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1. Introduction

In this paper we follow up some of the ideas discussed in [6]. The
theme of that article was the possibility of extending familiar construc-
tions in gauge theory, associated to problems in low-dimensional topol-
ogy, to higher dimensional situations, in the presence of an appropriate
special geometric structure. The starting point for this was the “holomor-
phic Casson invariant”, counting holomorphic bundles over a Calabi-Yau
3-fold, analogous to the Casson invariant which counts flat connections over a
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2 S. DONALDSON AND E. SEGAL

differentiable 3-manifold. This was developed rigorously by Richard Thomas
[36] in an algebro-geometric framework, and the ideas have been taken up by
various authors [25]. From a differential-geometric standpoint one can make
parallel discussions of two cases: one involving gauge theory and one involv-
ing submanifolds. There has been a considerable amount of work in a similar
direction, involving ideas of Topological Quantum Field Theory [23], [31].

In the familiar gauge theory picture one views the Casson invariant as
the Euler characteristic of the instanton Floer homology groups. Thus it is
natural to hope for some analogous structure associated to a Calabi-Yau
3-fold. This was discussed in a general way in [6] but the discussion there
did not pin down exactly what structure one could expect. That is the
goal of the present paper. In brief, we will argue that one should hope to
find a holomorphic bundle over the moduli space of Calabi-Yau 3-folds, of
rank equal to the holomorphic Casson invariant (sometimes called the DT
invariant) defined by Thomas.

Just as in [6], many of the arguments here are tentative and speculative,
since the fundamental analytical results that one would need to develop a
theory properly are not yet in place. These have to do with the compactness
of moduli spaces of solutions. While considerable progress has been made
in this direction by Tian [38],[32], a detailed theory—in either the gauge
theory or submanifold setting—seems still to be fairly distant. The issues
are similar to those involved in “counting” special Lagrangian submanifolds
in Calabi-Yau manifolds, which have been considered by Joyce [20] but
where, again, a final theory is still lacking.

The core of this article is Section 4, where we explain how to construct
holomorphic bundles over Calabi-Yau moduli spaces, assuming favourable
properties of a “(6+1)-dimensional” differential-geometric theory. The pre-
ceding Sections 2 and 3 develop background material, mostly fairly standard
but introducing a point of view involving “taming forms”. In Section 5 we
explain how our construction matches up with standard algebraic topol-
ogy, following the familiar Floer-theory philosophy. In Section 6 we go back
to discuss the central, unresolved, compactness issues. We explain the rel-
evance of recent work of Haydys which brings in a version of the “Fueter
equation”. This perhaps points the way to a unification of the gauge theory
and calibrated geometry discussions and connections with the more algebro-
geometric approach.

We are very grateful to Richard Thomas and Dominic Joyce for many
discussions of this material. The paper has been substantially revised fol-
lowing comments of Joyce on an earlier draft. We are also grateful to Andriy
Haydys for allowing us to present part of his forthcoming work.

2. Basic set-up

2.1. Exceptional holonomy. We will begin by recalling standard
material on exceptional holonomy. Some references are [19], [30]. Start
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with the positive spin representation of Spin(8) on the 8-dimensional real
vector space S+. The basic fact is that this action maps onto the orthogo-
nal group SO(S+) = SO(8). Likewise for the negative spin representation.
This is the phenomenon of “triality”: there are automorphisms of Spin(8)
permuting the three representations S+, S−,R8. In particular the stabiliser
in Spin(8) of a unit spinor in S+ is a copy of Spin(7) ⊂ Spin(8), which maps
to Spin(7) ⊂ SO(8). A Riemannian 8-manifold X with a covariant constant
unit spinor field has holonomy contained in Spin(7). In this situation we
have a decomposition of the 2-forms

(1) Λ2 = Λ2
21 ⊕ Λ2

7,

where Λ2
21 corresponds to the Lie algebra of Spin(7), under the isomorphism

Λ2 = so(8), and Λ2
7 is the orthogonal complement. There is also a parallel

4-form Ω which is equal to (
∑
θ2
i )/7 for any orthonormal basis θi of Λ2

7. We
can see this form in a useful explicit model. Suppose we have two copies
R4

1,R
4
2 of R4, each with spin structures. Then the positive spin space of

R4
1 ⊕ R4

2 is the real part of

(2)
(
S+(R4

1) ⊗ S+(R4
2)

) ⊕ (
S−(R4

1) ⊗ S−(R4
2)

)
.

(Recall that the spin spaces in 4-dimensions are quaternionic and the com-
plex tensor product of two quaternionic vector spaces has a natural real
structure.) Fix an isomorphism Ψ between S+(R4

1) and S+(R4
2). We can

regard Ψ as an element of the tensor product and we get a distinguished
spinor in 8 dimensions. In other words we have a subgroup H of Spin(7) ⊂
SO(8), locally isomorphic to SU(2) × SU(2) × SU(2), consisting of auto-
morphims of R8 which preserve the decomposition R4

1 ⊕ R4
2 and Ψ. In this

picture the 4-form Ω corresponding to our distinguished spinor is

(3) dx1dx2dx3dx4 + dy1dy2dy3dy4 +
3∑

i=1

ωi ∧ ω′
i.

Here xi, yi are standard co-ordinates on the two copies of R4, ωi is a standard
orthonormal basis for Λ+(R4

1) and ω′
i the basis of Λ+(R4

2) which corresponds
to this under the isomorphism induced by Ψ. In fact this form Ω determines
the spinor, so we could also define Spin(7) ⊂GL(8,R) to be the stabiliser
of this 4-form. The GL(8,R) orbit of Ω is a 43-dimensional submanifold
A⊂ Λ4R8, which can be viewed as GL(8,R)/Spin(7). On any 8-manifold
we have a copy of A associated to each tangent space in the obvious way
and a Spin(7) structure is equivalent to a closed 4-form which takes values
in this subset.

Now consider a unit spinor in S+ and a unit vector in R8. The stabiliser
of the pair is the exceptional Lie group G2, which can be regarded as a
subgroup of SO(7). This means that a Riemannian product R × Y has
holonomy contained in Spin(7) if and only if the holonomy of Y is contained
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in G2 ⊂ SO(7). On such a manifold Y we have a decomposition of the 2-
forms

(4) Λ2 = Λ2
14 ⊕ Λ2

7

where Λ2
14 corresponds to the Lie algebra ofG2. We have a covariant constant

3-form φ and 4-form σ, such that on the cylinder

(5) Ω = φdt+ σ.

We can define the concept of a non-compact Riemannian 8 manifold
with holonomy in Spin(7) and a tubular end modelled on (0,∞) × Y , for a
G2-manifold Y . (That is, the metric differs from the product by an exponen-
tially decaying term.) We can also consider a “neck-stretching” sequence of
Spin(7)-structures on a compact manifold that degenerate to a limit which
is the disjoint union of two such non-compact manifolds. That is, the metrics
contain regions which are almost isometric to long finite tubes (−Ti, Ti)×Y ,
where Ti →∞.

Now we can repeat the discussion, starting in 7 dimensions. Considering
G2 ⊂ SO(7), the stabiliser of a unit vector is a copy of SU(3) ⊂ SO(6). A
Riemannian product R× Z has a G2-structure if and only if Z is a Calabi-
Yau 3-fold, with holonomy in SU(3). Then we have a decomposition of the
2-forms

(6) Λ2 = Λ2
8 ⊕ Λ2

7,

where Λ2
8 corresponds to the Lie algebra of SU(3). There are covariant con-

stant 3-forms ρ1, ρ2 and a 2-form ω such that on the cylinder

(7) σ = ρ2ds+ ω2, φ= ωds+ ρ1.

Our notation here is that s is the co-ordinate on R. In fact either one of
ρ1, ρ2 determines the other since

ρ2 = −Iρ1,

where I is the parallel complex structure. From another point of view, the
complex combination θ = ρ1 + iρ2 is a holomorphic 3-form on Z. The 2-form
ω lies in Λ2

7, so we get a further decomposition

(8) Λ2 = Λ2
8 ⊕ Λ2

6 ⊕ 〈ω〉.
Again we may consider G2 manifolds with tubular ends and neck-stretching
sequences.

Here we stop, although we could repeat the process to consider Calabi-
Yau 3-folds with tubular ends, etc. This kind of neck-stretching sequence,
and the converse “gluing theory” for manifolds with tubular ends, is central
in the work of Kovalev [21], and many interesting new examples have been
found recently by Kovalev and Nordstrom [22].
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2.2. Gauge theory and submanifolds. Next we review slightly less
standard material on auxiliary differential geometric objects: submanifolds
and connections. A fundamental reference for the first is the work of Harvey
and Lawson [12]; a number of references for the second can be found in [6].

Start again in dimension 8. Take our model R4
1 ⊕ R4

2 above and con-
sider the Spin(7)-orbit of the 4-plane R4

1 in the Grassmannian of oriented
4-planes in R8. This is the set of Cayley 4-planes, and forms a 12-dimensional
submanifold in the full Grassmannian (since the stabiliser of R4

1 in the
21-dimensional group Spin(7) is the 9 dimensional subgroup H). Another
definition is that an oriented 4-plane Π is Cayley if the restriction of Ω to Π
is the volume form. A third is that for any vector v in R8

(9) iv(Ω)|Π = ∗Π(v�|Π),

where ∗Π is the ∗ operator on Π induced by the metric and v� ∈ (R8)∗ is the
dual of v, again defined by the metric.

Now in an 8-manifold with a Spin(7) structure we may consider Cayley
submanifolds, whose tangent space at each point is Cayley. There are two
fundamental properties of this condition:

• Property A The condition is an elliptic PDE. As a check on this,
note that the condition is given locally by 4 equations, since the set
of Cayley subspaces has codimension 4 in the full Grassmannian,
while 4-dimensional submanifolds near to a given one can be rep-
resented by sections of the four-dimensional normal bundle. In fact
the linearisation of the condition is given by a version of the Dirac
operator acting on sections of the normal bundle [26].

• Property B The submanifold is calibrated: its volume is the topo-
logical invariant given by the integral of the closed form Ω and it is
a minimal submanifold, minimizing volume in its homology class.

Next we move to gauge theory. We define a Spin(7)-instanton to be a
connection on a bundle E, with structure group SU(l) say, whose curvature
lies in Λ2

21. Then we have, likewise:

• Property A The equation is elliptic, modulo gauge equivalences.
The linearised theory can be formulated in terms of a bundle-valued
version of the elliptic complex

(10) Ω0 d→ Ω1 π7◦d→ Ω2
7.

(Again, note the dimension check: 1 − 8 + 7 = 0.)
• Property B The Yang-Mills energy is determined by the topology

of the bundle. This comes from the algebraic fact that for α in Λ2
21

we have

α ∧ α ∧ Ω = −|α|2vol
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Thus for a Spin(7)-instanton:

(11)
∫

X8

|F |2 = −
∫

X8

Tr(F 2) ∧ Ω = 8π2c2(E) ∪ Ω [X].

It follows that Spin(7)-instantons are Yang-Mills connections. This theory
has been developed in the thesis of C. Lewis [24].

Optimistically we could hope that these good properties would allow
us to define invariants, modelled on the Gromov-Witten invariants of sym-
plectic manifolds, in the submanifold case, and on the instanton invariants
of 4-manifolds in the gauge theory case. In the simplest situation, where
the relevant index or formal dimension is zero, one would seek to define a
numerical invariant by counting solutions with appropriate signs. When the
index is positive one could try to evaluate natural cohomology classes on
the moduli space of solutions.

There is a third property—which one might call the Floer picture—of
the equations, which becomes crucial when one considers manifolds with
tubular ends and neck-stretching sequences. Consider a tube I × Y , where
I ⊂ R is an open interval, finite or infinite, and Y is a G2-manifold with
a 4-form σ. A connection A over I × Y yields a 1-parameter family At of
connections over Y .

Property C There is a locally-defined function f , on the space of con-
nections over Y modulo gauge equivalence, such that Spin(7) instantons
correspond to gradient curves of f , and

(12)
d

dt
f(At) = −‖dAt

dt
‖2 = −‖F (At) ∧ σ‖2.

We know from analogous Floer-type theories that this is the essential
property needed to control solutions over infinite tubes, and to obtain uni-
form control in neck-stretching sequences. The point is that one arrives in a
situation where f(At) is well-defined and the variation of f over the interval
is known, so the gradient property gives bounds on∫

I
‖dAt

dt
‖2 dt,

∫
I
‖F (At) ∧ σ‖2 dt.

