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Abstract. In section 1 we present the language of differential
analysis in graded locally convex infinite dimensional vector spaces
that was studied in [5].

In section 2 we give results on diffeological Lie groups and Lie
algebras and formulate diffeological versions of the fundamental
theorems of Lie.

In section 3 we introduce the notion of graded supermani-
folds and we indicate a method of constructing non-trivial com-
pact graded supermanifolds with non-degenerate graded differen-
tial forms which generalize symplectic and contact structures to
the graded case.

In section 4 we study automorphisms of generalizations of some
of the classical geometric structures to compact graded supermani-
fold, M , and show that these automorphism groups are diffeological
Lie subgroups of the Lie group of superdiffeomorphisms of M .

Introduction

We shall show how to construct compact supermanifolds having geomet-
ric structures determined by certain elements of

Γ
(
∧p(T �

ΓM) ⊗Γ0 ⊗q
Γ0

(TΓM)
)

where Γ
(
∧p(T �

ΓM) ⊗Γ0 ⊗q
Γ0

(TΓM)
)

represents the smooth sections of the
bundle

ΠM : ∧p(T �
ΓM) ⊗Γ0 ⊗q

Γ0
(TΓM) �→ M,

where by abuse of notation the “Γ” in T �
ΓM and TΓM represents a finitely

generated Grassmann algebra. The geometric automorphisms of these geo-
metric structures will be seen to be diffeological Lie subgroups of the infinite

c©2011 International Press

237



238 J. LESLIE

dimensional Lie group of G∞ diffeomorphisms of an a non trivial compact
G∞ supermanifold.

Underlying the infinite dimensional Lie algebras of Cartan are geomet-
ric structures of differential geometry; such as contact structures, symplectic
structures, and foliated structures. It is known [4] in the the compact case
that the automorphism groups of these geometric structures are Lie sub-
groups of the Lie group of diffeomorphisms of the underlying differentiable
manifold. We show this is also the case for the generalized contact and sym-
plectic structures on graded G∞ super manifolds.

1. Analysis in graded infinite dimensional topological
vector spaces

We designate by N the natural numbers. Let Γ be the N graded Grass-
mann algebra over the reals, R, of super numbers generated by an arbitrary
set X = {ξi}i∈I , deg(ξi) = 1), when X is infinite we suppose that Γ is fur-
nished with the topology given by the inductive limit of ΓK , for K ∈ J ,
where J is the collection of finite subsets of I ordered by inclusion and ΓK

the finite dimensional subspaces of Γ generated by ξi1 , . . . , ξinK
. With this

topology Γ is a complete locally convex topological vector space. Γ is a Z2

graded commuatative (i.e. ab = (−1)|a||b|ba algebra, where |a| designates the
parity of a. Γ with this topology will be used as our base ring when X is infi-
nite. Note that Γ is a bigraded ((N, Z2)) ring, graded over the non-negative
integers N by the the number of generators, ξ ∈ X in the expression of an
element and by the Z2-parity of that number. When we consider Γ as a
right Γ module there are two possible right Γ module structures potentially
of interest for us.

Let εΓ :Γ �→ R be the unique R − algebra homomorphism such that
εΓ(k1Γ) = k, k ∈ R, and set I(Γ) = ker(ε), we have Γ = K1̇Γ + I(Γ).

Define a right Γ module structure on Γ noted ΓR by (k, γ)γ̇′ = (−1)|γ||γ′|
kε̇(γ′), γγ̇′), where k ∈ K, γ ∈ I(Γ), and γ′ ∈ Γ. Note that with this right Γ
module structure ΓR remains a right bigraded Γ module. When the right Γ
module structure on Γ is given by right Γ multiplication by abuse of notation
we shall simply designate by Γ this right Γ module. Let Γ0 (resp.Γ1) be the
even (resp. odd) Γ0-submodule of Γ.

Let V and W be topological graded modules over Γ0, a continuous map-
ping f : V × · · · × V �→ W is said to be an n − multimorphism when f is
n-multilinear with repect to the ground field K and

f(e1, . . . , eiγ, ei+1, . . . , en) = f(e1, . . . , ei, γei+1, . . . , en), γ ∈ Γ0

and
f(e1, . . . , enγ) = f(e1, . . . , en)γ, γ ∈ Γ0.

In case Γ is finite dimensional a Γ- multimorphism is called regular when
there exists a countably generated infinite dimensional algebra Λ containing
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Γ as a proper unitary subalgebra such that the map

fΛ0 : VΛ0 × · · · × VΛ0 �→ WΛ0

is a Λ0- multimorphism extension of f , where VΛ0 = V
⊗

Γ0
Λ0, defined by

fΛ0(v1 ⊗ λ1, . . . , vn ⊗ λn) = f(v1, . . . , vn) ⊗ λ1 . . . λn.

Definition 1.1. Let V and W be topological graded modules over Γ0,
given U ⊆ V open, a function f : U �→ W will be called super smooth when
for every n ≥ 1 there exists continuous maps, which are regular
k-multimorphisms in the k−terminal variables, for x ∈ U fixed: Dkf(x; . . . ) :
U × V × · · · × V �→ W , k ≤ n, such that

Fk(h) = f(x + h)− f(x)− 1
1!

