f1g and one
can easily check that D̄s is well-defined.

We need also the condition D̄2 = 0 which means we need to prove that
∂̄Jw = 0. Let u=X + ξ, v = Y + η be sections of E1,0, then u ·ψ = 0 = v ·ψ
and

Luψ = d(u · ψ) + u · dψ = u · w · ψ = 2(u,w)ψ

and

LvLuψ = (2Y (u,w) + 4(u,w)(v, w))ψ.

Hence

(LuLv − LvLu)ψ = 2(X(v, w) − Y (u,w))ψ.

But (LuLv − LvLu)ψ = L[u,v]ψ (see the proof of Proposition 2) and since,
by integrability of J , [u, v] ·ψ = 0 we also have L[u,v]ψ = 2([u, v], w)ψ. Hence
([u, v], w) =X(v, w) − Y (u,w) which from the definition (13) is ∂̄Jw = 0.

From this we see also that a generalized Calabi-Yau manifold, which we
have defined as having a global closed ψ, can also be thought of as being
defined by a global non-vanishing generalized holomorphic section of the
canonical bundle.

For the specific examples of generalized complex structures – symplec-
tic, complex, holomorphic Poisson – we can determine what a generalized
holomorphic bundle means:

Examples:
1. On a symplectic manifold E0,1 is spanned by terms

∂

∂xj
+ iωjkdxk

or equivalently, inverting ωij , by

dxi − iωij
∂

∂xj
.
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Thus the 1-form part of the connection matrix for a generalized holomorphic
bundle

Ai

(
dxi − iωij

∂

∂xj

)

defines an ordinary connection and D̄2 = 0 implies it is a flat connection.
2. Now consider a complex manifold considered as a generalized complex
manifold. On might think that generalized holomorphic bundles are just
ordinary holomorphic bundles, but this is not quite the full picture, although
they do provide examples.

Since E0,1 = T̄ ∗ ⊕ T (where now T is the holomorphic tangent bundle)

D̄s= ∂̄As+ φs=
(
∂s

∂z̄j
+Aj̄s

)
dz̄j + φks

∂

∂zk

and D̄2 = 0 implies

∂̄2
A = 0 ∈ EndV ⊗ Λ2T̄ ∗, ∂̄Aφ= 0 ∈ EndV ⊗ T̄ ∗ ⊗ T,

φ2 = 0 ∈ EndV ⊗ Λ2T.

The first condition gives V the structure of a holomorphic vector bundle,
the second says that φ is a holomorphic section of EndV ⊗T , and the third
is an algebraic condition on φ. Since

φ2 =
1
2
[φj , φk]

∂

∂zj
∧ ∂

∂zk

this “integrability” condition is [φj , φk] = 0.
We call these co-Higgs bundles. A Higgs bundle in the sense of

C. Simpson [17] is the same definition with T replaced by T ∗.
3. The generalized complex structure determined by a holomorphic Poisson
tensor has E0,1 spanned by

∂

∂z1
,
∂

∂z2
, . . . , dz̄1 − σ̄(dz̄1), dz̄2 − σ̄(dz̄1), . . .

and the ∂̄J operator is

∂̄Jf = ∂̄f + σ(∂f) − σ̄(∂̄f).

We then write D̄ as

D̄s=
(
∂s

∂z̄j
+Aj̄s

)
(dz̄j − σ̄(dz̄j)) +

∂s

∂zj
σ(dzj) + φks

∂

∂zk
.

Again Aj̄ defines a holomorphic structure on V and then, in a local holo-
morphic basis, the operator is

D̄s=
∂s

∂zj
σ(dzj) + φks

∂

∂zk
.
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This is a first order holomorphic differential operator from V to V ⊗ T
whose symbol is 1⊗σ : V ⊗T ∗ → V ⊗T . We can define the action of a local
holomorphic function f on a section s by

f · s= 〈D̄s, df〉
and then the condition D̄2 = 0 says that

g · f · s− f · g · s= {g, f} · s.
Such a holomorphic bundle is called a Poisson module.