To explain in a little more detail, we define a 1-form on the space of
connections over Y by mapping a tangent vector δA to

(13)
∫

Y
Tr(δA F ) ∧ σ.

This 1-form arises, locally in the space of connections modulo gauge equiva-
lence, as the derivative of a function which can be written schematically as

(14) f(A) =
∫

Y
CS(A) ∧ σ,
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where CS denotes the Chern-Simons form. Of course this is not really well-
defined and a more precise definition is this. We choose a base point A0 and
for any connection A we choose a connection A on a bundle over [0, 1] × Y
with boundary values A0 and A. Then we define

(15) f(A) =
∫

[0,1]×Y
σTrF 2

A.

Just as in the usual Floer theory over 3-manifolds, this function is not glob-
ally well-defined, but the indeterminacy comes from the periods of σ over
H4(Y,Z). This indeterminacy is related the notion of an “adapted bundle”
which we will discuss further in Section 4. But in any case we have a well-
defined closed 1-form on the space of connections over Y . The Spin(7)-
instanton equation over the tube can be written as

(16)
dAt

dt
= ∗(F (At) ∧ σ)

which displays At as an integral curve of the vector field dual to this
1-form. Likewise in the submanifold set-up, we define a 1-form on the space
of 3-dimensional submanifolds of Y by mapping a variation v—a vector field
along a submanifold P 3 ⊂ Y 7—to

(17)
∫

P
iv(σ).

This 1-form is the derivative of a locally-defined function, determined by
integrating σ over cobordisms in [0, 1] × Y , and we have an analogue of
Property C above.

Now we consider a connection on a bundle over Y 7 whose pull-back to
the cylinder is a Spin(7)-instanton. Expressed directly over Y this condition
is just that

(18) F ∧ σ = 0,

and we call the solutions G2-instantons. In the Floer picture, these are
viewed as the zeros of the 1-form on the space of connections.

A 3-dimensional submanifold P ⊂ Y is called associative if R×P is Cay-
ley. In the picture above, such a submanifold is viewed as a zero of the 1-form
or critical point of the locally-defined function f . Associative submanifolds
can be defined more directly by the condition that for any vector v ∈ TY the
restriction to P of the contraction iv(σ) vanishes. There is a basic algebraic
model for the tangent space of Y at a point of an associative submanifold like
that which we saw in 8 dimensions. We consider a 3-dimensional space R3

and a 2-dimensional complex vector space V with symmetry group SU(2).
Then the tensor product of V with the spin space S = S(R3) has a real form
R4 = (V ⊗ S)R and we have a natural isomorphism Λ2

+R4 = R3. In other
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words, if y1, y2, y3 are standard co-ordinates on R3 we have a corresponding
basis ω1, ω2, ω3 for the self-dual 2-forms on R4. Then we have a 3-form

(19) φ=
∑

dyiωi + dy1dy2dy3,

and a 4-form

(20) σ =
∑

i,j,k cyclic

ωidyjdyk + dx1dx2dx3dx4.

This gives a standard model for the tangent space of aG2-manifold at a point
of an associative submanifold, with yi the co-ordinates on the submanifold.

A 4-dimensional submanifold Q of Y which is Cayley when regarded as
a submanifold of R×Y is called co-associative. The condition can be defined
more directly by saying that the restriction of the 3-form φ to Q vanishes.

If we prefer, we can forget the 8-dimensional geometry and start directly
in 7 dimensions, considering G2 manifolds and three kinds of differential
geometric objects: associative submanifolds, coassociative submanifolds and
G2-instantons. These three conditions enjoy the same crucial Properties A,B
discussed above. The equations are elliptic when set up suitably, but this is
now less straightforward. At first sight, the G2-instanton equation imposes
7 = dim Λ2

7 conditions on the curvature of a connection, whereas we would
expect to only impose 7− 1, taking account of gauge invariance. The expla-
nation for this is that the curvature of any connection satisfies the Bianchi
identity and the linearised problem can be formulated in terms of the elliptic
complex

(21) 0 → Ω0 d→ Ω1 σ∧d→ Ω6 d→ Ω7 → 0

Then the whole theory of local deformations of solutions to the G2-instanton
equations is closely analogous to the Taubes/Floer discussion of flat connec-
tions over 3-manifolds, with (21) taking the place of the de Rham complex
over a 3-manifold. This theory has been developed in unpublished work of
A. Tomatis and in the thesis of Henrique Sa Earp [29].

The associative condition is elliptic, with the linearisation given by a
version of the Dirac operator acting on sections of the normal bundle. The
co-associative condition is at first sight overdetermined, since it imposes 4
constraints on the sections of the 3-dimensional normal bundle of a
4-dimensional submanifold of Y 7, but when set-up properly it becomes ellip-
tic [26]. One way of doing this is to embed the discussion in that of Cayley
submanifolds in the cylinder. Our third characterisation (10) of Cayley sub-
spaces shows that if Q is any Cayley submanifold in R × Y then the R-co-
ordinate t is a harmonic function on Q. Thus if Q is compact it must be a
co-associative submanifold in some “fixed time” slice.

In sum, we would optimistically hope first for a 7-dimensional theory,
bearing on a compact G2-manifold Y and yielding invariants counting asso-
ciative submanifolds, G2-instantons and co-associative submanifolds. In the
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first two cases these could be viewed as generalising the Casson invariant
(since in each case we are counting the zeros of a closed 1-form). But second
we could hope for a (7 + 1)-dimensional theory, assigning Floer groups to Y
which should play the same role vis-à-vis the Spin(7) discussion, for man-
ifolds with tubular ends and neck-stretching limits, as the ordinary Floer
theory does to 4-manifold invariants. Of course the second theory would be
a refinement of the first, since we would view the Casson invariant as the
Euler characteristic of the Floer groups.

Now we repeat the discussion, dropping dimension again. The G2-
instantons on R × Z6 which are lifted up from Z are connections with

(22) F ∧ ω2 = 0, F ∧ ρ2 = 0.

(The conditions F∧ρ1 = 0, F∧ρ2 = 0 are equivalent.) From the point of view
of complex geometry, the second condition is that F has type (1, 1), so the
connection defines a holomorphic structure on the bundle. The other condi-
tion is the Hermitian Yang-Mills equation, and we know that the solutions
correspond to “polystable” holomorphic bundles. Likewise a product R×Σ
is co-associative if and only if Σ is a complex curve in Z6. These geometric
objects in Z6 again have the same good properties: they are defined by ellip-
tic equations and have topological volume/energy bounds. We will take this
discussion of these (6+1)-dimensional theories further in Section 4. One can
also discuss co-associative submanifolds in a similar framework [23], [31].
The corresponding objects in 6 dimensions are the special Lagrangian sub-
manifolds, which can be described as the critical points of a locally-defined
functional [37]. The co-associative submanifolds of a tube are the gradient
curves of this functional.

3. Taming forms

3.1. Dimension 8. We will now take another point of view, beginning
again in 8-dimensions. Our model is Gromov’s notion of a symplectic form
“taming” an almost-complex structure [11]. Let Ω0 be the standard form
on R8, as in equation (3). The convex hull of the set of negative squares
−α ∧ α, for α in Λ2

21 is a proper cone K in Λ4R8 so we have a dual cone
of 4-forms Ω′ such that Ω′ ∧ χ > 0 for non-zero χ ∈K. This is equivalent to
saying that the quadratic form

α �→ −α ∧ α ∧ Ω′

is positive definite on Λ2
21. One can check that the subset of Cayley planes

in Gr4(R8) ⊂ Λ4R8 lies in the cone K, so such a 4-form is also strictly
positive on Cayley subspaces. Now suppose that Ω is any 4-form on an
8-manifold X which lies in the preferred subspace A at each point. We
could call this an “almost Spin(7) structure”. Then Cayley submanifolds
and Spin(7) instantons are defined and the equations are elliptic, just as
before. However we lose the volume/energy identity for solutions. Suppose
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however we have a closed 4-form Ω′ which, at each point, lies in the dual cone
above. Then for any Spin(7)-instanton we have a slightly weaker version of
“Property B”:

Property B′

(23)
∫

X
|F |2 ≤−C

∫
X

Tr(F 2) ∧ Ω′,

where the right hand side is a topological invariant. Here the constant C
depends only on Ω,Ω′. Similarly, we get a volume bound for Cayley sub-
manifolds. It seems reasonable to hope that the putative theory in the case
of genuine Spin(7) structures extends to this more general situation; in any
case we will assume this is so for the purposes of our discussion. We call such
a pair (Ω,Ω′) a tamed almost-Spin(7) structure on X. The advantage of this
extension is that the notion is much more flexible. On the one hand, starting
with a genuine Spin(7)-structure, it gives us scope to deform the equations,
for example to achieve transversality. This is essentially the use we will make
of the idea in Section 4. On the other hand, tamed almost Spin(7)-structures
should be much easier to construct than Spin(7)-structures, since the con-
dition on Ω′ is an open condition on a closed 4-form.

3.2. Dimension 7. We may consider dimension reductions of the
theory, in this more general setting. Let V be an oriented 7-dimensional
vector space and let GL+(V ) be the linear automorphisms of positive deter-
minant. There is an open GL+(V )-orbit P3 ⊂ Λ3V ∗ of “positive” forms, each
of which has stabiliser isomorphic to the compact group G2 ⊂ SL(V ). Sim-
ilarly there is an open orbit of positive 4-forms P4 ⊂ Λ4V ∗ and a GL+(V )-
equivariant diffeomorphism ∗ : P3 → P4. We also denote the inverse map by
∗. The choice of notation is derived from the fact that each element φ ∈ P3

defines a natural Euclidean metric gφ on V and ∗φ is the usual Hodge dual
defined by this metric. Likewise for any σ ∈ P4.

Now consider an oriented 7-manifold Y . At each point p ∈ Y we have
open subsets P3,p ⊂ Λ3T ∗Yp, P4,p ⊂ Λ4T ∗Yp. We define an almost G2 struc-
ture on Y to be a 4-form σ on Y which lies in P4,p at each point p. Of course
it is the same to start with a 3-form φ which lies in P3,p at each point, and
an almost G2 structure defines a Riemannian metric on Y . If σ is an almost
G2-structure then the form

(24) Ω = σ + ∗σdt,
yields an almost Spin(7) structure on the cylinder R×Y . Let φ′, σ′ be respec-
tively, a closed 3-form and 4-form on Y , so Ω′ = σ′ + φ′dt is closed 4-form
on the cylinder. Then there is a certain open set of “taming pairs” (φ′, σ′)
such that Ω′ is a taming form. The discussion of associative submanifolds
in Y proceeds just as before. They are defined by the condition that the
restriction of ivσ vanishes, for each tangent vector σ. The condition is an
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elliptic equation of Dirac type and their volume is controlled by the integral
of φ′ over P , a topological invariant.

The discussion of G2-instantons is different in an important way. For a
general σ the equation σ ∧ F = 0 for a connection is overdetermined and
we do not expect any solutions. However we can consider connections over
R × Y with the property that the restriction to each slice {t} × Y lies in a
fixed gauge equivalence class. This corresponds to a pair (A, u) over Y where
A is a connection on a bundle E and u is a section of the adjoint bundle gE .
Then we have a connection A + udt on the lifted bundle over R × Y . The
Spin(7)-instanton equation, expressed in 7-dimensions, becomes

(25) F ∧ σ = ∗dAu,

where ∗ is the Hodge ∗-operator of the metric gσ. This is an elliptic equation
(modulo gauge equivalences) for the pair (A, u). This set-up is similar to one
considered in early work of Thomas: the advantage in our present situation
is that, given a taming pair (σ′, φ′), we still get a topological bound like (23)
on the Yang-Mills energy. (Although σ′ does not appear explicitly we need
to use it in deriving the inequality.)