Df(x, h)− · · · − 1
k!

Dkf(x, h, . . . , h), 1 ≤ k ≤ n,

satisfies the property that

(1.1) Gk(t, h) =
{

Fk(th)/tk, t 
= 0
0, t = 0

is continuous at (0, h) ∀h ∈ V .

Proposition 1.1. If a function f : U �→ W is smooth and Df(x; αγ) =
Df(x; α)γ, then f(x) is super smooth.

Proof. In this proof we suppose that Dkf(x; α1, . . . αk, ) : U ×V ×· · ·×
V �→ W symmetric in α1, . . . αk It suffices to prove for n ≥ 2 that a Cn

function f : U �→ W which is Gn−1 is Gn. It is known that Dt=0D
kf(x +

th, h . . . , h) = Dk+1f(x + th, h . . . , h). For k ≥ 2, we have Dkf(x + th, h . . . ,
hγ) = Dt=0(Dk−1f(x + th, h . . . , h)γ) = Dt=0D

k−1f(x + th, h . . . , h)γ = Dk

f(x + th, h . . . , h)γ. �
Super smooth functions are smooth and therefore satisfy the classical

theorems such as the chain rule.
Note that multiplication defines a super smooth map

Γ × Γ �→ Γ.

Given a well-ordering, ≺, of I, we obtain an associated basis of Γ, {ξi1 , . . . ,
ξin} of Γ, where ik ≺ ik+1; we shall call this basis a canonical basis of Γ.

To each of these basis elements is associated an unique 1 − morphism
p{ξi1

,...,ξin} : Γ �→ Γ, defined by

p{ξi1
...ξin}(aj1...jn1ξi1

...ξjn1
+···+al1...lnξl1

...ξln+···+ak1...kn2
hξk1

...ξkn2
)

= ai1,...,inξi1 , . . . , ξin

It is straightforward to verify that as in the classical case

Proposition 1.2. If f : V �→ W is a continuous Γ0 homomorphism, then
f(x) is a supersmooth function such that Dxf = f ∀x ∈ V .
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Given an open subset U of Γ. x0 ∈ U , C∞(U, Γ) has the structure of a
graded module over the ground field K determined by C∞(U, Γ)0 = C∞(U,
Γ0) and C∞(U, Γ)1 = C∞(U, Γ1).

Designate by Γn
0 (resp. Γn

1 ) the n-fold direct sum of the Γ0 modules
Γ0 (resp. Γ1) and suppose U ⊂ Γn

0 ⊕ Γm
1 is a non-empty open subset, set

ηi = (0, . . . , 0, 1Γ, 0, . . . , 0) ∈ Γn
0 ⊕ Γm

1 , where 1Γ is in the ith position, i ≤ n.
Given a smooth function f : U �→ Γ set ∂f/∂xi(x) = Dt=of(x + tηi).

Given a system of generators {ξi} of Γ define a linear map Δξi : Γ �→
Γ by Δξi(ξi1 . . . ξk . . . ξin) =

∑n
k=1 δiik(−1)(k−1)(ξi1 . . . ξik−1

ξik+1
. . . ξin), and

Δξj (1Γ) = 0.

Lemma 1.1. Δξi : Γ �→ Γ is a 1-morphism, and a graded odd derivation;
that is, Δξi(γ1.γ2) = Δξi(γ1).γ2 + (−1)|γ1|γ1.Δξi(γ2), “| · |” designates “the
parity of”(0 for even, 1 for odd). Δξi is odd in the sense that Δξi(Γi) ⊂ Γi+1.

Proof. By definition Δξi is a 1-morphism. To see that Δξi is a deriva-
tion it suffices to consider Δξi(γ1.γ2) and to do an induction on the Z-grading
of γ1. �

Definition 1.2. Let X ⊂ Γ be a set of generators of the Grassmanian
algebra Γ. given an open subset U of Γ. x0 ∈ U , a generator ξ ∈ X ⊂ Γ, and
a smooth function f : U �→ Γ set ∂f/∂ξ(x) = Δξ ◦ Dt=0f(x + tξ).

We have the following important proposition which is immediate from
the definitions:

Proposition 1.3. Let x ∈ U , ∂f/∂ξ(x) : C∞(U, Γi) �→ C∞(U, Γi+1)
defines a smooth odd derivation for the C∞ topology.

Designate by Ln(Γ, Γ) the vector space of n-multilinear n-morphisms.

Proposition 1.4. Suppose that in L1(Γ, Γ) we take set theoretic compo-
sition as a product. Then L1(Γ, Γ) is a Z2-graded algebra, where L1(Γ, Γ)0 =
{T ∈ L1(Γ, Γ) : T (Γ0) ⊂ Γ0 and T (Γ1) ⊂ Γ1}, and L1(Γ, Γ)1 = {T ∈ L1(Γ, Γ):
T (Γ0) ⊂ Γ1 and T (Γ1) ⊂ Γ0}.

