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Abstract. The Feynman path integral of ordinary quantum
mechanics is complexified and it is shown that possible integration
cycles for this complexified integral are associated with branes in
a two-dimensional A-model. This provides a fairly direct expla-
nation of the relationship of the A-model to quantum mechanics;
such a relationship has been explored from several points of view
in the last few years. These phenomena have an analog for Chern-
Simons gauge theory in three dimensions: integration cycles in the
path integral of this theory can be derived from N = 4 super Yang-
Mills theory in four dimensions. Hence, under certain conditions,
a Chern-Simons path integral in three dimensions is equivalent to
an N = 4 path integral in four dimensions.
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1. Introduction

The Feynman path integral in Lorentz signature is schematically of the
form

(1.1)
∫
DΦ exp (iI(Φ)) ,

where Φ are some fields and I(Φ) is the action. Frequently, I(Φ) is a real-
valued polynomial function of Φ and its derivatives (the polynomial nature
of I(Φ) is not really necessary in what follows, though it simplifies things).
There is also a Euclidean version of the path integral, schematically

(1.2)
∫
DΦ exp (−I(Φ)) ,

where now I(Φ) is a polynomial whose real part is positive definite, and
which is complex-conjugated under a reversal of the spacetime orientation.1

1General Relativity departs from this framework in a conspicuous way: in Euclidean
signature, the real part of its action is not positive definite. This has indeed motivated the
proposal [1] that the Euclidean path integral of General Relativity must be carried out
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The analogy between the Feynman path integral and an ordinary finite-
dimensional integral has often been exploited. For example, as a prototype
for the Euclidean version of the Feynman integral, we might consider a one-
dimensional integral

(1.3) I =
∫ ∞

−∞
dx exp(S(x)),

where S(x) is a suitable polynomial, such as

(1.4) S(x) = −x4/4 + ax,

with a a parameter. One thing which we can do with such an integral is to
analytically continue the integrand to a holomorphic function of z = x+ iy
and carry out the integral over a possibly different integration cycle in the
complex z-plane:

(1.5) IΓ =
∫

Γ
dz exp(S(z)).

The integral over a closed contour Γ will vanish, as the integrand is an entire
function. Instead, we take Γ to connect two distinct regions at infinity in
which ReS(z) →−∞. In the case at hand, there are four such regions (with
the argument of z close to kπ/2, k = 0, 1, 2, 3) and hence there are essentially
three integration cycles Γr, r = 0, 1, 2. (The cycle Γr interpolates between
k = r and k = r+1, as shown in the figure.) In general, as reviewed in [2], the
integration cycles take values in a certain relative homology group. In the
case at hand, the relative homology is of rank three, generated by Γ0,Γ1,Γ2.

Given a similar integral in n dimensions,

(1.6)
∫

Rn

dx1 dx2 . . .dxn exp (S(x1, . . . , xn))

again with a suitable polynomial S, one can analytically continue from real
variables xi to complex variables zi = xi + iyi and replace (1.6) with an
integral over a suitable integration cycle Γ ⊂ C

n:

(1.7)
∫

Γ
dz1 dz2 . . .dzn exp (S(z1, . . . , zn)) .

The appropriate integration cycles are n-cycles, simply because what we
are trying to integration is the n-form dz1 dz2 . . .dzn exp(S(z1, . . . , zn)).
Of course, the differential form that we are trying to integrate is middle-
dimensional simply because, in analytically continuing from R

n to C
n, we

have doubled the dimension of the space in which we are integrating. So what

over an integration cycle different from the usual space of real fields. The four-dimensional
case is difficult, but in three dimensions, the possible integration cycles can be understood
rather explicitly [2].
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Figure 1. Integration cycles for the integral IΓ of eqn. (1.5). The
four cycles obey one relation Γ1 + Γ1 + Γ2 + Γ3 = 0, and any three
of them give a basis for the space of possible integration cycles.

began in the real case as a differential form of top dimension has become
middle-dimensional upon analytic continuation.

In [2], it was shown that, at least in the case of three-dimensional Chern-
Simons gauge theory, these concepts can be effectively applied in the infinite-
dimensional case of a Feynman integral. But what do we learn when we do
this? When one constructs different integration cycles for the same integral
– or the same path integral – how are the resulting integrals related? For one
answer, return to the original example IΓ. Regardless of Γ (using only the
facts that it is a cycle, without boundary, that begins and ends in regions
where the integrand is rapidly decaying, so that one can integrate by parts),
IΓ obeys the differential equation

(1.8)
(

d3

da3
− a

)
IΓ = 0.

Indeed, IΓ where Γ runs over a choice of three independent integration cycles
gives a basis of the three-dimensional space of solutions of this third-order
differential equation.

For quantum field theory, the analog of (1.8) are the Ward identities
obeyed by the correlation functions. Like (1.8), they are proved by integra-
tion by parts in function space, and do not depend on the choice of the
integration cycle. One might think that different integration cycles would
correspond to different vacuum states in the same quantum theory, but this
is not always right. In some cases, as we will explain in section 2.4 with an
explicit example, different integration cycles correspond to different quan-
tum systems that have the same algebra of observables. In other cases, the
interpretation is more exotic.
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The first goal of the present paper is to apply these ideas to a particularly
basic case of the Feynman path integral. This is the phase space path inte-
gral of nonrelativistic quantum mechanics with coordinates and momenta q
and p:

(1.9)
∫
Dp(t)Dq(t) exp

(
i

∫
(p dq −H(p, q)dt)

)
.

(H(p, q) is the Hamiltonian and plays a secondary role from our point of
view.) Integration cycles for this integral are analyzed in section 2. There
are some fairly standard integration cycles, such as the original one assumed
by Feynman, with p(t) and q(t) being real. The main new idea in this paper
is that by restricting the integral to complex-valued paths p(t), q(t) that
are boundary values of pseudoholomorphic maps – in a not obvious sense
– we can get a new type of integration cycle in the path integral of quan-
tum mechanics. Moreover, this cycle has a natural interpretation in a two-
dimensional quantum field theory – a sigma-model in which the target is
the complexification of the original classical phase space. The sigma-model
is in fact a topologically twisted A-model, and the integration cycle can be
described using an exotic type of A-brane known as a coisotropic brane [3].

It has been known from various points of view [4–9] that there is a
relationship between the A-model and quantization. In the present paper,
we make a new and particularly direct proposal for what the key relation
is: the most basic coisotropic A-brane gives a new integration cycle in the
Feynman integral of quantum mechanics.

The fact that boundary values of pseudoholomorphic maps give a middle-
dimensional cycle in the loop space of a symplectic manifold (or classical
phase space) is one of the main ideas in Floer cohomology [10]. For an
investigation from the standpoint of field theory, see [11–13]. The middle-
dimensional cycles of Floer theory are not usually interpreted as integration
cycles, because there typically are no natural middle-dimensional forms that
can be integrated over these cycles. In the present paper, we first double the
dimension by complexifying the classical phase space, whereupon the inte-
grand of the usual Feynman integral becomes a middle-dimensional form
that can be integrated over the cycles given by Floer theory of the complex-
ified phase space.

The relationship we describe between theories in dimensions one and
two has an analog in dimensions three and four. Here the three-dimensional
theory is Chern-Simons gauge theory, with a compact gauge group G, and
the four-dimensional theory is N = 4 super Yang-Mills theory, with the same
gauge group. To some extent, the link between the two was made in [2]. It
was shown that to define an integration cycle in three-dimensional Chern-
Simons theory, it is useful to add a fourth variable and solve certain partial
differential equations that are related to N = 4 super Yang-Mills theory.
Here we go farther and show exactly how a quantum path integral in N = 4
super Yang-Mills theory on a four-manifold with boundary can reproduce
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the Chern-Simons path integral on the boundary, with a certain integration
cycle. This has an application which will be described elsewhere [14]. The
application involves a new way to understand the link [15] between BPS
states of branes and Khovanov homology [16] of knots.

In sections 2 and 3 of this paper, we begin with the standard Feynman
integral of quantum mechanics and motivate its relation to a twisted super-
symmetric theory in one dimension more. In section 4, we run the same
story in reverse, starting in the higher dimension and deducing the relation
to a standard Feynman integral in one dimension less. Some readers might
prefer this second explanation. Section 5 generalizes this approach to gauge
fields and contains the application to Chern-Simons theory.

What is the physical interpretation of the Feynman integral with an
exotic integration cycle? In the present paper, we make no claims about this,
except that it links one and two (or three and four) dimensional information
in an interesting way.

2. Integration cycles for quantum mechanics

2.1. Preliminaries. A classical mechanical system is described by a
2n-dimensional phase space M, which is endowed with a symplectic struc-
ture. The symplectic structure is described by a two-form f that is closed

(2.1) df = 0,

and also nondegenerate, meaning that the matrix fab defined in local coordi-
nates xa, a= 1, . . . , 2n by f =

∑
a<b fabdxa ∧ dxb is invertible; we write fab

for the inverse matrix. Locally, if f is a closed, nondegenerate two-form, one
can pick canonical coordinates pr, qs, r, s= 1, . . . , n such that

(2.2) f =
n∑

s=1

dps ∧ dqs.

The Poisson bracket of two functions u, v on M is defined by

(2.3) {u, v} = fab ∂u

∂xa

∂v

∂xb
=

∑
s

(
∂u

∂qs

∂v

∂ps
− ∂u

∂ps

∂v

∂qs

)
.

In quantization, one aims to associate to that data a Hilbert space H
and an algebra R of observables. H will be finite-dimensional if and only
if M has finite volume. In that case, to elements U1, . . . , Un of R, one can
associate the trace

(2.4) TrHU1U2 . . . Un,

which describes R and its action on H, up to unitary equivalence. In most
physical applications, there is an element H of R known as the Hamiltonian,
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and one is particularly interested in traces

(2.5) TrHU1(t1)U2(t2) . . . Un(tn) exp(−iHt),

where for U ∈R, U(t) is defined as exp(−iHt)U exp(iHt). However, the
basic problem of quantization2 is to associate to M a Hilbert space H and
algebra R, and what we will say about this problem in the present paper
mostly has nothing to do with the choice of H. We will omit H (that is, set
H = 0) except in section 3.

A more incisive approach to quantum mechanics is to consider not only
a trace as in (2.5) but matrix elements 〈ψf |U1U2 . . . Un|ψi〉 between initial
and final quantum states |ψi〉, |ψf 〉. (This also avoids the technical difficulty
that if M has infinite volume, H is infinite-dimensional and the traces in
(2.4) and (2.5) may diverge, depending on the Ui and H.) However, the
approach to Feynman integrals in the present paper is most easily explained
if we begin with traces rather than matrix elements. The additional steps
involved in describing matrix elements between initial and final states are
sketched in section 2.10.

2.2. The basic Feynman integral. The basic Feynman integral rep-
resents the trace (2.4) as an integral over maps from S1 to M:

TrH U1U2 . . . Un =
∫
U
Dpr(t)Dqr(t) exp

(
i

∮
psdqs

)
(2.6)

× u1(t1)u2(t2) . . . un(tn).

Here pr(t) and qr(t) are periodic with a period of, say, 2π, so they define a
map T : S1 →M, or in other words a point in the free loop space U of M.
The uα are functions on M that upon quantization will correspond to the
operators Uα. We have assigned a time tα to each function uα, but as we
have taken the Hamiltonian to vanish, all that matters about the tα is their
cyclic ordering on S1. As is usual, u(t) is an abbreviation for u(T (t)).

As written, the Feynman integral depends on a choice of canonical coor-
dinates qr and momenta pr. We could, for example, make a canonical trans-
formation from p, q to −q, p, replacing

∮
psdqs with −

∮
qsdps. This amounts

to adding to the exponent of the path integral a term
∮

d(−psq
s) = 0, where

the vanishing holds because the functions are periodic in time.
Rather than picking a particular set of canonical coordinates, a more

intrinsic approach is to observe that, as the two-form f is closed, it can be

2Many elementary aspects of this problem are not as well-known as they might be.
For example, the passage from classical mechanics to quantum mechanics does not map
Poisson brackets to commutators, except in leading order in � (which we set to 1 in the
present paper) and certain special cases such as quadratic functions on M. A review can
be found in [9].
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regarded as the curvature of an abelian gauge field b:

(2.7) f = db, b=
2n∑

a=1

ba dxa.

Then we can write (2.6) more intrinsically as

TrH U1U2 . . . Un =
∫
U
Dxa(t) exp

(
i

∮
badxa

)
(2.8)

× u1(t1)u2(t2) . . . un(tn).

We say that the Dirac condition is obeyed if the periods of f are integer
multiples of 2π. In that case, a unitary line bundle L →M with a connection
of curvature f exists and we take b to be that connection; its structure group
is U(1). L is called a prequantum line bundle. If H1(M,Z) 	= 0, there are
inequivalent choices of L and quantization depends on such a choice. When
L exists, the factor exp

(
i
∮
badxa

)
is the holonomy of the connection b on

L (pulled back to S1 via the map T : S1 →M).
If the Dirac condition is not obeyed, the Feynman integral with the

usual integration cycle (real phase space coordinates xa) does not make
sense since the factor exp

(
i
∮
badxa

)
in the path integral is not well-defined.

We can make this factor well-defined by replacing U by its universal cover
– or by any cover U∗ on which the integrand of the path integral is single-
valued. Once we do this, the integral over the usual integration cycle of the
Feynman integral is not interesting because all integrals (2.6) vanish. (They
transform with a non-trivial phase under the deck transformations of the
cover U∗ →U .) However, as analyzed in [2], and as we will see below, after
analytic continuation, there may be sensible integration cycles (related to
deformation quantization, which does not require the Dirac condition, rather
than quantization, which does). So we do not want to assume that the Dirac
condition is obeyed.

In what follows, it might be helpful to have an example in mind. A
simple example is the case that M = S2, defined by an equation

(2.9) x2
1 + x2

2 + x2
3 = j2,

for some constant j. We take

(2.10) f =
εijkxi dxj ∧ dxk

3!R2
=

dx1 ∧ dx2

x3
.

The first formula for f makes SO(3) invariance manifest, and the second
is convenient for computation. One can verify that

∫
S2 f = 4πj, so that the

Dirac condition becomes j ∈ Z/2. However, as already explained, we do not
necessarily want to assume this condition. We can think of f as the magnetic
field due to a magnetic monopole (of magnetic charge 2j) located at the
center of the sphere; b is the gauge connection for this monopole field.
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2.3. Analytic continuation. The Feynman integral, as we have for-
mulated it so far, is an integral over the free loop space U of M, or possibly a
cover of this on which the integrand of the Feynman integral is well-defined.
Our first step, as suggested in the introduction, is to analytically continue
from U to a suitable complexification Û . We simply pick a complexifica-
tion M̂ of M and let Û be the free loop space of M̂ (or, if necessary, an
appropriate cover of this).

What do we mean by a complexification of M? At a minimum, M̂ should
be a complex manifold with an antiholomorphic involution3 τ such that M
is a component of the fixed point set of τ . Moreover, we would like M̂ to
be a complex symplectic manifold endowed with a holomorphic two-form Ω
that is closed and nondegenerate and has the property that its imaginary
part, when restricted to M, coincides with f . We introduce the real and
imaginary parts of Ω by

(2.11) Ω = ω + if.

The fact that Ω is closed and nondegenerate implies that ω and f are each
closed and nondegenerate. And we assume that under τ , Ω is mapped to
−Ω, so in other words

(2.12) τ∗(ω) = −ω, τ∗(f) = f.

It follows that on the fixed point set M, ω must vanish:

(2.13) ω|M = 0.

We denote local complex coordinates on M̂ as Xa, and their complex
conjugates as Xa, and we denote a complete set of local real coordinates
(for example, the real and imaginary parts of the Xa) as Y A. Since Ω is a
closed form, we can write it as the curvature of a complex-valued abelian
gauge field:

(2.14) Ω = dΛ, Λ =
∑
A

ΛAdY A.

If the original model obeyed the Dirac condition and the complexification
introduces no new topology, we can regard Λ as a gauge field with structure
group C

∗ (the complexification of U(1)). In general, however, as stated in
section 2.2, we do not assume this to be the case, and instead we replace Û
by a suitable cover on which the integrand of the integral (2.20) introduced
below is well-defined. It is convenient to introduce the real and imaginary
parts of Λ just as we have done for Ω. So we write

(2.15) Λ = c+ ib,

3An involution is simply a symmetry whose square is the identity.
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where b and c are real-valued connections. Thus

(2.16) dc= ω, db= f.

We will slightly sharpen (2.13) and assume that there is a gauge with

(2.17) c|M = 0.

Let us describe what these definitions mean for our example with M =
S2. We define M̂ by the same equation (2.9) that we used to define M,
except4 we regard it as an equation for complex variables Xi rather than
real variables xi:

(2.18) X2
1 +X2

2 +X2
3 = j2.

And we define Ω by the same formula as before except for a factor of i:

(2.19) Ω = i
εijkXi dXj ∧ dXk

3!R2
= i

dX1 ∧ dX2

X3
.

(The factor of i in the definition of Ω is a minor convenience; the formulas
that follow are slightly more elegant if we take f to be the imaginary part
of Ω – restricted to M – rather than the real part.)

In addition to the conditions that we have already stated, M̂ must have
one additional property. Some condition of completeness of M̂ must be
desireable, since certainly we do not expect to get a nice theory if we omit
from M̂ a randomly chosen τ -invariant closed set that is disjoint from M. It
is not obvious a priori what the right condition should be, but as we will find
(and as found in [9] in another way) the appropriate condition is that M̂,
regarded as a real symplectic manifold with symplectic structure ω, must
have a well-defined A-model. For noncompact symplectic manifolds, this is
a non-trivial though in general not well understood condition. Our example
of the complexification of S2 certainly has a good A-model, since in fact
this manifold admits a complete hyper-Kahler metric – the Eguchi-Hansen
metric.

As for the functions uα that appear in the path integral (2.6), to make
sense of them in the context of an analytic continuation of the Feynman
integral, they must have an analytic continuation to holomorphic functions
on M̂ (which we still denote as uα). Moreover, so as not to affect ques-
tions involving convergence of the path integral, the analytically continued
functions should not grow too fast at infinity. For example, in the case of
S2, a good class of functions are the polynomial functions u(x1, x2, x3). The
analytic continuation of such a polynomial is simply the corresponding poly-
nomial u(X1, X2, X3). These are the best observables to consider, because

4For a critical discussion of the sense in which this analytic continuation is or is not
natural, as well as a discussion of the class of observables considered below, see [9].
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they are the (nonconstant) holomorphic functions with the slowest growth
at infinity.

Having analytically continued the loop space U of M to the correspond-
ing complexified loop space Û of M̂, and having similarly analytically con-
tinued the symplectic structure and the observables, we can formally write
down the Feynman integral over an arbitrary integration cycle Γ ⊂ Û :

(2.20)
∫

Γ
DY A(t) exp

(∮
ΛAdY A

)
u1(t1) . . . un(tn).

Γ is any middle-dimensional cycle in Û on which the integral converges.
Eqn. (2.17) ensures that if we take Γ to be the original integration cycle U
of the Feynman integral, then (2.20) does coincide with the original Feynman
integral.

2.4. The simplest integration cycles. The reason that there is some
delicacy in choosing Γ is that the real part of the exponent in (2.20) is not
bounded above.

The troublesome factor in (2.20) comes from the real part of Λ. (We
assume that the observables uα do not grow so rapidly as to affect the
following discussion.) The integration cycle Γ must be chosen so that the
dangerous factor

(2.21) exp
(∮

cAdY A

)
= exp

(
Re

∮
ΛA dY A

)

does not make the integral diverge. The reason that this is troublesome is
that the exponent

(2.22) h=
∮
cAdY A

is unbounded above and below. For example, the map

(2.23) Y A(t) → Ỹ A(t) = Y A(nt)

multiplies h by an arbitrary integer n, which can be positive or negative.
Leaving aside the question of convergence, how can we find a middle-

dimensional cycle Γ ⊂ Û? The most elementary approach is to define Γ by
a local-in-time condition. We pick a middle-dimensional submanifold M0 ⊂
M̂ and take Γ ⊂ Û to be the free loop space of M0. In other words, Γ
parametrizes maps T : S1 →M̂ whose image lies in M0 for all time.

This type of choice cannot be wrong, since if we take M0 = M, we get
back to the original Feynman integral. Now let us ask for what other choices
of M0 we get a suitable integration cycle.

When restricted to the loop space of M0, the function h must be iden-
tically zero, or the argument around eqn. (2.23) will again show that it is
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not bounded above or below. The variation of h under a small change in a
map T : S1 →M̂ is

(2.24) δh=
∮
ωABδY

AdY B.

For this to vanish identically when evaluated at any loop in M0, we require
that ω restricted to M0 must vanish.5

The requirement, in other words, is that M0 must be a Lagrangian
submanifold with respect to ω. This is a familiar condition in the context of
the two-dimensional A-model: it is a classical approximation to the condition
for M0 (endowed with a trivial Chan-Paton bundle) to be the support of an
A-brane. This is no coincidence, but a first hint that the possible integration
cycles for the path integral are related to the A-model.

Upon picking M0 so that the real part of the exponent of the path
integral is bounded above, we are not home free: to make sense of the infinite-
dimensional path integral, the phase factor that comes from the imaginary
part of the exponent must be nondegenerate. For this, we want f to be
nondegenerate when restricted to M0. In other words, M0 should have
some of the basic properties of M: when restricted to M0, ω vanishes and
f is nondegenerate.6 Under these conditions, the Feynman integral (2.20)
for Γ equal to the loop space of M0 is simply the original Feynman integral
(2.8) with M0 replacing M. In other words, it is the usual Feynman integral
associated with quantization of M0.

In this situation, different quantum mechanics problems with different
choices of M0 correspond to different integration cycles in the same com-
plexified Feynman integral. For a concrete example of how this can happen,
let us return to the familiar example, with M̂ defined by the equation

(2.25) X2
1 +X2

2 +X2
3 = j2.