Suppose however that σ is a closed 4-form on Y (in which case we
might prefer to restrict attention to taming pairs with σ′ = σ). Then the
Bianchi identity implies that for any solution (A, u) as above (over a com-
pact manifold Y ) we have dAu= 0. Thus in this case we do get a good
theory of G2-instantons, without the extra field u. The explanation is that
when σ is closed we have a locally defined “Chern-Simons functional” just
as before, with critical points the G2-instantons, and the linearised theory
can be expressed in terms of an elliptic complex (21). Moreover we have
exactly the same gradient curve description as before. To sum up

(1) If we restrict attention to tamed structures on 8-manifolds with
tubular ends such that on each end the structure is defined by
a closed 4-form σ on the cross section then we get a (7 + 1)-
dimensional differential geometric theory with the good Proper-
ties A,B′, C. So we have reasons to hope that some kind of Floer
theory can be introduced into this more general and flexible, sit-
uation. The same remarks apply in the submanifold setting, for
Cayley submanifolds with “associative limits”.

(2) If, on the other hand, we are just interested in a compact 7-manifold
Y we can study solutions (A, u) of equation (25) for any positive
4-form σ, not necessarily closed, so long as there are taming forms.
This equation has properties A (with Fredholm index 0) and B′,
so we expect to define a numerical invariant. This can be regarded
as counting the zeros of a vector field on the space of connections
modulo gauge, but the vector field is not dual to a closed 1-form.
Again, the same remarks apply to aasociative submanifolds.
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Remark We note in passing that, by contrast, we expect a good theory
of coassociative submanifolds for almost G2 structures where the 3-form
∗σ is closed, rather than the 4-form σ. The problem is that, for general
σ the equations are overdetermined so we lose Property A. The condition
d ∗ σ = 0 is the integrability condition for the overdetermined system, much
as the condition dσ = 0 is the integrability condition for the G2-instanton
equations. One way of seeing this is to embed the discussion in that of Cayley
submanifolds in the cylinder, as before.

3.3. Dimension 6. The discussion becomes considerably more confus-
ing when we go down to 6 dimensions. We will need to have closed taming
forms, comprising a 2-form ω′ a pair of 3-forms ρ′1, ρ′2 and a 4-form τ ′. Thus
on R2 × Z our taming form will be

Ω′ = ω′dsdt+ ρ′1dt+ ρ′2ds+ τ ′.

Then we will consider an SU(3)-structure on the tangent bundle. We recall
that there is an open GL(6,R)-orbit of “positive” 3-forms in Λ3R6 each
of which determines an almost-complex structure. Thus we can take our
SU(3)-structure to be specified by a 3-form ρ1, which defines an almost
complex structure and hence ρ2 = −Iρ1 and a 2-form ω which is a positive
form of type (1, 1) with respect to this almost complex structure. The point
to emphasise that, in this most general formulation, there are algebraic con-
straints on the forms ω, ρ1 but only open conditions on the taming forms.
Then we get a wide variety of different extra conditions we can impose,
intermediate between this most general formulation and the case of genuine
Calabi-Yau structures.

Start with a 7-manifold Y with tubular ends and a tamed almost G2-
structure defined by a 4-form σ, not necessarily closed. Then we want to
study the equation (25), for pairs (A, u) on Y . We need to have Property
C: a gradient description on the ends. For this we consider a closed 3-form
ρ and the closed 4-form τ on the cross-section Z and the functional

f(a, u) =
∫

Z
CS(a) ∧ ρ+ Tr(uF (a)) ∧ τ,

on pairs (a, u) over Z. Suppose for the moment that we take an arbitrary
Riemannian metric on Z then we have a gradient equation

(26)
da

ds
= ∗(F ∧ ρ+ dau ∧ τ), du

ds
= ∗(F ∧ τ)

On the other hand, if we can write the 4-form σ as σ = ρ2ds+ω2 the equation
(25) becomes

(27) ω2 ∧ da

ds
= ρ2 ∧ F + ∗dau,

du

ds
= ∗(F ∧ ω2)

So we need to arrange that these equations are the same. First we should
take τ = ω2, that is we should suppose that ω2 is closed. Second we should
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suppose that ρ= Iρ2 for the almost complex structure defined by ρ2, and we
should use the standard metric associated to ω and this almost-complex
structure. Then the equations (26) and (27) are equivalent. But we can also
use ρ to define the same complex structure, and hence ρ2. So if we start
on Z with a closed positive 3-form ρ and a 2-form ω such that ω2 is closed
and ω is positive of type (1, 1) with respect to the almost-complex structure
defined by by ρ we get a model for a tubular end on which equation (25)
has a gradient description (Property C). We can take ρ, τ as two of our
taming forms ρ′1, τ ′ and we also need another taming 3-form ρ′ = ρ′2 and
a taming 2-form ω′. We might want to suppose that in fact ω′ = ω. (The
type (1, 1) condition is the same as saying that ω ∧ ρ= 0.) In this way we
obtain a (6+1)-dimensional theory with Properties A,B′, C. The stationary
solutions over tubes correspond to pairs (a, u) on Z with

(28) F (a) ∧ ρ= dau ∧ ω2 F ∧ ω2 = 0.

The data we need over Z consists of closed forms ρ, ρ′, ω but the only identity
(as opposed to an open condition) that we need to impose is ρ ∧ ω = 0.
We expect that we then get Floer groups associated to Z, related to the
invariants of almost G2-structures in 7-dimensions.

If we want to study the 7-dimensional theory with σ closed, which fits
into the (7 + 1) dimensional discussion, we are much more restricted. Then
we need both ρ and Iρ to be closed 3-forms on Z, which can only occur if
we have a genuine Calabi-Yau structure. In this case an integration-by-parts
argument shows that for any solution of (28), dau vanishes so we are back to
the equations (22). In the opposite direction, if we consider the most general
set up with no particular relation between the closed taming 3-forms and
the SU(3) structure, we can consider the system of equations for a triple
(a, u, v) where a is a connection and u, v are sections of gE :

(29) F ∧ ρ= dau ∧ ω2, F ∧ (Iρ) = dav ∧ ω2, F ∧ ω2 = [u, v]ω3.

We get a theory with Properties A,B′ and we expect that counting solutions
will generalise the holomorphic Casson invariant to this situation.

Much of the above has a good formal interpretation. The space of con-
nections A on a bundle E→ Z has a symplectic form

〈δ1, δ2〉 =
∫

Z
Tr(δ1 ∧ δ2) ∧ ω2.

The symplectic quotient A//G by the gauge group is given by solutions of the
equation F ∧ω2 = 0, modulo gauge equivalence. We have an induced sym-
plectic form on A//G. Any closed 3-form ρ̃ yields a locally-defined function
on the space A/G

fρ̃(a) =
∫

Z
CS(a) ∧ ρ̃.
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The equation F ∧ ρ̃= dau∧ω2 is the condition defining a critical point of fρ̃,
restricted to the symplectic quotient A//G ⊂A/G. The evolution equation

da

dt
∧ ω2 = F ∧ ρ̃,

defines the Hamiltonian flow associated to the function fρ̃ on A//G. The
difficulty in combining the (7 + 1) and (6 + 1)-dimensional theories is that
we want to find another 3-form ρ such that we get the same flow as the
gradient flow of fρ, and this seems to essentially restrict us to the Calabi-
Yau case. However this restriction may not be fundamental. We expect that
the (7 + 1) dimensional theory should be related, from the point of view
of the 6-manifold Z, to a “Fukaya category” of Lagrangian submanifolds of
A//G which would be, formally, something defined just by the symplectic
structure of A//G.

As usual, there is a corresponding discussion in the submanifold case.
The infinite dimensional space of symplectic surfaces Σ ⊂ Z has a natural
symplectic form, arising formally as a symplectic quotient [7]. Then we get
locally-defined functions on this space by integrating closed 3-forms over
3-dimensional cobordisms.

There is a variant of this discussion which yields deformation of the
Special Lagrangian equations in a Calabi-Yau 3-fold. To explain this we set
up some notation. Suppose L is a submanifold of a manifold M and ψ is a
p-form on M . If the restriction of ψ to L vanishes then ψ defines a section
of Ωp−1(L,N∗) where N is the normal bundle TM/TL of L in M . We will
denote this section by ψN . Now consider a closed 3-form ρ and a closed
4-form τ on a 6-manifold Z. There is a locally defined functional fτ on
the space of 3-dimensional submanifolds of Z, defined by integrating τ over
4-dimensional cobordisms. Let Cρ be the set of submanifolds P 3 ⊂ Z6 such
that the restriction of ρ to P vanishes. We consider the critical points of fτ

restricted to Cρ. For any submanifold P ∈ Cρ the restrictions ρ|P , τ |P both
vanish, the first by definition and the second for dimensional reasons, so
we have well-defined bundle-valued forms ρN ∈ Ω2(N∗), τN ∈ Ω3(N∗). The
Euler-Lagrange equation defining the critical points involves a function f on
P (which appears as a “Lagrange multiplier”) and takes the form

τN = df ∧ ρN .

Thus we have a system of equations for a pair (P, f):

ρ|P = 0, τN = df ∧ ρN ,

which are analogous to (28). (Of course we need to factor out the constant
functions f .) When Z is a genuine Calabi-Yau manifold and ρ, τ are the
standard forms the solutions are special Lagrangian submanifolds, as in [37],
with f = 0. More generally if we write τ = ω2, where ω is not necessarily
closed we can identify these pairs with associative submanifolds in the tube
Z × R. One would expect that, for generic choices, the solutions (P, f) are



GAUGE THEORY IN HIGHER DIMENSIONS, II 15

isolated and this deformation could be seen as removing a degeneracy in the
special Lagrangian equations (which forces the latter to have solutions in
moduli spaces of various dimensions, given by the first Betti number of P ).

4. Gauge theory on tamed almost-G2-manifolds
with tubular ends

4.1. Compact 7-manifolds. We will now make a slightly more
detailed analysis of the (6 + 1)-dimensional theory. We will do this in the
gauge theory setting, but a similar discussion applies for the submanifold
case. We will also restrict attention to a case when the cross-sections of the
ends are genuine Calabi-Yau manifolds.

Suppose that Y is a compact 7-manifold with an almost G2-structure
defined by a 4-form σ. Let A be any connection on a bundle E→ Y and
form the sequence of operators

(30) Ω0(gE) → Ω1(gE) → Ω6(gE) → Ω7(gE),

as in (21). This is not in general a complex but we can make a single operator
out of it in the usual way. Use the metric to identify Ωp with Ω7−p so we
have

(31) DA : Ω0 ⊕ Ω1 → Ω0 ⊕ Ω1.

The elliptic operator DA is self-adjoint if and only if σ is closed, but in any
case its symbol is self-adjoint, so the index is zero. When σ is closed and A is
a solution of the G2-instanton equation we get an elliptic complex of Euler
characteristic zero and we call A regular if the cohomology of this complex
vanishes. This implies in particular that A is isolated in the moduli space of
G2-instantons.

We will discuss briefly two more technical issues reducible conections
and orientations. Suppose first that Y is manifold with holonomy equal to
G2. Then we know [19] that the harmonic 2-forms all lie in the Λ2

14 com-
ponent in (6). This means that any complex line bundle L over Y admits
a G2-instanton connection, and in particular such a connection appears as
a reducible solutions A0 on the bundle E = L ⊕ L−1. The situation is in
some respects similar to that for instantons over a 4-manifold with nega-
tive definite intersection form. The bundle gE splits as R ⊕ L2 and, at A0,
the complex (30) splits into a corresponding sum, with the interesting part
given by

Ω0(L2) → Ω1(L2) → Ω6(L2) → Ω7(L2).

If the cohomology H1(L2, A0) vanishes then A0 is isolated from irreducible
solutions, and this is true also in families of small deformations of the
G2-structure. Thus, in this case, the irreducible solutions will not affect
the enumerative discussion, counting the irreducible solutions. Since the
complex has Euler characteristic 0 we expect that generically, in a family
of G2-structures, the cohomology will vanish. However we also expect that
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it will be non-trivial on some lower dimensional subset. The crucial point
however is that the complex structure on L2 means that we are consider-
ing families of complex linear operators and for these the generic picture is
that cohomology will appear in real codimension 2. In that case there will
be no interaction between the reducible and irreducible solutions in generic
1-parameter families, which is what are relevant to our purpose. So, granted
that a more detailed analysis is necessary we take this as an indication that
we can ignore the potential complications from reducible solutions, and for
simplicity we just ignore these reducibles in what follows. (Similar remarks
apply to reductions S(U(p) × U(q)) ⊂ SU(l).)