Proposition 1.5. Given an open subset U of Γ, x0 ∈ U , a generator
ξ ∈ X ⊂ Γ, and a super smooth function f : U �→ R ⊂ Γ. Then ∂f/∂ξ(x) = 0.

Proof. Recall that Df(x, .) extends to countably infinite generated Λ
where Γ ⊂ Λ. ∂f/∂ξ(x) 
= 0. The real number Dt=0f(x+tξ) satisfies for every
element η ∈ Λ that 0 = Df(x; ξξη) = Df(x; ξ)ξη. Therefore, ∂f/∂ξ(x) = Δξ◦
Dt=0f(x + tξ) = 0. �

Definition 1.3. Given an open subset U ⊂ Γn
0⊕Γm

1 , a graded derivation
D = D0 + D1 : G∞(U, Γ) �→ G∞(U, Γ), is a Γ homomorphism, where Γ is
acting from the right, such that D0 : G∞(U, Γ) �→ G∞(U, Γ) is a derivation,
and D1 : G∞(U, Γi) �→ G∞(U, Γi + 1) satisfies D1(f ·g) = D1(f)·g+(−1)|f |f ·
D1(g), where |f | designates the parity of f.
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Using the fact that a G∞ super smooth functions f : U �→ Γ is a C∞
smooth function we deduce from the Taylor series with Lagrange remain-
der that

Proposition 1.6. Every smooth derivation D : G∞(U, Γ) �→ G∞(U, Γ)
is of the form D =

∑n
i=1 gi(x)∂/∂ξi +

∑N
j=1 fj(x)∂/∂xj, where fj , gi ∈ C∞

(U, Γ).

2. Diffeological lie groups and lie algebras

The details for this section can be found in [7]. Given the category
M whose objects are manifolds modelled on the open subsets of complete
Hausdorff locally convex topological vector spaces, and whose morphisms are
C∞ functions. A diffeological space is a set S together with a contravariant
subfunctor on M FS(N) ⊆ Homset(N, S) such that constant maps are in
F (N) for each object N of M and each x ∈ S and such that F restricted to
the subcategory of open subsets of a fixed manifold, N , whose morphisms
are the canonical injection of open subsets of N into each other, F satisfies
the axioms of a set valued sheaf. Given an open U ⊂ E, E a graded complete
Hausdorff locally convex topological vector space. An element f ∈ FS(U) is
called a plot of S.

Given diffeological spaces (X1, F1) and (X2, F2) a function f : X1 �→ X2

is called smooth or C∞ if for each g ∈ F1, we have f◦g ∈ F2. We shall say that
f is locally smooth at x0 ∈ X1 when given any smooth map, g ∈ F1, from
a neighborhood, U , of 0 ∈ E,where f(0) = x0 there exists a neighborhood,
U0 ⊂ U of 0 such that f ◦ (g|U0) ∈ F2.

When S is a C∞ manifold we shall suppose without explicit mention
to the contrary that it has its underlying diffeology given by F (C) being
defined to be the set of C∞ maps with domain N and values in S. We shall
call this diffeology the canonical diffeology on the C∞ manifold S.

Given a manifold M and a diffeological space (S, F ), a mapping, f ,
from a subset C ⊆ M to S is called smooth, when there exists an open
neighborhood, U , of C and a smooth extension of f to U , f̃ : U �→ S.

Given any collection of diffeological structures on a set S, Fi, we have
that ∩Fi is a diffeological structure, thus any assignment of functions,
GS(U) ⊂ Homset(U, S), U ⊂ E, E a Hausdorff locally convex topological
vector space, generates a diffeology; namely, the smallest or finest diffeology
containing the GS(U). For the diffeology so generated we shall call GS(U)
a system of generators.

A useful notion for diffeological structures is that of the pull − back:
given a diffeological stucture on a set T , (T, G), and a function, f : S �→ T ,
define f�G(U) = {g ∈ Homsets(U, S) : f ◦g ∈ G(U)}. It is straightforward to
verify that f�G is a diffeological stucture on S.

Given a subset S1 ⊂ S2, where (S2, F2) is a diffeological space, there is
a diffeological structure induced on S1 by F1(C) = {f ∈ F2(C) : f(C) ⊂ S1}.
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Note that F1 = i�(F2), where i : S1 �→ S2 is the canonical inclusion. In the
rest of this paper when we consider a subset of a diffeological space as a
diffeological space it will be with the above described structure unless there
is an explicit mention to the contrary. When C is an open subset of a graded
Hausdorff locally convex topologoical vector space we shall call f of FS(C)
a plot of the diffeological structure at a point s = f(x), x ∈ C.

Given diffeological spaces (X1, F1) and (X2, F2), and an open subset
U of an complete Hausdorff locally convex topological vector space E a
mapping f : U �→ C∞(X1, X2) is smooth when F : U × X1 �→ X2, given by
F (u, x) = f(u)(x) is smooth. The finest diffeology on C∞(X1, X2) admitting
these functions as generating plots will be called the function space diffeology
on C∞(X1, X2) or the canonical diffeology on C∞(X1, X2).

It follows from the definitions that

Proposition 2.1. Given compact C∞ manifolds M and N a function
f : N �→ C∞(M, Rn) is smooth for the C∞ topology on C∞(M, Rn) if and
only if the induced map f̃ : N × M �→ Rn is C∞.