The condition on M0 is that Re Ω|M0 = 0, or in other words

(2.26) Im
(

dX1 ∧ dX2

X3

)∣∣∣∣
M0

= 0.

A sufficient condition for this is that X1, X2, X3 are all real. This brings us
back to the original phase space M. To get another example, we define M′
by requiring that X1 is real and positive while X2 and X3 are imaginary.

5This is enough to ensure that h is constant in each connected component of the free
loop space of M0. For it to vanish identically, we need in addition that c is a pure gauge
when restricted to M0.

6 We imposed one more condition on M: it is a component of the fixed point set of
an antiholomorphic involution τ . As explained in [9], this is needed so that quantization
of M in the sense of the A-model admits a hermitian structure. So if M0 does not obey
this condition, its “quantization” via the A-model – this operation is reviewed in section
2.10 – is not unitary.
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It is not hard to see that while M is a two-sphere S2, M′ is a copy of the
upper half plane H2. In quantization of either M or M′, the observables are
the same, namely polynomials u(X1, X2, X3) (modulo the relation (2.25)),
restricted to M or M′. Moreover, any identities in correlation functions of
these observables (apart from (2.25)) arise as Ward identities in the path
integral and are proved by integration by parts in field space. So just like
the differential equation (1.8), the same identities hold regardless of which
integration cycle we pick. So we have arrived at a pair of quantum mechanical
systems – associated to quantization of M and M′ – that have the same
algebra of quantum observables, though with inequivalent representations.

Finally, we make a few remarks about this example that are more fully
explained in [9] and are not really needed for the present paper. Concretely,
at the classical level, the only relation that the Xi obey, apart from (2.25),
is that they commute. Quantum mechanically, commutativity of the Xi

is deformed to the sl(2) relations [X1, X2] =X3 and cyclic permutations
thereof. (The constant j2 in (2.25) is also modified quantum mechanically.)
This means that the algebra of observables is the universal enveloping alge-
bra of sl(2) – whether we quantize M or M′. This gives a concrete expla-
nation of why the two systems have the same algebra of observables. An
important detail is that the equivalence between the algebra of observables
in quantizing M with that in quantizing M′ does not map hermitian oper-
ators to hermitian operators. Most simply, this is because the polynomials
u(X1, X2, X3) that are real when restricted to M are not the same as the
ones that are real when restricted to M′.

In footnote 6, we noted that in general M0 may fail to obey one con-
dition that we imposed on the original M: there may not be an antiholo-
morphic involution with M0 as a component of its fixed point set. However,
in the case of M′, there is such an involution τ ′, acting by X1, X2, X3 →
X1,−X2,−X3. Hence M′ actually obeys all of the conditions satisfied by
M. The relation between the two is completely symmetrical. We may con-
sider M̂ to arise by analytic continuation from either M or M′.

2.5. Review of Morse theory. To construct more interesting inte-
gration cycles, we will use Morse theory and steepest descent. A detailed
review of the relevant ideas is given in [2]. Here we give a brief synopsis to
keep this paper self-contained.

Let Z be an m-dimensional manifold with local coordinates wi, i=
1, . . . ,m and a Morse function h. A Morse function is simply a real-valued
function whose critical points are nondegenerate. A critical point of h is a
point p at which its derivatives all vanish. p is called a nondegenerate critical
point of h if the matrix of second derivatives ∂2h/∂wi∂wj is invertible at p.
If so, the number of negative eigenvalues of this matrix is called the Morse
index of h at p; we denote it as ip.

Pick a Riemannian metric gijdwidwj on Z. Introducing a “time” coordi-
nate s (we reserve the name t for the time in the original quantum mechanics
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problem, to which we return later), we define the Morse theory flow equa-
tion:

(2.27)
dwi

ds
= −gij ∂h

∂wj
.

The first property of the flow equation is that the Morse function is always
decreasing along any nonconstant flow, since

(2.28)
dh
ds

= −gij ∂h

∂wi

∂h

∂wj
.

The right hand side is negative unless ∂h/∂wi = 0, in which case the flow
sits at a critical point for all s. In this statement, of course, we rely on
positivity of the metric gijdwidwj . The fact that h decreases along the flow
is the reason that the flow equation will be useful.

Let us look at the flows in the neighborhood of a critical point p. After
diagonalizing the matrix of second derivatives, we can find a system of Rie-
mann normal coordinates wi centered at p in which h= h0 +

∑m
i=1 eiw

2
i +

O(w3), gij = δij +O(w2), with constants h0, ei. The flow equations become

(2.29)
dwi

ds
= −eiwi,

with the solution

(2.30) wi = ri exp(−eis),

with constants ri. A solution of the flow equation, if it does not sit identically
at p (that is, at wi = 0) for all s, can only reach the point p at s= ±∞. Let
us focus on solutions that flow from the critical point p at s= −∞. From
(2.30), clearly, the condition for this is that ri must vanish whenever ei > 0.
This leaves ip undetermined parameters, so the solutions that start at p at
s= −∞ form a family of dimension ip. We define an ip-dimensional subspace
Cp of Z that consists of the values at s= 0 of solutions of the flow equations
that originate at p at s= −∞. The point p itself lies in Cp, since it is the
value at s= 0 of the trivial flow that lies at p for all s. Since h is strictly
decreasing along any non-constant flow, the maximum value of h in Cp is its
value at p.

In favorable situations, the closures of the Cp are homology cycles that
generate the homology of Z. As reviewed in [2], a very favorable case is that
Z is a complex manifold, say of complex dimension n and real dimension
m= 2n, of a type that admits many holomorphic functions, and h is the
real part of a generic holomorphic function S. The local form of h near a
nondegenerate critical point p is h= h0 + Re

(∑n
i=1 z

2
i

)
, with local complex

coordinates zi. Setting zi = xi + iyi, with xi, yi real, and noting that Re z2
i =

x2
i − y2

i , we see that stable and unstable directions for h are paired. As a
result, the Morse index ip of any such p always equals n=m/2, and the
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corresponding Cp is middle-dimensional. In this situation, the Cp are closed
(but not compact) for generic7 S and furnish a basis of the appropriate
relative homology group, which classifies cycles on which h is bounded above
and goes to −∞ at infinity.

Now let us take Z = C
n and consider an exponential integral of the sort

described in the introduction:

(2.31)
∫

Γ
dz1 dz2 . . .dzn exp (S(z1, . . . , zn)) .

Setting h= ReS, the main problem with convergence of the integral comes
from the fact that the integrand has modulus exp(h). Convergence is assured
if h→−∞ at infinity along Γ, so the cycles Cp just described give a basis
for the space of reasonable integration cycles. For instance, let us consider
the one-dimensional integral that was discussed in the introduction:

(2.32)
∫

Γ
dz exp(S(z)), S(z) = −z4/4 + az.

The equation for a critical point of h= ReS is the cubic equation dS/dz = 0.
This equation has three roots in the complex z-plane, in accord with the fact
that the space of possible integration cycles has rank three, as is evident in
fig. 1 of the introduction.

In our application, our Morse function h will be the real part of a holo-
morphic function S, but its critical points will not be isolated. The above
discussion then needs some small changes. Let N be a component of the
critical point set. N will be a complex submanifold of Z, say of complex
dimension r; we still take Z to have complex dimension n. In this case, there
are n− r complex dimensions or 2(n− r) real dimensions normal to N . We
assume that h is nondegenerate in the directions normal to N , meaning that
the matrix of second derivatives of h evaluated at a point on N has 2n− 2r
nonzero eigenvalues. In that case, the local form of h is h= h0+Re

∑n−r
i=1 z

2
i ,

and the matrix of second derivatives of h has precisely n− r negative eigen-
values. The space CN of solutions of the flow equation that begin on N at
s= −∞ will have real dimension 2r+ (n− r) = n+ r, where 2r parameters
determine a point on N at which the flow begins and n− r parameters arise
because the flow has n − r unstable directions. Thus, CN is a cycle that is
above the middle dimension. To get a middle-dimensional cycle, we have to
impose r conditions, by requiring the flow to begin on a middle-dimensional
cycle V ⊂N . The values at s= 0 of solutions of the flow equation on the

7A sufficient criterion, as explained in [2], is that there are no flows between distinct
critical points. Since ImS is conserved along the flow lines, this is the case if distinct
critical points (or distinct components of the critical set, if the critical points are not
isolated) have different values of ImS. The exceptional case with flows between critical
points leads to Stokes phenomena, which were important in [2], but will not be important
in the present paper.
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half-line (−∞, 0] that begin on V form a cycle CV ⊂ C
n that is of middle

dimension.
Let us consider a simple example. With Z = C

3, we take

(2.33) S = (z2
1 + z2

2 + z2
3 − j2)2.

Then S has an isolated nondegenerate critical point at the origin. In addition
it has a family N of critical points given by z2

1 +z2
2 +z2

3 = j2. N has complex
dimension two, and h= Re(S) is nondegenerate in the directions normal
to N . N happens to be equivalent to the complex manifold M̂ that was
introduced in eqn. (2.18), so for examples of middle-dimensional cycles in
N , we can take our friends M and M′, defined respectively by setting the
zi to be real, or by taking z1 to be real and positive while z2 and z3 are
imaginary.

2.6. A new integration cycle for the Feynman integral. Hope-
fully it is clear that in attempting to describe integration cycles for the
Feynman integral, we are in the situation just described. The exponent of
the Feynman integral is a holomorphic function

∮
ΛAdY A on the complexi-

fied free loop space Û . We want to take its real part, namely

(2.34) h= Re
∮

ΛAdY A =
∮
cAdY A

as a Morse function and use the flow equations to generate an integration
cycle on which h is bounded above.

The first step is to find the critical points of h. This is easily done. We
have

(2.35) δh=
∮
δY AdY BωAB.

Since ω is nondegenerate, the condition for δh to vanish for any δY A is that
dY B = 0. In other words, a critical point is a constant map T : S1 →M̂.
This should be no surprise. Since we have taken the Hamiltonian to vanish,
Hamilton’s equations say that the coordinates and momenta are independent
of time. The space of critical points is thus a copy of M̂, embedded in its
free loop space Û as the space of constant maps. Let us write M̂∗ for this
copy of M̂. As explained in section 2.5, to get an integration cycle, we pick
a middle-dimensional cycle V ⊂ M̂∗ and consider all solutions of the flow
equation on a half-line that start at V .

The difference from the practice case discussed in section 2.5 is that
the flow equations will be two-dimensional. The objects that are flowing are
functions Y A(t), describing a map T : S1 →M̂. To describe a flow we have
to introduce a second coordinate s, the flow variable, which will take values
in (−∞, 0], and consider functions Y A(s, t) that describe a map T : C →M̂.
Here C is the cylinder C = S1 × R+, where R+ is the half-line s≤ 0.
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The flow equations will not automatically be differential equations on
C, but this will happen with a convenient choice of metric on Û . We pick
an ordinary metric gABdY AdY B on M̂. In principle, any metric will do,
but we will soon find that choosing a certain type of metric leads to a nice
simplification. We also pick a specific angular variable t on S1 with

∮
dt= 2π.

(Until this point, since we have taken the Hamiltonian to vanish, all formulas
have been invariant under reparametrization of the time.) Then we define a
metric on Û by

(2.36) |δY |2 =
∮

dt gAB(Y (t))δY AδY B.

With the metric that we have picked, the flow equation becomes

(2.37)
∂Y A(s, t)

∂s
= −gABωBC

∂Y A(s, t)
∂t

.

The boundary condition at s→−∞ is that Y A(s, t) approaches a limit,
independent of t, that lies in the subspace V of the critical point set M̂∗.
There is no restriction on what the solution does at s= 0 (except that it must
be regular, that is well-defined). For any choice of metric gAB, the space of
solutions of the flow equation on the cylinder C with these conditions gives
an integration cycle for the path integral. If we change gAB a little, we get
a slightly different but homologically equivalent integration cycle.

However, something nice happens if we pick gAB judiciously. Let

(2.38) IA
C = gABωBC .

We can think of I as an endomorphism (linear transformation) of the tangent
bundle of M̂. The flow equation is

(2.39)
∂Y A

∂s
= −IA

B
∂Y B

∂t
.

Now suppose we pick g so that I obeys

(2.40) I2 = −1,

or more explicitly
∑

B I
A

BI
B

C = −δA
C . (The space of g’s that has this

property is always nonempty and contractible; the last statement means
that there is no information of topological significance in the choice of g.)
This condition means that I defines an almost complex structure on M̂.
When that is the case, the flow equation is invariant under conformal trans-
formations of w = s + it. Indeed, since I is real-valued and obeys I2 = −1,
it is a direct sum of 2 × 2 blocks of the form

(2.41)
(

0 −1
1 0

)
.



362 E. WITTEN

In each such 2 × 2 block, the flow equations look like

(2.42)
∂u

∂s
=
∂v

∂t
,

∂v

∂s
= −∂u

∂t
.

These are Cauchy-Riemann equations saying that (∂s + i∂t)(u + iv) = 0 or
in other words that u + iv is a holomorphic function of w = s + it. Their
invariance under conformal mappings is familiar.

Actually, to literally interpret the flow equation as saying that the map
T : C →M̂ is holomorphic, we need I to be an integrable complex struc-
ture. If I is a nonintegrable almost complex structure, then (2.39) is known
as the equation for a pseudoholomorphic map (or an I-pseudoholomorphic
map if one wishes to be more precise). This is a well-behaved, elliptic, and
conformally invariant equation whether I is integrable or not. Thus, as soon
as I2 = −1, the flow equations are invariant under conformal mappings of w.

There is in fact a very convenient conformal mapping: we set z = exp(w),
mapping the cylinder C to the punctured unit disc 0< |z| ≤ 1. Generically, a
map from the punctured unit disc to M̂ would not extend continuously over
the point z = 0. In this case, however, the boundary condition that Y A(s, t)
is a constant independent of t for s→−∞ precisely means that Y A, when
regarded as a function of z, does have a continuous extension across z = 0.
Moreover, this extended map is still pseudoholomorphic, by the removeable
singularities theorem for pseudoholomorphic maps.

Thus, we arrive at a convenient description of an integration cycle CV for
the Feynman integral of quantum mechanics. CV consists of the boundary
values of I-pseudoholomorphic maps T :D→M̂, where D is the unit disc
|z| ≤ 1, and T maps the point z = 0 to the prescribed subspace V ⊂ M̂.

2.7. I and the A-model. What sort of complex or almost complex
structure is I? M̂ is by definition a complex manifold; it was introduced as
a complexification of M. The defining conditions on M̂ were that it is a
complex symplectic manifold, with a complex structure that was previously
unnamed and which we will now call J , and with a holomorphic two-form Ω
whose imaginary part, when restricted to the original classical phase space
M⊂M̂, coincides with the original symplectic form f of M. (There were
some additional conditions that we do not need right now.) For example, in
the familiar case M = S2, J is the complex structure in which the coordi-
nates X1, X2, X3 of eqn. (2.18) are holomorphic.

Since we already know about one complex structure on M̂, namely J , one
might wonder if we can pick the metric g so that I = J . This is actually not
possible. Since ω = Re Ω, where Ω is of type (2, 0) with respect to J , it follows
that ω is of type (2, 0) ⊕ (0, 2) with respect to J . Therefore, for gABωBC to
coincide with JA

C , gAB would also have to be of type (2, 0) ⊕ (0, 2) with
respect to J . But this would contradict the fact that g is supposed to be
a positive-definite Riemannian metric. (See the discussion of eqn. (2.28),
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where this positivity was a key ingredient in the Morse theory construction
of appropriate integration cycles.)

So I will have to be something new, that is not something that was
introduced along with M̂. On the other hand, the conditions obeyed by gAB

and IA
B are famlliar in one branch of two-dimensional quantum field theory.

This is the A-model, in fact in the present case the A-model obtained by
twisting a two-dimensional sigma-model in which the target space is M̂ and
the symplectic structure is ω. We have already encountered this A-model
in a naive way in section 2.4, and it will now enter our story in a more
interesting fashion.

In defining the A-model of a symplectic manifold X – such as X = M̂
– with a given symplectic structure ω, one introduces an almost complex
structure I on X with respect to which ω is of type (1, 1) and positive.
Positivity means that the metric g defined by IA

B = gABωBC is in fact a
positive-definite Riemannian metric on X. The nicest case is that one can
choose I to be an integrable complex structure. In that case, the metric g
is Kahler. In general, one cannot pick I to be integrable and one can define
the A-model for any almost complex structure I such that ω is of type (1, 1)
and positive.

Indeed, to make sense of the A-model, one only needs the equation for
an I-pseudoholomorphic map. (The non-integrable case was important in
the early mathematical applications of the A-model [10,17] as well as many
more recent ones and was described from a quantum field theory perspec-
tive in [18].) In general, A-model computations are localized on such maps.
Usually, one encounters finite-dimensional families of I-pseudoholomorphic
maps. In the A-model with target X on a Riemann surface Σ without
boundary, one encounters the moduli spaces of I-pseudoholomorphic maps
T : Σ →X; these are finite-dimensional. If Σ has a boundary, we usually
consider boundary conditions associated with Lagrangian A-branes, and in
this case the moduli spaces of I-pseudoholomorphic maps are again finite-
dimensional. What may be unfamiliar about the present problem from the
point of view of the A-model is that our integration cycle CV is actually
an infinite-dimensional space of I-pseudoholomorphic maps. The relation of
this cycle to the A-model is explained more fully in sections 2.8 and 2.9.

In the meanwhile, let us give a concrete example of what I can be,
given that it cannot coincide with the complex structure J by which M̂ was
defined. We return first to the familiar example in which M̂ is defined, in
complex structure J , by the equation X2

1 +X2
2 +X2

3 = j2. In fact, this com-
plex manifold admits a complete hyper-Kahler metric, the Eguchi-Hansen
metric. The original complex structure J and the holomorphic two-form Ω
are part of the hyper-Kahler structure of M̂. Indeed, a hyper-Kahler mani-
fold has a triple of complex structure I, J,K obeying the quaternion relations
I2 = J2 =K2 = IJK = −1. It also has a triple of real symplectic structures
ωI , ωJ , ωK , where ωI is of type (1,1) and positive with respect to I, and
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similarly for ωJ and ωK . Finally, ΩI = ωJ + iωK is a holomorphic two-form
with respect to I, and similarly with cyclic permutations of indices I, J,K.
Now, in our example, define Ω by eqn. (2.19) and normalize the hyper-Kahler
structure of M̂ so that Ω = ωI − iωK (this is −i(ωK + iωI), so it is holomor-
phic with respect to J). So ω = Re Ω is equal to ωI , and is of type (1, 1) and
positive with respect to I. In other words, in this example, we can take the
metric g on M̂ to be the Eguchi-Hansen hyper-Kahler metric, and I to be
one of the complex structures for which that metric is Kahler. The other real
symplectic structure of M̂ in our original description is f = Im Ω = −ωK .

We have used no special property of M̂ except that its complex sym-
plectic structure J,Ω extends to a hyper-Kahler structure. Whenever this is
so, the corresponding hyper-Kahler metric on M̂ is a very convenient choice.
(It can happen that the extension of J,Ω to a hyper-Kahler structure is not
unique; varying it in a continuous fashion will give a family of equivalent
and convenient integration cycles.) Since M̂ is complex symplectic, its real
dimension is always divisible by four, but it may not admit a hyper-Kahler
structure that extends its complex symplectic structure. While we cannot
necessarily pick I to be integrable, we can always pick it so that IJ = −JI. In
this case, defining K = IJ and ωJ = Jg, we arrive at what one might call an
almost hyper-Kahler structure. The three almost complex structures I, J,K
and the three two-forms ωI , ωJ , ωK obey all the usual algebraic relations. J
is integrable and ωI and ωK are closed; I and K may not be integrable and
ωJ may not be closed.

2.8. Interpretation in sigma-model language. At this point, we
are supposed to do a Feynman integral

(2.43)
∫
CV

DY A(t) exp
(∮

ΛAdY A

)∏
α

uα(tα)

where Y A(t) is a one-dimensional field, but the integration cycle CV is
described in two-dimensional terms, in terms of boundary values of
I-pseudoholomorphic maps.

This is a hybrid-sounding recipe. A natural idea is to try to reformulate
(2.43) as a two-dimensional path integral, with a field Y A(s, t) that describes
a map from D to M̂, and certain additional fields that we will need to
introduce along the way. The first step is obvious – after extending Y to a
function defined on D, we introduce another field T that will be a Lagrange
multiplier enforcing the desired equation (2.39) of an I-pseudoholomorphic
map.

We can write (2.39) in the form UA = 0 where

(2.44) UA = dY A + 	IA
BdY B;
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here 	 is the Hodge star operator onD (defined so that 	ds= dt, 	dt= −ds).
We view U as a one-form on D with values in the pullback of the tangent
bundle of M̂. U obeys the identity

(2.45) UA = 	IA
BU

B.

We introduce a Lagrange multiplier field TA that is a one-form on D with
values in the pullback of the cotangent bundle of M̂, and further obeys the
dual relation

(2.46) TB = 	TAI
A

B.

Then if we include a term in the two-dimensional action of the form
∫
D TA∧

UA, the integral over TA will give a delta function setting UA = 0.
So a rough approximation to the two-dimensional path integral that we

want would be

(2.47)
∫
DTA(s, t)DY B(s, t) exp

(
i

∫
D
TA ∧ UA

)
(· · · ) ,

where the ellipses refer to the integrand in (2.43).
After integrating out T , this expression will lead to an integral over Y

that is supported on the cycle CV , but it is not the integral we want. In fact,
the integral (2.47) will depend on the details of the almost complex structure
I that is used in defining UA. The problem is that the integral over TA(s, t)
indeed generates a delta function setting UA(s, t) equal to zero, but this delta
function multiplies an unwanted determinant 1/|det(δU/δY )|. (An analog
of the appearance of this determinant in the case of an ordinary integral is
that, if f(x) is a function that vanishes precisely at x= a, then the integral∫

dλ/2π exp(iλf(x)) equals not δ(x − a) but δ(x − a)/|f ′(a)|.) To cancel
this determinant, we add fermions with a kinetic energy that is precisely the
linearization of the equation U = 0. As a result, the fermion determinant
will cancel the boson determinant up to sign. In the present problem, the
sign will not do anything essential; this is because CV is connected, and
we can pick the sign of the fermion measure so that the sign is +1. In a
more general A-model problem, fermion and boson determinants cancel only
up to sign and contributions of I-pseudoholomorphic curves are weighted
by the sign of the fermion determinant (the boson determinant is always
positive).