Now it seems very reasonable to assume that for generic σ all solutions
are regular Even if this is not the case we could contemplate introducing
further, more artificial, perturbations of the equations or ideas of “virtual
cycles”, but let us assume that perturbations of σ suffice. Our basic goal,
when the structure is tamed by some closed form φ is to define a number
by counting the solutions with appropriate signs, and it is the issue of these
signs which we take up next. As usual, we mimic the standard discussion
in the Casson-Floer theory over 3-manifolds. We seek to define a “relative
sign” ε(A,A′) ∈ {±1} for pairs of solutions with the property that

ε(A,A′′) = ε(A,A′)ε(A′, A′′).

This gives a way to attach signs to each solution, up to a single overall sign
ambiguity. We define ε(A,A′) using the spectral flow of a family of operators
DAt , where At is a path from A to A′. Given a path, this spectral flow yields
an integer and we set ε to be 1 or −1 as the spectral flow is even or odd.
Then the essential thing is to check that this independent of the path, which
is the same as saying that the spectral flow around a closed loop (in the
space of connections modulo gauge equivalence) is even. Such a loop yields
a connection on a bundle E over X = Y × S1 and the spectral flow appears
as the index of an elliptic operator over X. In fact this operator is just the
operator apearing in the linearisation of the Spin(7)-instanton equation and
can be identified simply as the Dirac operator over X, coupled to the bundle
gE. Here the spin spaces in 8 dimensions are regarded as 8-dimensional real
vector bundles. So this question of “orientability” in our 7-dimensional set-
up reduces to an algebro-topological question of showing that the index of
this such a coupled Dirac operator over X is even. (More generally, if the
index of all such bundles is divisible by some integer k then we expect the
putative Floer theory associated to Y to be Z/k-graded.)

We can use the Atiyah-Singer index theorem to express this question
in terms of characteristic classes. (An explicit formula is given by Lewis in
[24].) But we can also give an argument which avoids detailed calculation.
Since it is odd-dimensional, the manifold Y has a nowhere vanishing vector
field. This gives a reduction of the structure group of Y to SU(3) ⊂G2, and
hence of X to SU(3) ⊂G2 ⊂ Spin(7) ⊂ SO(8). With this reduction the spin
bundles of X acquire complex structures (corresponding to V ⊕ C, V ∗ ⊕ C
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where V is the fundamental representation of SU(3). Of course we are not
saying that these reductions are compatible with the differential geometric
structure, but they are at the level of the symbol of the Dirac operator.
Thus we can deform the coupled Dirac operator over X to a complex linear
operator, and hence the (real) index is even. However we will not try to
develop the theory of orientations any further here.

We move on from this brief outline, which indicates how—modulo ques-
tions of compactness—we should define an integer counting the G2-
instantons on a bundle E over Y . For each homology class b ∈H3(Y ) we
consider SU(l) bundles E with c2(E) the Poincaré dual of b and (for sim-
plicity) with c3(E) = 0. There are at most a finite number of different topo-
logical types and we define an integer nb by summing the counts above over
all such bundles. We expect this to be a deformation invariant, with respect
to perturbations of σ. The energy bound implies that nb = 0 if [φ](b)< 0,
since the moduli space is then empty. In fact nb vanishes for b outside some
proper cone in the half-space {b : φ(b)> 0}. We package these numbers into
a formal series

(32) fY (ψ) =
∑

nb exp(−〈b, ψ〉),

and our further hypothesis is that this converges to yield a holomorphic
function of variable ψ in an open subset of H3(Y,C) containing the points
r[φ], for large enough r.

4.2. 7-manifolds with tubular ends. Now we discuss dimension 6.
If we have a Hermitian-Yang-Mills connection on a holomorphic bundle over
a Calabi-Yau manifold Z6, as in the previous section, the linearisation of the
equations (28) for pairs (a, u) yields an elliptic deformation complex of Euler
characteristic zero. We call a solution regular if the cohomology vanishes,
and this is just the same as saying the sheaf cohomology H∗(Z, gE ⊗ C)
vanishes. We will assume that all solutions over Z are regular. This is a very
restrictive assumption, and we will return to discuss it further below.

Now suppose that Y is a non-compact manifold with tubular ends each
with a Calabi-Yau cross section, and that we have an almost G2-structure
defined by a closed form σ, compatible with the product structure on the
ends, up to an exponentially decaying term. If we fix a solution over each end
then we have the notions of an “adapted bundle” and “adapted connection”
over Y , just as in the usual 3+1 dimensional theory described in [8]. These
are, respectively, a bundle over Y with a fixed isomorphism with the pull-
backs of the chosen bundles over the ends, and a connection over Y which
agrees with the model determined by the 6-dimensional solution over each
end, up to an exponentially decaying term.

Now fix attention on any adapted connection A over Y and form the
differential operatorDA as above. This is formally self-adjoint, just as before.
Over an end, assuming that the connection is actually equal to the model,
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we can write DA as

DA = L
d

dt
+Q,

where L is a skew-adjoint algebraic operator and Q is a first-order self-
adjoint operator, both over Z. Under our hypothesis that Z is Calabi-Yau the
composite L−1Q is a self-adjoint first order operator over Y and the analysis
of DA follows very closely that in the three-dimensional theory, as described
in [8] for example. We deduce that DA : L2

1 → L2 is Fredholm provided that
the operator Q over Z does not have a zero eigenvalue. In turn, this is the
same as the hypothesis that the solution over Z is regular (since the operator
Q is essentially the same as that arising in the deformation theory over Z).

In the usual Floer theory we go on to consider the Fredholm index,
which yields an invariant of an adapted bundle. The distinctive feature of
the theory we are considering here is that the analogous index always van-
ishes. This is just a consequence of the fact, from the general theory, that the
cokernel of DA is represented by the kernel of the formal adjoint, which is
the same as DA. The consequence is that, under our restrictive hypotheses,
the study of G2-instantons on a fixed adapted bundle over Y behaves just
like the compact case. We define regular solutions in just the same way, we
expect that for generic σ all solutions are regular and that a count of solu-
tions yields a deformation invariant (with respect to compactly supported
variations in σ) of the adapted bundle.

Now we discuss “neck stretching sequences” and gluing constructions.
For simplicity consider a pair of manifolds Y1, Y2 each with one end having
the same model Z and appearing as the limit of a sequence of structures
σT on a compact manifold Y . (But note that when interchanging Y1, Y2 we
have to change the sign of the 3-form on Z.) Given regular G2-instantons
on adapted bundles over Y1, Y2 we wish to construct a glued solution over
(Y, σT ) for large T . The proof follows the familiar Floer theory case closely,
with one extra step. For large T we construct an approximate solution A0

with all norms of the error term σT ∧F (A0) bounded by decaying exponen-
tial functions of T . Now we seek to solve the equation

σT ∧ F (A0 + α) = ∗dA0+αu,

over YT , for a bundle valued 1-form α and 0-form u. We also impose the gauge
fixing condition d∗A0

α= 0. Schematically, these equations can be written as

DA0s= s ∗ s+ σT ∧ F (A0),

where s is the pair (α, u), the notation s ∗ s denotes a quadratic algebraic
term and DA0 is our basic elliptic operator. Mimicking the arguments in the
(3 + 1)-dimensional case, we get a bound on the operator norm of the inverse
of DA0 which is independent of T . Then the inverse function theorem shows
that when T is large (so σT ∧ F (A0) is small) there is a small solution s.
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Now the final extra step is to observe that, since σT is closed, the Bianchi
identity implies that in fact dAu= 0, as we have seen before. Hence A is the
desired G2-instanton.

Still following the familiar pattern, we hypothesise that when T is large,
all G2-instantons over (Y, σT ) arise by this gluing construction. Given a class
b ∈H3(Y ) we let c ∈H2(Z) be the image of b under the boundary map of
the Mayer-Vietoris sequence of Y = Y1∪Y2. This is the same as the Poincare
dual on Z of the restriction of the Poincaré dual, PDY (b), of b on Y . We
use the symbol S to denote a solution over Z on a bundle with Chern class
the Poincaré dual of c. Then our hypothesis gives a gluing formula of the
shape

(33) nb =
∑
S

∑
E1,E2

n(E1)n(E2),

where in the inner sum E1, E2 run over adapted bundles with common limit
S and such that the glued bundle over Y has c2 = P.D.(b). Of course we
have similar formulae when we glue manifolds with more than one end.

It is important to emphasise that if we work with almost G2 structures
where σ is not closed we would get a different, richer theory, more like Floer
theory over 3-manifolds and 4-manifolds with tubular ends. The operator
DA is not self-adjoint and the index gives a non-trivial invariant of adapted
bundles. Then we would get moduli spaces of different dimensions, depend-
ing on the index. However we will not pursue this further here.

4.3. Holomorphic bundles over moduli space. We have now
reached the main question we wish to address in this paper. The gluing
formula (33) is, in the general Floer theory framework, at the “chain level”.
As we vary the Calabi-Yau structure on Z the solutions S vary and we
do not have a canonical way to identify them. Further, even if choose such
an identification locally the individual numbers nE1 , nE2 will change. So we
seek a more invariant way of expressing the formula much as, in the ordinary
Floer theory, we pass from the “chains” to the Floer homology groups.

Let us for simplicity suppose that the inclusion of Z in Y induces an
injection on H3 and fix a coset [b0] in H3(Y )/H3(Z). We restrict attention
to classes b in this coset, which have the same image c in H2(Z). Now we
consider a series like (32)

(34) gY (ψ) =
∑

b∈H3(Z)

nb+b0 exp(−〈b, ψ〉),

where now ψ lies in an suitable open set in H3(Z,C), containing the points
r[θ] for large enough r.

Fix the class [ω] ∈H2(Z) and consider the moduli space M of pairs (I, θ)
where I is a complex structure on Z which admits Kähler metrics in the class
[ω] and θ is a nowhere-zero holomorphic 3-form. By the Torelli theorem for
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Calabi-Yau manifolds this is a quotient M̃/Γ where Γ is the symplectic
mapping class group and M̃ is immersed in H3(Z,C). We have an obvious
C∗-action on M, multiplying the holomorphic form by a constant. We can
also define a “norm” function by

‖(I, θ)‖2 =
∫

Z
θ ∧ θ.

and for R> 0 we write MR for the points in M of norm greater than R. We
suppose R is some fixed, suitably large, number. Then the restriction of the
holomorphic function gY defines a holomorphic function on an open set in
MR containing the ray lθ = {I, rθ) : r ≥ 1}. We denote this restriction also
by gY .

Now we make the assumption that for generic points in the moduli space
M all solutions S are regular.

Tentative prediction 1. Under this assumption:
• There should be a holomorphic vector bundle E →MR, associated

to the class c ∈H2(Z), and a canonical isomorphism (−1)∗E ∼= E∗.
• There should be an invariant gY1 which is a holomorphic section

of E over a neighbourhood of the ray lθ. Likewise there should be
an invariant gY2 which is a holomorphic section of (−1)∗E over a
neighbourhood of lθ.

• The function gY should be the dual pairing 〈gY1 , gY2〉, formed using
the isomorphism above

In other words, in this situation, the structure analogous to the Floer
homology of a 3-manifold is the holomorphic vector bundle E over the moduli
space, and its sheaf of holomorphic sections.

Remarks
1. The mapping class group may not act freely on M̃, in which case

M is an orbifold. Then we more should strictly work with an “orbi-
bundle” over M.

2. When we restrict the function gY from an open set in H3(Z,C)
to M̃ we could lose information. But our bundles actually extend
over a thickening of M obtained from a quotient of such an open set
and if formulated this way we get a gluing formula for the original
function gY .

Now we will explain the construction of the bundle. Suppose that θ, θ′
are two nearby Calabi-Yau structures on Z and that they are generic in
the sense above, so all solutions are regular. We have a collection of critical
points {S} associated to θ (with the fixed class c) and another collection S ′
associated to θ′. Let V, V ′ be the complex vector space with basis elements
〈S〉 and 〈S ′〉 respectively. Write 〈S〉∗ for elements of the dual basis of V ∗. We
can choose a tamed almost G2-structure on the topological cylinder R × Z
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which is asymptotic to that defined by θ at −∞ and by θ′ at +∞. Fix, for
the moment, closed 3-forms ψ representing cohomology classes ψ ∈H3(Z)
and extend these to closed 3-forms ψ on the topological cylinder, compatible
with the product structure on the ends. We choose the taming form φ as the
representative of Re(θ). Then for each adapted bundle E over the cylinder
we have the following

1. Asymptotic limits S(E) ∈ {S},S ′(E) ∈ {S ′}, at t= ±∞ respec-
tively.

2. A real number

ψ(E) = − 1
8π2

∫
Z×R

ψ Tr(FA)2,

where A is any adapted connection. This is independent of the
choice of connection and of the representative ψ, given a choice
of ψ.