Corollary 2.1. Given a compact C∞ manifold M and an open subset
U ⊂ Rn a function f : U �→ Diff∞(M) is smooth for the C∞ topology on
Diff∞(M) if and only if the induced map f̃ : U × M �→ M is C∞.

Definition 2.1. We shall call a diffeological structure lattice or L type
when given two plots f : M1 �→ S, g : M2 �→ S at a point t = f(x) = g(y) ∈ S
there always exists a third plot through which the germs of f at x and g at
y factor; that is, there exists a plot h : N �→ S such that f = h ◦ φ, g = h ◦ γ,
where φ : M̃1 �→ N, γ : M̃2 �→ N are smooth functions such that φ(x) = γ(y),
where M̃i ⊂ Mi is a neighborhood of x (resp. y).

Suppose that (S, F ) is a diffeological space of L − type; consider the
equivalence relation generated between germs of one dimensional plots at
s ∈ S as follows: let f and g be one dimensional plots at s from domains open
intervals C1 and C2 containing 0, we write f0 ≡ g0, when f(0) = g(0) = s and
there exists a plot k:U�→ S through which the germs of f and g factor at 0
and we have that D0(h ◦ f) = D0(h ◦ g), where h is any smooth real valued
function defined on k(U). The equivalence classes will be called tangent
vectors at s, we shall designate the set of tangents at s by TsS.

It is immediate that a smooth map f : S �→ W defines a function Tf :
TsS �→ Tf(s)W .

When M is a manifold modelled on a locally convex topological vec-
tor space, this definition is equivalent to the classical one for the canonical
diffeology associated to the manifold structure. Given a plot f : U �→ S, we
use Tf : TU �→ TS to define plots on TS and thus a diffeology on TS, in
what follows TS will be considered as a diffeological space with the finest
diffeology admitting such Tf ′s as plots.
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Given diffeological spaces (X1, F1) and (X2, F2) the Cartesian product
diffeology F1 × F2 on X1 × X2 is defined by f ∈ F1 × F2 if and only if
pr1 ◦ f ∈ F1 and pr2 ◦ f ∈ F2. The cartesian product when considered as a
diffeological space will be considered to have this cartesian product diffeology
unless there is an explicit mention to the contrary.

A group G with a diffeology F on its underlyling set will be called a
diffeological group when multiplication and inversion define smooth maps
G × G �→ G and G �→ G.

One readily verifies that each diffeological group is of L − type.
In a similar vein we define other diffeological algebraic structures.
Given a plot at the identity, e ∈ G, f : U �→ G, x ∈ U , U ⊂ E, E a locally

convex topological vector space, U open, define Df(x; α) = [f(x + tα]t=0,
x ∈ U .

In [7] we proved

Proposition 2.2. If G is a diffeological group, then TeG is a diffeological
vector space.

Remark 2.1. Let {G,G} be a diffeological group and N a normal sub-
group of G, then one has that G/N is a diffeological group, where the quo-
tient diffeology on G/N is the diffeology generated by the sets of functions
{p◦g, p : G �→ G/N canonical map, g ∈ G(U), U an open subset of a complete
Hausdorff locally convex topological vector space}.

We shall call a collection of plots S cofinal for a diffeological space {X,F}
when every plot of X, factors germwise smoothly through a map of S; that
is, given a plot of X, u : U �→ X and u(x0) = y0∃ an open neighborhood of
x0 in U , U0 and a smooth map φ : V0 �→ X ∈ S such that u|U0 = φ◦v, where
v : U0 �→ V0 is smooth.

Definition 2.2. A diffeological group G will be called a diffeological Lie
group when the tangent space at the identity, TeG, is a diffeological vector
space which

(i) admits for every non zero α ∈ TeG a smooth real valued linear map
T : TeG �→ R such that T (α) 
= 0, and

(ii) the linear plots of TeG are cofinal.

Example 2.1. A Lie group, G modeled on a C∞ super manifold (possibly
infinite dimensional) admits the structure of a diffeological Lie group with
the canonical diffeology.

Theorem 2.1. Let G be a diffeological Lie group, then TeG is a diffe-
ological vector space which admits the structure of a Lie algebra such that
the bracket operation defines a smooth linear map �X : TeG �→ TeG, where
�X (Y ) = [X, Y ].
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Let’s recall a diffeological Lie group G is called regular when the loga-
rithmic derivative f ′(t)f(t)−1 defines a diffeological isomorphism from the
diffeological set of smooth mappings from the unit interval into G which
map zero to the identity, e ∈ G, C∞

0 (I, G), to the diffeological set of smooth
mappings from the unit interval into TeG, χ : C∞

0 (I, G) �→ C∞(I, TeG). Note
that a map from the unit interval into a diffeological space is called smooth
when there exists an open interval containing the unit interval to which the
map can be smoothly extended.