The fermions will also carry a new U(1) quantum number (“fermion
number”) that we call F . We need fermions ψA of F = 1 that take values
in the pullback to D of the tangent bundle of M̂. And we need fermions
χA of F = −1 that have the same quantum numbers as the bosons TA: they
are a one-form on D with values in the pullback of the cotangent bundle of
M̂, and they obey a constraint χB = 	χAI

A
B. We take the fermion action

to be i
∫
D χADψA, where the operator D is defined as the linearization of



366 E. WITTEN

the equation UA = 0. This means that if we vary Y A around a solution of
UA = 0, we have to first order δUA = DδY A. Concretely, if M̂ is Kahler (so
that I is covariantly constant, which makes the formulas look more familiar),
then

(2.48) DψA =
DψA

Ds
+ IA

B
DψB

Dt
,

where D/Ds and D/Dt are defined using the pullback to D of the Rie-
mannian connection on the tangent bundle to M̂. We now consider a two-
dimensional path integral∫

DT DY DχDψ exp
(
i

∫
D

(TA ∧ UA − χA ∧ DψA)
)

(2.49)

× exp
(∮

ΛAdY A

) ∏
α

uα(tα) OV (0).

Here we have included explicitly all the factors from the original path integral
(2.43). We have also included an operator OV (0) – the details of which we
will describe presently – that is supposed to incorporate the constraint that
Y A(z) lies in V at the point z = 0.

The two-dimensional action that we have arrived at has a fermionic
symmetry that squares to zero. It is invariant under

(2.50) δY A = ψA, δψA = 0,

together with, roughly speaking,8

(2.51) δχA = TA, δTA = 0.

Clearly δ2 = 0. The exponent in (2.49) is

(2.52) i

∫
D

(
TA ∧ UA − χA ∧ DψA

)
= δ

∫
D
iχA ∧ UA,

which makes clear its invariance under δ. This also makes it clear that the
path integral (2.49) is invariant under deformations of the almost complex

8 We are engaging here in a small sleight of hand and omitting terms of higher order

in fermions. As χ is a section of the pullback of the cotangent bundle of M̂, to keep it
“constant” when Y is varied, we must transport it using some connection; we will use the
Riemannian connection. So we measure δχ relative to parallel transport by the Riemannian
connection. With this understanding, we should write the first part of eqn. (2.51) in the
form δχA − ΓC

ABδY
BχC = TA, where ΓC

AB are the Christoffel symbols. Since δY B = ψB ,
we may write this as δχA − ΓC

ABψ
BχC = TA. To ensure that δ2 = 0, we must take δTA =

−δ(ΓC
ABψ

BχC). This is equivalent to δTA − ΓC
ABδY

BTC = −(1/2)RC
ADBψ

DψBχC , where
RC

ADB is the Riemann tensor. In deriving eqn. (2.53) below, the terms proportional to Γ
cancel because the connection is metric-compatible, leaving a four-fermi term proportional
to R.
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structure I (or equivalently of the metric g). Indeed, I appears only in terms
in the action of the form δ(· · · ); varying such a term does not change the
value of the path integral.

Without changing anything essential, we can add to the action a further
exact term

δ

(
ε

2

∫
D
gABχA 	 TB

)
=
ε

2

∫
D
gABTA ∧ 	TB(2.53)

+
ε

4

∫
D
RCA

DBχC ∧ χAψ
DψB,

with an arbitrary parameter ε. (The origin of the four-fermi term is explained
in footnote 8.) After performing the Gaussian integral over T , we get an
equivalent path integral for the other fields∫

DY DχDψ exp
(
− 1

2ε

∫
D
gABU

A ∧ 	UB − i

∫
D
χADψA(2.54)

− ε
4

∫
D
RCA

DBχC ∧ χAψ
DψB

)
exp

(∮
ΛAdY A

)
×

∏
α

uα(tα) OV (0).

In fact, the fermionic symmetry that was introduced in eqns. (2.50),
(2.51) is the usual topological supersymmetry of the A-model with target
M̂. The symmetry generated by δ is usually denoted as Q (and called the
BRST operator or topological supercharge). The action is a standard A-
model action, as we discuss in section 2.9. When the model is interpreted
as an A-model, the operator OV (0) that imposes the constraint that the
point z = 0 is mapped to V is a conventional closed string observable of
the A-model. This comes about in a standard way, which we sketch for
completeness. Operators S(Y (z0), ψ(z0)) that depend on Y and ψ only
(evaluated at some point z = z0) are naturally associated to differential
forms on M̂. Here one simply thinks of ψA as the one-form dY A. An
arbitrary such S is a finite linear combination of expressions of the form
SA1A2...Ak

(Y )ψA1ψA2 . . . ψAk ; we associate such an expression to the differ-
ential form SA1A2...Ak

(Y )dY A1dY A2 . . .dY Ak . The relations [Q,Y A] = ψA,
{Q,ψA} = 0 imply that Q acts on differential forms as the exterior deriva-
tive d. To be more precise, if γ is a differential form on Y and Sγ(Y, ψ) is
the corresponding quantum field operator, then [Q,Sγ ] = Sdγ . SoQ-invariant
local operators of the A-model of this type correspond to closed differential
forms on M̂. (Similarly, cohomology classes of Q acting on local operators
of this type correspond to the de Rham cohomology of M̂.) Now, given any
submanifold V ⊂ M̂, let V be a differential form (of degree equal to the codi-
mension of V ) that is Poincaré dual to V . (This notion is explained in eqn.
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(4.13).) Then V is a closed differential form with delta function support on
V , and the operator OV that we need in (2.54) is simply SV . So it is indeed
a standard Q-invariant local operator of the A-model.

2.9. The physical model. Let us explicitly evaluate the bosonic
kinetic energy term K = 1

2ε

∫
D gAB U

A 	 UB in (2.54), using the definition
(2.44) of U . We find

K =
1
ε

∫
D

dsdt gAB

(
dY A

ds
dY B

ds
+

dY A

dt
dY B

dt

)
(2.55)

+
2
ε

∫
dsdt ωAB

dY A

ds
dY B

dt
.

With ωAB = ∂AcB − ∂BcA, the last term in (2.55) is

2
ε

∫
dsdt ωAB

dY A

ds
dY B

dt
=

2
ε

∫
D

dsdt
(
∂

∂s

(
cB
∂Y B

∂t

)
(2.56)

− ∂

∂t

(
cB
∂Y B

∂s

))
=

2
ε

∮
cB dY B =

2h
ε
.

Now let us examine the purely bosonic factors in the integrand of the
path integral (2.54), ignoring the insertions of operators ui(ti) and OV (0)
(which will not affect the convergence of the path integral). Those factors
are

exp(−K) exp
(∮

ΛAdY A

)
= exp(−K) exp

(∮
(cA + ibA)dY A

)
(2.57)

= exp
(
−K + h+ i

∮
bAdY A

)
.

The terms proportional to h in the exponent cancel out if we eliminate
K using eqns. (2.55), (2.56) and also set ε= 2. Then the bosonic factors
become

(2.58) exp
(
−1

2

∫
D

dsdt gAB

(
dY A

ds
dY B

ds
+

dY A

dt
dY B

dt

)
+ i

∮
∂D

bAdY A

)
.

At this particular value of ε, our path integral is essentially that of an
ordinary supersymmetric nonlinear sigma-model with a particular bound-
ary condition that is compatible with unitarity. The bulk integral in the
exponent in (2.58) is the ordinary bulk bosonic action of a sigma-model:

(2.59)
1
2

∫
D

dsdt gAB

(
dY A

ds
dY B

ds
+

dY A

dt
dY B

dt

)
.
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The boundary contribution to the exponent is imaginary precisely at this
value of ε, where it reduces to

(2.60) i

∮
∂D

bAdY A

Being imaginary means that this contribution can be interpreted as the
coupling of the sigma-model to a rank one unitary Chan-Paton bundle L →
M̂. The connection on this bundle is b and its curvature is f = db. As for the
fermion kinetic energy −i

∫
χA∧DψA, it is not the standard fermion kinetic

energy of the usual supersymmetric sigma-model, but it is the standard
fermion kinetic energy in the A-twisted version of this model. Finally, the
four-fermion coupling in (2.54) is a standard part of the supersymmetric
nonlinear sigma-model, again written in A-twisted notation.

In short, at this value of ε, it must be possible to interpret the boundary
interaction that we have at s= 0 as a supersymmetric brane in the usual
supersymmetric sigma-model with target M̂. (Twisting does not affect the
classification of branes, because on a flat worldsheet, the twisting is only
a matter of notation; near the boundary of a Riemann surface Σ, we can
always consider Σ to be flat.) More specifically, what we have at s= 0 is a
brane in the usual sigma-model that preserves A-type supersymmetry.

Which brane is it? The support of the brane is all of M̂ (since the bosonic
fields are locally allowed to take any values at s= 0) and the curvature of
its Chan-Paton bundle is f . These properties uniquely identify this brane:
it is the most simple coisotropic A-brane constructed in the original paper
on that subject by Kapustin and Orlov [3]. Their presentation contains
more or less the same ingredients as in our derivation, but arranged quite
differently. Their starting point was the A-model of a symplectic manifold
X with symplectic structure ω. To define the A-model, an almost complex
structure I is chosen such that ω is of type (1, 1) and positive. The question
asked was then what branes of rank 1 are possible in this A-model. Such
a brane is characterized by its support and by the curvature of the Chan-
Paton line bundle that it carries. For brevity, let us state the answer in [3]
only for the case of a rank one brane B whose support is all of X. The
answer turned out to be that the Chan-Paton curvature f of such a brane
must have the property that J = ω−1f is an integrable complex structure
on X (which will necessarily be different from I, which may or may not be
integrable). This was quite a surprising answer at the time; previously the
only known branes of the A-model were Lagrangian A-branes, supported on
a middle-dimensional submanifold of X.

Saying that J = ω−1f is equivalent to saying that Ω = ω + if is a holo-
morphic two-form with respect to J . So whenever we study the A-model of a
symplectic manifold X – such as X = M̂ – endowed with a symplectic form
ω that is the real part of a holomorphic two-form Ω, in some complex struc-
ture J , there is a canonical way to obey the Kapustin-Orlov conditions. We
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can define a rank one A-brane whose support is all of X by taking the Chan-
Paton curvature to be f = Im Ω. Since this is the simplest way to satisfy the
relevant conditions, and also the brane constructed this way seems to arise
in many applications, this brane has been called the9 canonical coisotropic
A-brane and denoted Bcc. In our formulation in the present paper, we have
arrived at the same structure from a different end. We started with a classi-
cal symplectic manifold M with symplectic form f . Seeking to analytically
continue the Feynman integral that arises in quantizing M, we replaced M
by a complexification M̂ and analytically continued from f to Ω = ω + if .
Then we found an integration cycle in the complexified Feynman integral
that has a natural interpretation via a path integral on the unit disc D in
the complex z-plane. From the standpoint of [3], what we have constructed
is the path integral of the A-model on D with a boundary condition set
by the A-brane Bcc, with boundary insertions of open string vertex opera-
tors ui(ti), and with a closed string A-model vertex operator OV inserted
at z = 0. The closed string insertion is needed since otherwise, because of
an anomaly in the fermionic quantum number F , the path integral on the
disc would vanish. As for the open string vertex operators uα(tα) that are
inserted on the boundary of the disc, it is a result of [3] that the (Bcc,Bcc)
strings correspond to holomorphic functions in complex structure J .

The reader may want to compare this discussion to the analysis in [11–
13] of localization of sigma-model path integrals on a middle-dimensional
subspace of the loop space of a target manifold. (The target space was not
assumed to be a complex symplectic manifold, so the middle-dimensional
cycles were not interpreted as integration cycles.) The approach was the
reverse of what we have explained here – and more like what we will explain
in section 4 – in the sense that the starting point was taken to be a two-
dimensional supersymmetric sigma-model, rather than the problem of find-
ing an integration cycle for a path integral in dimension one.

2.9.1. The boundary condition and localization. Here we will add a few
remarks on the boundary condition obeyed by the field Y A at the boundary
of the punctured discD. (We reconsider the boundary conditions in a related
problem and include the fermions in section 4.1.) The purpose is to clarify
the meaning of A-model localization in the presence of coisotropic branes.

We read off from eqn. (2.57) that the bosonic part of the integrand
of the path integral is exp(−K̂), where the “action” K̂, with boundary
contributions included, is

(2.61) K̂ =K − h− i

∮
bAdY A.

9Calling this brane “the” canonical coisotropic A-brane is perhaps a little too cavalier,
since it depends on the choice of J . Depending on the context, a distinguished J may or
may not present itself.



THE PATH INTEGRAL OF QUANTUM MECHANICS 371

When we vary K̂ with respect to Y A, we get

δK̂ = − 2
ε

∫
D

dsdt δY AgAB

(
D2Y B

Ds2
+
D2Y B

Dt2

)
(2.62)

+
∮

∂D
dt δY A

(
2
ε

(
gAB

dY B

ds
+ ωAB

dY B

dt

)

−(ωAB + ifAB)
dY B

dt

)
.

Setting this to zero, we find that the bulk equation of motion is the equation
D2Y B/Ds2 +D2Y B/Dt2 = 0 for a harmonic map (this equation is satisfied
for I-pseudoholomorphic maps). Moreover, as we wish to place no local
restriction on the boundary values of δY A, to set the boundary term to
zero, the boundary condition on Y A must be

(2.63)
2
ε

(
gAB

dY B

ds
+ ωAB

dY B

dt

)
− (ωAB + ifAB)

dY B

dt
= 0.

If we set ε= 2, the boundary condition becomes

(2.64) gAB
dY B

ds
− ifAB

dY B

dt
= 0,

which is the boundary condition10 of the physical sigma-model with a
coisotropic brane as presented in [3]. On the other hand, to get the simplest
topological field theory description, we take ε→ 0. Precisely in the limit
ε= 0, the boundary condition merely says that the equation for a pseudo-
holomorphic map should be obeyed on ∂D. This is not really a boundary
condition at all, since at ε= 0, the equation for a pseudoholomorphic map
is obeyed everywhere.

The best way to understand what happens precisely at ε= 0 is to go
back to the form (2.49) of the path integral with an auxiliary field T . When
we repeat the above exercise, assuming no constraint on the boundary values
of δY A or δTA, we find a boundary condition for T but none for Y . (This
happens because the boundary contribution to the variation of the action
has a TδY term but no Y δT term.) So in this form of the theory, Y obeys
no boundary condition at all. The only condition on Y is the equation for
an I-pseudoholomorphic map, which is enforced when we do the T integral.

The question “on what class of I-pseudoholomorphic maps does the A-
model localize in the presence of a coisotropic brane?” does not seem to have

10The meaning of this boundary condition in quantum theory is a little subtle, because
of the factor of i multiplying the second term, while classically the field Y B is real. This
subtlety is a standard phenomenon in Euclidean field theory and has nothing to do with
issues considered in the present paper. If we replace D by a two-manifold of Lorentz
signature, the factor of i disappears and the interpretation of the boundary condition
becomes straightforward.
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been answered in the literature. The answer for the case that the coisotropic
brane is the canonical one considered here is that localization occurs in and
only in the limit ε→ 0 and the localization is on the infinite-dimensional
space of all I-pseudoholomorphic maps. For any ε 	= 0, we can do a path
integral that gives the same results for all A-model observables, but it arrives
at these results in a more complex way, not by a simple localization on a
space of I-pseudoholomorphic maps.

Another way to describe the localization that occurs at ε→ 0 is that the
localization is on quantum mechanics – the two-dimensional A-model path
integral localizes on a new integration cycle for a path integral of ordinary
quantum mechanics.

2.10. Recovering the Hilbert space. We have defined an integra-
tion cycle by flowing in s over a semi-infinite interval (−∞, 0]. An obvious
question is to ask what we would get if we flow in s for a finite interval only,
say the interval [−s0, 0]. In other words, what happens if we replace the semi-
infinite cylinder C = S1 × R+ with a compact cylinder Cs0 = S1 × [−s0, 0]?

We now need a different type of boundary condition at s= s0. We cannot
start the flow from a critical point, since as we observed in section 2.5, a
nonconstant flow can only start from or leave a critical point at s= ±∞.

Let us approach the problem from the standpoint of the A-model. Since
Cs0 has a second boundary component at s= −s0, we need a boundary
condition there. This boundary condition will have to correspond to a sec-
ond A-brane. Though we could consider the case that the second brane
is a coisotropic one (like the canonical coisotropic brane Bcc that we will
continue to use at s= 0), let us consider instead the case that the second
brane is a Lagrangian A-brane – supported on a submanifold L ⊂ M̂ that
is Lagrangian with respect to ω. We denote the second brane as BL.

The boundary condition associated to BL requires the boundary values
of the map T : Cs0 →M̂ at s= −s0 to lie in L. Those boundary values
define an arbitrary11 point in the free loop space of L. Then we solve the
flow equations for a “time” s= s0. The resulting integration cycle Γs0 in the
free loop space of X consists of all possible boundary values at s= 0 of the
solution of the flow equation. As s0 is varied, we get a one-parameter family
of integration cycles. The value of s0 does not matter, since in general the
integral of a holomorphic differential form of top dimension – in this case the
integration form of the Feynman integral – over a middle-dimensional cycle
is invariant under continuous deformations of that cycle. (Alternatively, the
value of s0 does not matter, since the metric of Cs0 is immaterial in the
A-model.)

We can try to evaluate the integral in the limit s0 → 0. The limit is
particularly simple if L, while Lagrangian for ω = Re Ω, is symplectic from

11This is a slight simplification. The boundary values at s= −s0 must be initial values
of a solution of the flow equation that is regular at least up to s= 0.
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the standpoint of f = ImΩ. (If M̂ is the familiar example given byX2
1 +X2

2 +
X2

3 = j2, then M and M′ as described in section 2.4 are possible choices of
L.) In the limit that s0 → 0, the flow equation does not do anything (since
no time is available for the flow) and the limit of Γs0 is simply the free
loop space of L. The integral over this free loop space is simply the original
Feynman integral (2.8), with L replacing M. This path integral is associated
with quantization of L. So the result is that the A-model path integral for
strings stretched between the brane Bcc and a Lagrangian brane BL (with f
nondegenerate on L) is associated with quantization of L (with respect to
symplectic structure f).

The corresponding statement from a Hamiltonian point of view is that
the space of (Bcc,BL) strings is the Hilbert space that arises in quantization
of L. As is usual, the path integral on the cylinder can be interpreted in terms
of a trace in this Hilbert space. If rather than a trace, we wish to consider
specific initial and final quantum states, we can consider a path integral on
a disc D with its boundary ∂D divided into an interval ∂D1 labeled by Bcc

and a second interval ∂D2 labeled by BL. (The associated A-model path
integral will localize on I-pseudoholomorphic maps that send ∂D2 to L and
whose boundary values on ∂D1 are unconstrained. The space of such maps is
infinite-dimensional.) At the two points where ∂D1 and ∂D2 meet, we must
insert (Bcc,BL) and (BL,Bcc) vertex operators, which correspond to initial
and final quantum states in the quantization of L. Insertions of (Bcc,Bcc)
strings on ∂D1 will give matrix elements of quantum observables between
initial and final quantum states.

None of these assertions really require the analysis in the present paper,
and indeed fuller and more direct explanations have been given in [9], follow-
ing a variety of earlier clues and examples [4–8]. In our brief and somewhat
cavalier explanation here, we have omitted some key details (involving the
conditions for the space of (Bcc,BL) strings to have a hermitian structure,
the role of the flat Chan-Paton line bundle of BL, etc.) that can be found
in [9].

If f when restricted to L is degenerate, then the integral (2.8) (with L
replacing M) is not well-defined. The limit s0 → 0 needs to be taken more
carefully; higher order bosonic terms in the Lagrangian cannot be omitted,
and fermion fields cannot be dropped as they have zero modes. The extreme
case that f restricted to L is zero was treated in [6]; it leads to D-modules
rather than to quantization.

We can also consider the opposite limit of s0 →∞. In this limit, the finite
cylinder Cs0 approaches the semi-infinite cylinder C, whose compactification
is a discD. It is natural to compare the path integral on the cylinder Cs0 with
boundary conditions set by BL at s= −s0 to a path integral on D with an
insertion of the closed string vertex operator OL at the center. For s0 →∞,
the path integral on Cs0 converges to the corresponding path integral on D,
but some information is lost. This is related to the fact that the path integral
onD makes sense for any middle-dimensional cycle L, while the path integral
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on Cs0 can only be defined if L is Lagrangian. The path integral on either Cs0

or D with boundary insertions at s= 0 gives a cyclically symmetric trace-
like function on the noncommutative algebra R that arises by deformation
quantization of the ring of holomorphic functions on M̂. (A trace-like func-
tion is a family of cyclically symmetric functions fn(u1, u2, . . . , un), defined
for a cyclically ordered n-plet of elements u1, . . . , un ∈R, for any n ∈ N, and
obeying fn−1(u1u2, u3, . . . , un) = fn(u1, u2, . . . , un).) The path integral on
Cs0 gives a trace-like function that actually can be interpreted as a trace in
an R-module (namely the R-module obtained by quantizing the (Bcc,BL)
strings), while the path integral on D, in the general case that L is not
Lagrangian, gives a trace-like function that is not necessarily the trace in
any R-module.