Remark: Note that, given a co-Higgs bundle (V, φ) we can define an action
of f on a local section by

f · s= φ(df)s

and then the φ2 = 0 condition says that g · f · s − f · g · s= 0. We can
thus interpret a co-Higgs bundle as a Poisson module for the zero Poisson
structure.

In the next two sections we shall examine the last two examples in more
detail.

5.2. Co-Higgs bundles. A co-Higgs bundle is, as we have seen, defined
by a pair consisting of a holomorphic vector bundle V and an endomorphism
φ, twisted by the tangent bundle. When studying such pairs one usually
imposes a stability condition in order to construct a Hausdorff moduli space.
On a Kähler manifold one can define the degree of a line bundle and the
slope deg ΛkV/k of a vector bundle V of rank k. The stability condition for
Higgs bundles in [17] is that the slope of any φ-invariant torsion-free sub-
sheaf should be less than the slope of V . This makes perfectly good sense
whether one takes the tangent bundle or the cotangent bundle but the mani-
folds which support such stable objects are quite different. In one dimension,
for example, the main interest in the case of Higgs bundles lies with genus
g > 1, for in that case there is a link with representations of the fundamen-
tal group. In the co-Higgs case there are no stable objects with φ �= 0 in
higher genus. The point is that given a section s of the g-dimensional space
H0(M,K) of differentials, if φ ∈H0(M,EndV ⊗ K∗) then φs is an endo-
morphism which commutes with φ and stable objects do not have any of
these other than the scalars.

Examples:

1. In rank one, a co-Higgs bundle is just a line bundle V = L together with
a vector field φ.

2. If V = O⊕T then there is a canonical co-Higgs structure where φ(λ,X) =
(X, 0). Since the trivial bundle is invariant, we require degT > 0 and T
itself to be stable for stability of the co-Higgs bundle.
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We refer the reader to [16], [15] for more results about co-Higgs bundles,
but here we shall give some examples on projective spaces slightly more
interesting than those above.

Example: Consider M = CPm = P(W ). We denote by O(m) the line bun-
dle of degree m on P(W ) and by V (m) the tensor product V ⊗O(m). The
tangent bundle fits into the Euler sequence of holomorphic bundles

0 →O→W (1) → T → 0

from which we obtain W ∼=H0(CPm, T (−1)). We also see that ΛmT ∼=
O(m+ 1) and hence

T ∗ ∼= Λm−1T ⊗ ΛmT ∗ ∼= Λm−1T (−(m+ 1)).

This means that

T ⊗ T ∗(1) ∼= T ⊗ Λm−1T (−m) = T (−1) ⊗ Λm−1(T (−1))

and from the (m+ 1)-dimensional space of sections of T (−1) we can con-
struct by tensor and exterior product many sections, not just scalars, of
T ⊗ T ∗(1). Take one, ψ, and a section w of T (−1). Then set

φ= ψ ⊗ w ∈H0(CPm,EndT ⊗ T ).

By construction, φ2 = [ψ,ψ] ⊗ w ∧ w = 0, and the tangent bundle itself is
stable so this gives plenty of examples of co-Higgs bundles on projective
space.

The simplest concrete example, where we can write down the moduli
space, is the case of the bundle V = O ⊕ O(−1) on CP1. Since Λ2T = 0,
there is no integrability condition on φ in one dimension.

Here the tangent bundle is O(2) and so we must have

φ=
(
a b
c −a

)

where a, b, c are sections of O(2),O(3),O(1) respectively. Since the degree
and rank of V are coprime, there are no semi-stable bundles which means, in
this one-dimensional case, that the moduli space is smooth. We first define a
canonical six-dimensional complex manifold. We denote by p : TCP1 → CP1

the projection and η ∈H0(TCP1, p∗T ) the tautological section. This is a
section of p∗O(2). Now define

M = {(x, s) ∈ TCP1 ×H0(CP1,O(4)) : η2(x) = s(p(x))}.