It is straightforward to verify

Proposition 2.3. Given two regular diffeological Lie groups G and H,
and a smooth homorphism F : G �→ H, then Hom(I, dF )◦χ = χ◦Hom(I, F )

Theorem 2.2. Let G be a regular diffeological Lie group, then there
exists a smooth function exp : TeG �→ G such that exp((t + s)) = exp(tξ) ×
exp(sξ) and Dt[exp(tξ)] = Rexp(tξ)(ξ).

Corollary 2.2. If G is a regular diffeological Lie group, then TeG
admits the structure of a diffeological Lie algebra.

Definition 2.3. A diffeological vector space E will be called integral

when there exists a smooth linear map
∫

: C∞(I, E) �→ E, such that given
any smooth real valued linear function H : E �→ R, we have H(

∫
(f)) =∫

I H(f(t))dt and such that given any v ∈ E we have
∫

(f(t)v) = (
∫
I f(t)dt)v.

We shall sometimes for the sake of clarity use the notation
∫

f(t))dt espe-
cially when f takes its values in a function space.

Given an integral diffeological vector space, E, f ∈ C∞(I, E), t ∈ I define∫ t(f) =
∫

(f(ts)t)ds
A subspace, K, of an integral diffeological vector space, E, will be called

closed when
∫

(C∞(I, K)) ⊆ K.

Definition 2.4. Let K{x1, . . . , xn+2} be the free associative algebra
over the field K generated by x1, . . . , xn+2, K{x1, . . . , xn+2} is isomomorphic
to the tensor algebra generated by an n + 2 dimensional vector space.

Definition 2.5. Let L be an integral diffeological Lie algebra such that
the linear plots of L are cofinal. A closed subalgebra, H, will be called
strongly integrable when

(i)
∫ s defines a smooth map

∫ s : C∞(I,L) �→ C∞(I,L), and
(ii) when for each sequence ai(t) ∈ C∞(I,H), i = 1, . . . , n; g(t) ∈

C∞(I,H) and P (x1, . . . , xn+2) ∈ K{x1, . . . , xn+2} the non homoge-
neous linear differential equation, (�)y′ = g(t)+P (ada1(t), . . . , adan

(y),
∫ s) admits an unique smooth flow, Φ(a(t), s, l) such that Ds

Φ(a(t), s, l, g(s)) = g(s) + [a(s), Φ(a(t), s, l)], Φ(a(t), 0, l) = l and
such that Φ defines a smooth map

(iii) Φ : C∞(I,H) × I ×H× C∞(I,H) �→ H, such that
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(iv) Φ(a(t), s, ,̇g) : H �→H is a diffeomorphism which induces a diffeo-
morphism

Φ : C∞(I, I) �→ C∞(I, I),
where Φ(f)(t) = Φ(a, t, f(t))

Example 2.2. Let M be a compact C∞ manifold and let X (M) be the
Lie algebra of C∞ vector fields on M .

It results from the classical theory of differential equations on a compact
manifold that the canonical diffeology associated to the C∞ topology on
X (M) renders a closed sub algebra H⊆X (M) a strongly integrable Lie
algebra.

We proved in [7]:

Theorem 2.3. Let G be a simply connected, regular, diffeological Lie
group with canonical diffeomorphism χ : C∞

0 (I, G) �→ C∞(I, TeG) and sup-
pose that H is a connected normal subgroup of G such that there exists
an integrable Lie ideal, H⊆ TeH ⊆ TeG = G with a diffeological vector space
complement, K in G, satisfying

(i) χ−1(C∞(I,H)) ⊆ C∞
0 (I, H);

(ii) given h ∈ H suppose there exists a smooth path f : [0, 1] �→ H such
that f(0) = e, f(1) = h, and χ(f) ∈ C∞(I,H);

(iii) given any k 
= 0 ∈ G/H, suppose there exists a smooth Lie algebra
homomorpism φ : G/H �→ S, where S is the Lie algebra of a regular
diffeological Lie group S such that φ(k) 
= 0.

Then H and G/H are regular diffeological Lie groups with Lie algebra H
(resp. G/H.

Theorem 2.4. Suppose that G is a strongly integrable diffeological Lie
algebra such that

∫
[a, f(t)] = [a,

∫
f(t)], where f(t) ∈ C∞(I,G) and a ∈ G.

Then C∞(I,G) with its canonical diffeology is a regular diffeological Lie
group with a group product given by

(�)(u·v)(s) = χ−1 (χ(u)(s)) + Φ (χ(v), s, χ(u)(s))) .

Proof. (�) [7] provides C∞(I,G) with a group strructure. Since χ is a
diffeomorphism of diffeological spaces it follows that

C∞(I,G) is a diffeological group. It’s Lie algebra is again C∞(I,G) with
Lie product given by

� � {f, g}(t) := [f(t),
∫ t

g(s)] + [
∫ t

f(s), g(t)]

To see that C∞(I,G) is an integral Lie algebra, suppose given a smooth F :
I �→ C∞(I,G), define

∫
F ∈ C∞(I,G) by

∫
F (s) =

∫
F (t)(s)dt. From the def-

initions and utilizing the equality
∫

(
∫

f(x, y)dx)dy =
∫

(
∫

f(x, y)dy)dx we
obtain that this new

∫
: C∞(I, C∞(I,G)) �→ C∞(I,G) determines an integral
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Lie algebra stucture on C∞(I,G). The above integral structure on C∞(I,G)
together with the strong integrability of G) implies the strong integrability
of C∞(I,G). �

Definition 2.6. Given two smooth paths f, g : I �→ L into a diffeolog-
ical Lie algebra, L, we say that f, g : I �→ L are Lie homotopic when there
exists smooth maps from the square V, W : I × I �→ L such that V (t, 0) =
f, V (t, 1) = g, W (0, s) ≡ W (1, s) ≡ 0, Vs − Wt = [V, W ]

It has been shown [7] that the subset N of C∞(I,G) consisting of
paths Lie homotopic to 0 is a normal subgroup of C∞(I,G). Let Ω = {γ ∈
C∞(I,G) :

∫ 1
0 γ(s)ds = 0}, it follows from �� of the proof of theorem 2.4 that

Ω is a Lie ideal of C∞(I,G).
From [7] we have

Theorem 2.5. Suppose that G is a strongly integrable integral Lie alge-
bra, then there exists a simply connected regular diffeological Lie group G
such that TeG ∼= G.

Under these conditions we can now formulate a version of Lie’s second
fundamental theorem:

Theorem 2.6. Let G be the integral Lie algebra of a simply connected
regular difffeological Lie group and suppose that H⊆ G is a closed strongly
integrable Lie subalgebra of G. Then there exists a connected subgroup H ⊆ G
such that TeH �H.

Proof. Let ρ : C∞(I,G) �→ C∞(I,G)/N = G be the canonical Lie homo-
morphism of groups. The the smooth Lie group homomorphism of C∞(I,H)
into C∞(I,G) induced by the canonical smooth Lie algebra homomorphism
of H into G composed with ρ gives a map onto a subgroup H of G which
satisfies the conditions of the theorem. �

3. A method of construction of non-trivial graded compact
supermanifolds with non degenerate graded differential forms

For the rest of this paper we suppose that Γ is the finitely generated
Grassmann algebra with generators: ξ1 . . . ξN , and suppose that C is the
canonical basis of Γ associated to system of generators {ξi}. Let M be the
category whose objects are super manifolds modelled on the open subsets of
the graded Γ0 module V = Γn

0 ⊕Γm
1 having G∞ smooth maps of G∞ smooth

super manifolds as its morphisms. As in the classical case we may define the
tangent bundle to a supermanifolds M to obtain a smooth vector bundle

ΠM : TM �→ M

where a vector α ∈ TxM is defined to be an equivalence classes of smooth
curves through x, a(t), parametrized by an open interval containing 0 such
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that a(0) = x with the equivalence relation a ≡ a′ if and only if Dt=0(f ◦
a)(t) = Dt=0(f ◦a′)(t) for every germ of a smooth function f : U �→ Γ defined
on a neighborhood U of x ∈ M .

This definition is equivalent to the choice of a vector in the modeling
space αi ∈ Ei, Ui ⊂ Ei and Uj ⊂ Ej , and φi : Ui �→ M models M with the
equivalence relation at x ∈ φi(Ui) ∩ φj(Uj) given by: (Ui, αi)) ∼ (Uj , αj) if
and only if D(φ−1

i ◦ φj)(φ−1
j (x), αj) = αi, which implies

Proposition 3.1. TxM ∼= Γn
0 ⊕ Γm

1 = V .

Definition 3.1. A supermanifold will be called pre-graded when the
tangent bundle can be reduced to the group G of Γ0- automorphisms of
Γn

0 ⊕ Γm
1 such that g ∈ G ⇔g(Γn

0 ) = Γn
0 and g(Γm

1 ) = Γm
1 .

Proposition 3.2. Given a pre-graded supermanifold M , the even (resp.
odd) vectors Ex(resp.Ox) ⊂ TxM form a sub vector space of TxM .

A pre-graded supermanifold is said to be graded when there exists a
system of charts U = {Ui}, φi : Ui �→ M for its supermanifold structure such
that Dx(φ−1

i ◦ φj)(x) ∈ G, ∀x ∈ Ui ∩ Uj . It follows from the definitions that

Proposition 3.3. If M is a graded supermanifold, then there exists a
subbundle E, (resp.O) ⊂ TM such that α ∈ Ex(resp.Ox) is vector tangent to
a curve C through x with φ−1

i (C) ⊂ Γn
0 (resp.Γm

1 such that TM = E + O.

