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Quasi-Local Mass in General Relativity

Shing-Tung Yau

It is a great honor for me to give this talk in honor of my mentor and
my old friend Is Singer. We have known each other since 1973. He had a
deep influence in my mathematical thinking and my career. When 1 first
met him at a big conference in geometry in Stanford, my advisor Chern told
me that Is wanted to see me. I was somewhat nervous as Is is a big name
in geometry. To my surprise, Is just smiled and said that he just wanted
to get to know me. But he did something for me then that neither of us
realized at the time. It was his proposal to invite Robert Geroch to explain
the mathematics of general relativity to geometers during that conference.
Geroch explained the positive mass conjecture for a special case in very sim-
ple terms. It was fascinating as nobody knew how to approach this problem,
despite its elegance.

I kept this problem in mind until 1978, when I visited Berkeley for one
year, again at the invitation of Chern and of Is. In that year, I solved the
first major part of the positive conjecture with Richard Schoen. Before this
visit, Is invited me to visit MIT for a month during 1976, after I solved
the Calabi conjecture. During that period, Is was very busy with a family
issue. Nonetheless, we had dinner and he described to me what he heard in
Stony Brook when he visited the physicists there. The main question was
concerning self-dual instantons. Although I did not work on it immediately, it
is such an interesting subject, that I finally worked on the higher dimensional
generalization of it known today as the Hermitian Yang-Mills connections.

In 1987, Is thought that it was important for mathematicians working on
physics related issues to have the ability to obtain funding to hire postdoc-
toral fellows. He was able to work this out with the Department of Energy.
And I have benefitted much by his efforts on this. I was able to hire post-
doctoral fellows who earned physics degrees. Having them around have been
really useful for my career.

Talk given at the Perspectives in Mathematics and Physics Conference, in celebration
of Professor .M. Singer’s 85th birthday.
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Is and I have worked together on numerous occasions, including the time
that we initiated the mirror symmetry workshop in MSRI. There, we were
able to attract the interest of a whole generation of mathematicians and got
them excited about mirror symmetry. The mathematics inspired by physics
is truly exciting and inspiring. It was Is Singer who helped me to direct my
research in this beautiful direction. It is almost forty years since I met Is. I
am truly grateful to his leadership in this field.

Let me now begin on my recent work with Muo-Tao Wang on general
relativity. The ideas went back to the work with Schoen on positive mass
conjecture. In general relativity, Einstein’s equation is obtained by taking

the variation of
1
— L
167 /R+/

where R is the scalar curvature of the spacetime and L is the Lagrangian
of matter coupled to gravity. The gravitational interaction is described by
means of a spacetime Lorentzian metric g;; which has indefinite signature
(—,+,+, +). For instance, the metric of the Minkowski spacetime R3! which
is the vacuum with zero matter is

ds? = g;; da'da? = —dt* + (dz)? + (dy)* + (dz)*.

The variational equation has the form
1
Rij — 5 gij =Ti

where R;; is the Ricci tensor, and Tj; is called the matter energy-momentum
tensor.
In classical relativity, the matter tensor satisfies the weak energy condi-

tion
D Tyl >0
for any four-vector I* that is time-like

Z Gij 19 < 0.
There are two very important solutions of the Einstein equation that are
used extensively in general relativity. The Schwarzschild metric

T T

oM oM\ !
ds® = — <1 — > dt* + (1 — ) dr® + r* (d6? + sin® 0 d¢?)
and the Kerr metric

A 2 dr?
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where
U=r?+a” cos® 0
A=r2—2Mr+a®

—co<t<oo,M+VM?—a?<r<oo,

0<f<m0<o<2nm.

Both solve the Einstein equation with T;; =0 (vacuum). The first one
is spherically symmetric and the second one is axially symmetric. They
respectively describe static and stationary black holes. The constants M and
a are the mass and angular momentum of the black hole. The famous black
hole uniqueness theorem says that stationary black holes with no matter are
exactly described by the Kerr metric.

Both metrics have a null hypersurface at

r=M++\/ M?—a?

which is the event horizon of the black hole. This is the spacetime bound-
ary of the black hole where any event occurring inside can not be detected
by an outside observer. Note that the vector field % is a Killing vector field
as it preserves the metric.

The Killing field £ is time-like (i.e. g(&, &) < 0) when

2 —2Mr+a®cos?0>0
but space-like (i.e. g(%, %) > 0) when
2 —29Mr +a? cos? 0 < 0.

This last region is called the ergosphere. It is a bounded region outside
the event horizon except at 8 =0 and 7.