Proposition 11. M is naturally isomorphic to the moduli space of
stable rank 2 trace zero co-Higgs bundles of degree −1 on CP1.
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Proof.

1. First note that any vector bundle on CP1 is a sum of line bundles by the
Birkhoff-Grothendieck theorem. If the decomposition is O(m) ⊕O(−1 −
m), then a, b, c are sections of O(2),O(2m + 3),O(1 − 2m). If c is zero,
then O(m) is φ-invariant, so by stability m<−1/2. If m= −1, then by
changing the order of the subbundles we are in the same situation. If
m≤−2 then b is a section of a line bundle of negative degree and so
vanishes – then the invariant subbundle O(−1−m) contradicts stability.
Thus the vector bundle in this moduli space is always V = O ⊕O(−1).

2. Since c is a non-zero section of O(1) it vanishes at a distinguished point
z = z0. Then a(z0) is a point x in the total space of O(2) = TCP1. It is
well-defined because an automorphism of O ⊕O(−1) is defined by(

A B
0 C

)

where A,B,C are sections of O,O(1),O and where c= 0 the action on a
is trivial.

3. The determinant detφ is a section s of O(4), and at z = z0, c vanishes so
we have detφ(z0) = −a(z0)2, so set p= −detφ. This defines a map from
the moduli space to M.

4. In the reverse direction, choose an affine parameter z on CP1 such that
the point x maps to z = 0 and write p(z) = a2

0 + zb(z) where b(z) is a
cubic polynomial. Then η2(0) = a2

0 so η(0) = ±a0 and(
η(0) b(z)
z −η(0)

)

is a representative Higgs field.
Note that M is a fibration of elliptic curves y2 = c0 + c1z + · · · + c4z

4 over
the five-dimensional vector space of coefficients c0, . . . , c4. We shall see this
again when we consider the B-field action in the next lecture. �
Remark: We saw in Section 3.3 that the ∂̄J -complex for an ordinary com-
plex structure was defined by

Ω0,q(ΛpT ) ∂̄→ Ω0,q+1(ΛpT ).

For a co-Higgs bundle (V, φ) the D̄ complex is defined by ∂̄ ± φ where

∂̄ : Ω0,q(V ⊗ ΛpT ) → Ω0,q+1(V ⊗ ΛpT )

and
φ : Ω0,q(V ⊗ ΛpT ) → Ω0,q(V ⊗ Λp+1T ).

Note that the total degree p + (q + 1) = (p + 1) + q is preserved. It is easy
to see that the cohomology of the D̄ complex is the hypercohomology of the
complex of sheaves

· · · → O(V ⊗ ΛpT )
φ→O(V ⊗ Λp+1T ) → · · ·
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5.3. Holomorphic Poisson modules. We observed that a holomor-
phic Poisson module is a holomorphic vector bundle V with a first order
holomorphic linear differential operator

D̄ : O(V ) →O(V ⊗ T )

whose symbol is 1 ⊗ σ : V ⊗ T ∗ → V ⊗ T . Relative to a local holomorphic
basis si of V , D̄ is defined by a “connection matrix” A of vector fields:

D̄si = sj ⊗Aji.

When σ is non-degenerate it identifies T with T ∗ and then D̄ is a flat holo-
morphic connection.

Example: If X = σ(df) is the Hamiltonian vector field of f then the Lie
derivative LX acts on tensors but the action in general involves the second
derivative of f . However for the canonical line bundle K = ΛnT ∗ we have

LX(dz1 ∧ · · · ∧ dzn) =
∂Xi

∂zi
(dz1 ∧ · · · ∧ dzn)

and, since σij is skew-symmetric,

∂Xi

∂zi
=

∂

∂zi

(
σij ∂f

∂zj

)
=
∂σij

∂zi

∂f

∂zj

which involves only the first derivative of f . Thus

{f, s} = LXs= 〈D̄s, df〉

defines a first order operator. The second condition for a Poisson module fol-
lows from the integrability of the Poisson structure: since σ(df) =X,σ(dg) =
Y implies σ(d{f, g}) = [X,Y ], it follows that

{{f, g}, s} = L[X,Y ]s= [LX ,LY ]s= {f, {g, s}} − {g, {f, s}}.