3. Hamiltonians

Once we associate a Hilbert space H and an algebra of observables R
to a classical phase space M, we can take an element of R and call it the
Hamiltonian. However, one may ask if there is some useful way to include a
Hamiltonian in the analysis from the beginning.

Here we will approach this question in two ways. In section 3.1, we rerun
the analysis of section 2 in a straightforward fashion with a Hamiltonian in
place from the beginning. The analysis is not difficult, and makes sense for
any Hamiltonian, but is probably not very enlightening. In section 3.2, we do
something that is probably more useful. We ask whether, in the construction
of section 2, it is possible to relate the Hamiltonian of a one-dimensional
description to the superpotential of a two-dimensional description. This is
interesting when it is possible, though it is not usually possible.

3.1. Rerunning the story with a Hamiltonian. In the presence of
a Hamiltonian H(p, q), the integrand in the quantum path integral (2.6) is
modified in the familiar fashion: the integral

∮
pi dqi is replaced by

∮ (
pi dqi−

H(p, q) dt
)
. (We now take the t coordinate to have period τ ; this parameter

is meaningful when the Hamiltonian is nonzero.) The path integral with the
Hamiltonian included is then∫

U
Dpi(t)Dqi(t) exp

(
i

∮ (
pi dqi −H(p, q) dt

))
(3.1)

× u1(t1)u2(t2) . . . un(tn).

Actually, this is the real time version of the path integral, related to the
evaluation of exp(−iτH). The imaginary time version of the path integral,
related instead to exp(−τH), differs only by dropping the factor of i in front
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of −H(p, q) dt:∫
U
Dpi(t)Dqi(t) exp

(∮ (
i pi dqi −H(p, q) dt

))
(3.2)

× u1(t1)u2(t2) . . . un(tn).

Most of our considerations in this section apply equally to the real or imagi-
nary time version of the path integral. For definiteness, we consider the real
time version until section 3.2.2, where it is useful to consider both cases.

As in section 2.3, we begin by analytically continuing the classical phase
space M to a complex symplectic phase space M̂. We will certainly not
be able to incorporate a Hamiltonian in the discussion unless it too can be
analytically continued, so we assume that H can be analytically continued
to a holomorphic function H on M̂. It is convenient to introduce the real
and imaginary parts of H. We write

(3.3) H =H + iG,

with H,G real.
The analog of the analytically continued path integral (2.20) is

(3.4)
∫

Γ
DY A(t) exp

(∮ (
ΛAdY A − iHdt

))
u1(t1)u2(t2) . . . un(tn).

The dangerous real exponential factor in the path integral is exp(h) where
now

(3.5) h=
∮ (

cAdY A +G dt
)
.

Just as in section 2, we need to pick the integration cycle Γ such that this
exponential factor does not cause the path integral to diverge.

The most obvious type of integration cycle is given by the sort of local-
in-time condition considered in section 2.4. We take Γ to be the loop space of
a middle-dimensional submanifold M′ ⊂ M̂. We can practically borrow the
analysis of section 2.4. Under the transformation 2.23, the term

∮
cAdY A in

h is multiplied by an arbitrary integer n, while the term
∮
Gdt is invariant.

To ensure that h is bounded above, a necessary condition is that
∮
cAdY A

should vanish identically (for paths in M′). Just as in section (2.4), this
means that M′ should be Lagrangian with respect to ω. The exponent
in (3.5) then reduces to

∮
G dt, which is bounded above precisely if G is

bounded above when restricted to M′. So that is our answer: M′ must be a
Lagrangian submanifold (with respect to ω) on which G is bounded above.

We can also imitate the construction of integration cycles associated to
flow equations. The only real differences are that we have to include the
Hamiltonian in the condition for a critical point and in the flow equations.



376 E. WITTEN

Let us first write the conditions for a critical point. Prior to analytic con-
tinuation, requiring the functional

∮ (
pi dqi −H dt

)
to be stationary gives

Hamilton’s equations:

dqi

dt
=
∂H

∂pi
(3.6)

dpi

dt
= −∂H

∂qi
.

So critical points correspond to arbitrary periodic solutions of Hamilton’s
equations.

Of course, it does not really suffice to consider only the real Hamilton
equations. Integration cycles in the analytically continued path integral can
be derived from all critical points of the function h on the free loop space
of M̂, real or not. The general critical point is a periodic solution of the
complexified Hamilton equations, which we can write

(3.7) −iΩAB
dY B

dt
=

∂H

∂Y A
.

To every critical point, one associates an integration cycle in the Feynman
integral. It is defined by solving the flow equations

(3.8)
∂Y A

∂s
= −gAB δh

δY B(s, t)
= −IA

B
∂Y B

∂t
− gAB ∂G

∂Y B

(for some choice of metric g on M̂) for flows that start at s= −∞ at the
given critical point.

Moreover, by using some more information about solutions of the flow
equations [2], the original integration cycle of the Feynman integral – with
real p’s and q’s – can be expressed as a linear combination of these critical
point cycles. So if one asks, “Can the path integral of a quantum system be
expressed in terms of properties of the classical orbits?” then this procedure
gives an answer of sorts.

There are two problems which will tend to make this answer unuseful.
First, it requires an unrealistic degree of knowledge about the classical sys-
tem. Except for an integrable system, we cannot even describe the generic
periodic solutions of Hamilton’s equations, even when we restrict to real p’s
and q’s. And it will also be hard to say a lot about the solutions of the
flow equations. What is more, it is not clear what one can say about the
Feynman integral evaluated on a cycle associated to a critical point (except
that perturbation theory for this integral is likely to be Borel-summable).

Second, for a generic Hamiltonian, the flow equations lack the two-
dimensional symmetry which was the main reason for the power of the
analysis in section 2.
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But is there a class of special Hamiltonians for which the flow equations
will once again have two-dimensional symmetry? We consider this question
next.

3.2. Hamiltonians and superpotentials. To incorporate a Hamil-
tonian while preserving two-dimensional symmetry, we will need to consider
the A-model with a superpotential.

As usual, we consider the A-model with target X and symplectic struc-
ture ω. (In our application, X is a complex symplectic manifold M̂ and ω

is the real part of a holomorphic symplectic form Ω on M̂.) To include a
superpotential in the A-model is most natural when X is actually Kahler,
so we henceforth assume that the metric g of X is Kahler and in particular
the almost complex structure I = g−1ω is integrable. We let W :X → C be
a holomorphic function12 that we call the superpotential.

Consider the A-model on a Riemann surface Σ with local complex coor-
dinate w. In the absence of a superpotential, the A-model localizes on holo-
morphic maps T : Σ →X. In the presence of a superpotential, the condition
for a holomorphic map is perturbed and becomes

(3.9)
∂xi

∂w
+ gij ∂W

∂xj
= 0,

where xi are local I-holomorphic functions on X. For the case of a single
chiral superfield, this equation was studied in [19]. The more general case
was studied from a physical point of view in [20]. For mathematical studies
of this equation, with an elucidation of some important points, see [21,22].
The derivation of this equation will be sketched in section 5.1.1.

To make sense of eqn. (3.9) globally along Σ, we cannot simply interpret
it as an equation for a map from Σ to X. To explore this point, consider the
case of a single chiral superfield x with Kahler metric |dx|2 and superpoten-
tial W (x) = xn/n. The equation is

(3.10)
∂x

∂w
+ xn−1 = 0.

If x is regarded as a scalar function, then the first term in this equa-
tion, namely ∂x/∂w, is a (0, 1)-form on Σ, while the second term, namely
xn−1, is a scalar function. So with that interpretation the equation does
not make sense globally. To make sense of (3.10) globally, while preserving
two-dimensional symmetry, we need a line bundle L → Σ with an isomor-
phism Ln ∼=K, where K is the canonical bundle of Σ. We also need a Kahler
metric on Σ, compatible with its complex structure; this gives an isomor-
phism between K (the space of (0, 1)-forms on Σ) and K−1. We interpret x

12One can define the equation for a holomorphic function on any almost complex
manifold. However, this equation is overdetermined and has no nonconstant solutions on
a generic almost complex manifold. This is why we assume that I is integrable.
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as a section of L. Given this structure, xn−1 and ∂x/∂w are both sections
of L−n+1, so eqn. (3.10) makes sense. The choice of Kahler metric on Σ
is inessential in the A-model, in the same sense that the Kahler metric on
X is inessential: a choice is needed to define the A-model, but the results
are independent of the choice. By contrast, the choice of nth root L of the
canonical bundle is an important part of the structure. The isomorphism
of Ln with K is allowed to have certain singularities at insertion points of
vertex operators, as described in [19]; there is a constraint on the genus of
Σ and the choices of vertex operators such that L exists globally.

In the general case with several chiral superfields, one proceeds similarly.
One needs an action on X of U(1) (or in general of a covering group of
U(1)) that preserves its Kahler structure and under which W transforms
with charge 1; that is, under the element eiθ of U(1), W maps to eiθW .
Given an action of U(1) on X, let K1 be the subbundle of K consisting of
unit vectors (with respect to the metric on Σ), and define a fiber bundle
Y → Σ, whose fiber is isomorphic to X, by

(3.11) Y =K1 ×U(1) X.

(Thus an element of the fiber is a pair (k, x) ∈K1 ×X with an equivalence
relation (k, x) ∼= (ka−1, ax) for a ∈ U(1).) If the group that acts on X is
actually an n-fold cover U(1)n of U(1), for some integer n, then as above
we pick a line bundle L → Σ with an isomorphism Ln ∼=K, and denote its
subbundle of unit vectors as L1. The action of U(1) on K1 lifts to an action
of U(1)n on L1, and Y is defined as L1 ×U(1)n

X. The A-model is defined for
sections of the bundle Y.

In our application, Σ is actually the cylinder C = S1 ×R+. Its canonical
bundle is naturally trivial, so the details of the last two paragraphs will not
play an important role. We have explained them to make clear in what sense
the eqn. (3.9) that we will be using does have two-dimensional symmetry.

With w = s+ it, so that ∂/∂w = 1
2(∂s + i∂t), eqn. (3.9) can be written

(3.12)
∂xk

∂s
= −i∂x

k

∂t
− 2gkk ∂

∂xk

(
W +W

)
.

After combining xk and xk to real coordinates Y A and replacing the complex
number i with the complex structure I, we can write

(3.13)
∂Y A

∂s
= −IA

B
∂Y B

∂t
− gAB∂B (4 ReW ) .

(The part of this equation that is of type (1, 0) with respect to I coincides
with (3.12), and the (0, 1) part is the complex conjugate.)

Comparing this to (3.8), we see that the supersymmetry condition of the
A-model with a superpotential coincides with the flow equation for quantum
mechanics with a Hamiltonian precisely if

(3.14) G= 4 ReW.
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In other words, G, which was defined as the imaginary part of the J-
holomorphic function H, must also be the real part of the I-holomorphic
function 4W .

3.2.1. Hyper-Kahler symmetries. This condition might sound impossi-
bly restrictive, but it actually leads to something relatively nice. We can
analyze the condition fully in case the metric g on X = M̂ is actually hyper-
Kahler; as described in section 2.7, this is the most elegant case of our con-
struction. We begin by considering a special situation, and show in section
3.2.3 that this special situation actually is typical.

Let us suppose that X admits a Killing vector field V that preserves its
hyper-Kahler structure. This means in particular that the corresponding Lie
derivative LV annihilates the three symplectic structures ωI , ωJ , ωK . This is
equivalent to saying that, with ιV the operation of contraction with V , the
one-forms ιV ωI , ιV ωJ , ιV ωK are closed. Integrating those closed one-forms,
we find functions13 μI , μJ , μK that up to inessential additive constants are
defined by

dμI = ιV ωI

dμJ = ιV ωJ(3.15)
dμK = ιV ωK .

The triple of functions �μ= (μI , μJ , μK) define the hyper-Kahler moment
map; their main properties are described in [23]. Of particular importance
to us, νI = μJ + iμK is I-holomorphic and νJ = μK + iμI is J-holomorphic.
(These statements have an obvious analog in complex structure K and
indeed in any complex structure that is a linear combination of I, J, and
K.) So if we set

(3.16) H = iνJ ,

or in other words

(3.17) H = −μI , G= μK ,

then G is indeed the real part of an I-holomorphic function. In fact, G=
4 ReW with

(3.18) W = − iνI

4
.

Finally, when can we find a U(1) symmetry of X that preserves the
A-model complex structure I but rotates W = (μK − iμJ)/4? Such a U(1)
symmetry does not preserve complex structures J or K; rather, in IJK
space, it acts by a rotation around the I axis. Many hyper-Kahler manifolds
admit such a symmetry.

13If necessary, we replace M̂ by a cover on which these functions are single-valued.
The logic is the same as it was in section 2.2 where we chose not to impose the Dirac
condition.
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3.2.2. An example. An example is the familiar case of the Eguchi-
Hansen manifold M̂, defined in complex structure J by X2

1 +X2
2 +X2

3 = j2.
This manifold, for any value of its hyper-Kahler moduli, has an SU(2) group
of isometries that preserves its hyper-Kahler structure. We take V to be the
vector field that generates a one-parameter subgroup of this SU(2). In addi-
tion, for generic moduli, M̂ has a U(1) symmetry that perserves one complex
structure and rotates the other two. Which complex structure is preserved
depends on the values of the hyper-Kahler moduli of M̂. For our purposes,
we want to pick the moduli so that M̂ admits a U(1) symmetry that acts
by rotation about the I axis. (Concretely, M̂ has three real moduli, namely
the real and imaginary parts of j and a third real modulus that is a Kahler
parameter from the point of view of J ; we set to zero Im j and the third
modulus. In this case, in complex structure I, M̂ is a blowup rather than
deformation of the A1 singularity and has the desired symmetry.) The U(1)
symmetry that rotates about the I axis does not preserve complex structure
J , so it is not easily visible in that complex structure.

A typical choice of V is

(3.19) V =X1 ∂

∂X2
−X2 ∂

∂X1
+ complex conjugate

(we add the complex conjugate because V is supposed to generate an isome-
try). According to eqn. (2.19) and section 2.7, the holomorphic two-form Ω =
ωI − iωK of M̂ is idX1 ∧ dX2/X3. So we compute that ιV Ω = −i(X1dX1 +
X2dX2)/X3 = idX3. Thus μI − iμK = iX3, so μK = −ReX3, μI = −ImX3.
In view of (3.17), we then have

(3.20) H = ImX3, G= −ReX3.

Now let us interpret the Hamiltonian H in terms of real quantum
mechanics. In doing this, we want to interpret M̂ as the complexification
of an “underlying real classical phase space” M0, and H as the analytic
continuation to M̂ of a real Hamiltonian H on M0. The candidates for M0

that we will consider are the two that have been discussed throughout this
paper: M0 may be M, defined by X1, X2, X3 real, or M′, defined by X1 real
and positive, and X2, X3 imaginary. For H to be the analytic continuation
to M̂ of a real function H on M0, we at least need H =H on M0. Thus, a
necessary condition is that G= Im H vanishes on M0. Otherwise, the path
integral (3.4) that we have investigated is not an analytic continuation of
the ordinary Feynman integral (3.1).

Looking at (3.20), we see that this condition is obeyed by M′ and not by
M. (In fact, H vanishes identically on M so H is not very interesting as a
Hamiltonian on M.) So for the case at hand, we should take the mechanical
system of interest to be the one with phase space M′. M′ has SL(2,R)
symmetry, and H is one of the generators of SL(2,R).
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If we want an example well-adapted to M, we must do the Feynman
integral in imaginary time rather than real time. Changing from real time
to imaginary time in (3.4) means that we replace idt by dt. This is equivalent
to replacing H by −iH, so we can repeat the whole analysis for imaginary
time by making that simple replacement. Then (3.16) becomes H = νJ and
(3.17) becomes H = μK , G= μI . In our example, we now have H = ReX3,
G= ImX3. Now the vanishing of G on M0 allows M0 to be M but not M′.
M is a two-sphere, and H generates its rotations around the X3 axis.

We motivated the condition that G= 0 when restricted to M0 by ask-
ing that the space of solutions of the flow equations can be intepreted as an
integration cycle for the Feynman integral of M0 with Hamiltonian H. How-
ever, this condition has another interpretation [24]: it is the condition for
M0 to be the support of a Lagrangian A-brane in the presence of the super-
potential W . Consider the path integral on a finite cylinder S1 × [−s0, 0],
with boundary conditions set at s= −s0 by a Lagrangian brane of support
M0 and at s= 0 by a coisotropic brane (the coisotropic brane is defined by
allowing any solution of the flow equations near s= 0, as in sections 2.8,
2.9). This path integral computes Tr exp(−itH), with the trace taken in
the quantum Hilbert space of M0. The argument is the same as it was in
section 2.10. The path integral on S1× [−s0, 0] with the indicated boundary
conditions is independent of s0, and for s0 → 0 it goes over to the standard
Feynman integral representation of the trace.

3.2.3. General analysis. Now we would like to show that, for M̂ hyper-
Kahler, the construction that we have described using a vector field V that
preserves the hyper-Kahler structure is the most general possibility.

First of all, the assertion that H + iG is J-holomorphic is equivalent
to14 (1 + iJ t)d(H + iG) = 0, since 1 + iJ t projects onto the (0, 1) part of a
one-form. Equivalently, we can write

(3.21) dH = J tdG.

Similarly, the fact that G is the real part of an I-holomorphic function means
that there is a function U such that

(3.22) dG= ItdU.

The fact that ωK + iωI is J-holomorphic means that J t(ωK + iωI) =
i(ωK + iωI), or

(3.23) J tωK = −ωI , J tωI = ωK .

Similarly,

(3.24) ItωJ = −ωK , ItωK = ωJ .

14We regard a complex structure such as J as a linear transformation that acts on
the tangent bundle; its transpose J t acts on the cotangent bundle.
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The assertion that a vector field V preserves the hyper-Kahler structure
of M̂ is equivalent to saying that V preserves the three symplectic structures
ωI , ωJ , ωK . Indeed, using (3.23) and (3.24), we can compute the complex
structures from the symplectic structures:

(3.25) J t = −ωIωK
−1, It = ωJωK

−1, K = IJ.

And the metric is g = ItωI = J tωJ =KtωK . So I, J,K and g are all V -
invariant if the three symplectic forms are.

In general, a vector field V preserves a symplectic structure ω if there
is a function Q (called the moment map) with V = ω−1dQ . Given functions
G,H,U obeying (3.21), (3.22), we will find a vector field V that preserves
the three symplectic structures and has G,H,U as moment maps.

We simply define V = ω−1
K dG, so V certainly preserves ωK . Then we

compute using the above formulas that ω−1
I dH = ω−1

I J tdG= −ω−1
I

ωIω
−1
K dG= −V . So V preserves ωI also. Finally, ω−1

J dU = −ω−1
J ItdG=

−ω−1
J ωJω

−1
K dG= −V . So again V preserves ωI . Finally, the relations V =

ω−1
K dG= −ω−1

I dH = −ω−1
J dU that we have just found imply that H,G,U

are the moment maps for the action of V : H = −μI , U = −μJ , G= μK .

4. Running the story in reverse

So far, our point of view has been to start with a hopefully natural
question – find a new integration cycle for the Feynman integral of quantum
mechanics – and express the answer in terms of a sigma-model with an extra
spacetime dimension.

In the present section, we will run the story in reverse. We start with a
sigma-model and pick boundary conditions in the sigma-model so that the
sigma-model path integral has an interesting interpretation as an integral
over boundary data. In section 4.1, we consider a one-dimensional sigma-
model. So the boundary is a point and the integration over boundary data
is an ordinary finite-dimensional integral. In section 4.2, we consider sigma-
models in two dimensions, so that the boundary integral is a quantum
mechanical path integral, such as we considered so far.

We will hopefully emerge from this analysis not just with a better under-
standing of why the constructions of section 2 and 3 work, but a better
understanding of why the machinery in those sections is necessary – that is,
why some simpler tries do not work.

4.1. Sigma-models in one dimension. To begin with, we consider
supersymmetric quantum mechanics – a sigma-model in one dimension with
a target space Z, endowed with a Riemannian metric g. The model is
a supersymmetric theory of maps T : L→ Z, where L is a one-manifold,
parametrized by a “time” coordinate s. (We take L to have Euclidean sig-
nature.) We describe T by bosonic fields xI(s) that correspond to local
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coordinates xI on Z. The fermi fields are two sections ψI(s) and χI(s) of
T ∗(TZ), the pullback to L of the tangent bundle of Z. The model has
a “fermion number” symmetry F ; ψ and χ respectively have F = 1 and
F = −1. There is also a “superpotential” h, which is a real-valued function
on Z.

In superspace, xI , ψI , χI and an auxiliary field can be combined to a
superspace field XI(s, θ, θ) and the action can be written concisely

(4.1) I =
1
2

∫
dsdθ dθ

(
gIJDXIDXJ + h

)
,

with superspace derivatives D, D. For our purposes, we will simply describe
the theory in terms of the component fields, emphasizing its relation to
Morse theory [25].

There are two supersymmetry operators Q and Q, of respectively F = 1
and F = −1:

Q= ψI

(
∂

∂xI
− ∂h

∂xI

)

Q= χI

(
− ∂

∂xI
− ∂h

∂xI

)
.(4.2)

They obey Q2 =Q
2 = 0, {Q,Q} = 2H, where H is the Hamiltonian. For

our purposes, we focus on Q and consider path integrals with Q-invariant
boundary conditions.

The commutation relations generated by Q are

[Q, xI ] = ψI

{Q,ψI} = 0(4.3)

{Q,χI} = −
(

dxI

ds
+ gIJ ∂h

∂xJ

)
.