3. An integer n(E) counting the number of G2-instantons.
Now we define a holomorphic function with values in Hom(V, V ′)

(35) Gθ,θ′(ψ) =
∑
E

n(E) exp(−ψ(E))〈S(E)〉∗ ⊗ 〈S ′(E)〉.

This will be defined in a neighbourhood of the ray lθ. If we change the choice
of representive ψ of a class ψ to ψ + dλ we change the numbers ψ(E) to

ψ(E) +
∫

Z

(
Tr(F 2

S(E)) − Tr(F 2
S′(E)

)
λ.

This has the effect of changing the linear map Gθ,θ′(ψ) to

(36) Λθ(ψ)Gθ,θ′(ψ)Λθ′(ψ)−1,

where in our bases Λθ,Λθ′ are diagonal matrices with entries given by the
exponentials of ∫

Z
TrF 2

S λ,

∫
Z

TrF 2
S′λ,

respectively. If θ′′ is another nearby generic structure and we fix the same
representatives the gluing formula, extended to this situation (when we glue
together two topological cylinders) yields

(37) Gθ,θ′′(ψ) =Gθ,θ′(ψ) ◦Gθ′,θ′′(ψ).

Thus to define our holomorphic bundle we decree that for each generic struc-
ture θ and choice of representatives ψ the bundle has a canonical triviali-
sation over some neighbourhood Uθ of lθ in the moduli space. Changing
the representatives ψ changes the trivialisation by multiplying by the diag-
onal metric Λθ. On the the overlaps Uθ ∩ Uθ′ we use the maps Gθ,θ′(ψ)
as transition functions. The gluing formula (37) is the cocycle condition
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giving the consistency of the set of transition functions, and the isomor-
phism (−1)∗(E) = E∗ is induced by the fact that the solutions {S} of the
equations defined by the 3-forms ρ,−ρ have an obvious identification.

Now to define the section gY1 corresponding to Y1 we work initially in a
canonical trivialisation around θ and with a choice of the representatives ψ.
By our hypothesis these can be extended to closed forms over Y1, compatible
with the product structure on the end. Then for an adapted bundle E1 over
Y1 and a class ψ in H3(Z) we define ψ(E1) in the same manner as before.
We also have a limit S(E1) and a number n(E1) Then we set

g̃Y1(ψ) =
∑
E1

n(E1) exp(−ψ(E1))< S(E1)>,

a V -valued holomorphic function on a neighbourhood of lθ. The gluing for-
mula shows first that this yields a well-defined section gY1 of E—independent
of the choice of θ and of ψ—and second that gY =< gY1 , gY2 >.

Remarks

1. Our bundle should have the property that its rank is equal to the
DT invariant. We can think of the rank as the 0-degree component
of the Chern character, and it might be that there is an extension
of these ideas to a formula for all of ch E . Note that Thomas’
theory discusses a fixed Calabi-Yau manifold and there should be
extensions of this which yield cohomology classes in the moduli
space M, using the universal family.

2. In this Section we have fixed attention on the (6 + 1)-dimensional
theory but it is natural to wonder if there is some yet higher struc-
ture, associated to the 8-dimensional geometry. Roughly speaking,
we would expect this to assign Floer groups to a compact G2-
manifold Y and one would like some machinery to compute these
when Y = Y1 ∪Z Y2. We make one observation in this direction.
Suppose we have a vector bundle over a space B given by transi-
tion functions gα,β with respect to a cover Uα of B. Thus we have
matrix entries gα,β,i,j(z) which are functions of z ∈ Uα ∩ Uβ and

gα,γ,i,k(z) =
∑

j

gα,β,i,j gβ,γ,j,k,

on Uα ∩ Uβ ∩ Uγ . Now suppose we have a chain complex C∗ and
a chain automorphism T : C∗ → C∗ so we have a Lefschetz num-
ber L(C∗, T ) =

∑
(−1)iTrTi. If we have a family of such pairs,

parametrised by z, the Lefschetz number becomes a function of z.
So we may envisage a structure given by chain complexes C∗

α,β,i,j ,
with automorphisms, parametrised by z ∈ Uα ∩ Uβ, such that on



GAUGE THEORY IN HIGHER DIMENSIONS, II 23

the triple overlaps

Cα,γ,i,j,k ∼
⊕

j

Hom(C∗
α,β,i,j , C

∗
β,γ,j,k),

where ∼ is a suitable equivalence relation, at least as strong as
chain homotopy equivalence, compatible with the automorphisms.
Then the Lefschetz numbers of the chain complexes give the tran-
sition functions of a holomorphic bundle. Possibly there is some
structure of this kind on the moduli space M which would refine the
bundle E , in the same way as the Floer homology of G2-manifolds
should refine the Casson invariant.

5. Finite-dimensional analogue

5.1. Morse-Novikov Theory. We begin with some basics. Take a
manifold A, and a class [α] ∈H1(A,C). This gives a local system, which
we may think of either as a rank 1 complex vector bundle on A with flat
connection α, or as a representation (the monodromy of the connection)

ρ : π1(A) → C∗

ρ(γ) = exp(
∫

γ
α)

How do the cohomology groups H∗(A, ρ) of this local system behave as we
vary [α]? The answer is that they form the fibres of a holomorphic sheaf E
over the vector space H :=H1(A,C). We show this as follows. An element
γ ∈ π1(A) gives a linear function on H. So we can let π1(A) act on the ring
of holomorphic functions on H by

γ : f �→ eγf

This is an action by module automorphisms, so we have a local system on
A whose fibre is the rank 1 free OH -module. The cohomology of this local
system E :=H∗(A,OH) is then also an OH -module, i.e. a sheaf on H, and
its fibre at the point [α] is the cohomology of the local system associated
to [α].

We will now review Morse-Novikov theory in finite-dimensions, more
specifically the reformulation due to Burghelea and Haller [2]. Let Θ be
a closed real 1-form on a finite-dimensional Riemannian manifold A, and
assume that Θ is “Morse”, i.e. locally the differential of a Morse function.
Then the pull-back of Θ to the universal cover Ã is globally the differential
of a Morse function, and we may form the cell-complex C• given by the
unstable manifolds of the zeroes of Θ on Ã in the usual way. This cell-
complex is obviously periodic with respect the action of π1(A).

Now suppose we have a rank-1 complex local system on A given by the
class of some closed complex 1-form α. Then we can use our periodic cell-
complex C• in Ã to produce a chain-complex that in good cases will calculate
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the cohomology of this local system. What we do is twist the differential on
C• by α and then take π1(A) invariants. Assuming that Θ is in fact Morse-
Smale for the metric on Ã, we can describe this chain-complex explicitly in
the following way: it has a basis given by the set ZA(θ) = {p} of zeroes of Θ
in A, and differential

(38) ∂αp=
∑

i(q)=i(p)−1

∑
γ:p→q

e
∫

γ αq

where i(p) denotes the index of p, and γ runs over all flow-lines of θ con-
necting p and q. The differential clearly varies holomorphically in α, so the
homology of the chain complex is a holomorphic sheaf E on the space Ω1

c of
closed complex 1-forms. If we choose a section H → Ω1

c (e.g. by using Hodge
theory) we can pull-back and get a holomorphic sheaf on H. The fibre of
this sheaf at [α] is the cohomology of the local system on A given by [α].

There are two problems with this description. Firstly, since Ã is non-
compact the cell-complex C• may not cover the whole of Ã (indeed θ may
have no zeroes at all), so we can’t guarantee that we are genuinely calculating
the cohomology of the local system [α]. Secondly, the sum (37) may not
converge. It is shown in [2], that neither of these issues is a problem when
α= sθ for s a complex number with Re(s)> ρ, where ρ ∈ [0,∞] is some
numerical invariant depending on θ and the metric. For this range of α,
the components of ∂α do converge, and the chain-complex does calculate
the cohomology of [α] correctly. The invariant ρ is conjectured to be always
finite, and in many examples is zero.

Let us suppose something stronger: that we get convergence and the
correct cohomology in an open neighbourhood of the set Re(α) = θ. This
includes the set {α= (1+ iλ)θ, λ ∈ R}, where we do indeed get convergence
and the right cohomology at least when ρ < 1. If this holds, for any generic
α0 ∈ Ω1

c we have an analytic way of constructing our sheaf E in a neighbour-
hood of α0. We set Θ = Re(α0), then the Morse-Novikov chain-complex (38)
constructed from θ will be valid in a neighbourhood of α0, so we may define
E to be its homology.

Now consider the special situation in which A is a complex manifold and
Θ is the real part of a holomorphic 1-form. Then the indices of all critical
points are equal and, in a generic situation there are no flow lines between
critical points. For any fixed α the cohomology H∗(A, [α]) is simply a vector
space with one basis element for each zero of Θ. The sheaf on E on H1(A,C)
is locally free and we write E also for the corresponding holomorphic vector
bundle.

We wish to apply this construction, formally, to the infinite-dimensional
manifolds X arising from a Calabi-Yau threefold Z. Thus X is either the
space of unitary connections with F ∧ω2 = 0, modulo gauge equivalence, or
the space of symplectic surfaces Σ ⊂ Z. Assume for simplicity that we are
working with genuine Calabi-Yau structures. Then given a point (I, θ) ∈ M̃
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we get an induced complex structure on X making it a Kahler manifold,
and the Chern-Simons construction gives a holomorphic 1-form on X whose
zeros correspond to stable holomorphic bundles or complex curves respec-
tively. More generally, we have a map from H3(Z) to H1(X ) and the Chern-
Simons construction gives a definite representative of this—a 1-form on X
corresponding to a closed 3-form on Z.

Allowing the complex structure to vary, we get a map from M̃ to
H1(X ;C), which is in fact a holomorphic embedding. So we should get a
sheaf over M̃ as the restriction of the twisted cohomology sheaf E , assuming
of course that we had made sense of the latter. Then everything is invariant
under the mapping class group Γ so we can descend to the moduli space M.

It should now be fairly clear how our (conjectural) construction fits into
this picture. Although we do not have any reason to believe that there
is a cohomology sheaf over the whole of H3(Z,C) we can make sense of
this over a neighbourhood of M̃. An individual fibre, over a generic point,
is rather uninteresting—having an almost-canonical basis. The interesting
structure appears in the way these are fitted together into a vector bundle. To
understand this we go back to our finite-dimensional situation and consider
Morse theory on the universal cover.

Let θ again be a closed real 1-form on a finite-dimensional Riemannian
manifold A, and (by abuse of notation) let θ also denote its pull-back to the
universal cover Ã. Assume that θ is Morse-Smale, then we want to consider
the resulting Morse complex for Ã.

Choose lifts p̃ of each zero p ∈A of θ, so the zeros of θ on Ã are

ZÃ(θ) =
⊔
p

{γ(p̃), γ ∈ π1(A)}

This is a basis for the Morse complex. The set of flow-lines is π1(A)-invariant,
so when i(q) = i(p) − 1 we may define Nγ−1φ

pq to be the (signed) number of
flow-lines between γ(p̃) and φ(q̃), this depends only the product γ−1φ in
π1(A). Then the differential in the Morse complex is

d(γ(p̃)) =
∑

i(q)=i(p)−1

∑
φ∈π1(A)

Nγ−1φ
pq φ(q̃)

Since Morse homology is actually isomorphic to singular homology, it
doesn’t change as we vary θ and the metric. Floer observed in [10] that
we can give an a priori proof of this fact, without reference to singular
homology, by counting flow-lines in families. Suppose we have a suitably
generic path (θt, gt) of (π1(A)-invariant) closed 1-forms and metrics, where
(θ0, g0) and (θ1, g1) are Morse-Smale. Then using some standard function
we can define a 1-form on Ã× [0, 1] which has zeros

{θ0 = 0} × {0}
⊔

{θ1 = 0} × {1}
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Let Mγ−1φ
pq be the (signed) number of flow-lines

γ(p̃) × {0} −→ φ(q̃) × {1}

where i(p) = i(q), and define a linear map Ψ between the Morse complexes
for (θ0, g0) and (θ1, g1) by

(39) Ψ(γ(p̃)) =
∑

i(q)=i(p)

∑
φ∈π1(A)

Mγ−1φ
pq φ(q̃)

Then it can be shown that Ψ is a map of chain complexes, and that it is
functorial with respect to composition of paths. Furthermore, if we have a
homotopy between two such paths, then by a similar construction there is an
induced homotopy between the corresponding chain maps. It follows that Ψ
is a homotopy equivalence. (Here we are assuming, in the finite-dimensional
case, that we do not run into problems due to the noncompactness of Ã.)