This clearly holds for any power Km.

Remark: A holomorphic first-order operator D̄ : O(V ) →O(V ⊗T ) is glob-
ally defined as a vector bundle homomorphism α : J1(V ) → V ⊗ T where
J1(V ) is the bundle of holomorphic 1-jets of sections of V . It is an extension

0 → V ⊗ T ∗ → J1(V ) → V → 0
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and its extension class inH1(M,EndV⊗T ∗), the Atiyah class, is the obstruc-
tion to splitting the sequence holomorphically. When V is a line bundle, and
M is Kähler, this is the first Chern class in H1,1.

The symbol σ of D̄ is the homomorphism α restricted to V ⊗T ∗ ⊂ J1(V ),
so the existence of D̄ means that σ ∈H0(M,Hom(V ⊗ T ∗, V ⊗ T ) lifts to a
class α ∈H0(M,Hom(J1(V ), V ⊗T ). In the long exact cohomology sequence
of the extension, this means that the map

σ :H1(M,EndV ⊗ T ∗) →H1(M,EndV ⊗ T )

applied to the Atiyah class is zero.
In the case of a line bundle this is the cup product we encountered in

Section 4.3 applied to the first Chern class, so in particular we see that
the existence of a Poisson module structure on the canonical bundle means
that the image of c1(T ) in H1(M,T ) is zero. So, as in Section 4.3, if c1(T )
is represented by a Kähler form, Goto’s theorem, to first order, keeps the
complex structures I+, I− in the same diffeomorphism class.

Just because the Lie derivative of a Hamiltonian vector field does not
make the tangent bundle a Poisson module does not mean that it can’t be
one. If we take two vector fields X1, X2 on CP2 then σ =X1 ∧X2 defines a
Poisson structure. It is holomorphic symplectic where σ is non-zero, which
is away from a cubic curve C – the curve where X1 ∧X2 = 0 i.e. where X1

and X2 become linearly dependent.
Here we can step back and view CP2 as a generalized complex manifold:

away from C, σ−1 defines a holomorphic section of the canonical bundle
K which we can write as a closed complex 2-form B + iω. The generalized
complex structure here is a symplectic structure ω transformed by the B-field
B. But on such a structure, a generalized holomorphic bundle is a flat vector
bundle. Now X1 and X2 are linearly independent away from C so we can try
and define D̄ on T by making them covariant constant i.e. D̄X1 = D̄X2 =
0. Then we need to show that this extends as a holomorphic differential
operator – the D̄2 = 0 condition is already satisfied on an open set and so
holds everywhere.

Take a local holomorphic basis ∂/∂z1, ∂/∂z2 for T in a neighbourhood
of a point of C, and then

Xi = Pji
∂

∂zj
so

(17) σ =X1 ∧X2 = detP
∂

∂z1
∧ ∂

∂z2
.

A“connection matrix” for D̄ relative to this basis is given by a matrix A of
vector fields such that

0 = D̄Xi =D(Pji
∂

∂zi
) = σ(dPji)

∂

∂zj
+ PjiAkj

∂

∂zk
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which has solution

A= −σ(dP )P−1 = −σ(dP )
adjP
detP

.

From (17) this is

adjP
(
∂P

∂z2

∂

∂z1
− ∂P

∂z1

∂

∂z2

)

which is holomorphic and so D̄ is well-defined.
We can extend this argument to other rank 2 vector bundles V with

Λ2V ∼=K∗, so long as they have two sections s1, s2 to replace the vector
fields X1, X2. A generic vector field on CP2 has three zeros: suppose V has
a section s with k simple zeros x1, . . . , xk (and then the second Chern class
c2(V ) = k). Then s defines an exact sequence of sheaves

0 →O s→O(V ) →K∗ ⊗ I → 0

where I is the ideal sheaf of the k points. If H0(CP2,K∗ ⊗ I) �= 0, in other
words if there is a cubic curve C passing through the k points, then from
the exact cohomology sequence (and using H1(CP2,O) = 0) we can find a
second section s2 of V , and if s1 = s, s1 ∧ s2 vanishes on the curve C, which
defines a holomorphic Poisson structure.