We can consider the dynamics of a scalar field ®(¢,r,0, ¢) in the Kerr
spacetime. Its propagation is described by a scalar wave equation. Since
the Kerr spacetime has a Killing vector field %, the Lagrangian [ V|2
associated to the wave equation defines a local energy density. It has the form

A

1 CL2 2
2 ) 0,0
* (sin29 A> 95|

This density is positive except within the ergosphere, where it is negative.
In the Kerr geometry, no first-order or higher-order positive conserved
energy density exists for the scalar wave equation as was observed by Finster,
Kamran, Smoller and Yau [7]. The major classical method to study wave
equation is called the energy method. One exploits the conservation of total
energy and Sobolev type inequality to control local behavior in terms of the

(r2+a2)2 2 2 2 .2 2
E=|——a"sin“0 | [0:P|]" + A |0, P| + sin” 0 |Ocos o P|
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total energy. However, the energy method for the scalar wave equation breaks
down due to the negativity of the energy density within the ergosphere unless
the angular momentum is small relative to the mass. (In this case, Dafermos
and Rodnianski [5] proved the solution is bounded in ¢ if the initial data has
compact support outside the event horizon.)

An important question for the wave equation is whether the wave will
decay in time if initially it does not spread out. The decay of the solution
of the scalar wave equation is a special case of the decay of solutions to the
Teukolsky equation which describes the linear stability of the Kerr black
hole. In this connection, we quote Frolov and Novikov [9]:

“Linear stability of the Kerr black hole is one of the few truly outstand-
ing problems that remain in the field of black hole under gravitational wave
perturbations.”

The problem of linear stability of Kerr is still open and it is not even clear
whether linear stability of the Kerr holds true if the angular momentum is
not small relative to the mass.

A remarkable property of the Kerr metric is that the Teukolsky equation
is separable by the ansatz

efiwtfikqb R(T) @(9)

Chandrasekhar called this property of Kerr geometry “having the aura of the
miraculous” [3]. Making use of this, in 2001, Finster, Kamran, Smoller and
Yau [6] proved that the propagation of waves described by a Dirac equation
in Kerr space decays in time like t~5/6. We also proved that for the scalar
wave equation, the wave with fixed angular momentum mode £ also decays.

In principle, we can sum up the modes to conclude the decay of the scalar
wave equation. This can be done for the Schwarzschild geometry. However,
the negativity of the energy density for the scalar wave in the ergosphere of
the Kerr geometry causes problems. Indeed, the ergosphere has many strange
properties including the energy extraction process proposed by Penrose [18].
The wave analogue was proposed by Zeldovich [29] and Starobinsky [23].
It is called superradiance. A complete rigorous treatment for the latter case
was finally achieved recently by Finster, Kamran, Smoller and Yau [8].

We have seen now that in the ergosphere, the energy density of the
scalar wave can be negative and has give peculiar properties. The problem
comes from the fact that the gravitational field itself must have energy. After
all, the potential energy of a pair of gravitating particles depends on their
separation distance. Hence the total energy depends on the gravitational
field configuration.

In special relativity, the tensor 7Tj; can be used to define the energy-
momentum vector for a domain in space in the following manner: Take any
Killing vector v/ which preserves the metric.

Ji = Tijvj
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defines a divergence free current. The Hodge dual of J is a closed three form.
When we integrate this three form over a compact space-like hypersurface,
we obtain the energy-momentum vector P associated to this hypersurface.

However, since T;; accounts only for matter, the energy-momentum vec-
tor defined in this way does not account for the gravitational energy. A more
serious problem is that a general spacetime does not admit any Killing field.

If the spacetime admits a time-like Killing field, Noether’s theorem
applied to the Lagrangian provides a current associated to this Killing field.
This current can be used to define a mass called the Komar mass. Let us
now recall Noether’s theorem:

Let L be the Lagrangian which can be considered as a function defined
on the tangent bundle of a manifold M. Suppose we have a one parameter
family of diffeomorphisms hy : M — M so that

L ((ht)v) = L(v)

Then the FEuler-Lagrange equation associated to L admits a first integral
I1:TM — R given by
Ig.q)= 2 a)]
g dt li=0

For most mechanical systems, the Lagrangian is invariant under transla-
tion of time and space and the resulting conserved quantity is a four-vector
defining energy and linear momentum. However, in general relativity, most
spacetimes do not admit translational symmetry, so it is difficult to define
energy-momemtum using Noether’s theorem. However, one can define a total
energy-momentum vector for an isolated physical system if there is asymp-
totic translational symmetry.

When the spacetime is asymptotically flat, there is a space-like hyper-
surface which outside a compact set is diffeomorphic to R? minus a ball and

the metric g;; has the form
1
gij = (51‘]‘ + O ; 5

and the second fundamental form p;; of this hypersurface satisfies:

1
pij = O (rz) .