Now suppose that θ0 =Re(α0) and θ1 = Re(α1) for some complex 1-
forms α0 and α1. We can use the above discussion to understand how the
Morse-Novikov complexes for (α0, g0) and (α1, g1) are related. To do this,
we need the following construction.

Let (θ0, g0) and (θ1, g1) be any two Morse-Smale pairs. Suppose, we have
a π1(A)-invariant linear map

T :
〈
ZÃ(θ0)

〉
R
→ 〈

ZÃ(θ1)
〉
R

of the vector spaces underlying the corresponding Morse complexes. Then

T : γ(p̃) �→
∑
q,φ

T φ−1γ
pq φ(q̃)

for some set of real numbers {T γ
pq}. Examples are the Morse differential d

when (θ0, g0) = (θ1, g1), and the map Ψ (39) when (θ0, g0) �= (θ1, g1). Then
for any closed complex 1-form α on A we may formally define a map

T̂ : 〈ZA(θ0)〉C → 〈ZA(θ1)〉C
by setting

T̂α(p) =
∑
q,γ

T γ
pqe

∫ γ(q̃)
p̃ αq

though of course this may not converge. It is easy to check that this pro-
cess is (formally) a homomorphism, i.e. if we have three Morse-Smale pairs
(θ0, g0), (θ1, g1), (θ2, g2) and maps

〈
ZÃ(θ0)

〉
R

T→ 〈
ZÃ(θ1)

〉
R

U→ 〈
ZÃ(θ2)

〉
R
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then

(40) T̂αÛα = T̂Uα

Also applying this to the Morse differential we get

d̂α(p) =
∑

i(q)=i(p)−1

∑
γ

Nγ
pqe

∫ γ(q̃)
p̃ αq

which is just the Morse-Novikov differential ∂α.
Now take two generic pairs (α0, g0), (α1, g1) of closed complex 1-forms

and metrics on A, and choose a generic path between them in the space of
closed complex 1-forms and metrics. Take the real parts of all the 1-forms
to get the same data in the space of closed real 1-forms and metrics. We
get two Morse complexes with differentials d0 and d1, and a chain map Ψ
between them. Assume there is some neighbourhood U ⊂ Ω1

c , containing α0

and α1, such that the maps d̂0
α, d̂

1
α and Ψ̂α converge for all α ∈ U . Then over

U we have two Morse-Novikov complexes of holomorphic vector bundles on
U , given by the differentials d̂0 and d̂1. However, by (40) we know that Ψ̂ is
a holomorphic chain map between the two complexes.

If we have two such paths and a homotopy between them, we get two
chain maps Ψ1 and Ψ2 between the Morse complexes, and chain-homotopy
Ξ. Then, assuming everything converges in U , we get two holomorphic chain
maps Ψ̂1 and Ψ̂2 between our Morse-Novikov complexes on U and a holomor-
phic homotopy Ξ̂ between them. Similarly, assuming that all the necessary
maps converge in U , we can show that our two Morse-Novikov complexes
are homotopy equivalent.

In the model situation we are considering, the complex 1-forms on A
that are actually holomorphic, so at generic points the Morse-Novikov chain
complexes have no differential. This means the homotopy equivalences Ψ̂ are
just isomorphisms, and that if Ψ̂1 and Ψ̂2 are homotopic maps then they
are actually identical.

We now have a picture of how our bundle E on H1(A,C) is built up.
Suppose we have a simply-connected region U ⊂M consisting of only two
“chambers” U1 and U2 in which the Morse-Smale condition holds, separated
by a wall on which it fails. Firstly, take two points x, y ∈ U1, and a path
between them. The corresponding map Ψ counts flow-lines in the family of
1-forms and metrics given by the path, but since the Morse-Smale condition
holds everywhere along the path we will just see a single flow-line from any
zero of αx to the corresponding zero of αy, so Ψ is just the identity map.
This means that E should be trivial over each region U1 and U2. However,
if we have a path between x ∈ U1 and y ∈ U2 then the family will contain
additional flow-lines arising from the “unexpected” flow-lines that occur
on the wall, so the map Ψ will be non-trivial. Passing to the holomorphic
version, we get the transition function Ψ̂ that we should use to patch E when
we cross the wall.
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We can formulate this construction a little more precisely. Pick any x ∈
U1 and y ∈ U2 and any path between them. The corresponding map Ψxy is
independent of the choice of path since U is simply-connected. Assume that
Ψ̂xy converges in all of U . Let Vx, Vy be the trivial bundles on U with fibres
〈ZA(αx)〉C and 〈ZA(αy)〉C respectively. Take another copy of each of these
bundles, and denote them Vxy := Vx and Vyx := Vy. Define

EU = coker(Vxy ⊕ Vyx
Φ−→ Vx ⊕ Vy)

where

Φ =
(

id Ψ̂xy

Ψ̂−1
xy id

)

Then over U1 we have EU ∼= Vx by projecting onto the first factor, and
over U2 we have EU ∼= Vy by projecting onto the second factor, but across
the wall these isomorphisms differ by the transition function Ψ̂xy. This is
precisely the vector bundle that we wanted.

In fact this picture of a finite wall-and-chamber decomposition is mis-
leading. Since there are infinitely many homotopy classes in which non-
Morse-Smale flow-lines can appear, we actually expect the set of walls to be
dense in the parameter space H1(A,C). However, this construction adapts
easily. Let U again be simply connected, but have possibly infinitely many
walls in it. For every point z ∈ U that doesn’t lie on a wall we let Vz be the
trivial bundle on U spanned by ZA(αz), and for every distinct ordered pair
x, y of such points we take a copy Vxy := Vx. For every pair x, y we get a
map Ψxy of Morse complexes, and again this is independent of the choice of
path between x and y. Assume that Ψ̂xy converges in all of U for all x, y ∈ U .
Define

EU = coker(
⊕
x,y

Vxy
Φ−→

⊕
z

Vz)

where the map Φ has components

δxzid + δyzΨ̂xy : Vxy → Vz

At any generic point z we have EU ∼= Vz by projecting onto that factor, so
in particular EU is a finite rank vector bundle.

5.2. Discussion. In our infinite-dimensional situation we interpret
Floer’s time dependent vector fields, used in constructing the chain homo-
topy, as almost-G2 structures on topological cylinders. The count of flow lines
for the time dependent vector field gives the count of G2-instantons, and the
Novikov series handle the passage to the universal cover. Then it should be
clear how our definition of the holomorphic bundle over M matches up with
the finite-dimensional discussion. To sum up, we interpret the holomorphic
bundle E over M as the “middle-dimensional” cohomology of the infinite
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dimensional space X , with coefficients in the local system over X defined by
classes in H3(Z,C).

When Floer first introduced his theory he gave a different treatment of
the parameter-dependence of his homology which was more explicit but tech-
nically more complicated. Later, he introduced the “time-dependent vector
field” trick which gave a simpler approach, but the original method had the
advantage of giving a more precise description of the chain homotopies. In a
similar way we can give a more explicit description of the co-efficients which
define the transition function of our holomorphic bundle. This is closer to the
discussion in [6] and in [27]. The “Novikov” aspect of the theory is confusing
here, so let us begin by considering a finite dimensional complex manifold
Ã and a proper holomorphic map f : Ã→ C with a finite number of critical
values z1, . . . , zN ∈ C, where we suppose each zi corresponds to a unique
critical point Ai ∈ Ã. The gradient curves of the function Re(f) on Ã map
under f to line segments with fixed imaginary part. So if, as will generically
be the case, the imaginary parts of the zi are all different there can be no
gradient curves joining the critical points. However we are free to rotate the
picture, multiplying f by any complex number of modulus 1. Given a pair
zi, zj we can choose this phase so that we are allowed to have gradient curves
joining Ai, Aj , mapping to the line segment zizj in C, which generically will
not contain any other zk. The count of such gradient curves gives a num-
ber Nij . This is the intersection number of the vanishing cycles of f at the
two points, when the fibre f−1(t) is transported along the segment zizj so
that the two vanishing cycles can be viewed as homology classes in the same
space. Now suppose we have a generic 1-parameter family of such situations.
Then in the family a third point zk may move across the segment zizj . When
this happens the number Nij changes by ±NikNkj . Another way of express-
ing this is that we change the homotopy class of the path in C\{z1, . . . , zN}
used to identify the fibres near zi and zj . The parallel transport along the
two paths differs by monodromy around zk: a Dehn twist in the vanishing
cycle associated to zk. Now given a generic f we let Vf be the vector space
with basis symbols 〈Ai〉 associated to the critical points. As we move in a
generic 1-parameter family from f0 to f1 say the Ai move continuously so we
have a naive, and rather trivial, isomorphism between Vf0 and Vf1 (depend-
ing on the path). We modify this in the following way. If in the family the
critical point zj moves across the ray {z : Im(z) = Im(zi),Re(z)>Re(zi)}
then we map the basis element 〈Ai〉, before the crossing, to 〈Ai〉 ±Nij〈Aj〉,
after the crossing.

Now replace the hypothesis that f is proper and has a finite number of
critical points by the situation we had before, where Ã is the universal cover
of some A, so there are a finite number of critical points up to the action
of H1(A). The same procedure gives a more explicit recipe for the local
trivialisation of the twisted cohomology bundle, except now we need to keep
track of the relative homotopy class of paths between critical points, which
brings in the Novikov series. Translated into our infinite dimensional picture
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this gives a way to describe the transition functions of our holomorphic
bundle, using G2-instantons on genuine tubes R×Z, exploiting the freedom
to multiply the 3-form θ by a phase.

With all of this discussion in place, we return to discuss our main hypoth-
esis, that for generic points in the moduli space M all solutions are regular.
This seems to be a serious restriction, not often satisfied in practice. How-
ever there is an obvious strategy for removing this restriction. We work
with suitable generic perturbations of the Calabi-Yau structure, involving
triples ω, ρ, ρ′ with ω∧ρ= 0. It is very reasonable to expect that for generic
perturbations of this kind all solutions are regular. But as we explained in
Section 3 we have then to give up the assumption that σ is closed, so we
get nonzero Fredholm indices for adapted bundles. But this just means that,
in the finite-dimensional analogue, we need to compute twisted cohomology
using a 1-form with zeros of different indices so we can have a nontrivial
chain complex. What one would expect is that it is possible to define a col-
lection of sheaves over the moduli space MR which can be interpreted as
the different twisted cohomology groups of A//G. But we will not go into
this further here.

Finally, we point out that, as explained by Burghelea and Haller, in the
finite dimensional situation the twisted cohomology groups can be computed
by a variant of Witten’s complex, and described using differential forms
satisfying Witten’s deformation of the Hodge-Laplace equation. It could
well be that the structure we are discussing in this article arise this way in
Quantum Field Theory, and are perhaps well-known there.

6. Interaction between gauge theory and calibrated geometry

6.1. G2-instantons and associative submanifolds. So far we have
ignored the fundamental problem of compactness of moduli spaces. In this
section we attempt to explore this and to get a glimpse of what modifications
are required to take account of the problem.