The Serre construction provides a means of constructing such bundles
(see for example [3] Section 10.2.2). Away from the k points we have an
extension of line bundles

0 →O s→O(V ) →K∗ → 0

which is described by a Dolbeault representative α ∈ Ω0,1(K) = Ω2,1. It
extends to an extension as above if it has a singularity at each of the points
of the form

1
4r4

dz1 ∧ dz2 ∧ (z̄2dz̄1 − z̄1dz̄2).

In distributional terms ∂̄α=
∑

i λiδxi = β a linear combination of delta func-
tions of the points.

Such a sum defines a class in H2(M,K). Since H2(M,K) is dual to
H0(M,O) ∼= C, this class is determined by evaluating it on the function 1.
But

〈β, 1〉 =
∑

i

λi

so if the λi sum to zero the class is zero and one can solve ∂̄α= β for α.
Thus, given a cubic curve and a collection of k points with non-zero

scalars λi whose sum is zero, we obtain a rank 2 Poisson module with
c2(V ) = k.
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Remark: The Serre construction can also be used to generate co-Higgs
bundles on CP2 with nilpotent Higgs field φ. This time we require Λ2V ∼=
O(1) and we want to solve ∂̄α= β for a distribution defining a class in
H2(CP2,O(−1)) which is dual to H0(CP2,O(−2)) = 0. Hence there is no
constraint on the λis. We obtain an extension

0 →O s→O(V ) π→O(1) ⊗ I → 0.

Choosing a section w of T (−1), v �→ s(wπ(v)) defines φ ∈H0(CP2,EndV ⊗
T ) whose kernel and image lie in the trivial rank one subsheaf.

6. Holomorphic bundles and the B-field action

6.1. The B-field action. On a complex manifold we can pull back a
holomorphic vector bundle by a holomorphic diffeomorphism to get a new
one, but in generalized geometry we have learned that the group Ω2(M)cl �

Diff(M) replaces the group of diffeomorphisms and in particular that a
closed real (1, 1)-form B preserves the generalized complex structure deter-
mined by an ordinary complex structure. We shall study next the effect of
this action on generalized holomorphic bundles.

Recall that in this case a generalized holomorphic bundle is defined by
an operator

D̄s=
(
∂s

∂z̄i
+Aīs

)
dz̄i + φjs

∂

∂zj

where (V, φ) is a co-Higgs bundle.
The transform of this by B is then the operator

D̄s=
(
∂s

∂z̄i
+Aī + φjBjīs

)
dz̄i + φjs

∂

∂zj

More invariantly we write iφB ∈ Ω0,1(EndV ) for the contraction of the
Higgs field φ ∈H0(M,EndV ⊗ T ) with B ∈ Ω0,1(T ∗) and then we have a
new holomorphic structure

∂̄B = ∂̄ + iφB

on the C∞ bundle V . But the condition φ2 = 0 means that iφB commutes
with φ and so φ is still holomorphic with respect to this new structure:
∂̄Bφ= 0.

Remark: Note that if U ⊂ V is a holomorphic subbundle with respect to ∂̄
then if it is also φ-invariant, it is holomorphic with respect to ∂̄B. So stability
is preserved by the B-field action.

Now suppose B = ∂̄θ for θ ∈ Ω1,0 and define ψ = iφθ, a section of EndV .
In coordinates ψ = φiθi which implies (∂̄ψ)̄i = φjBjī. Then

[ψ, ∂̄ψ]̄i = [φkθk, φ
jBjī] = [φk, φj ]θkBjī = 0
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since φj and φk commute. This means (unusually for a non-abelian gauge
theory) that if we exponentiate to an automorphism of the bundle V we have

exp(−ψ)∂̄ expψ = ∂̄ψ + iφBψ.