To get these relations, we use {χI , ψJ} = gIJ and gIJ∂x
J/∂s= −∂/∂xI (the

last formula depends on the fact that in Euclidean signature, the usual
relation p= −i∂/∂x becomes p= −∂/∂x). One of the main observations
in [25] is that, if we identify ψI with the one-form dxI , we can identify Q
with a conjugated version of the exterior derivative d =

∑
I dxI∂/∂xI :

(4.4) Q= dh = exp(h)d exp(−h).

To derive this result, one simply observes that it reproduces the commuta-
tion relations (4.3). In particular, the form of Q ensures that the condition
for a map T : L→ Z to be Q-invariant – which is that {Q,χI} must vanish –
is the flow equation of Morse theory:

(4.5)
dxI

ds
= −gIJ ∂h

∂xJ
.
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We take L to be the half-line s≤ 0. We assume that h is a Morse function
(its critical points are isolated and nondegenerate) and we let p be one of
the critical points. We consider a path integral on L with the boundary
condition that xi(s) → p for s→−∞. We are going to assume that all flow
lines starting at p flow to infinity (rather than to another critical point), in
which case, as reviewed in section 2.5, the possible boundary values xi(0) of
the flow form a cycle Cp ⊂ Z. The dimension of this cycle is ip, the Morse
index of h at p. A typical example is that Z is a noncompact complex
manifold that admits lots of holomorphic functions (for instance, Z = C

n

for some n) and h is the real part of a generic holomorphic function on Z.
One may consider two points of view about the path integral. Regarded

as a function of the boundary values of the fields at s= 0, the path integral
on L computes a Q-invariant physical state Υ. Alternatively, if we integrate
over the boundary values (with some boundary condition), the path integral
computes a number.

We first explore the first point of view. Exactly what the state Υ will turn
out to be depends on exactly what action we take. In the most physically
natural version of the theory, the bosonic part of the action is

(4.6) Iphys =
1
2ε

∫
ds

(
gIJ ẋ

I ẋJ + gIJ ∂h

∂xI

∂h

∂xJ

)
,

with a parameter ε. From a topological field theory perspective, it is natural
to use a slightly different action that differs from Iphys by a boundary term:

(4.7) Itop =
1
2ε

∫
ds

(
dxI

ds
+ gIJ ∂h

∂xJ

)2

= Iphys + (h/ε)|0s=−∞ .

Finally, there is an equivalent action with an auxiliary field T :

(4.8) Iaux = −i
∫

L
ds TI

(
dxI

ds
+ gIJ ∂h

∂xJ

)
+
ε

2

∫
L

ds gIJTITJ .

Integrating out T brings us back to (4.7). The parameter ε is inessential
(and has been set to 1 in formulas such as (4.2) above), because it can be
absorbed in rescaling g→ g/ε, h→ h/ε. But it is convenient to make this
parameter explicit, since localization of the path integral on the solutions of
the flow equations occurs for ε→ 0. Henceforth, we write hε for h/ε.

The path integral on the half-line (−∞, 0] gives a Q-invariant state15 in
the Hilbert space associated to the boundary. In the physical formalism with
the action Iphys, the path integral gives a state Υphys that is annihilated by
Q= ehεde−hε .

(4.9) d
(
e−hεΥphys

)
= 0.

15This assertion can fail if there are flow lines that interpolate from p to some other
critical point q. We assume that there are none, for instance because h is the real part of
a generic holomorphic function on a complex manifold.
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Since the relation between path integrals in the physical and topological
actions comes from (4.7) or

(4.10) exp(−Itop) = exp(−Iphys) exp(−hε(x(0)) + hε(x(−∞))),

the result of replacing Iphys by Itop is simply to multiply Υphys by the func-
tion exp(−hε + hε(p)). Thus the output of the topological path integral is
Υtop = exp(−hε + hε(p))Υphys, and it obeys simply

(4.11) dΥtop = 0.

The state Υtop depends on ε, but only by Q-exact terms. It is easiest to
compute Υtop if we use the version (4.8) of the path integral with an auxiliary
field T . In the limit ε→ 0, the path integral over T

(4.12)
∫
DT exp

(
i

∫
L
TI

(
dxI

ds
+ gIJ ∂h

∂xJ

))

gives a delta function supported on the solutions of the flow equations. This
means that the wavefunction Υtop has (for ε= 0) delta function support on
Cp, the locus of boundary values of solutions of the flow equations. The closed
differential form supported on Cp with the smallest possible degree (and the
only one that can be defined without more information) is known as the
Poincaré dual to Cp. This concept is defined more systematically in [26], but
in brief, if Cp is defined locally by equations x1 = x2 = · · · = xm = 0 (where
m is the codimension of Cp), then the Poincaré dual is locally

(4.13) δ(x1)δ(x2) · · · δ(xm)ψ1ψ2 . . . ψm.

Since, for a fermionic variable ψ, a delta function is simply a linear function
δ(ψ) = ψ, we can equally well write the Poincaré dual as

(4.14) δ(x1)δ(x2) · · · δ(xm)δ(ψ1)δ(ψ2) · · · δ(ψm).

To get the fermionic delta functions, simply do the integral over χ, which
takes the form

(4.15)
∫
Dχ exp

(
i

∫
L
χIDψI

)
,

where D is the linearization of the flow equations. This gives a delta function
setting Dψ = 0. When restricted to s= 0, this delta function forces ψI(0) to
be tangent to Cp, so it sets to zero precisely the modes ψ1, ψ2, . . . , ψm of ψ
that are valued in the normal bundle to Cp. This explains why Υtop is the
Poincaré dual to Cp. (For more on this type of integral, see the discussion of
eqn. (5.2) in [11].)

So far, we have identified the state Υtop that emerges when the path
integral (with the action Itop) is computed as a function of the boundary
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values. Now we would like to integrate over the boundary values, perhaps
with the help of some additional boundary condition or boundary couplings,
to get a number.

If Cp has positive dimension ip, its Poincaré dual has the wrong degree
to be integrated. We will choose boundary couplings that involve a choice
of closed form Λ of degree ip, and we will aim to give a path integral recipe
for computing

(4.16)
∫

Z
Υtop ∧ Λ.

Actually, we will take Z to be a noncompact Calabi-Yau manifold of complex
dimension n, endowed with a holomorphic volume form Ω. (We take the
metric of Z to be hermitian, possibly Kahler.) For example, we might take
Z = C

n, with complex coordinates z1, . . . , zn, and Ω = dz1dz2 · · ·dzn. We
take

(4.17) Λ = Ω exp(S),

where S is a holomorphic function on Z. Then the finite-dimensional integral
that we will represent by a path integral on L= (−∞, 0] is

(4.18)
∫

Z
Υtop ∧ Λ =

∫
Cp

Λ =
∫
Cp

Ω exp(S).

(We have reduced an integral over Z to one over Cp using the fact that Υp

has delta function support on Cp.) Since Ω is an n-form, the integral vanishes
unless Cp is n-dimensional. In addition, of course, the Morse function h must
be related to S in such as way that the integral converges. A simple way to
ensure this is to set

(4.19) h= ReS,

as discussed in [2] and in section 2.5. But actually, any h that is close enough
to ReS will work just as well. In the example discussed in the introduction,
with n= 1 and S(z) = −z4 + az, with a constant a, we could take

(4.20) h= Re (−z4 + ãz),

with some other constant ã; changing h by subleading terms does not affect
the convergence of the integral.

To represent (4.18) as a path integral, we simply write the usual Feynman
integral for this supersymmetric system, but with a boundary insertion of
exp(S)Ω. Of course, Ω is represented in the path integral as Ωi1i2...inψ

i1ψi2 . . .
ψin . Thus, we consider the path integral∫

DXDψDχ exp(−Îtop) exp(S(x(0))(4.21)

× Ωi1i2...inψ
i1(0)ψi2(0) . . . ψin(0).
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Here Îtop is the supersymmetric completion of Itop defined in (4.7), including
fermionic terms.

We would like to verify directly that the path integral in (4.21) is super-
symmetric, that is,Q-invariant. It is reasonable to expect this, since this path
integral equals the period

∫
Cp

Ω exp(S), which has a topological meaning,
that is, it is invariant under small deformations of the integration cycle Cp.

First, let us just directly verify Q-invariance. Since [Q, Itop] = 0, we only
need to worry about Q-invariance of the boundary insertion exp(S(x(0))
Ωi1i2...inψ

i1(0)ψi2(0) . . . ψin(0). Since {Q,ψ} = 0, we only need to worry
about [Q, xI ] = ψI , or in terms of local complex coordinates xi, [Q, xi] = ψi,
[Q, xi] = ψi. Actually, [Q, xi] will not enter, since S and Ω are holomorphic.
And the contributions that come from [Q, xi] all vanish by fermi statistics,
since the boundary insertion is already proportional to the product of all n
fermions of type (1, 0), namely ψi1ψi2 · · ·ψin . So the boundary condition is
Q-invariant.

Now we will obtain the same result in a longer but illuminating way.
Let us work out the boundary conditions on bosons and fermions that arise
naturally from the above path integral. Because the boundary insertion is
proportional to the product of all fermion fields ψi of type (1, 0), and a
fermion field ψi is equivalent to a delta function δ(ψi), the boundary condi-
tion sets the (1, 0) part of ψ to zero at s= 0:

(4.22) ψ(1,0)|s=0 = 0.

What about χ? The proper boundary condition on χ is determined by setting
to zero the boundary contribution in the equations of motion. The fermion
kinetic energy is If = i

∫ 0
s=−∞ ds χIDψI , and when we vary it, we get bulk

equations of motion Dψ = Dχ= 0. After imposing these equations, we still
find a nonzero boundary contribution to the variation of If , and we must
pick the boundary conditions to set this to zero. The boundary contribution
is χIδψ

I |s=0. Since the only restriction on δψ is that its (1, 0) part δψi is
equal to zero, the boundary condition on χ must be vanishing of the (0, 1)
part χi.

We can analyze the bosonic boundary conditions in the same way. The
purely bosonic part of the exponent of the path integral is

(4.23) − 1
2ε

∫ 0

−∞
ds gIK

(
dxI

ds
+ gIJ ∂h

∂xJ

)(
dxK

ds
+ gKL ∂h

∂xL

)
+ S(x)|s=0.

Upon varying this and imposing the Euler-Lagrange equations to set the
bulk part of the variation to zero, we are left with a boundary variation at
s= 0, which takes the form

(4.24)
((

−1
ε

(
gIJ

dxJ

dx
+

∂h

∂xJ

)
+
∂S

∂xI

)
δxI

)∣∣∣∣
s=0

.
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Assuming that we want free boundary conditions, so that δxI is uncon-
strained, the boundary condition must be

(4.25) −1
ε

(
gIJ

dxJ

ds
+

∂h

∂xI

)
+
∂S

∂xI
= 0.

Let us verify that this condition, combined with the fermionic boundary
conditions, is in fact supersymmetric.

In general, supersymmetry of a boundary condition means that the com-
ponent of the supercurrent normal to the boundary vanishes. But here, as
we are in spacetime dimension one, the normal component of the super-
currrent is simply the supercharge Q=

(
gIJdxJ/ds+ ∂Ih

)
ψI . Using the

bosonic boundary condition (4.25), this is equivalent at s= 0 to ε∂ISψ
I .

Because S is holomorphic, this is equivalent to ε∂iSψ
i, and vanishes at s= 0

since the (1, 0) part of ψ vanishes at s= 0. So again we have established the
Q-invariance of the boundary condition. This experience will stand us in
good stead in more complicated examples.

4.2. Sigma-models in two dimensions. The sigma-model studied
in section 4.1 can be regarded as a reduction to one dimension of a model
defined in two (or even more) dimensions. Let us consider the two-
dimensional case. For brevity, rather than considering unintegrable struc-
tures, we will assume that the target space Z is a Kahler manifold, with
complex structure I and Kahler metric g. Then a sigma-model with target
Z has four supercharges, and admits a topologically twisted A-model. Just
as in one dimension, the bosonic fields xI describe a map T : Σ → Z, for
some Riemann surface Σ, and the fermi fields ψI of F = 1 are sections of the
pullback to Σ of TZ, the tangent bundle of Z. The fermi fields of F = −1 are
a one-form χ on Σ with values in the pullback of T ∗Z (the cotangent bundle
of Z); as in section 2.8, χ obeys an algebraic constraint χJ = 	χKI

K
J .

Let us ask whether we can naively imitate the construction of section
4.1 and add to the bosonic part of the action a boundary coupling

(4.26)
∫

∂Σ
dt S(x(t)),

where S is an I-holomorphic function on Z, and dt is a one-form on ∂Σ.
Whether we can add this term depends on what supersymmetry we want to
preserve. The two-dimensional sigma-model with target Z has two topolog-
ically twisted versions – the A-model and the B-model.

In the B-model, there is no problem in adding the boundary interaction
(4.26). However, the B-model localizes on constant maps to Z, rather than
on the nontrivial integration cycles associated to Morse theory that are of
interest in the present paper. Hence the B-model with the boundary coupling
(4.26) is not a good generalization to two dimensions of what we have said
in section 4.1.
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The A-model does lead to interesting integration cycles related to Morse
theory in loop space. However, the boundary coupling (4.26) does not work in
the A-model. The reason is that because of the A-model transformation law
{Q, xI} = ψI , invariance of the boundary coupling requires us to set ψ(1,0)

to zero on the boundary of Σ, just as we did in section 4.1. The problem
is that in two dimensions, unlike one dimension, this is not a satisfactory
boundary condition. A quick explanation of why is that, in one dimension,
setting the boundary values of ψ(1,0) to zero amounts to a boundary insertion
Ωi1i2···inψi1ψi2 · · ·ψin that has finite fermion number F . In two dimensions,
the analog would have to be formally

(4.27)
∏

t∈∂Σ

Ωi1i2···inψ
i1(t)ψi2(t) · · ·ψin(t),

now carrying an infinite F , as a result of which all correlation functions
would vanish.

Here is a better explanation. The fermion kinetic energy of the A-model
is

(4.28) i

∫
Σ

(
χ(1,0)

D

Dz
ψ(1,0) + χ(0,1)

D

Dz
ψ(0,1)

)
.

When we vary this kinetic energy, the boundary contributions are

(4.29) i

∫
∂Σ

(
χ(1,0)δψ

(1,0) + χ(0,1)δψ
(0,1)

)
.

In general, any boundary condition sets to zero a middle-dimensional sub-
space of the fermion boundary values in such a way that the boundary
variations vanish. To obey these conditions, a boundary condition setting
ψ(1,0) to zero must leave the boundary values of χ(1,0) unconstrained. But
this is not an elliptic boundary condition, and concretely, as the equation of
motion of χ(1,0) is Dχ(1,0) = 0, if we leave its boundary values unconstrained,
χ(1,0) will have infinitely many zero modes, and all correlation functions will
vanish.

To avoid this, all A-branes, both Lagrangian ones [27] and coisotropic
ones [3], involve a boundary condition that sets to zero a linear combination
of ψ(1,0) and ψ(0,1) (and similarly a linear combination of χ(1,0) and χ(0,1)).

From the standpoint of the present paper, the cure for the problem is that
S in eqn. (4.26) should be holomorphic not in complex structure I, but in
some other complex structure J which obeys IJ = −JI. Thus, assuming that
I and J are both integrable, the Kahler structure of Z should be extended
to a hyper-Kahler structure and the sigma-model has eight supercharges
rather than four. (We can get by with an almost hyper-Kahler structure, as
described at the end of section 2.7.) If S is holomorphic in complex structure
J , then to ensure invariance of the boundary coupling (4.26), we require
vanishing of the boundary values of ψ(1,0;J), that is the (1, 0) part of ψ with
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respect to J . As J anticommutes with I, there is no component of ψ that
is of type (1, 0) with respect to both I and J , and the problem encountered
above disappears. The rest of the analysis of the boundary conditions given
in the one-dimensional case in section 4.1 has a straightforward extension to
the present two-dimensional case. The boundary condition on χ must set to
zero the boundary values of χ(0,1;J). On xI , we take free boundary conditions
(no restriction on the boundary values of δxI). The vanishing of the normal
component of the topological supercurrent is demonstrated in the same way
as in section 4.1.

By taking S to be holomorphic in a complex structure that anticommutes
with I, and constructing a boundary condition as just described, we ensure
that the boundary coupling (4.26) is compatible with the Q-invariance of the
A-model. But we are still not out of the woods: we need to ask whether the
A-model path integral converges. The bulk equations for supersymmetry of
the A-model are flow equations of the general form ∂xI/∂t= −gIJδh/δxJ ,
for a suitable functional h which is determined by the bulk action of the
A-model. To ensure convergence of the path integral, we must pick S so
that its real part has the same asymptotic behavior as h (they may differ
by a correction that grows too slowly to be problematical).

The last condition is hard to obey, since h is determined entirely by the
A-model defined with complex structure I and is supposed to be related to
the real part of a holomorphic function in some other complex structure J .
The constructions in sections 2 and 3.2 are based on cases in which this can
actually happen. These cases, assuming that I and J are both integrable,
involve a hyper-Kahler target space and a doubling of supersymmetry rela-
tive to the one-dimensional analysis of section 4.1. The special nature of the
target space was explicit in sections 2 and 3. And in section 3.2, the Hamil-
tonians that work are related to the twisted masses [28] which are precisely
the potentials that preserve all the supersymmetry of a sigma-model with a
hyper-Kahler target. A similar story holds in section 5.3 where we include
gauge fields.

5. Analogs with gauge fields

In the present section, we repeat the analysis of section 4, this time in
the presence of gauge interactions.

In section 5.1, we add gauge fields to the one-dimensional supersym-
metric sigma-models studied in section 4.1, taking the target space of the
sigma-model to be of finite dimension.

In section 5.2, we consider the case that the target space of the sigma-
model is the infinite-dimensional space of gauge-connections on a three-
manifold. This leads to one of the main insights of the present paper: under
certain conditions, the path integral of N = 4 super Yang-Mills theory on a
half-space reduces to the path integral of three-dimensional Chern-Simons
gauge theory on the boundary of the half-space.
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Finally, in section 5.3, we consider two-dimensional supersymmetric
gauge theories with gauge fields. This generalization of the analysis of section
2 leads to the construction of a new integration cycle for quantum mechanics
with constraints.

5.1. Supersymmetric quantum mechanics with gauge fields.
5.1.1. Construction of the model. Though the preliminary setup did not

require this, our main application in section 4 required the target space Z
of the sigma-model to be a complex manifold. In the present discussion, we
will want Z to be a complex manifold for much the same reason, and we
want Z to be endowed with a compatible symplectic structure so that we
can define the moment map for a group action on Z. So we will take Z to
be a Kahler manifold to begin with.

The sigma-model with a Kahler target space has four supersymmetries.
Here we will consider a gauged version of the sigma-model, still with four
supercharges. We assume that Z has a compact connected group H of sym-
metries, and we will consider the combined theory of a map Φ : L→ Z
together with vector multiplets that gauge the H symmetry.

This theory can arise by dimensional reduction from four dimensions,
and to understand some of its properties, it is convenient to start there.
We formulate the theory on R

4 with Euclidean signature and spacetime
coordinates yμ, μ= 0, 1, 2, 3. The only propagating bosonic fields are the
gauge field A=

∑3
μ=0Aμ dyμ and the map Φ : R

4 → Z, which we describe
in terms of complex-valued fields xi, i= 1, . . . ,dimC Z that correspond to
local complex coordinates on Z. The four supercharges are a spinor field Qα,

α= 1, 2, of positive four-dimensional chirality and another spinor field Q̃α̇,
α̇= 1, 2 of negative chirality. The algebra they generate is

(5.1) {Qα, Q̃α̇} =
3∑

μ=0

σμ
αα̇Pμ,

where σμ
αα̇ are the Dirac matrices written in a chiral basis, and Pμ are the

momentum generators.
Now we dimensionally reduce to two dimensions, taking the fields to be

independent of y2 and y3. The components A0, A1 of the four-dimensional
gauge field survive as a two-dimensional gauge field, but the components A2,
A3 become scalar fields with values in the adjoint representation. The super-
symmetry algebra still takes the form (5.1), but the momentum components
P2 and P3 are now simply the commutators with A2 and A3, respectively. It
is convenient to combine A2 and A3 to a complex scalar field σ =A2 − iA3

with values in the adjoint representation. We write [σ, ·] for the infinitesimal
gauge symmetry generated by σ.

Upon dimensional reduction to two dimensions, the four-dimensional
rotation group SO(4) reduces to SO(2) × SO(2)′, or equivalently U(1) ×
U(1)′, where the first factor rotates y0, y1, and the second rotates y2, y3.



392 E. WITTEN

A spinor of positive chirality, such as Qα, has components of U(1) × U(1)′

charges ±1/2,±1/2, and a spinor of negative chirality, such as Q̃α̇, has com-
ponents of charges ±1/2,∓1/2. We denote the components of Q and Q̃ with
these quantum numbers as Q±± and Q̃±∓. If the superpotential vanishes (or
more generally if it is quasihomogeneous), there is a third U(1) symmetry,
present already in four dimensions before dimensional reduction. This is the
U(1)R symmetry under which Q and Q̃ have respective charges −1 and 1.
(U(1)R may be anomalous in four dimensions, but not in the dimensional
reduction to two dimensions.) The usual supercharge of the two-dimensional
A-model is

(5.2) Q=Q++ + Q̃−+.

If U(1)R is a symmetry, then upon suitably twisting the theory and restrict-
ing to Q-invariant observables and correlation functions, one gets a two-
dimensional topological field theory that can be formulated on any oriented
two-manifold Σ. (One has to pick a metric on Σ to define the theory, but
the results are independent of this metric.) The starting point in twisting is
that Q is invariant under a certain modified rotation symmetry; if J is the
generator of U(1) and R is the generator of U(1)R, then Q commutes with a
linear combination J ′ = J+R/2. In the twisted theory, the spins of all fields
are their J ′ eigenvalues rather than their J eigenvalues. Moreover, since Q
is J ′-invariant, its square does not generate a translation along R

2 (those
translation generators have J ′ = ±1). Rather, the supersymmetry algebra
(5.1) implies that

(5.3) Q2 = [σ, ·].