Suppose that σi is a sequence of G2-structures on a fixed 7-manifold Y
with limit σ. Suppose we have corresponding sequence of G2-instantons on
a fixed SU(l) bundle. Then, according to Tian, after taking a subsequence
the connections converge off a set P of Haussdorf dimension at most 3 and
each three-dimensional component satisfies the associative condition, in a
generalised sense. The sequence of 4-forms Tr(F 2

Ai
) allows us to attach a

multiplicity to each 3-dimensional component. Let us suppose that in fact P
is a connected smooth associative submanifold. Roughly speaking, we expect
that if the multiplicity is k then transverse to P the connections are modelled
on instantons on R4 with c2 = k, and the behaviour as i→∞ mimics the
familiar bubbling of instantons over 4-manifolds. We expect also that the
singularity at P in the limiting connection is removable, so that limiting
connection extends to a smooth G2-instanton over Y [32]. In this section we
discuss the converse question. Let σ be a G2 structure on Y and A be a
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G2-instanton on a bundle E over Y . Let k be a positive integer and P be an
associative submanifold in Y . When does the triple (A,P, k) appear as the
limit of smooth G2-instantons with respect to a sequence of deformations σi

of σ?
In this subsection we will explain that there is a natural candidate crite-

rion for “bubbling” question. In particular when the gauge group is SU(2)
and when k = 1 we will argue that this occurs if for some spin structure on P
the coupled Dirac operator on E|P , defined by the restriction of the connec-
tion A, has a nontrivial kernel. Several authors have considered related prob-
lems, mostly emphasising the similar question involving Cayley submanifolds
and Spin(7)-instantons in 8-dimensions. Lewis proved an existence theorem
for Spin(7)-instantons using a gluing construction, choosing a Cayley sub-
manifold with very special properties [24]. Brendle considered the general
question of existence of Yang-Mills connections [5], and Spin(7)-instantons
in particular [4], but restricting attention to the case when (the analogue
of) the integer k above is 1. The construction we want to explain here is due
to Haydys [14],[15], and related to ideas of Pidstrigatch [28] and Taubes
[35]. We refer to the paper of Haydys [15] for a more complete account, and
a discussion of various other interesting related matters.

To begin, suppose that V is a quaternionic manifold, with a multiplica-
tion map

(41) μ : TV × H → TV.

Then there is an elliptic “Fueter equation” for maps f : R3 → V which is

(42) I
∂f

∂y1
+ J

∂f

∂y2
+K

∂f

∂y3
= 0.

In the case when V is H this is just the Dirac equation for a spinor field.
(There is a similar equation for maps from R4 to V , but we will emphasise
the 3-dimensional version.) Now suppose that there is an action of SU(2)
on V permuting the I, J,K. More precisely, this means that μ in (41) is
an SU(2)-equivariant map, for the induced action of SU(2) on TV and the
standard action by automorphisms of the quaternions. Let P be an oriented
Riemannian 3-manifold with a spin structure and Fr→ P the corresponding
principal SU(2) bundle. Then we can form the associated bundle

(43) V = Fr ×SU(2) V.

For each point y ∈ P there is an obvious way to make R ⊕ TPy into an
algebra Hy, isomorphic to H but not canonically so. Our hypotheses imply
that there is a natural Hy structure on the tangent bundle of the fibre V y.
Thus there is a Fueter equation for sections of V ,∑

i

ei∇is= 0,
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where ei is any orthonormal frame in TPy and ∇i denotes the “vertical part”
of the derivative of the section, defined using the horizontal subspace induced
from the Levi-Civita connection. Slightly more generally still, suppose that
G is another Lie group and there is an action of G × SU(2) on V , where
now G preserves the quaternionic structure. Let Q→ P be a G-bundle with
connection, so we have a principal G×SU(2) bundle Q×P Fr over Y . Then
we can form an associated fibre bundle

(Q×P Fr) ×G×SU(2) V,

and, as Haydys observed [14], there is an intrinsic Fueter equation for sec-
tions of this bundle over P .

With this background in place, we return to consider an associative
submanifold P ⊂ Y . To explain the basic idea, we begin with the model case
when P, Y are flat, so we can take local co-ordinates y1, y2, y3, x1, x2, x3, x4

in which
σ = dx1dx2dx3dx4 +

∑
i,j,k cyclic

dyidyjωk,

where ωi is a standard basis for Λ+R4. For ε > 0 let σε be ε−2 times the
pull-back of σ under the map which multiplies the xa co-ordinates by ε.
Thus

σε = ε2dx1dx2dx3dx4 +
∑

dyidyjωk.

We have a limit σ∗ =
∑
dyidyjωk which is not a positive form, but we can

still consider the equation F ∧ σ∗ = 0, which we refer to as the σ∗-instanton
equation.

Let N → P be the normal bundle of P ⊂ Y . The G2-structure induces
a bundle isomorphism Λ+N → TP , which one finds is covariant constant
with respect to the standard induced connections on TP,N . Fix a spin
structure on P . Then we get another complex vector bundle U → P , with a
connection and structure group SU(2), such that N is canonically identified
with the real part of U ⊗C S. Using the connection on N we get a canonical
3-form σ∗ on the total space of N . Let exp be the exponential map from a
neighbourhood of the zero-section in N to Y , let expε(ξ) = exp(εξ) and let
σε be the 4-form ε−2 exp∗

ε (σ). Then one can see that the limit of σε as ε tends
to zero is σ∗. We can define σ∗-instantons: connections on bundles over the
total space N , as above and it clearly reasonable to expect that these are the
blow-up limits of sequences of connections developing a singularity along P .

Now we want to bring in a G2-instanton connection A on another SU(l)
bundle E over Y . This defines a connection A|P on the restriction E|P . Let
N∞ be the 4-sphere bundle over P obtained by adjoining a section at infinity
to the R4-bundle N . W define a σ∗-instanton on N with asymptotic limit
A|P to be given by a connection A on a bundle E →N∞ which satisfies
the σ∗-instanton equations on the dense subset N ⊂N∞ and such that the
restriction of A to the infinity section is equivalent to A|P . Note that this
data defines an integer Chern class k, given by the restriction of E to any
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4-sphere fibre. We expect that a triple (A,P, k) can only occur as the limit
of a sequence of G2-instantons, for nearby structures, if there is a solution
of the σ∗-instanton equation with Chern class k and asymptotic limit A|P .

Let M =Mk,l be the moduli space of “framed” SU(l) instantons of
Chern class k over S4 = R4 ∪ {∞}. By a framing we mean a trivialisa-
tion of the fibre over ∞. We write R4 as the real part of S+ ⊗ S− where
S+, S− are the spin spaces. Then there is a natural action of the group
SU(2)× SU(2)× SU(l) on M , where the two SU(2) factors act on S+, S−,
and SU(l) acts on the framing at infinity. There is a quaternionic structure
on M which is preserved by SU(l) and the second copy of SU(2) and per-
muted by the first copy of SU(2). So we are in the situation above, with
G= SU(2) × SU(l). Given our SU(l)-bundle E|P and our SU(2)-bundle
U → P we form a G-bundle as the fibre product and then we get a bundle
M → Y with fibre M and a Fueter equation for sections of M .

Theorem 1. (Haydys [15]) There is a one-to-one correspondence
between solutions of the σ∗ instanton equation with Chern class k and asymp-
totic limit A|P and sections of the bundle M over P which satisfy the Fueter
equation.

This can be thought of a variant of the “adiabatic limit” for Spin(7)-
instantons over products discussed in [6]. In the case when k = 1 the Fueter
equation appears in [4] as a “balancing condition”. It is natural to expect
that the equation in [5] associated to general Yang-Mills solutions can be
interpreted as the equation defining a harmonic section of the bundle M , as
in [16].

We use the connection on N to split the tangent space of N into hori-
zontal and vertical subspaces, isomorphic to TP and (U ⊗S)R respectively.
With respect to this splitting, F (A) ∧ σ∗ has two components, say F1, F2

where F1 takes values in the normal bundle of P and F2 in the tangent
bundle (both lifted to N and tensored with the bundle of Lie algebras). The
σ∗-instanton equation thus splits into two separate conditions. We show that
there is a one-to-one correspondence between

• connections A over N∞ isomorphic to A over the section at infinity
and satisfying F2 = 0

• smooth sections of M → Y .
Then we show that the further condition F1 = 0 is equivalent to the Fueter
equation.

The condition F2 = 0 just asserts that the restriction of A to each fibre
of N is an anti-self-dual connection. There is a tautological bundle over
M × S4 which is equivariant for an action of SU(2) × SU(2) × SU(l) and
which has a fixed trivialisation over M × {∞}. On this bundle we have a
standard connection which restricts tautologically to the S4 slices and which
is compatible with the trivialisation over M × {∞}. Using the group action
we construct a bundle Ẽ over the pull-back π∗(M) of M to N∞, which
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can also be viewed as a bundle over P with fibre S4 ×M . The connections
on TP,U and E induce a natural connection A0 on Ẽ. A section s of M
induces a section s of π∗(M) and we have a connection As = s∗(A0) on
a bundle s∗(Ẽ) over N∞. The stated properties of the connection on the
universal bundle imply that As is isomorphic to A over the section at infinity
and satisfies the condition F2 = 0, simply because the connection on the
universal bundle is anti-self-dual on each R4 slice in M ×R4. Conversely, it
is a straightforward formal exercise to check that all such connections arise
in this way.

The remaining task is to match up the curvature condition F1 = 0 with
the Fueter equation. For this we should recall some more of the theory of
instantons over R4. We can regard R ⊕ Λ+ as an algebra H. Of course, as
before, H is isomorphic to the quaternions but we prefer not to fix such an
isomorphism. Then H acts naturally by multiplication on itself and also acts
on R4. Let A be a finite energy instanton over R4. We have a defomation

complex Ω0 dA→ Ω1
d+

A→ Ω+ and an elliptic operator d∗A ⊕ d+
A : Ω1 → Ω0 ⊕ Ω+.

The tangent space of the moduli space M at A can be identified with the
L2 solutions a of (d∗A ⊕ d+

A)a= 0 [33]. The crucial points are

• d∗A ⊕ d+
A commutes with the H action induced by the actions on

R⊕Λ+ and R4. Thus we get an action of H on the tangent space
of M , which is just the quaternionic structure mentioned before.

• The component of the curvature of the connection A on the univer-
sal bundle in T ∗M ⊗ T ∗R4 = Hom(TM, T ∗R4) is the tautological
map given by evaluating a ∈ TM at a point in R4. In particular
this commutes with the action of H.

Now we work at a fixed point in P and fix an orthonormal basis ei for the
tangent space of P at this point. Identifying the fibre of N at this point
with R4 we get a basis ωi of Λ+. Suppose we have a section s of M → P .
With respect to the given connections this has a covariant derivative, with
three components a1, a2, a3 ∈ TM corresponding to the tangent vectors ei.
The Fueter equation is

∑
ωi(ai) = 0. By the second observation above this

implies that for each point x ∈ R4

∑
ωi(Fai , ) = 0,

where (Fai , ) is the bundle-valued 1-form on R4 obtained by pairing the
curvature of the universal bundle with ai ∈ TM . Unravelling the definitions
one sees that the left hand side of this equation is precisely the component
F1 of the curvature. Thus a solution of the Fueter equation does yield a
solution of the σ∗-instanton equation and the only remaining thing is to see
that there are no other solutions.

Suppose we have any solution A of the equation F2 = 0, isomorphic to
A over the infinity section. Restriction to the fibres of N defines a section
s of M and A must agree with As in the fibre direction. Thus the only
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possibility is that A =As + Φ where Φ is a bundle-valued 1-form vanishing
in the fibre direction. If we fix a point in P and a basis ei as above then Φ
has three components φi which are sections of the adjoint bundle over R4.
If ai are the derivatives of s, as above, then the curvature condition F1 = 0
becomes

(44) ωi(ai + dAφi) = 0.

The hypothesis on the connection over the infinity section is equivalent to
the condition that |φi(x)| → 0 as x ∈ R4 tends to infinity. Thus what we need
to show is that in this situation all the φi vanish. Now write Φ =

∑
φiωi, a

bundle-valued self-dual 2-form over R4. The equation (44) is equivalent to

d∗AΦ =
∑

ωi(ai).

Since d+
Aωi(ai) = 0 we have the identity d+

Ad
∗
AΦ = 0. The Weitzenbock for-

mula in this situation tells us that

d+
Ad

∗
AΦ =

∑
i

(d∗AdAφi)ωi.

(This uses the fact that A is an anti-self-dual connection.) So we deduce
that d∗AdAφi = 0 and then the maximum principle implies that φ vanishes,
since |φi| tends to zero at infinity. This completes the proof of the theorem.