Thus if B1 and B2 represent the same Dolbeault cohomology class in H1

(M,T ∗), the two actions are related by an automorphism. Hence H1(M,T ∗)
acts on the moduli space of stable co-Higgs bundles.

Example: If we take the canonical Higgs bundle V = O⊕T and φ(λ,X) =
(X, 0) as in Section 5.2, then for [B] ∈H1(M,T ∗) the structure ∂̄B defines
a non-trivial extension

0 →O→ V → T → 0

which still has a canonical Higgs field.
We shall investigate this action in more detail next.

6.2. Spectral covers. In the case of Higgs bundles, Simpson reinter-
preted in [18] a Higgs sheaf on M in terms of a sheaf on P(O ⊕ T ∗) whose
support is disjoint from the divisor at infinity. This can be adapted imme-
diately replacing T ∗ by T .

In standard local coordinates yi, zj on TM given by the vector field
yi∂/∂zi, we pull back the rank k bundle V under the projection p : TM →M
and define an action of yi by φi. Since [φi, φj ] = 0 this defines a module
structure over the commutative ring of functions polynomial in the fibre
directions.

More concretely, suppose in a neighbourhood of a point some linear
combination of the φi, say φ1, has distinct eigenvalues. Then since by the
Cayley-Hamilton theorem φ1 satisfies its characteristic equation, on the sup-
port of the sheaf y1 is an eigenvalue of φ1, and the kernel of φ1−y1 defines a
line bundle U ⊂ p∗V . Since all φi commute with φ1, L is an eigenspace for φi

with eigenvalue yi. If the m characteristic equations of φi are generic, they
define an m-dimensional submanifold S of TM which is an m-fold covering
of M under p. There will be points at which φ1 has coincident eigenvalues,
but under suitable genericity conditions S will still be smooth with a line
bundle L. The action of φ on U is

φ|U = φi|U ∂

∂zi
= yi

∂

∂zi

which is the tautological section of p∗T on the total space of T .
The one-dimensional case of this, where M = CP1, was much studied

from the point of view of integrable systems before its important application
to the moduli space of Higgs bundles, and the co-Higgs situation on CP1 is a
particular case described, for example, in [15]. In this case, where T = O(2),
φ is a holomorphic section of EndV (2) and its characteristic equation is

det(η − φ) = ηk + a1η
k−1 + · · · + ak = 0
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where ai is a section of O(2i) on CP1. Interpreting η = yd/dz as the tau-
tological section of p∗O(2), this is the vanishing of a section of p∗O(2k) on
the algebraic surface TCP1 and it defines a spectral curve S which, by the
adjunction formula, has genus g = (k − 1)2 and is a branched covering of
CP1 of degree k.

We reconstruct a co-Higgs bundle by taking the direct image p∗L of a
line bundle L on S. For any open set U ⊆ CP1, by definition

H0(U, p∗L) =H0(p−1(U), L).

The sheaf p∗L defines a rank k vector bundle and the direct image of mul-
tiplication by the tautological section

η :H0(p−1(U), L) →H0(p−1(U), L(2))

defines a Higgs field φ.
(Note that the line bundle L is not quite the same as the eigenspace

bundle U . The direct image gives a canonical evaluation map p∗V �→ L so
that L∗ ⊂ p∗V ∗ is the eigenspace bundle of the dual endomorphism φt.)

The degree of the line bundle L and that of the vector bundle V are
easily related – the direct image definition implies that H0(S,L⊗p∗O(n)) ∼=
H0(CP1, p∗L(n)) and taking n large, these are given by the Riemann-Roch
formula. The result is

deg V = degL+ k − k2.