In particular, this means that on gauge-invariant fields and states, Q2 =
0 and one can define the cohomology of Q. Upon restricting states and
operators to Q-invariant ones and projecting to the cohomology of Q, one
obtains (in the R-symmetric case) a two-dimensional topological field theory
known as the A-model; it was analyzed in [29], where the following formulas
are obtained and described in more detail (with some minor differences in
notation). The A-model is Z-graded by U(1)′. It is convenient to introduce
a generator F of U(1)′ that is normalized so that Q has F = 1 and σ has
F = 2, while the fermions have F = ±1. An important property of the model
is that

(5.4) [Q, σ] = 0.

This reflects the fact that there is no elementary fermion of F = 3, and is
consistent with Q2 = [σ, ·] since [σ, σ] = 0.

After twisting, the fermionic fields in the vector multiplet are an adjoint-
valued one-form λ of F = 1 and adjoint-valued zero-forms η, ρ of F = −1.
Under the action of Q, the gauge field is contained in a multiplet that takes
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the form

(5.5) [Q,Aμ] = λμ, {Q,λμ} = −Dμσ.

The rest of the vector multiplet becomes

(5.6) [Q, σ] = η, {Q, η} = [σ, σ],

and

(5.7) {Q, ρ} =D, [Q,D] = [σ, ρ].

All these formulas are consistent with Q2 = [σ, ·]. In (5.7), D is an auxiliary
field with values in the adjoint representation; if we take the minimal form of
the sigma-model action, the equation of motion of motion ofD isD = 	F+μ,
where F is the curvature dA+A∧A, 	 is the Hodge star, and μ is the moment
map for the action of H on Z. The moment map is defined in the usual way
by

(5.8)
∂μa

∂xi
= V j

a ωji,
∂μa

∂xj
= V i

aωij .

Here ω is the Kahler form of Z and Va, a= 1, . . . ,dimH are the vector
fields that generate the action of H on Z. We will write V (σ) =

∑
a σ

aVa for
the vector field corresponding to σ. After eliminating D by its equation of
motion, the first equation in (5.7) becomes

(5.9) {Q, ρ} = 	F + μ.

As for the chiral multiplets, in the twisted theory the F = 1 fermions are
zero-forms ψi, ψi with values in Φ∗(T (1,0)Z) and Φ∗(T (0,1)Z) (that is, the
pullbacks to R

2 of the (1, 0) and (0, 1) parts of the tangent bundle of Z).
These fields obey

[Q, xi] = ψi, {Q,ψi} = V i(σ)(5.10)

[Q, xi] = ψi, {Q,ψi} = V i(σ).

The F = −1 fermi fields are a (0, 1)-form χi valued in Φ∗(T (1,0)Z), and a
(1, 0)-form χi valued in Φ∗(T (0,1)Z). They transform in the familiar sort of
multiplet {Q,χi} = F i, [Q, F i] = [σ, χi] where F i is an auxiliary field; there
is a complex conjugate multiplet φj , χj , F j. After eliminating F , F by their
equations of motion, we get

{Q,χi} = ∂Ax
i + gij ∂W

∂xj
(5.11)

{Q,χi} = ∂Axi + gij ∂W

∂xj
,
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where g is the Kahler metric of Z and we make the usual decomposition
dA = ∂A +∂A for the gauge-covariant exterior derivative dA on the Riemann
surface Σ. (Explicitly if wq, q = 1, 2 are local coordinates on Σ, then dA is
defined by dAx

i = dwq(∂qx
i +Aa

qV
i
a ).)

The equations for a supersymmetric configuration of the bosonic fields
are {Q,Λ} = 0 for every fermionic field Λ. In view of the above formulas,
the supersymmetry conditions that involve σ are

(5.12) Dμσ = V (σ) = [σ, σ] = 0.

These equations say that the gauge transformation generated by σ leaves
fixed A, x, and σ, so it is a symmetry of the whole configuration. These
conditions are very restrictive, and in many applications they force σ = 0.

The supersymmetry conditions for the other fields are

	F + μ= 0(5.13)

∂Ax
i + gij ∂W

∂xj
= 0,

along with the complex conjugate of the second equation.16

As we have already explained in section 3.2, the second equation in (5.13)
has two-dimensional symmetry only if W is quasihomogeneous. (A generic
W violates the U(1)R symmetry that was assumed in the construction of
the twisted A-model.) In the present section, we wish to consider a generic
W , so we will have no two-dimensional symmetry. For this reason among
others,17 we make a further dimensional reduction to one dimension, where
the above equations are natural for any W . In this reduction, the gauge field
splits up into a one-dimensional gauge field A0 and an adjoint-valued real
scalar field A1. (We already generated two such fields A2 and A3 in the first
stage of reduction; one might think that there should be an SO(3) symmetry
rotating these three fields, but this symmetry is spoiled by the choice of Q.)
We will return to the two-dimensional case in section 5.3.

The equations (5.13) are flow equations in the y0 direction, up to a gauge
transformation. To agree with our previous notation, we write s for y0. In

16In [29], instead of the second equation, two separate equations ∂Ax
i = 0 = ∂W/∂xi

were given. This is because separate invariance was imposed under Q++ and Q̃−+. In the

present paper, we will consider boundary conditions that conserve not Q++ or Q̃−+ but

only their sum Q=Q++ + Q̃−+, so we add the two equations.
17There is another difficulty in continuing the analysis in two dimensions: unless we

double the supersymmetry (as we will do in section 5.3), we will run into difficulties
analogous to those that were described in section 4.2.
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the gauge A0 = 0, the equations (5.13) can be written

dA1

ds
= −μ= − ∂h

∂A1
(5.14)

dxi

ds
= −iAa

1V
i
a − gij ∂W

∂xj
= −gij ∂h

∂xj
,

with

(5.15) h=Aa
1μa + 2 ReW.

(To verify that the gradient of h is as claimed, one needs the usual rela-
tion gij = −iωij between the metric and the Kahler form.) So as usual the
equations for supersymmetry can be written as flow equations for a Morse
function h.

5.1.2. Geometrical interpretation. Before trying to interpret the above
formulas in differential geometry, we need a little background. First consider
a general manifold Y with action of a connected Lie group H. Let Ω∗(Y ) be
the space of differential forms on Y , graded in the usual way by the degree of
a form. Introduce a variable σ, taking values in the Lie algebra h of H, and
considered to be of degree 2. Let Sym∗(h) be the algebra of polynomial func-
tions of σ. The following natural operator acts on W = Ω∗(Y ) ⊗ Sym∗(h):

(5.16) D0 = d + ιV (σ),

where d is the usual exterior derivative acting on Ω∗(Y ), V (σ) is the vec-
tor field on M corresponding to σ ∈ h, and ιV (σ) acts by contraction of a
differential form with V (σ). Note that each term in D0 has degree 1 (the
contraction operation has degree −1 but σ has degree 2). Evidently,

(5.17) D2
0 = LV (σ),

where

(5.18) LV (σ) = dιV (σ) + ιV (σ)d

is the Lie derivative with respect to the vector field V (σ), or in other words,
the generator of the symmetry of W that corresponds to σ. The formula
(5.17) corresponds to eqn. (5.3) in the field theory construction. It means
that if we restrict to the H-invariant subspace of W, which we denote as
WH , then D2

0 = 0. So we can define the cohomology of D0 acting in that
subspace.

To explain just how D0 is related to the construction in section 5.1.1, let
uI be local (real) coordinates on Y and set ψI = duI . Then we compute

(5.19) [D0, u
I ] = ψI , {D0, ψ

I} = V I(σ), [D0, σ] = 0.

This is in perfect parallel with eqns. (5.10) and (5.4), if we understand the
uI to be the coordinates xi, xi of Z. And we can find another multiplet of
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the same kind if we consider the uI to be A1 and interpret λ1 as dA1; then
(5.19) matches (5.5). So if we set Y = Z×h (where h is parametrized by A1),
then D0 is very similar to the topological supercharge Q that was considered
in section 5.1.1.

There are two essential differences between the construction in section
5.1.1 and what we have said so far here. First of all, rather than being h-
valued, σ in section 5.1.1 took values in the complexification hC of this Lie
algebra. The formulas of section 5.1.1 also involve the complex conjugate σ
of σ, and a fermionic field η such that [Q, σ] = η. To include these fields in
the construction, we view hC as a complex manifold (which is isomorphic to
C

n where n= dimH). We view the components of σ as linear holomorphic
functions on hC, we interpret η as dσ, and we replace Sym∗(h) with the
space Ω0,∗(hC) of (0, q) forms on hC, for 0 ≤ q ≤ n. (We grade Ω0,∗(hC) by
considering σ, σ, and η to have degrees 2, −2, and −1.) Finally we define

(5.20) D1 = dσa ∂

∂σa + [σ, σ]aιdσa

and replace D0 by

(5.21) D = D0 + D1,

acting on Ω∗(Y ) ⊗ Ω0,∗(hC). This incorporates the commutation relations
for σ and η and obeys D2 = LV (σ) (where LV (σ) is now the symmetry gen-
erator in the bigger space). Furthermore, the cohomology of D acting on
the H-invariant part of Ω∗(Y )⊗Ω0,∗(hC) coincides with the cohomology of
D0 acting on the smaller space WH . To prove this, a first observation is
that if DΨ = 0, then the term in Ψ of highest degree in dσ is annihilated by
dσ = dσa∂/∂σa. This is so because dσ is the part of D of highest degree in
dσ (namely degree 1). Note that d2

σ = 0, and that the cohomology of dσ van-
ishes for states of strictly positive degree in dσ. Now suppose that DΨ = 0
and Ψ has degree k > 0 in dσ. Then by a transformation Ψ → Ψ′ = Ψ+ DΛ,
for some Λ, we can replace Ψ by a state Ψ′ that is of degree at most k − 1
in dσ; this is possible because the cohomology of dσ vanishes for states of
positive degree in dσ. Repeating this process, we reduce to the case k = 0,
in other words the case that Ψ is independent of dσ. Then the condition
DΨ = 0 tells us that Ψ is holomorphic in σ. To have finite degree, Ψ must
be polynomial in σ. But then Ψ can be regarded as an element of WH , and
the action of D on Ψ coincides with the action of D0.

In constructing the operator D, we have incorporated all of the bosons
σ, σ,A1, x, and x that should be present in describing physical states. (We
have also properly taken into account the time component A0 of the gauge
fields: in a Hamiltonian framework, this field is set to zero but is associated
to a Gauss law constraint that physical states should be H-invariant, and
we have imposed this constraint.) The fermions that we have incorporated
explicitly so far are η = dσ, ψi = dxi, ψj = dxj , and λ1 = dA1. We have not
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yet discussed explicitly the other fermions λ0, χi, χj , and ρ, but they are
present implicitly as they are canonically conjugate to the fermion fields
that have been discussed. However, we will need to make an important
adjustment to incorporate those fields correctly. Fermions in this second
group are contraction operators, so they have definite commutation relations
with D, but those commutation relations are not the ones we want. For
example, χi is canonically conjugate to ψj , which appears in D only in the
term ψj∂/∂xj . So {D, χi} = gij∂/∂xj = −dxi/ds, while we want {Q,χi} =
−(dxi/ds+ gij∂h/∂xj). To achieve this result, and its analogs for the other
fields, we conjugate D by exp(−h) and define

(5.22) Q= exp(h)D exp(−h).

This is our final result for the description of Q in terms of differential
geometry.

Because Q and D are conjugate, computing the cohomology of Q is
equivalent to computing that of D. However, we have to be careful to describe
the class of wavefunctions in which we wish to take the cohomology. What we
ultimately want to do with a wavefunction Ψ that represents a cohomology
class of D is to pair it as in eqn. (5.28) below with another wavefunction
Ψ̃ that we will allow to have exponential growth for h→∞. To ensure
that such integrals converge, we want Ψ to be supported on a region on
which h is bounded above. (Without changing anything essential, we could
instead require Ψ to decay faster than exp(−h) for h→ +∞.) We refer to
a region in which h is bounded above as a region with h <<∞, and in
the above definitions, with Y = Z × h, we replace Ω∗(Y ) by what we will
call Ω∗

h<<∞(Y ), the space of differential forms on Y on whose support h is
bounded above.

First we will take a mathematical approach to the cohomology, and
then a physics-based approach. For the mathematical approach, we begin
with the fact that, by arguments already explained (these arguments are
unaffected by the support condition), the desired cohomology of D is the
same as the cohomology of D0 acting on WH

h<<∞, the H-invariant part of
Ω∗

h<<∞(Y ) × Sym∗(h). Ignoring the support condition for a moment, the
cohomology of D0 acting on Ω∗(Y )⊗Sym∗(h) is known as the H-equivariant
cohomology of Y . In general, if Y is any space with action of H, the complex
Ω∗(Y ) ⊗ Sym∗(h) with action of the differential D0 is known as the Cartan
model of theH-equivariant cohomology of Y . For example, ifH acts freely on
Y , the equivariant cohomology of Y is the same as the ordinary cohomology
of the quotient Y/H. At the opposite extreme, if Y is a point, then D0 = 0
and its cohomology is just Sym∗(h)H , the algebra ofH-invariant polynomials
on h.

In the present case, the support condition means that we actually want
not the usual equivariant cohomology of Y , but the equivariant cohomol-
ogy with values in differential forms supported at h <<∞. This version of
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the equivariant cohomology is naturally computed by using the H-invariant
Morse function h as an equivariant Morse function in the sense of [30]. The
reason for this is that h is bounded above on any cycle generated by flows
with respect to the Morse function h.

First let us compute dh:

∂h

∂xi
=
∂W

∂xi
+ ωjiV (A1)j(5.23)

∂h

∂A1
= μ.

Here V (A1) =Aa
1Va is the vector field on Z corresponding to A1 ∈ h. Con-

tracting the first equation with V (A1)i and using the fact that V (A1)i∂iW =
0 (since W is H-invariant and holomorphic), we deduce that if ∂h/∂xi = 0,
then V (A1)iV (A1)jωij = 0, which implies (because of the relation of ω to the
Kahler metric g and the positivity of g) that V (A1) = 0. So the conditions
for a critical point are

(5.24)
∂W

∂xi
= V (A1) = μ= 0.

Since W is H-invariant and holomorphic, it is invariant under the com-
plexification HC of the compact Lie group H. The critical points of W thus
form HC orbits. We will assume that W is sufficiently generic that it has only
finitely many critical HC orbits, which moreover are nondegenerate. (We call
a critical orbit nondegenerate if W is nondegenerate in the directions trans-
verse to the orbit.) As explained in [2], if W is sufficiently generic, there
are no flows between distinct critical orbits. In this case, h is an equivari-
antly perfect Morse function in the sense of [30], and the desired equivariant
cohomology is a direct sum of contributions from distinct critical orbits.

Among the critical orbits of W , only those that admit points with μ=
0 contribute to the equivariant cohomology of Y ; this is clear from the
fact that μ= 0 is one of the conditions for a critical point of h. We call
a critical orbit unstable if it contains no point with μ= 0. (In [2], it was
shown that for understanding Stokes phenomena, such unstable orbits can
consistently be excluded.) If an orbit OC does contain points with μ= 0,
then it is contractible to its subspace with μ= 0, and this subspace is an
orbit O of the compact group H. In this case, OC is equivalent topologically
to T ∗O. The H orbit O is isomorphic to H/P for some subgroup P ⊂O. We
call the orbit stable if P is a finite group, and (strictly) semi-stable otherwise.

If O is stable, then the equivariant cohomology of O is the ordinary
cohomology of the quotient O/H. That quotient is a point, so a stable
orbit contributes a one-dimensional space to the equivariant cohomology of
Y = Z × h. This contribution appears in a degree that is equal to the Morse
index of the Morse function h at the orbit O; for h of the form we have
considered, this index is always one-half of the real dimension of Z. This
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will be explained shortly. In general, if O ∼=H/P , where P is a Lie group
of Lie algebra p, then the equivariant cohomology of O is the same as the
equivariant cohomology of P acting on a point. That equivariant cohomology
is the cohomology of D0 = 0 acting on the P -invariant part of Sym∗(p); in
other words, it is the ring of P -invariant polynomials on p. The contribution
of such an orbit to the equivariant cohomology of Y is this polynomial ring,
shifted in degree by the Morse index of h, which again is 1

2dimZ. This means
that such an orbit contributes to the equivariant cohomology of Y a single
class of degree 1

2dimZ, and infinitely many classes of higher degree.
To show that the Morse index of h at a nondegenerate critical orbit is

always 1
2dimZ (where the real dimension is understood), independent of the

dimension of the stabilizer P , we first observe that the function h0 = 2 ReW ,
understood as a Morse function on Z, has Morse index equal to one-half the
real codimension of the critical orbit OC, or 1

2dimZ−dimO. Now the critical
orbit OC ⊂ Z of the Morse function h0 pulls back, under the projection
Z × g → Z, to OC × g ⊂ Z × g. Let us regard h1 =Aa

1μa as a function on
OC × g; it has a critical set, defined by the equations μ= V (A1) = 0, that
is a p bundle over O (where O ⊂OC is defined by μ= 0). The Morse index
of h1 is dimO, and the Morse index of h= h0 + h1 is the sum of the Morse
indices of h0 and of h1, or 1

2dimZ.
Now let us explain these facts from a physical point of view. The poten-

tial energy of the model is

V = |dh|2 + |V (σ)|2 + |[A1, σ]|2 + |[σ, σ]|2(5.25)

= 2|dW |2 + |μ|2 + |V (A1)|2 + |V (σ)|2 + |[A1, σ]|2 + |[σ, σ]|2.

(In any expression such as |dh|2, the symbol | | refers to the norm with
respect to the appropriate metric on the space in question.) In the first line,
we write V as the sum of |dh|2 (a contribution that is familiar in super-
symmetric quantum mechanics without gauge fields) and additional terms
whose origins in dimensional reduction of gauge fields from four dimensions
are hopefully recognizable. (These terms are the squares of the σ-dependent
quantities that appear in (5.12) and must vanish for unbroken supersym-
metry.) To go to the second line, we used the explicit form of dh, and we
also used again the identity V (A1)i∂iW = 0 to eliminate a cross term. Not
coincidentally, V is invariant under SO(3) rotations acting on A1, A2, A3

(where σ =A2 − iA3). The underlying SO(3) symmetry of the reduction of
the gauge theory from four dimensions to one has been broken by the choice
of Q, but this does not affect the formula for V .

In the classical approximation, a supersymmetric vacuum corresponds
to a zero of V . Such zeroes evidently correspond to semistable critical orbits
of W , that is to HC orbits OC on which dW = 0 and we can also solve
the equation μ= 0. Consider first the case of a free or semi-free critical
orbit. In this case, since the vector fields Va are linearly independent along
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such an orbit, the terms |V (A1)|2 + |V (σ)|2 in the potential energy give
masses to all components of A1 and σ. The |μ|2 term in the energy, when
restricted to OC, vanishes only on an H-orbit O ⊂OC and gives a mass to
those fluctuations away from O that lie in OC; nondegeneracy of W means
that the |dW |2 term gives mass to fluctuations normal to OC. So up to a
gauge transformation (that is, up to the action of H), a stable critical orbit
contributes one classical vacuum, and in expanding around this vacuum, all
fluctuations are massive. Because of the mass gap, there is no subtlety in
quantization: a stable critical orbit contributes one supersymmetric state
to the cohomology. By much the same computation as in supersymmetric
quantum mechanics without gauge fields, the eigenvalue of F for this state
is the Morse index of the function h at the given critical orbit OC. For a
Morse function of the type described in eqn. (5.15), this index, as explained
above, is always one-half of the real dimension of Z.

More generally, we consider a semistable critical orbit OC such that the
locus O ⊂OC with μ= 0 breaks the gauge symmetry from H to a sub-
group P of positive dimension. Fluctuations normal to O are still massive.
All classical vacua corresponding to points in O are gauge-equivalent, and
by partially fixing the gauge symmetry, we can select a particular point
p ∈ O, leaving a residual unbroken gauge group P . But A1 and σ now have
flat directions. The conditions V (A1) = V (σ) = 0 now tell us that A1 and
σ must lie in the Lie algebra p of P . The operator Q whose cohomology
we wish to compute reduces at low energies to the operator D defined in
eqn. (5.21), except that the symmetry group H is replaced by P and the
space Y with action of P is just the Lie algebra p, parametrized by A1. As
has already been discussed, the cohomology of this operator is the ring of
P -invariant polynomials on the complex Lie algebra pC, graded in such a
way that the linear functions σ on this Lie algebra are of degree 2. (A1 does
not contribute to this cohomology, since it takes values in an equivariantly
contractible space.) The contribution of a semistable orbit OC to the space
of supersymmetric states is hence the indicated ring of P -invariant polyno-
mials, shifted in degree by the Morse index of h, which again is one-half the
real dimension of Z.