We expect that for such an asymptotically-flat spacetime, there is Lorentzian
symmetry at infinity, and the approximate symmetry at infinity can be used
to define the total mass (or energy)

1 .
M = — lim s O J
ADM 167w TILOO S2(r) (6192] 8] tr g) v
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and the total linear momentum

) 1 ;
P; = lim / (Pij — Prk0ij)v7 .
S2(r)

r—oo 81

P
momentum four-vector. It was proved to be a time-like vector except for
Minkowski spacetime which of course is trivially null.

The total energy in general relativity cannot be obtained by integrating
any local density along a hypersurface. The reason is that the density would
depend on the first order differentiation of the metric g;;. But there is a
coordinate system where such quantities are zero at that point. The equiv-
alence principle says that physical quantities should be independent of the
choice of the coordinate system. Nonetheless, one can still ask whether it
is still possible to have a quasi-local mass, where a total energy-momentum
four-vector is assigned to any space-like sphere bounding a compact portion
of a space-like hypersurface.

In 1982, Penrose [20] listed the search for a definition of such quasi-local
mass as his number one problem in classical general relativity besides his
famous question of cosmic censorship.

There are many reasons to search for such a concept. Many important
statements in general relativity make sense only with the presence of a good
definition of quasi-local mass. For example, it allows us to talk about the
binding energy of two bodies rotating around each other. More importantly,
a good definition of quasi-local mass should help us to control the dynamics
of the gravitational field. Hopefully, this may be used to generalize the energy
method in hyperbolic equations where difficulties were encountered even in
the study of linearized stability of the Kerr metric.

There were many attempts, including approaches given by Penrose [19],
Hawking [11], and Brown-York [2] to give the definition of quasi-local mass.
We shall use an approach which seems to be most promising.

Recall that for a Lorenztian manifold M with boundary dM, the action
in general relativity should be

The four-vector <M) is called the ADM (Arnowitt-Deser-Misner) energy-

1 1

where K is the trace of the second fundamental form of 0M. The last term
is needed to give rise to the right variational equation if we fix the metric
and the matter field on the boundary.

If we demand that a certain background (go, ®¢) is a static solution to
the field equation, we replace I by

I(g,®) = I(g0, Po)-
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FIGURE 1

Hence, for flat spacetime background with gg being flat and ®¢ =0, we use

Z?G;R+L%¢0+;£LJK—Kﬁ

Suppose we take a family of space-like surface ¥; generated by a time-like
vector field ¢ such that t#V,t = 1. We can write

th = Nnt + N*

where n* is the normal to ¥, N is called the lapse function, N* is called
the shift vector. In this notation, we find

1 1
— R W p? 4 167L) + — | K
16w/zt( P ”)+87r/sg ]

where p,,,, is the second fundamental form of ¥; and p is its trace, K is the
mean curvature of 0¥X; = S;.

If one introduces the canonical momenta k*¥, k conjugate to 3g,w, P, we
can rewrite the action to be

/dt/ (k:“l'!']uu%—k:(i)—NH—N“H#) +1/ (N2K—N“p;w7“”)»
pol 8 Sy

where H is the Hamiltonian constraint

H%Qz/Nﬁ

1
Too — ) (R - p;u/pw/ + p2) )
and H,, is the momentum constraint

Top = Puvy + Doy

Note that H =0 and H, = 0 when the equation of motion is satisfied. We
will let ¥ to be the spacelike unit normal of S; which is tangent to 3.
The Hamiltonian is then derived to be

H= (NH+N“HM)—81/ (N 2K — N'ppur) .
St

) ™
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If we take the background so that p,, =0, we see that the Hamiltonian
relative to the background is given by

1

[ o@ranmi) - o [ (NCK - o) - M),
Zt ™ St

Hence associated to each time-like vector field ¢, we have the physical Hamil-

tonian

1

—— | (NCK = Ko) — N*pu,r")
81 Sy

This expression was derived by Brown-York [2] and Hawking-Horowitz [12].
They proposed to simply choose N =1, N# =0 for the definition of
quasi-local mass. In general, the definition does not give positivity except in
the time symmetric case (p,, = 0) which was proved by Shi-Tam [17].
The definition of Brown-York is gauge dependent. Liu-Yau [14, 15]
defined a gauge independent mass to be

1
8 S

(VK = (trsp)? - o)

and proved that it is positive whenever the mean curvature vector of S
is space-like and the Gauss curvature is positive. The proof combined argu-
ments of Schoen-Yau [21, 22] and Witten [28]). We needed to handle metrics
where the mean curvature may jump along the boundary. The discontinuity
of the Dirac spinor required nontrivial analysis. Note that /(2K)2 — (trsp)?
is the Lorentian norm of the mean curvature vector

H = K" + (trgp)n”.

Let me now describe the work that I did with Mu-Tao Wang [24, 25,
26, 27].