Define δ(ξi)(s, x0) ∈ G∞(U, Γn
0 ⊕ Γm

1 ) by

δ(ξi)(s, x0) = x0+[(sξi⊕. . .⊕0)⊕. . .⊕(0⊕. . .⊕sξi, . . . , 0)⊕. . .⊕(0⊕. . .⊕sξi)],

for |s| > 0 sufficiently small.
Now define

∂f/∂ξ(x0) : G∞(U, Γ)i �→ G∞(U, Γ)i+1

by ∂f/∂ξ(x0) = Δξ ◦ Ds=0f(δ(ξ)(s, x0)), we recall Δξ : Given a system of
generators {ξi} of Γ define a linear map Δξi : Γ �→ Γ by Δξi(ξi1 . . . ξk . . . ξin) =∑n

k=1 δiik(−1)(k−1)(ξi1 . . . ξik−1
ξik+1

. . . ξin), and Δξj (1Γ) = 0.
Given an open subset U ⊂ Γn

0 ⊕ Γm
1 , we define a graded right Γ-module

structure on G∞(U, Γ) by setting G∞(U, Γ)0 = G∞(U, Γ0) and G∞(U, Γ)1 =
G∞(U, Γ1), and setting (fγ)(x) = f(x)γ. As in the classical case we identify
a vector αi ∈ Ei with the class of G∞ curves in the direction of that vec-
tor and write ∂/∂xi(resp.∂/∂ξi) for the vector in the direction of ηi (resp.
δ(ξi)(1, x0)).

For the rest of this section we shall assume that our manifolds are graded
supermanifolds and therefore that the fibers of ΠM : TM �→ M have a canon-
ically assigned gradation. The associated vector bundle with fiber Γ ⊗Γ0 V

ΠMΓ : TΓM �→ M

inherits a graded structure by the convention |γ ⊗Γ0 v| = |γ| + |v|.
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It is straightforward to prove that

Proposition 3.4. The G∞ smooth graded derivations of G∞(U, Γ) are
finite sums of the form∑

fi(x, ξ)∂/∂ξi + gi(x, ξ)∂/∂xi + hi(x, ξ)∂/∂ξi + ki(x, ξ)∂/∂xi,

where (x, ξ) ∈ U ⊂ Γn
0 ⊕Γm

1 , fi, ki ∈ G∞(U, Γ)0, and gi, hi ∈ G∞(U, Γ)1, des-
ignate by D(U) the space of derivations of G∞(U, Γ), where U ⊂ Γn

0 × Γm
1 ,

x ∈ Rn.
D(U) can be given the structure of a left G∞(U, Γ) module by (γd)(f)

(x) = γ(x)(d(f)(x))

Now let
Π�

M : T �
ΓM �→ M

be the associated bundle with fiber HomΓ(Γ ⊗Γ0 V, Γ) ∼= HomΓ0(V, Γ). Its
fiber now is assigned a Z2 grading by

HomΓ(Γ ⊗Γ0 V, Γ)0 = HomΓ0(Vi, Γi) and HomΓ(Γ ⊗Γ0 V, Γ)1
= HomΓ0(Vi, Γi+1).

Given a trivializing chart at x ∈ U ⊂ M for ΠM : TM �→ M
Suppose γi ∈ Γ,γ0 = 1, k = 1, . . . , N, j = 1, . . . , n, is a basis of Γ over R,

then a basis of T �
ΓxM over R can be given by dxjγi, dξkγi and dxj , where

dξj ∈ HomΓ0(V, Γ) are defined by {∂/∂xi|dxj} = δjl = {∂/∂ξi|dξj} and {∂/
∂ξi|dxj} = 0 = {∂/∂xi|dξj}.

Definition 3.2. A bilinear map ω : D(U)×D(U) �→ G∞(U, Γ) is called
a 2 − form when

{X1, fX2|ω} = (−1)|X1||f |f{X1, X2, ω}
= (−1)|X1||f |{fX1, X2, ω}, f ∈ G∞(U, Γ).

We place a Z2 gradation on 2 − forms such that |ω| = |{X1, X2|ω}| +
|X1| + |X2|(mod2)

In the Z2-graded case we now define wedge algebra of a graded vector
space V as follows: suppose that R is the graded ideal generated by α⊗β −
(−1)|α||β|β ⊗ α in the doubly graded tensor algebra

⊗∞V =
∞∑

n=0

⊗nV,

where α and β are homogeneous elements of V .
Set

∧∞ V = ⊗∞V/R ≡ ∑∞
n=0

∧n V , where
∧n V = V/R ∩ ⊗nV,

On ⊗∞V =
∑∞

n=0 ⊗nV ‘, a Z2-gradation is placed on ⊗nV by the con-
vention |α1 ⊗ · · · ⊗ αn| = |α1| + · · · + |αn|.
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As in the classical case we may consider a smooth vector bundle
∧n T �

M �→ M and smooth sections, ω of the linear bundle
∧n T �M �→ M , where

M is a supermanifold.
Rogers [9] p. 75 implies

Proposition 3.5. Given a trivializing chart U of Π�
M | ∧2 T �

ΓU �→ U ,
there is a 1−1 parity preserving correspondence between sections of Π�

M |Π�
M |

∧2 T �
ΓU �→ U and 2-forms on U determined by

{X1, X2|ω1 ∧ ω2} = (−1)|X2||ω1|{X1, |ω1}{X2|ω2}
− (−1)|ω1|||ω2|+|X1||ω2|{X1, |ω2}{X2|ω1}

Remark 3.1. Derivations are are given the structure of left G∞(U, Γ)
modules and we give two forms the structure of right G∞(U, Γ) module
structure by the convention {X1, X2|ωf} = {X1, X2|ω}f .

f: Suppose that A is an n × n upper triangular matrices of entries from
(ΓN )0, with 1′s down the diagonal; and suppose that B is an n×m matrix
with odd entries from (ΓN )1, and Im an m × m identity matrix.