In the last paragraph, we did not worry about whether the cohomol-
ogy classes of Q that we described are square-integrable. In fact, polyno-
mial functions of pC are not square-integrable in the natural metric on
that Lie algebra. It seems quite likely, though not completely clear, that
the Q-cohomology classes associated to strictly semistable critical orbits
(with P of positive dimension) have no square-integrable representatives.
In a somewhat similar compact situation, the cohomology of Q would coin-
cide with the space of normalizable states annihilated by the Hamiltonian
H =QQ† +Q†Q, but the case in which the classical potential admits non-
compact flat directions at zero energy is quite different and it seems natural
to conjecture that the kernel of H, in the space of square-integrable wave-
functions, has a basis corresponding to the stable critical orbits only.
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There is, however, a natural dual of the version of equivariant coho-
mology that we have considered so far; the dual consists of the equivariant
cohomology with compact support along the A1 and σ directions, but with
no growth condition for h→ +∞, and decaying exponentially for h→−∞.
Cohomology classes of this type can be described conveniently if one allows
distributional wavefunctions. The most basic Q-invariant delta function is

(5.26) δ(A1)δ(λ1)δ(σ)δ(σ)δ(η),

which certainly has compact support in the A1 and σ directions. (Here
δ(σ)δ(σ) is an alternative notation for δ(Reσ)δ(Imσ).) This delta function
is of degree zero, since δ(λ1) and δ(η) have opposite degrees. A more general
Q-invariant distributional wavefunction is as follows. Take any H-invariant
polynomial P on h∗ (the dual of h) and consider the wavefunction

(5.27) P(∂/∂σ) δ(A1)δ(λ1)δ(σ)δ(σ)δ(η)

which again is Q-invariant. It has degree −2k if P is homogeneous of degree
k. To satisfy the decay condition along Y , we should multiply one of these
delta functions by a differential form on Y = Z × h that vanishes rapidly
for h→−∞. For instance, if Z is a Calabi-Yau manifold with H-invariant
holomorphic volume form Ω, and h= ReW , then an example of a class Ψ̃
in the dual version of the equivariant cohomology is obtained by multiply-
ing exp(W )Ω by the basic delta function given in (5.26). This product is
annihilated by D and has degree 1

2dimZ.
Now we can define a duality pairing. If Ψ is a class in the “ordinary”

equivariant cohomology of Z × h (with polynomial growth allowed in the σ
directions, but supported at h <<∞) , and Ψ̃ is a class in the equivariant
cohomology of Z×h with compact support in the A1 and σ directions (with
no growth condition for h→∞, and decaying at h→−∞), then there is a
natural pairing

(5.28) (Ψ̃,Ψ) =
∫

Z×h×hC

dA1 dλ1 dσ dσ dη dxdxdψ dψ ΨΨ̃.

If Ψ and Ψ̃ have definite degree, the sum of these degrees must equal the
real dimension of Z in order for this integral to be nonzero. A typical such
case is that Ψ is a class associated to a stable critical orbit, and Ψ̃ is as
described in the last paragraph; both are of degree 1

2dimZ.
Going back to the “ordinary” equivariant cohomology, one lesson from

the above analysis is that in general, any cohomology class of D can be rep-
resented by a wavefunction Ψ(x, x, ψ, σ), independent of the other fields. In
addition, cohomology classes associated to semi-free orbits have representa-
tives that are independent of σ.
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5.1.3. Gauge-invariant integration cycles. Next we will analyze the
gauge-invariant version of something familiar from section 4.1: how to rep-
resent ordinary integrals over cycles obtained by solving flow equations by
one-dimensional path integrals.

We consider the path integral of the supersymmetric gauge theory that
we have described above on a one-manifold L. We take L to be the half-line
s≤ 0.

We define the boundary condition at s= −∞ by saying that, for s→
−∞, x(s) approaches a specified H-orbit O ⊂ Z consisting of critical points
of W on which μ= 0. The path integral on L with this behavior imposed
at s→−∞, when viewed as a function of the boundary values of the fields
at s= 0, gives a state Ψ in the equivariant cohomology of Y = Z × h. This
class can be localized on the H-invariant space CO ⊂ Z×h that parametrizes
solutions of the flow equations that start on O. (In particular, therefore, it
is supported for h <<∞.) The codimension of CO is 1

2dimZ, the index of
the Morse function h.

The description we have given of the behavior at s= −∞ is sufficiently
precise if O is a stable orbit, for then the fields A1 and σ are massive in
expanding around O and naturally vanish at s= −∞. More fundamentally,
there is no essential ambiguity about the initial conditions because a critical
orbit of this type is associated to an equivariant cohomology class that is
unique, up to a constant multiple. The path integral actually fixes the mul-
tiple in a natural way, generating, just as in section 4.1, the Poincaré dual
of CO rather than a multiple of this.

If, however, O is strictly semi-stable, then the potential energy for A1

and σ has flat directions in expanding around O. The input conditions at
s= −∞ require choosing a Q-invariant wavefunction on the space of flat
directions. This wavefunction is not supposed to have distributional support
at σ = 0 (this would land us in the wrong sort of equivariant cohomology),
but rather will have polynomial dependence on σ. The initial conditions at
s= −∞ depend on the choice of such a wavefunction. The state Ψ obtained
from the path integral on L is much more complicated in the strictly semi-
stable case, because its support has more than one branch. This is because of
eqn. (5.12), according to which a Q-invariant field configuration on L must
lie on the locus in Z × h that is invariant under the symmetry generated by
σ. This condition is trivial if σ = 0, in which case all flows are allowed, but
becomes non-trivial as soon as σ is non-zero. The branches of the space of
Q-invariant field configurations are classified by the conjugacy class of the
subgroup of P that is left unbroken by σ.

Having picked a critical orbit O (and some additional data if O is only
semi-stable) to fix the initial conditions at s= −∞, there are, as in section
4.1, several slightly different path integrals that we can do on L. If we take
the action of the sigma-model to be the physical action of the supersymmet-
ric gauge theory – a gauge-extended version of (4.6) – then the state defined
by the path integral at s= 0 is annihilated by Q= exp(h/ε)D exp(−h/ε).
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Just as in eqn. (4.7), it is slightly more convenient to add to the action I an
exact form

(5.29) I → I +
1
ε

∫
L

ds
dh
ds
.

The modified action can be written more naturally in terms of the super-
symmetric flow equations, as in eqn. (4.7). The modification has the effect
of multiplying the quantum state at s= 0 by exp(−h/ε), so that it is anni-
hilated by D rather than Q. We will use this approach.

The path integral on L, as a function of the values of the fields at s= 0,
will determine a state Ψ in the equivariant cohomology. This state will be
localized on the cycle CO in Z × h obtained by solving the flow equations.
However, using the path integral to compute a state associated to a critical
orbit O is not really what we want to do. Our real aim is to represent an
ordinary integral over a middle-dimensional cycle in Z as a one-dimensional
path integral, just as we did in section 4.1 in the absence of gauge-invariance.

As in eqn. (4.17) and the example given after eqn. (5.27), we assume
that Z is a Calabi-Yau manifold with holomorphic volume-form Ω. We also
pick on Z an H-invariant holomorphic function S. The path integral that we
will describe is always convergent if S coincides with the superpotential W
of the sigma-model. In general, we want to pick S to be close enough to W
so that the path integral will be convergent. (For example, if Z = C

n and W
is a polynomial whose terms of highest degree are sufficiently generic, then
as in eqn. (4.20), it will suffice if S differs from W by subleading terms.)
The ordinary integral that we want to represent by a one-dimensional path
integral is

(5.30)
∫
CO∩{A1=0}

Ω exp(S).

The meaning of this is as follows. The cycle CO ⊂ Z × h is of codimension
1
2dimZ, and hence of dimension 1

2dimZ + dimH. By intersecting this cycle
with the locus A1 = 0, whose codimension is dimH, we get the cycle CO ∩
{A1 = 0} ⊂ Z. The dimension of this cycle is 1

2 dimZ, the correct dimension
for the integral (5.30) to make sense. The restriction to A1 = 0 will come
from the boundary condition at s= 0, as discussed presently.

In fact, ΓO = CO ∩{A1 = 0} is an H-invariant, middle-dimensional cycle
in Z which was introduced in [2] in a more naive fashion. There, it was
characterized as the cycle that parametrizes points in Z that can be reached
at s= 0 by solving the flow equations for the Morse function h0 = 2 ReW
on Z, starting at s= −∞ on the H-orbit O. In the present paper, the gauge
theory machinery has led us to consider not the Morse function h0 on Z, but
the more sophisticated Morse function h= h0 + Aa

1μa on Z × h. However,
upon setting A1 = 0, we reduce to the cycle in Z that was analyzed in [2].

We now want to show that it is possible to pick a supersymmetric bound-
ary condition at s= 0 so that the path integral on the half-line will indeed
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compute the integral (5.30). Just as in section 4.1, part of the construction
will be an insertion at s= 0 of the operator

(5.31) exp(S(x(0))) Ωi1i2...inψ
i1(0)ψi2(0) . . . ψin(0),

and this implies a boundary condition

(5.32) ψ(1,0)
∣∣∣
s=0

= 0.

The boundary conditions on other fermions in the chiral multiplets are the
same as before, and for similar reasons: we set χ(0,1) = 0 at s= 0 and leave
other components of ψ, χ unrestricted.

What is new relative to the previous analysis is that we have to find
the right boundary conditions for the vector multiplet. One essential point
here is that since {Q,ψi} = V i(σ), where V i(σ) is generically non-zero, the
boundary insertion (5.31) is Q-invariant only if we set σ = 0 at s= 0. So also
σ = 0 at s= 0, and since {Q, σ} = η, this is only consistent if η also vanishes
at s= 0.

There is another way to motivate the boundary condition σ(0) = 0. We
will describe a formalism that works for semistable as well as stable critical
orbits O. In the semistable case, the conditions at s= −∞ allow σ to be
unbounded, so the boundary condition σ(0) = 0 is needed for convergence
of the path integral.

The same reasoning motivates us to pick a boundary condition A1(0) =
0, which in any case is needed if we hope to arrive at the integral (5.30). For
consistency, as [Q,A1] = λ1, we must also set λ1(0) = 0.

At this point, we have set to zero the boundary values of half the fermions
in the gauge multiplet, namely η and λ1, so we must leave unconstrained
the other fermions in that multiplet, namely ρ and λ0. This boundary con-
dition is Q-invariant, for reasons similar to what was explained at the end
of section 4.1. As there, some contributions to Q vanish because of the
fermionic boundary conditions. For example, one contribution to Q from
the vector multiplet is

∑
a ηa dσa/ds, which upon quantization becomes

−
∑

a ηa ∂/∂σ
a. This vanishes at s= 0, because η does.

From the point of view of classical differential geometry, what the path
integral with these boundary conditions computes is the pairing (5.28)
between a state Ψ in the equivariant cohomology of Z supported at h <<∞,
defined by the boundary condition at s= −∞, and a state Ψ̃ in the equivari-
ant cohomology with compact support in the A1 and σ directions, defined
by the boundary condition at s= 0. (These two dual forms of equivariant
cohomology were defined more precisely in section 5.1.2.) The state Ψ̃ is
given by (5.31) multiplied by δ(χ(0,1)) and the delta function in (5.26):

(5.33) Ψ̃ = exp(S(x(0)) δ(ψ(1,0))δ(χ(0,1))δ(A1)δ(λ1)δ(σ)δ(σ)δ(η).



THE PATH INTEGRAL OF QUANTUM MECHANICS 405

(Here we have written Ωi1i2...inψ
i1(0)ψi2(0) . . . ψin(0) as δ(ψ(1,0)).) The

bosonic boundary condition (4.24) is needed in verifying Q-invariance of
δ(χ(0,1)).

The pairing (Ψ̃,Ψ) defined by the path integral (or in differential geom-
etry by eqn. (5.28)) reduces to the desired integral (5.30). The localization
on CO comes from Ψ, and the localization at A1 = 0 comes from Ψ̃. The nat-
uralness of this pairing gives another motivation for the boundary condition
that we have placed on the vector multiplet.

The reason that we have given such a detailed explanation of this gauge-
invariant generalization of the result of section 4.1 is that it has an interesting
application to three-dimensional Chern-Simons gauge theory, to which we
turn next. We will be able to express the path integral of Chern-Simons
gauge theory in three dimensions in terms of a path integral of N = 4 super
Yang-Mills theory in four dimensions. This in turn has an interesting appli-
cation: it gives a new perspective on the relation [15] between Khovanov
homology [16] and spaces of BPS states. We leave the details for [14] and
remark here only that once one re-expresses the Chern-Simons path integral
in terms of N = 4 super Yang-Mills theory, one can study it using standard
techniques of electric-magnetic duality and related string theory dualities.

5.2. Application to Chern-Simons gauge theory.
5.2.1. The Chern-Simons form as a superpotential. We will apply

what we have learned in section 5.1 to the following special situation. We
compactify N = 4 super Yang-Mills theory from four dimensions to one on
a three-manifold W . Thus, we formulate the theory on the four-manifold
M = R × W , making an R-symmetry twist so that some supersymmetry
is preserved. The twist is accomplished by embedding the holonomy group
SO(3) of W in the SO(6) R-symmetry group in the obvious way (the vector
representation of SO(6) transforms as the vector representation of SO(3)
plus three singlets). Of the six adjoint-valued scalar fields Φ of the N = 4
theory, the twist converts three, which we will call φ, into an adjoint-valued
one-form on M , while the other three, which we will call φ̃, remain as scalar
fields. The twist ensures that the compactified theory is independent of the
choice of a metric g on W , but we do need to make a choice to define N = 4
super Yang-Mills theory and to make the following constructions.

For gauge group G= U(n), the twisted theory can be realized in string
theory. One considers Type IIB superstring theory on R

4×T ∗W (here T ∗W
may be replaced by any Calabi-Yau three-fold X that admits W as a special
Lagrangian submanifold), with n D3-branes wrapped on M = R×W ⊂ R

4×
T ∗W . Then, by arguments similar to those in [31], upon scaling up the
metric of T ∗W relative to the string scale, the low energy theory along M is
the twisted theory described in the last paragraph. To get the twisted N = 4
theory on a half-space (as we will want presently), one can let the n D3-
branes end on an NS5-brane that is supported on R

3 ×W . For G= SO(n)
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or Sp(n), a similar construction is possible using an orientifold three-plane
supported on R ×W . These brane constructions will be used in [14], but
are not needed for our present purposes.

In the reduction from four dimensions to one, the four-dimensional gauge
field A splits up as a one-dimensional gauge field A0 ds (we parametrize the
first factor of M = R×W by s) and a gauge field tangent to W that we will
call B. The twisted compactification on W leaves four unbroken supersym-
metries and the resulting theory can be interpreted as a one-dimensional
supersymmetric gauge theory of precisely the sort studied in section 5.1.1,
but with an infinite-dimensional gauge group. If we assume that the under-
lying four-dimensional theory is formulated on a trivial G-bundle, then the
gauge group in the reduced one-dimensional theory is H = Maps(W,G), the
space of maps from W to the finite-dimensional gauge group G. Somewhat
more intrinsically, if the compactified theory on W is defined in terms of con-
nections on a G-bundle E→W , then H = Aut(E) is the group of bundle
automorphisms of E.

The bosonic fields of the vector multiplet of the H gauge symmetry are
the untwisted fields A0 and φ̃. (Once we make a particular choice of a topo-
logical supercharge Q, φ̃ splits up into the fields called A1, σ, and σ in section
5.1.1.) The other bosonic fields are usefully combined to a complex-valued
field B =B + iφ on W , which we can think of as a connection on a bundle
EC →W whose structure group is the complexification GC of G. (If E was
understood as a principal G-bundle, then EC is its complexification,which
is a principal GC-bundle.) The fields B are the bosonic components of chiral
supermultiplets that are acted on by the group H and in fact by its com-
plexification HC, consisting of GC-valued gauge transformations. Let B be
the space of all possible B fields. Once we endow W with a Riemannian
metric g, which we write in local coordinates as g =

∑3
a,b=1 gabdyadyb, and

pick a gauge coupling constant e, B acquires a Kahler metric

(5.34) ds2 = − 1
2e2

∫
W

d3y
√
ggabTr δBa ⊗ δBb

and an associated symplectic form that is readily written in terms of the
real fields B,φ:

(5.35) ω = − 1
e2

∫
W

d3y
√
ggabTr δBa ∧ δφb.

Relative to this symplectic form, the moment map for the action of H on B
is

(5.36) μ= − 1
e2
	 dB 	 φ= − 1

e2
Daφ

a,

where 	 is the Hodge star operator on W , dB = d + [B, ·] is the gauge-
covariant exterior derivative defined with the real connection B, and simi-
larly Di is the covariant derivative with respect to B. A gauge theory with
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four supercharges in general has also a superpotential, which is a gauge-
invariant holomorphic function W on the space that parametrizes the chiral
superfields – in our case, this space is B. To be more precise, W is not quite
uniquely determined as a complex-valued function. It is defined only up to
an additive constant, because only derivatives of W appear in the action,
and only up to an arbitrary phase factor, which is possible because the map-
ping from the underling N = 4 theory in four dimensions to a low energy
description with vector and chiral multiplets (and four supercharges) is only
uniquely determined up to an R-symmetry rotation, which can change the
phase of W. In our case, the superpotential is the integral of the complex
Chern-Simons form

(5.37) W = −exp(iα)
e2

∫
W

d3y εabcTr
(
Ba∂bBc +

2
3
BaBbBc

)
.

where exp(iα) is the arbitrary phase.
To verify that this is the right superpotential, one may for example start

with the potential energy of the N = 4 theory in four dimensions and express
it in the language of the reduced one-dimensional theory. In ten-dimensional
notation, the bosonic part of the action of N = 4 super Yang-Mills theory
is −(1/2e2)

∫
d4y

∑9
I,J=0 Tr [DI , DJ ]2, where DI is a covariant derivative (if

I = 0, . . . , 3) or the commutator with a scalar field (if I = 4, . . . , 9). The part
of this action that involves only the chiral superfields is the time integral
of a potential energy function V on B; this function can be written (after
some integration by parts) as V = |dW|2 + |μ|2, using the above formulas for
W, μ, and the metric on B. This is the expected form, independent of the
phase α, and gives one way to verify the claimed formula for W.

The fact that the Chern-Simons function arises in this way as a superpo-
tential has been important in recent work [32] (this paper actually involves
reduction from five to two dimensions rather than from four to one), and
related observations have been made, for example, in [33].

In section 4.1 of [2], the gradient flow equations were studied for the flow
on B with the Morse function

(5.38) h= 2 Re W.

Of course, these equations depend on the phase α. It was shown that these
flow equations have a natural interpretation in N = 4 super Yang-Mills the-
ory. They express invariance under the topological supercharge Q of twisted
N = 4 super Yang-Mills theory with the twist related to geometric Lang-
lands that was studied in [6]. The supercharge Q depends on a twisting
parameter, which was called t in [6] and u in [2]. According to eqn. (4.9)
of [2], the twisting parameter is related to the phase α of W by

(5.39) t=
1 − cosα

sinα
.
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5.2.2. The Chern-Simons path integral from four dimensions. By simply
adapting what we said in section 5.1.3, we can now represent a Chern-Simons
path integral in three dimensions – over a suitable integration cycle – in
terms of a four-dimensional path integral.

We formulate the N = 4 theory on M = R+ ×W , where R+ is the half-
line s≥ 0. As long as the gauge theory theta-angle vanishes (we defer the
generalization to [14]), the theory can be regarded as an infinite-dimensional
version of the one-dimensional gauge-invariant theory studied in section
5.1.3. In what follows, we simply imitate that analysis. So, as s→∞, we
require B to approach a stable critical orbit of the superpotential. (As we
discuss in detail presently, these orbits correspond to complex flat connec-
tions obeying a mild restriction.) At s= 0, we impose the boundary con-
ditions that were used in section 5.1.3 to interpret an ordinary integral
with gauge symmetry in terms of a path integral. In particular, to main-
tain Q-invariance at s= 0, we make the modification in the action that was
described in eqn. (5.29), replacing the usual N = 4 action IN=4 by a Q-
invariant action Itop

N=4 = IN=4 + h(0). Here h(0) is simply h evaluated at
s= 0. (It does not matter whether we subtract from the action the value of
h at s= −∞, because the boundary condition there fixes h(s= −∞) to be
a constant, and in particular Q-invariant. We omit here a factor 1/ε multi-
plying h in (5.29); it has already been incorporated as the factor of 1/e2 in
the definition of W.)

Just as in section 5.1.3, we can now use the path integral of the N = 4
theory on M to compute the integral of exp(W) over a real cycle ΓO ⊂ B:

(5.40)
∫
DADΦDλ exp(−Itop

N=4) exp(W)|s=0 =
∫

ΓO
DB exp(W).

On the left of eqn. (5.40), A, Φ, and λ are the bose and fermi fields of N = 4
super Yang-Mills theory, and W is to be evaluated at s= 0. The boundary
conditions on fermions at s= 0 are those of section 5.1.3 and are discussed
in detail, in the present infinite-dimensional context, in an appendix. On
the right hand side, the integral is over a middle-dimensional cycle ΓO in
the space of complex-valued connections B. This cycle, which corresponds to
CO∩{A1 = 0} in (5.30), is found by solving the gradient flow equations with
respect to the Morse function h= 2 Re W, starting at s= ∞ from the critical
orbit O that is used to define the boundary conditions on the left hand
side of (5.40). Because W is a multiple of the Chern-Simons action of the
complex-valued connection B, the integral on the right hand side of (5.40)
is simply the Chern-Simons path integral, carried out over an integration
cycle that differs from the usual one. (The usual integration cycle is defined
by setting φ= 0 or in other words by taking B to be real.) As explained
in [2], the usual quantization of the Chern-Simons coupling constant, which
is required to make sense of the integral over the usual integration cycle,
is not necessary for defining the integral over a cycle obtained by gradient
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flow, and indeed this quantization is not satisfied in the present context, as
the superpotential contains an arbitrary factor exp(iα)/e2.

An important generalization of (5.40) – discussed at several points in
this paper – involves including on both sides an additional factor T , where
T is a holomorphic function on B that grows too slowly at infinity to affect
the convergence of the path integral. In the present context, there is a nat-
ural class of such functions. Let K be a knot (an embedded oriented circle)
in W and let R be an irreducible representation of G, which we analyti-
cally continue to a holomorphic representation of GC. Then we define the
holonomy function or Wilson loop operator

(5.41) WK,R(B) = TrR P exp
∮

K
B.