Examples:

1. Consider the example of V = O ⊕ O(−1) in the previous lecture. Here
k = 2 and deg V = −1, so degL= 1. The curve S has genus (k − 1)2 = 1
and is an elliptic curve (y2 = c0 + c1z + · · · + c4z

4). The line bundle L
has degree one and hence has a unique section which vanishes at a single
point, which is η(0) in our description of the moduli space.

2. If degL= g−1 = k2−2k then deg V = −k, so V (1) has degree zero. Now
a vector bundle E on CP1 is trivial if it has degree zero and H0(CP1,
E(−1)) = 0, so V (1) is trivial if 0 =H0(CP1, V ) =H0(S,L), which is if
the divisor class of L does not lie on the theta divisor of S. In this case
a co-Higgs bundle consists of a k × k matrix whose entries are sections
of O(2).

Now consider the B-field action from the point of view of the spectral cover.
Since φ is only changed by conjugation, the spectral cover is unchanged – it
is only the holomorphic structure on the line bundle which can change. But
the change in the holomorphic structure on V was

∂̄ �→ ∂̄ + iφB



LECTURES ON GENERALIZED GEOMETRY 121

and on U ⊂ V φ acts via the tautological section η of p∗TM , so we are
changing the holomorphic structure of U by

∂̄ �→ ∂̄ + iηB.

In other words, we have [B] ∈H1(M,T ∗) which we pull back to p∗[B] ∈
H1(TM, p∗T ) then contract with η ∈H0(TM, p∗T ) to get the class

ηp∗[B] ∈H1(TM,O).

Exponentiating to H1(TM,O∗) defines a line bundle LB. Restricting to S
the B-field action is U �→ U ⊗ LB.

Let us look at this action in the two examples above. Since H1,1(CP1)
is one-dimensional a real closed (1, 1) form is cohomologous to a multiple of

idz ∧ dz̄
(1 + zz̄)2

This form integrates to 2π over CP1.
Pulling back to TCP1 and contracting with yd/dz we obtain the class

in H1(S,O) represented by
iydz̄

(1 + zz̄)2
.

1. In the first example, S is an elliptic curve and a point of the moduli
space is defined by a point x on this curve, so tensoring with a line bundle
LB is a translation. The non-vanishing 1-form dz/y is equal to du in the
uniformization and then two points x, x′ are related by a translation u �→
u+ a if ∫ x′

x

dz

y
= a

modulo periods.
On the other hand our class in H1(S,O) pairs with dz/y ∈H0(S,K) by

integration: ∫
S

idz ∧ dz̄
(1 + zz̄)2

= 4π

so this determines the translation.
2. In the second example, since the bundle is trivial we may write the Higgs
field in EndCk ⊗H0(CP1,O(2)) as a matrix with entries quadratic polyno-
mials in z. Write it thus:

φ= (T1 + iT2) + 2iT3z + (T1 − iT2)z2.

Then, as derived in [15], tensoring by LB is integrating to time t= 1 the
system of nonlinear differential equations called Nahm’s equations.

dT1

dt
= [T2, T3],

dT2

dt
= [T3, T1],

dT3

dt
= [T1, T2].
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These equations arise in the study of non-abelian monopoles and are dimen-
sional reductions of the self-dual Yang-Mills equations.

From these examples it is clear that the B-field action can be highly
non-trivial. What it also shows is that the action on the moduli space can
be quite badly behaved, for the Nahm flow could be an irrational flow on
the Jacobian of the spectral curve.

6.3. Twisted bundles and gerbes. Now suppose we replace the
generalized complex structure on T ⊕T ∗ by a twisted version on the bundle
E defined by a 1-cocycle Bαβ of closed real (1, 1)-forms. What is a general-
ized holomorphic bundle now? The general definition is the same – a vector
bundle V with a differential operator D̄ but we want to understand it in
more concrete terms.

If we think of E as obtained by patching together copies of T ⊕ T ∗
then over each open set Uα, V has the structure of a co-Higgs bundle – a
holomorphic structure Aα and a Higgs field φα. On the intersection Uα ∩Uβ

these are related by the B-field action of Bαβ :

(18) (Aβ )̄i = (Aα)̄i + φj(Bαβ)jī, (φβ)j = (φα)j .