There is a standard map from M to R4 which takes a connection to
the centre of mass of its curvature density |F |2 and the derivative of this
map is H-linear. In fact M is a product M ′ × R4, where M ′ is the “cen-
tred” moduli space. It follows that there is a bundle map from M to N
which takes solutions of the Fueter equation for sections of M to sections
of the corresponding equation for sections of N . The latter is just the linear
Dirac equation appearing in the theory of deformations of the associative
submanifold P . We assume P is “regular” so this equation has no non-zero
solution. This means that we can replace the instanton moduli space M by
the centred moduli space M ′ throughout the discussion above. Let us con-
sider the case when l = 2 and k = 1. Then, up to translation and dilation of
R4 and gauge equivalence, there is just one instanton which is the standard
connection on the negative spin bundle over S4. The framed moduli space
can naturally be written as

M ′ = (S+ \ {0})/± 1,

where S+ is the spin space, and this is compatible with the quaternionic
structure. (The quotient by ±1 comes from the centre of SU(2).) Tracing
through the definitions we find that

M ′ =
(
(S+ ⊗ E)R \ 0

)
/± 1.

where S+ is the spin bundle over P and 0 denotes the zero-section. Note
that the bundle M ′ does not depend on the choice of a spin structure on
Y but if we have a section of M ′ there is a unique choice of spin structure
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for which this lifts to a section of (S+ ⊗ E)R. Making this choice, we see
that solutions of the Fueter equation correspond (up to ±1) to solutions of
the Dirac equation for sections of E-valued spinors over P , using the Dirac
operator coupled to A. Thus, in sum we expect that the condition that a pair
P,A appear as the limit of G2-instantons, with multiplicity k = 1, is that
there is a nontrivial harmonic spinor for the restriction A|P , for some choice
of spin structure on P . (Note that we are assuming here that the harmonic
spinor does not vanish, but this should be true generically for dimensional
reasons. A case when the harmonic spinor vanishes somewhere would require
further analysis.)

We could carry out the same discussion for complex curves in a Calabi-
Yau 3-fold and Hermitian-Yang-Mills connections (solutions of (22)), or
embed this in the situation above by taking the product with a circle. But
in this 6-dimensional case there is an alternative, algebro-geometric, point
of view, which leads to the same conclusion. Let Σ be a smooth curve in a
Calabi-Yau 3-fold Z0. Suppose π : Z → Δ is a deformation of Z0, where Δ is
a disc in C. Thus Σ can be viewed as a curve in the central fibre π−1(0) ⊂Z.
Blow up this curve to get π̃ : Z̃ → Δ. Then

π̃−1(0) = V ∪D Z̃0,

where Z̃0 is the blow-up of Z0 along Σ, D ⊂ Z̃0 is the exceptional divisor,
which is a CP1 bundle over Σ, and V is a CP2 bundle over Σ which contains
a copy of D. If we have a holomorphic bundle E over Z̃, restriction to
fibres gives a family of bundles Et over the deformations Zt = π−1(t) for
non-zero t but if the restriction of E to the CP2 fibres in V is non-trivial
this family will not extend to give a bundle over Z0. One expects this to
give the algebro-geometric description of a family of Hermitian-Yang-Mills
connections developing a singularity along Σ. The analogue of the connection
A in the discussion above is furnished by the restriction of E to Z̃0 ⊂ π̃−1(0),
which we assume to be the lift of a bundle E over Z0. The algebro-geometric
analogue of the question we have discussed above is to ask: given Σ, E, k
when is there a bundle over π̃−1(0) which is isomorphic to the pull-back of
E over Z̃0 and has c2 = k on the CP2 fibres in V . It is a straightforward
algebraic geometry exercise to show that when k = 1 this occurs precisely
when there is a non-vanishing holomorphic section of E ⊗K

1/2
Σ over Σ, for

some choice of spin structure K1/2
Σ .

6.2. Implications. The Dirac operator on E-valued spinors over P is
naturally a real operator and we expect to encounter a zero eigenvalue in
real codimension 1. Thus it seems likely that a naive count of G2-instantons
will not yield an invariant. What one would expect is needed is a count
which includes triples (A,P, k) of a connection on a different bundle and an
associative submanifold P , thought of as having multiplicity k. We should
count these with some weight W (A,P, k). For example with bundles of rank



GAUGE THEORY IN HIGHER DIMENSIONS, II 37

l = 2 and when k = 1 we would need some way to determine the weight W so
that in a generic 1-parameter family it changes by ±1 when one eigenvalue
of the Dirac operator crosses 0 (and a prerequisite for understanding the
signs would be to develop a theory of orientations and signs in the “naive”
theory, which we have not discussed). This is much the same issue involved
in regularising the “dimension” in the ordinary Floer theory, as we discussed
in Section 4.1. Formally W could be given by the ±1/2 where the sign is
determined by the parity of the “number of negative eigenvalues” of the
coupled Dirac operator on P . It seems possible that this can be done, using
the theory of spectral flow.

For larger values of k new issues arise, since the contribution from
P involves an essentially non-linear problem. We should still expect to
encounter solutions in real codimension 1. The reason is that there is a
dilation action onM and hence onM which preserves the quaternionic struc-
ture. Thus a single solution of the Fueter equation generates a
1-dimensional family, by dilation. The linearisation of the Fueter equation
has Fredholm index 0 but this dilation action implies that, in a family, we
expect to encounter solutions in real codimension 1, just as for the linear
Dirac operator. Given any section s of M , let ŝ denote the vertical vector
field defined by the infinitesimal dilation action, and let D(s) be the expres-
sion appearing in the Fueter equation, which is also a vertical vector field.
Then we have a nonlinear eigenvalue equation

D(s) = λŝ,

for sections s, generalising the eigenvalue equation for the Dirac operator.
(In [13], Section 3.4, Haydys develops a more general theory of these eigen-
value equations, in terms of a “Swann bundle”.) Of course we have a solution
of the Fueter equation just when there is a zero eigenvalue. So it seems that
one needs an extension of the theory of spectral flow which would enable
one to define the weight W (A,P, k) by a regularisation of the “number of
negative eigenvalues” for this nonlinear problem. If one seeks, more ambi-
tiously, to construct a Floer theory in 7-dimensions then it seems likely
that one would have to assign a Floer group (or, perhaps better, chain com-
plex) to (A,P, k), giving the contribution to the overall Floer homology (and
with Euler characteristic W (A,P, k)). This may be related to recent work of
Hohloch, Noetal and Salamon [17]. We could think of a “completed” space
of connections with a point having a neighborhood modelled on the prod-
uct of a Hilbert space with a cone over a space L, where L is the space of
sections of M , modulo dilation. In a finite-dimensional analogue the contri-
bution of this point in a Morse theory description of the homology of the
total space will involve the theory of the Conley index; the homology of L
and various subsets. It is possible that there is a “Floer-analogue” of this
which can be formulated in terms of the solutions of the eigenvalue equation,
and “flow lines” between them.
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Even leaving aside this complication in 7-dimensions, of bubbling along
an associative submanifold, it seems likely that the naive count of solutions in
6 dimensions is not the right thing to consider for the purposes of developing
a 6 + 1 dimensional theory, including the conjectural holomorphic bundle E
we have discussed. Consider a nonsingular G2 instanton over a topological
cylinder R × Z. Restriction to slices {t} × Z gives a family of connections
over Z. One can imagine a case when as t→∞ these connections develop
a singularity along Σ ⊂ Z. This phenomenon suggests that one would have
to take account of pairs (E,Σ) in Z in order to have the correct gluing
identities. This fits in with the fact that the Thomas’ algebro-geometric
approach to the holomorphic Casson invariant includes contributions from
sheaves, not just bundles. There seems to be a lot of scope for work relating
the algebro-geometric and differential-geometric points of view.

6.3. Codimension-3 theories and monopoles. This subsection is
rather more speculative. Given a noncompact Riemannian 3-manifold B
with an end of a suitable kind one can study the Bogomolny monopole equa-
tion F (A) = ∗dAΦ for a connection A and section Φ of the adjoint bundle.
We will just consider the case of structure group SU(2). Solutions correspond
to translation-invariant instantons on R ×B. One also imposes asymptotic
conditions on the ends of B, the most important being that |Φ| → r−1 at
infinity, where r > 0 is fixed. The most familiar case is when B = R3 and
then one can reduce to the case when r = 1 by scaling the metric. But in
general r will be a genuine parameter and it will not be possible to identify
solutions for different values of r. The references [3], [9], [18], [1], and many
others, give more details about this monopole theory.

Now suppose we have a noncompact G2-manifold Y . We can study the
analogous equation (25) on Y with the asymptotic condition |u| → r−1 at
infinity. Let us imagine that, for manifolds Y with an end of a suitable kind,
we can find a set-up which leads to a Fredholm problem and to invariants,
which would be numbers in the case of index zero. Then we could study
the behaviour of solutions as the parameter r varies, in particular as r→
0. We can find plausible models for this based on compact co-associative
submanifolds Q⊂ Y , in much the same way as we modelled the blow-up
behaviour around associative submanifolds. For simplicity consider first the
flat case, so we have standard co-ordinates xa on Q and yi normal to Q. The
equations (25) can be written very schematically as

(45) ∇yu= Fyy + Fxx ∇xu= Fxy.

If we change variables, replacing yi by ryi and u by r−1u, then take the limit
as r tends to zero, we get a limiting equations

(46) ∇yu= Fyy ∇xu= Fxy.
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The first of these equations is the Bogomolony monopole equation on each
R3 slice normal to Q and the second equation is the Fueter equation for the
resulting map from Q to the moduli space of monopoles on R3. To say this
more systematically and generally, recall that for each integer k > 0 we have
a moduli space Monk of “centred” monopoles of charge k on R3. (The charge
is a topological invariant given by the degree of φ over a large sphere, in any
trivialisation of the bundle.) This moduli space is a hyperkahler manifold of
real dimension 4(k−1) and the rotations of R3 act on Monk, permuting the
complex structures. Given any compact coassociative submanifold Q⊂ Y we
can form a bundle Monk →Q with fibre Monk much as before and there is
a Fueter equation for sections of Monk. We interpret solutions of this Fueter
equation as possible asymptotic limits for sequences of solutions of (25)
over Y as the parameter r tends to 0. These solutions are localised around
Q and should be very close to reducible away from Q, with the structure
group reduced to S1 ⊂ SU(2) by the “Higgs field” u (which would be almost
covariant constant away from Q).

We could make exactly the same discussion for a noncompact Calabi-Yau
manifold Z6, and we will now switch our focus to this case as it is simpler. We
suppose the elementary topology of the set-up allows us to associate a class
in H3(Z) to our problem, analogous to the monopole charge in 3-dimensions.
Then for each class κ ∈H3(Z) we expect to have a numerical invariant nκ,
counting solutions of (22). Our model for the asymptotic behaviour involves
a special Lagrangian submanifold P ⊂ Z. For each k we form a monopole
bundle over P and we have a Fueter equation for sections. This has index 0
and we imagine we can define a number w(k, P ) by counting the solutions.
Then we could hope to express the number nκ as some kind of count of
special Lagrangian submanifolds P , weighted by the numbers w(k, P ). The
simplest guess is a formula of the shape

(47) nκ =
∑

κ=
∑

ki[Pi]

∏
i

w(ki, Pi).

This may be a rather crude approximation to the truth of the matter,
because we have not discussed what happens when two special Lagrangians
intersect. But in any case we could hope that there is some way of computing
nκ from data localised around special Lagrangian submanifolds.

This picture, if it stands up to closer scrutiny, is rather similar to Taubes’
relation between the Seiberg-Witten and Gromov invariants of a symplectic
four-manifold W [34]. The moduli space of vortices on R2 would play the
role in that case that the moduli space of monopoles does above. For a
given “charge” k the moduli space of vortices is just the k-fold symmetric
product of R2 [18]. When the ambient space is actually a complex surface
we arrive in the realm of ordinary algebraic geometry. Given a curve Σ ⊂W
a section of the appropriate “vortex bundle” corresponds to an infinitesimal
deformation of the order k formal neighbourhood of Σ, as a subscheme of W .
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All of this discussion assumes that we can indeed find the correct set-up
to define numerical invariants nκ. The point we want to emphasise is that,
if this can be done, one might hope that these are easier to define than the
counts of special Lagrangians. Thus, by analogy, the Seiberg-Witten invari-
ants of a 4-manifold are much easier to define than the Gromov invariants.
Then we could take (47) as the definition, or a guide to the definition, of an
invariant counting special Lagrangian submanifolds.
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