WK,R(B) is, roughly speaking, the exponential of a linear function on B,
while the superpotential W is cubic. So inclusion of a factor WK,R(B) does
not affect the convergence of the path integral. In the N = 4 theory, to pre-
serve the topological symmetry, this factor must be inserted at s= 0 (where
the boundary condition ψ(1,0) = 0 ensures Q-invariance of any holomorphic
function). So we get a generalization of (5.40):∫

DADΦDλ exp(−Itop
N=4)

(
exp(W)WK,R(B)

)∣∣
s=0

(5.42)

=
∫

ΓO
DB exp(W)WK,R(B).

This has an obvious generalization involving a link – a union of disjoint
embedded oriented circles Ki ⊂W – rather than a knot. Labeling the Ki by
irreducible representations Ri, we have

∫
DADΦDλ exp(−Itop

N=4)
(
exp(W)

∏
i

WKi,Ri(B)
)∣∣∣∣∣

s=0

(5.43)

=
∫

ΓO
DB exp(W)

∏
i

WKi,Ri(B).

There is a further extension in which links are replaced by a certain class of
labeled graphs, as discussed for example in [34]. Another extension involving
the theta-angle of the four-dimensional gauge theory is important in relation
to Khovanov homology and will be described in [14].

Now let us discuss a few more details concerning these formulas. Since
the superpotential is the integral of the complex Chern-Simons form, a criti-
cal point is a complex-valued flat connection, characterized by the vanishing
of the curvature

(5.44) F = dB + B ∧ B.
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The monodromies of such a flat connection give a representation of the
fundamental group of W into the finite-dimensional gauge group GC, or in
other words a homomorphism ρ : π1(W ) →GC. The flat connections associ-
ated with a given monodromy form an orbit for the group HC of GC-valued
gauge transformations. A critical orbit is nondegenerate if the corresponding
representation of the fundamental group has no first-order deformations. In
terminology introduced in section 5.1.2, a critical orbit is called semistable
if it admits points at which the moment map μ (defined in eqn. (5.36)) van-
ishes. It is called stable if in addition the subgroup of GC that commutes
with the monodromies of the flat connection is a finite group. A critical orbit
containing no zero of μ is unstable. As shown in [35], the unstable critical
orbits are exactly those that correspond to strictly triangular representations
of the fundamental group.

If W is compact, the space M = R+ × W is macroscopically one-
dimensional. In this case, if there are flat directions in the bosonic poten-
tial of the theory, their quantum fluctuations are important and need to be
treated carefully in defining the path integral. This tends to cause compli-
cations in applications of (5.43). Such infrared questions are entirely absent
if the boundary condition in the path integral at s= −∞ is set by a sta-
ble and nondegenerate flat connection. For a stable flat connection corre-
sponds – just as in the context of section 5.1.3 with finitely many degrees of
freedom – to a massive vacuum of the one-dimensional theory that arises by
compactification on W .

There is another way to avoid infrared subtleties: one can take W to
be noncompact. The simplest choice is W = R

3. In field theory on R
3 (or

R
3×R+) it is natural to consider only fields and gauge transformations that

are trivial at infinity. So we define H to be the group of G-valued gauge
transformations on R

3 that are 1 at infinity,18 and we require the complex-
valued connection B to vanish at infinity on R

3. H acts on the space B of
such connections, and we run the above theory with this choice of H and B.
Since the fundamental group of R

3 is trivial, the only critical orbit is the one
that contains the trivial connection. This critical orbit is nondegenerate and
stable. Nondegeneracy means that after gauge fixing, in expanding around
the trivial flat connection, there are no zero modes that vanish at infinity.
Stability expresses the fact that H – and its complexification HC – act freely
on the orbit in B that contains the trivial flat connection. Indeed, H was
defined as a group of gauge transformations that are 1 at infinity; no non-
trivial gauge transformation obeying this condition leaves fixed the trivial
flat connection.

For W = R
3, the topological field theory under discussion here has not

much to say in the absence of knots, and the formula (5.40) is not terribly
interesting – both sides equal 1. However, knots in R

3 are interesting and

18Since the fields φ̃ – or A1 and σ – take values in the adjoint representation of H,
this definition of H implies that those fields vanish at infinity on R

3.
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(after being extended to include the gauge theory theta-angle) the formulas
(5.42), (5.43) will be the starting points for the study of Khovanov homology
in [14].

A generalization, with infrared divergences avoided in a similar way, is
to let W0 be a rational homology three-sphere with p a point in W0 and
to take W =W0\p (that is, W is W0 with p omitted). We take on W a
metric in which p is projected to infinity, so that the region near infinity in
W looks like the region near infinity in R

3. We again define H to consist of
gauge transformations that are 1 at infinity, and B to parametrize complex-
valued connections that vanish at infinity. The orbit containing the trivial
flat connection is nondegenerate and stable. ForG= SU(2), all critical orbits
are stable (but not always nondegenerate); this is not necessarily so for G
of higher rank.

5.2.3. Comparison to a sigma-model. A very illuminating example of
the gauge theory construction that we have just considered arises if we take
W = S1 × C, where C is a Riemann surface.

We take the metric on C to be much larger than that on S1, and then
instead of simply compactifying on W from four dimensions to one, we can
think in terms of compactification on C from four to two dimensions, the two-
manifold being in this case R+×S1. Compactification of N = 4 super Yang-
Mills theory on a Riemann surface – with precisely the same topological
twist as in our present discussion – was analyzed in [6], following [36,37].
The low energy theory is a sigma-model with target space MH(G,C), the
moduli space of Higgs bundles on C with structure group G. So the left
hand side of eqn. (5.40) reduces to a sigma-model path integral on R+ ×S1,
with target MH(G,C).

What about the right hand side of eqn. (5.40)? Chern-Simons theory
in three dimensions with gauge group G, when compactified on a Riemann
surface C, reduces to quantum mechanics with phase space the moduli space
M(G,C) of flat (or holomorphic) G-bundles over C. To define an exotic
integration cycle in this quantum mechanics, we must first complexify the
target space and then pick the integration cycle. The complexification of
M(G,C) is precisely MH(G,C), and so the right hand side of (5.40) is the
quantum path integral of M(G,C) with an exotic integration cycle.

Thus, the compactification of our present discussion on C gives a special
case of the construction in section 2.

5.2.4. Elliptic boundary conditions. To arrive at (5.40) and its gener-
alizations, we took a finite-dimensional construction, described in section
5.1.3, and adapted it to a case that the gauge group H and the space B that
parametrizes the chiral superfields are infinite-dimensional. In eqn. (4.26),
we have seen how such a generalization to infinite dimensions that may have
sounded plausible can fail: it implied a boundary condition that is not ellip-
tic. The formula (5.40) is not afflicted with this sort of problem, basically
because the function W that appears in the exponent has derivatives in the
W directions, which moreover are sufficiently generic. In this respect, (5.40)
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is a generalization not of (4.26), but of the sigma-model analysis of section
2 (to which it can be dimensionally reduced in some circumstances, as we
noted in section 5.2.3).

In the appendix, we show in detail that the boundary condition that is
implicit on the left hand side of eqn. (5.40) is elliptic. This essentially means
that the expressions that one would encounter in expanding the left hand
side of (5.40) in perturbation theory have properties similar to what one
would find in the finite dimensional construction of section 5.1.3, strongly
suggesting that it would be possible to explicitly demonstrate the validity of
(5.40) in perturbation theory. (As always, a rigorous nonperturbative proof
would be much harder.)

5.3. Quantization with constraints. Here we will very briefly con-
sider the question of how one would describe integration cycles in the Feyn-
man integral of a quantum mechanics problem with first class constraints.

We recall the setting with which we began in section 2.1. M is a classical
phase space of dimension 2n with a real symplectic form that locally can be
written

(5.45) f =
n∑

r=1

dpr ∧ dqr.

The first class constraints are functions μa that, via their Poisson brackets,

(5.46) {μa, μb} = f c
abμc

generate the action on M of a Lie group G. Classically, imposing the con-
straints means restricting to the locus with μa = 0, a= 1, . . . ,dimG, and
dividing by G. Quantum mechanically, it means that one quantizes and
restricts to the G-invariant subspace of the physical Hilbert space. We want
to approach this process from the point of view of an analytically continued
path integral.

The constrained system can be described classically by the action

(5.47) S =
∮

(prdqr − φaμadt) ,

where the φa are Lagrange multiplier fields that impose the constraints
μa = 0.

The first step in describing new integration cycles is analytic continua-
tion. We complexify M to a complex symplectic manifold M̂, with complex
structure J and holomorphic symplectic form Ω. (For more details, see sec-
tion 2.3.) pr and qr analytically continue to holomorphic functions Pr and
Qr on M̂, and similarly the μa analytically continue to holomorphic func-
tions Ma. The action of G on M analytically continues to an action of the
complex Lie group GC; the Ma generate the action of GC via Poisson brack-
ets (computed using the symplectic form Ω). The Lagrange multiplier fields
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φa become complex fields that we denote ϕa, and the complexified action is

(5.48) S =
∮

(PsdQs − ϕaMa dt) .

The integrand of the path integral is exp(iS). So to find a novel integration
cycle, we introduce a metric on M̂ and consider gradient flow with respect
to the Morse function

(5.49) h= Re(iS).

Without repeating all the steps from sections 2 and 3.2, we can anticipate
what will happen. The gradient flow equation will involve a new almost com-
plex structure I on M̂ that cannot coincide with J but that we can usefully
take to anticommute with J . The nicest case will be that I and J and the
holomorphic symplectic form Ω are all part of a G-invariant hyper-Kahler
structure on M̂. In this case, the sigma-model with target M̂ has N = 4
supersymmetry in the two-dimensional sense, with eight supercharges. This
is twice as much supersymmetry as was assumed in our study in section
5.1.3 of an ordinary integral (as opposed to a path integral) with gauge
symmetry. All constructions in this paper based on two-dimensional path
integrals, rather than one-dimensional ones, have involved this doubling of
supersymmetry. We gauge the G symmetry preserving N = 4 supersymme-
try. The flow equations of the resulting gauge-invariant sigma model have
full two-dimensional symmetry, and the sigma-model gives a natural way
to describe novel integration cycles in the path integral of the original con-
strained quantum system.

Concretely, to gauge the G symmetry while preserving N = 4 supersym-
metry, we introduce a vector multiplet, whose bosonic components are a two-
dimensional gauge field A and four scalars in the adjoint representation of G.
Upon topological twisting, A combines with two of the scalars to a complex-
valued gauge field A, leaving a complex scalar σ. On S1 ×R+, with the two
factors parametrized respectively by t and s, we write A = Atdt+Asds. The
complex field ϕ of eqn. (5.48) corresponds to At. As for the other bosonic
fields As and σ, they were present in the case of an ordinary integral before
doubling of supersymmetry, and correspond to the fields A0 + iA1 and σ in
section 5.1.

Appendix A. Details on the four-dimensional boundary
condition

Here we will describe in detail the boundary conditions on the fermions of
N = 4 super Yang-Mills theory that are implicit in our main results such as
eqn. (5.43) relating this theory to Chern-Simons theory in three dimensions.
We will also verify that these boundary conditions are elliptic.

In the notation of section 3.1 of [6], the fermions of the twisted theory
are as follows. The fermions of F = 1 are one-forms ψ and ψ̃, valued in
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the adjoint representation. And the fermions of F = −1 are zero forms η
and η̃ and a two-form χ, all valued in the adjoint representation. We write
χ= χ+ + χ−, where χ+ and χ− are respectively selfdual and anti-selfdual.
The part of the fermion action that contains derivatives is (from eqns. (3.39)
and (3.46) of [6])

(A.1)
2i
e2

∫
M

Tr
(
η dA 	 ψ + η̃ dA 	 ψ̃ + χ+dAψ + χ−dAψ̃

)
,

where 	 is the Hodge star, dA is the gauge-covariant exterior derivative, and
wedge products of differential forms are understood. The reason that we
write only the derivative part of the fermion action is that nonderivative
terms will not affect the boundary conditions or the condition of ellipticity.

It is convenient to re-express ψ and ψ̃ in terms of an adjoint-valued one-
form ψ1 and three-form ψ3 by ψ = ψ1 + 	ψ3, ψ̃ = −ψ1 + 	ψ3. Similarly, we
re-express η and η̃ in terms of an adjoint-valued zero-form η0 and four-form
η4 by η = (η0 + 	η4)/2, η̃ = (η0 − 	η4)/2. Then we combine the even degree
forms to a field Ω = η0 +χ+η4 that is a sum of all differential forms of even
degree. And similarly we combine ψ1 and ψ3 to a field Θ = ψ1 +ψ3 that is a
sum of differential forms of all odd degree. Both Ω and Θ are adjoint-valued,
of course. The derivative part of the fermion action becomes

(A.2)
2i
e2

∫
M

Tr (Ω(dA + 	dA	)Θ) =
2i
e2

∫
M

Tr Ω 	 (	dA + dA	)Θ.

The operator whose boundary conditions we need to consider is hence (mod-
ulo terms of order zero) the operator

(A.3) D = 	dA + dA	

mapping adjoint-valued forms of odd degree to those of even degree.
Now we want to view N = 4 super Yang-Mills theory as a topological

field theory with topological supercharge Q. As described in [6], the choice
of Q depends on a parameter t= v/u. From eqns. (3.23), (3.24) of [6], and
setting u= 1, the transformation law of the gauge field is δA= i(ψ + tψ̃) =
i((1 − t)ψ1 + (1 + t) 	 ψ3) and that of the adjoint-valued one-form φ is
δφ= i(tψ− ψ̃) = i((1 + t)ψ1 − (1− t) 	 ψ3). Introducing the complex-valued
connection A =A+ iφ, we find that δA = (−1 + i)(1 + it)(ψ1 − i 	 ψ3). To
ensure Q-invariance of the left hand side of (5.43), the boundary condition
must be such that δA| = 0. Here, for any differential form ϑ, we write ϑ| for
the restriction of ϑ to the boundary. (This is the restriction in the sense of
differential forms, so for example if ϑ is a one-form, then ϑ| is the part of ϑ
that is tangent to the boundary.) Since δA is a multiple of ψ1 − i 	 ψ3, to
ensure that δA| = 0, the boundary condition must be, in part, that

(A.4) ψ1| − i 	 ψ3| = 0.
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Another condition comes from the fact that in the constructions of section
5.1.3, we want σ| = 0 and hence also σ| = 0. To be compatible with this,
the fermion boundary condition must set δσ| = 0. From eqn. (3.25) of [6],
we have δσ = i(η + tη̃) = (i/2)((1 + t)η0 + (1 − t) 	 η4), so the boundary
condition must tell us that

(A.5) (1 + t)η0| + (1 − t) 	 η4| = 0.

When we vary the action (A.1) with respect to Θ, we get a surface term

(A.6)
2i
e2

∫
∂M

Tr (Ω ∧ δΘ + 	Ω ∧ 	δΘ) .

The fermion boundary condition must ensure vanishing of (A.6), and it
must ensure the vanishing of half of the components of Ω and half of the
components of Θ. Together with (A.4) and (A.5), these conditions uniquely
determine the boundary conditions for fermions. For example, we need χ| ∧
ψ1| + 	χ| ∧ 	ψ3| = 0. (Here, for example, 	χ| is the tangential part of 	χ
at the boundary; in other words, one acts with 	 before restricting to the
boundary.) In view of (A.4), this implies that the boundary condition on χ
is

(A.7) χ| − i 	 χ| = 0.

And finally, in addition to (A.4), ψ1 and ψ3 must obey

(A.8) (1 + t) 	 ψ1| − (1 − t)ψ3| = 0.

A.1. Ellipticity. It remains to show that the boundary condition just
described is elliptic for generic t, in fact for t 	= −i. (As explained in [6],
the model has properties similar to those of a two-dimensional A-model for
all values of t except t= ±i. A boundary condition related to the one we
consider by φ→−φ is elliptic for t 	= i.) This is actually a straightforward
exercise, the only difficulty being that the criterion for a boundary condition
to be elliptic may not be familiar.

In general, consider fields Φ on a manifold M with boundary that obey
an elliptic differential equation DΦ = 0. (In our application, the operator D
is 	dA + dA	, acting from differential forms of odd degree to those of even
degree; this is a standard example of an elliptic operator.) A general bound-
ary condition is given by an equation UΦ = 0, where U is a linear map from
the space of boundary data of Φ to some linear space V . (By boundary data,
we mean the boundary values if D is a Dirac-like equation, the boundary
values and normal derivatives at the boundary if D is a Laplace-like, etc.)

We can assume that M looks near its boundary like ∂M×R+, where R+

is the half-line y ≥ 0. The notion of ellipticity is local along ∂M , so we can
take ∂M = R

3. We can then also work in momentum space, that is consider
wavefunctions of definite momentum �k along R

3. A boundary condition is
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called elliptic if for every f ∈ V with nonzero momentum �k, there is a unique
Φ of momentum �k that obeys DΦ = 0, decays exponentially with increasing
y, and also obeys a shifted version of the boundary condition

(A.9) UΦ = f.

The importance of this criterion is that an elliptic differential equation on a
manifold with boundary, endowed with an elliptic boundary condition, has
properties similar to those of an elliptic differential equation on a manifold
without boundary. As a result, quantum perturbation theory has similar
properties to those that are familiar in the absence of a boundary. (One
expects the same to be true for the nonperturbative quantum theory, though
this is certainly much harder to prove.)

Before considering our problem, let us practice with the case of Dirichlet
or Neumann boundary conditions for the scalar Laplace equation d	dφ= 0,
where φ is a scalar field. Let �u be Euclidean coordinates along ∂M = R

3, and
y a normal coordinate. A general solution of d 	 dφ= 0 whose dependence
on �u is exp(i�k ·�u) (for some non-zero momentum vector �k) and that vanishes
exponentially with increasing y is a multiple of φ�k

= exp(i�k · �u) exp(−|k|y).
Dirichlet boundary conditions mean that the map U takes a solution of
the scalar Laplace equation on the half-space R

3 × R
+ to its restriction to

y = 0. So the criterion for ellipticity is as follows: for any constant c, and
any nonzero �k, there must exist a unique solution φ of the scalar wave equa-
tion, decaying exponentially with y, and with φ|y=0 = c exp(i�k · �u). Clearly,
these conditions have the unique solution φ= cφ�k

, so Dirichlet boundary
conditions are elliptic. The case of Neumann boundary conditions is similar.

Let us consider in the context of this definition the boundary conditions
for Θ = ψ1 + ψ3 in our problem. These boundary conditions were given in
eqns. (A.4) and (A.8):

ψ1| − i 	 ψ3| = 0

(1 + t) 	 ψ1| − (1 − t)ψ3| = 0.(A.10)

We generalize these equations to include adjoint-valued forms γ1, γ3 of odd
degree:

ψ1| − i 	 ψ3| = γ1

(1 + t) 	 ψ1| − (1 − t)ψ3| = γ3.(A.11)

Concretely, for ∂M = R
3, we take γ1 = θ1 exp(i�k ·u), γ3 = θ3 exp(i�k ·�u), with

constants θ1, θ3. We have to show that for any nonzero �k, and any θ1, θ3,
there is a unique choice of ψ1, ψ3, with plane wave dependence on �u and
exponential decay in y, obeying DΘ = 0 along with (A.11). Since all fields
have the same exp(i�k · �u) dependence on �u, everything reduces to algebra.

The algebra can be carried out as follows. First of all, we can replace
the first equation in (A.11) by a pair of equations saying that the difference
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between the left and right hand sides is both closed and coclosed (in other
words, annihilated by both d and d	3, where 	3 is the Hodge star operator
of the boundary). The complete set of conditions then becomes:

d 	3 (ψ1| − i 	 ψ3|) = d 	3 (θ1 exp(i�k · �u))
d(ψ1| − i 	 ψ3|) = d(θ1 exp(i�k · �u))(A.12)

(1 + t) 	 ψ1| − (1 − t)ψ3| = θ3 exp(i�k · �u).

Now, for wavefunctions of momentum �k, we can solve the first and third
equations in (A.12), without affecting the second one, as follows. One class
of solutions of DΘ = 0 is

(A.13) ψ1 = d(aφ�k
), ψ3 = 	d(bφ�k

),

with φ�k
as above and constants a, b. These constants can be adjusted in a

unique way to satisfy the first and third equations in (A.12), as long as (1−
t)/(1+ t) 	= i or t 	= −i. (The condition t 	= −i is needed, since otherwise the
first and third equations in (A.12) depend on the same linear combination
of a and b and we cannot solve both equations.)

If we set ψ1 = ±	ψ3, the equation DΘ = 0 becomes the selfdual or anti-
selfdual Maxwell equations, together with a Lorentz gauge condition (for a
connection defined by a one-form α, the Lorentz gauge condition is d 	 α=
0). The selfdual and anti-selfdual equations are first order equations, so
initial data are given by prescribing a gauge connection on a three-manifold.
In fact, any one-form γ1 on R

3 can be written uniquely as γ1 = a+ +a−+dw
where a+ and a− are coclosed and are the boundary values of solutions of
the selfdual and anti-selfdual Maxwell equations on R

3×R+ that decay with
increasing y, and w is a zero-form. Shifting ψ1 and 	ψ3 by suitable linear
combinations of a+ and a−, we can solve the second equation in (A.12) with
fields that decay for increasing y. After doing this, the procedure of the last
paragraph can be used to solve the other two equations.

This establishes what we wanted for Θ. The boundary conditions for Ω
can be treated similarly.

A.2. A generalization. One last remark is as follows. In this appen-
dix, we have constructed a boundary condition that is compatible with the
topological supersymmetry of twisted N = 4 super Yang-Mills theory and
ensures that A| is invariant, where A =A + iφ. Instead, we may pick any
complex number κ with a nonzero imaginary part and ask for invariance of
Aκ|, where Aκ =A + κφ. Aκ can be regarded as a complex-valued connec-
tion, just like A. In this appendix, we have set κ= i because this case seems
natural in the context of the derivation in section 5.1.3. However, more gen-
eral values of κ are useful in the application to Khovanov homology [14].
The above derivation works for general κ with minor modifications.
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