Given a surface S, we assume that its mean curvature is positive. We
embed S isometrically into R3!. Given any constant unit future time-like
vector w (observer) in R%!, we can define a future directed time-like vector
field w along S by requiring

(Ho,w) = (H,w)

where Hp is the mean curvature vector of S in R*! and H is the mean
curvature vector of S in spacetime. This means that the expansion of the
body in R3! relative to the observed w is the same as the expansion of the
body relative to w.

Note that given any surface S in R®! and a constant future time-like unit
vector w”, there exists a canonical gauge n* (future timelike unit normal
along S) such that

/ N %Ko + N*(po)ur”
S
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b e

<H<),W> = <H,W>
w'=Nn"+N" w'=Nn"+N"

FIGURE 2

RM

FIGURE 3

is equal to the total mean curvature of S, the projection of S onto the
orthogonal complement of w#, w* = Nn* + N, r# is the spacelike unit
normal orthogonal to n*, pg is the second fundamental form calculated by
the three surface defined by S and r*.

From the matching condition and the correspondence (w*,n") — (w",
n”), we can define a similar quantity from our data in spacetime

/ NZK + N*(p) 7.
S
Making use of the work of Liu-Yau [14, 15|, Wang and I proved that
8rE(w) = / NZK + N D) T — / N2Ky + N*(po)uwr”
S S

is non-negative [25, 26].
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We define a quasi-local mass to be
inf E(w)

where the infimum is taken among all isometric embeddings into R*! and
timelike unit constant vector w € R31.

In summary, given a closed spacelike 2-surface in spacetime whose mean
curvature vector is space-like, we associate an energy-momentum four-vector
to it that depends only on the first fundamental form, the mean curvature
vector and the connection of the normal bundle such that

1. Tt is Lorentzian invariant.

2. It is trivial for surfaces sitting in Minkowski spacetime and future
time-like for surfaces in spacetime which satisfies the local energy
condition.

We shall compare our definition with the classical definitions. First of
all, let us look at some special cases.

Spherical symmetric spacetime are foliated by the orbits of SU(2). We
can define a function on the spacetime by associating to its orbit the area
4712, The mean curvature vector of the orbit is

2
——Vr
r
where V is with respect to the quotient Lorentzian (1,1) metric. If this
vector is space-like, the quasi-local mass of this orbit sphere is
M=r(1-—|Vr]).
Note that in 1964, Misner and Sharp [16] defined a mass

(1—|vr)?)

l\.’)\ﬂ

which is the same as the Hawking mass [11]

\/;< 16w/'H'2>

The relation with our mass is

M2
— M-
2r
From the formula of quasi-local mass, which we proved to be positive, we
derived a corollary that the mass m (Hawking mass) is also positive. (This
was proved by Christodoulou and Yau [4] under extra assumptions.)
Note that

1
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where on the apparent horizon M = 2m, and at space-like infinity M = m.
Hence our quasi-local mass is equivalent to the standard definition in the
case of spherically symmetric spacetime.

In the spatial direction, the Hawking mass is monotonically increasing
along the inverse mean curvature flow [10] and this is important in Huisken-
Ilmanen’s work [13]. The quasi-local mass is not monotonically increasing
in this sense. However, the spherical symmetric case indicates that such
property may still hold, up to a constant depending on the initial surface.

In the future time-like or null direction, the quasi-local mass is expected
to decrease up to a constant depending on the initial surface if we choose the
equation of motion for the 2-surfaces carefully. In the case when p;; = 0, there
is also a definition of the quasi-local mass by Bartnik [1] which is obtained
by minimizing the ADM mass among all asymptotically flat extension of
the data which does not contain an apparent horizon and which extends the
original data.

Our definition of the quasi-local mass also satisfies the following impor-
tant properties:

3. When we consider a sequence of spheres on an asymptotically flat
space-like hypersurface, in the limit, the quasi-local mass (energy-
momentum) is the same as the well-understood ADM mass (energy-
momentum).

4. When we take the limit along a null cone, we obtain the Bondi
mass.

These properties of the quasi-local mass is likely to characterize the
definition of quasi-local mass, i.e. any quasi-local mass that satisfies all these
properties may be equivalent to the one that we have defined.

Strictly speaking, we associate each closed surface not a four-vector, but
a function defined on the light cone of the Minkowski spacetime. Note that
if this function is linear, the function can be identified as a four-vector. It
is a remarkable fact that for the sequence of spheres converging to spatial
infinity, this function becomes linear, and the four-vector is defined and is the
ADM four-vector that is commonly used in asymptotically flat spacetime.

In any case, we are still in the process of deriving more properties of
the quasi-local mass that we just introduced. We hope it can be used in
applications for astronomy and physics.
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