Consider first the case of V = L a line bundle. Then, because EndV is
holomorphically trivial for all of the local holomorphic structures, φ is a
global holomorphic vector field X. So consider the (0, 1) form

Aαβ = iXBαβ .

The (1, 1) form Bαβ is closed so ∂̄Bαβ = 0 and X is holomorphic so that
∂̄Aαβ = 0. Locally write Aαβ = ∂̄fαβ , then, since Bαβ is a cocycle, on three-
fold intersections fαβ + fβγ + fγα is holomorphic. Write

gαβγ = exp 2πi(fαβ + fβγ + fγα)

then this defines a holomorphic gerbe.
But the local holomorphic structure on L is defined by a ∂̄-closed form

Aα, so writing Aα = ∂̄hα we have from (18) that kαβ = fαβ + hα − hβ is
holomorphic and moreover

gαβγ = exp 2πi(kαβ + kβγ + kγα).

This is a holomorphic trivialization of the gerbe, or as is sometimes said, a
line bundle over the gerbe. The ratio of any two trivializations (i.e. writing
gαβγ as a coboundary) is a cocycle which defines the transition functions for
a holomorphic line bundle. In the untwisted case a generalized holomorphic
bundle was just a line bundle and a vector field; here any two differ by such
an object.

In more invariant terms we have taken the class in H2(M,T ∗) defined
by the (1, 2) component of the 3-form H, and contracted with the vector
field X ∈H0(M,T ) to get a class in H2(M,O). Exponentiating gives us
an element in H2(M,O∗) which is the equivalence class of the holomorphic
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gerbe defined by gαβγ . The existence of a trivialization of the gerbe is the
statement that this class is zero.

Now consider the general case: over each Uα we can consider the spectral
cover in TM . This is defined by characteristic polynomials of components
of φ. The C∞ transition functions for the vector bundle V conjugate φ and
so leave these polynomials invariant. It follows that the local spectral covers
fit together into a global spectral cover S ⊂ TM . The eigenspace bundle
U however, only has local holomorphic structures. But φ acts on U via
the tautological section η of p∗TM , and so we are in a parallel situation to
the one we just considered: a gerbe on TM defined by the cocycle

Aαβ = iηp
∗Bαβ .

In the untwisted case, a co-Higgs bundle was determined by a line bundle
on the spectral cover, in this case it is a trivialization of the gerbe.

The language of gerbes is convenient to describe things on the spectral
cover, but a C∞ bundle V with local holomorphic structures is not readily
adaptable to conventional algebraic geometric language on M itself. As far
as generalized geometry is concerned we have D̄, but it is still useful to
rephrase the structure in more conventional language. For that purpose, we
can split the extension E and work with T ⊕ T ∗ and the Courant bracket
twisted with a 3-form H.

The generalized Dolbeault complex is now D̄ = ∂̄A −H1,2 ± φ where

∂̄A : Ω0,q(V ⊗ ΛpT ) → Ω0,q+1(V ⊗ ΛpT ),

the 3–form H1,2 acts by contraction in the (1, 0) entry,

H1,2 : Ω0,q(V ⊗ ΛpT ) → Ω0,q+2(V ⊗ Λp−1T )

and the Higgs field acts like this

φ : Ω0,q(V ⊗ ΛpT ) → Ω0,q(V ⊗ Λp+1T ).

The condition D̄2 = 0 now becomes

∂̄2
A = iφH, ∂̄Aφ= 0, φ2 = 0.

This shape of structure has appeared in the literature. For example,
replacing V by EndV (and thereby getting a complex which governs the
deformation theory of a generalized holomorphic bundle), we obtain a curved
differential graded algebra – an algebra with derivation where d2a= [c, a]
and dc= 0. This is an identifiable concept, but nevertheless, packaged in
the language of generalized geometry it becomes quite natural.
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