The matrices of the form (
A B
0 Im

)

form a connected nilpotent Lie group G of dimension 2L−2n(2m + n − 1).

Lemma 3.1. Let H ⊂ G be a the subgroup whose entries are elements
of (ΓN )0 and (ΓN )1 with integer coefficients of the canonical Grassmann
generators ξi1 . . . ξik . . . ξin ; ik ≤ ik+1. Then H is a lattice subgroup of G.

Proof. G is clearly nilpotent, we have only to establish that G/H is
compact. Firstly order the entries of the matrix lexicographically; that is,
so that the entries are simply ordered by (i, j) ≺ (k, l) if and only if i < k or
i = k and j < l.

We now perform an induction vis-a-vis this finite lexicographic simple
ordering of the matrix entries.

For a real number x, designate by ι(x) the integral part of x. Given an
element in Γ, γ =

∑m
i=1 aj1 , . . . , jniξj1 . . . ξjk

. . . ξjni
, designate by abuse of

language ι(γ) =
∑m

i=1 ι(aj1 , . . . , jni)ξj1 . . . ξjk
. . . ξjni

, where j1 < · · · < jk <
· · · < jni .

Now given a triangular matrix (tij) = T ∈ G suppose that there exists a
pair k ≤ l such that the entries of T satisfy the property that tij =

∑p
m=1

a
(ij)
I1,...,ini

ξI1 , . . . , ξik , . . . , ξinm
with |a(ij)

I1,...,lni
| ≤ 1 when (ij) ≺ (kl).

Let Pkl be the matrix which differs from the n + m × n + m identity
matrix In+m only in the (k,l)th position where we suppose inserted −ι(tkl)
to obtain the matrix Pkl.
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Now observe that the matrix (bij) = B = PklT has the property that
|bij | ≤ 1 for (ij) � (k, l), since bkl = tkl − ι(tkl) and bij = tij for ij ≺ kl.

The above establishes that given any matrix (tij) = T ∈ G there exists a
matrix P ∈ H such that PT = B = (bij) has all of its entries bij =

∑
k aij

i1,...,ik

ξi1 , . . . , ξik with real coefficients |aij
i1,...,ik

| ≤ 1 with respect to th canonical
basis ξi1 , . . . , ξik , . . . , ξin .

The above implies that G/H is compact, and therefore that H ⊂ G is a
discrete lattice subgroup of the connected nilpotent Lie group G. �

The homotopy sequence of the fibration H �→ G �→ G/H implies that
Π1(G/H) ∼= H.

Corollary 3.1. G/H is a connected compact supermanifold modeled
on ((ΓN )0)n(n−1)/2 ⊕ ((ΓN )1)mn, such that Π1(G/H, [e]) ∼= H.

Example 3.1. (Odd Compact Graded Symplectic Manifold): Consider
the Abelian super Lie group G1 ⊂ G consisting of matrices of the form

M =
(

A B
0 1

)

where m = 1 and the first row of A is a vector of the form α = (1, a12, . . . ,
a1n+1), where a1j ∈ (Γn)0 and B is of the form⎛

⎜⎜⎜⎝
b
0
...
0

⎞
⎟⎟⎟⎠

where b ∈ (Γn)1. Further, we suppose that eliminating the first row and col-
umn of M , M becomes an n × n identity matrix.

The construction of Example 3.1 provides a torus T = G1/H∩G1 of real
dimension 2n−1(n + 1) modeled on ((Γn)0)n ⊕ (Γn)1).

Now suppose that G1 is modeled at the identity by the trivializing chart
(a12, . . . , a1n+1), b) �→ ((Γn)0)n ⊕ (Γn)1). Let dxj , dξk ∈ (T �

Γ)eG be the ele-
ments determined by this trivialization at the identity. The right invariant
Maurer Cartan form ω ∈ Γ(

∧2 T �
ΓT ) such that

Π�(ω(identity)) =
n∑

i=1

dxidξi

determines the odd graded super-symplectic manifold structure on T =
G1/H ∩ G1.

Example 3.2. (even symplectic compact graded manifold): With the
notation of the above example suppose that α = (1, a12, . . . , a12s+1) and sup-
pose that Γ is the Grassmanian algebra generated by ξ1 . . . ξq. Now the con-
struction of Example 3.1 gives a torus T = G1/H∩G1 modeled on ((Γq)0)2s⊕
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(Γq)1) of real dimension 2q−1(2s + 1). Consider the unique ω ∈ Γ(
∧2 T �

ΓT )
such that Π�(ω(identity)) = 2

∑s
i=1 dxi ∧ dxi+s +

∑q
i=1 dξi ∧ dξq−i.

The super symplectic structures of Examples 3.1 and 3.2 are non-
degenerate in the sense that:

given any X =
∑n

i=1 fi∂/∂ξi+gi(X, Ξ)∂/∂xi+hi∂/∂ξi+ki(X, Ξ)f∂/∂xi,
where fi, gi ∈ Γ there exists Y =

∑n
i=1 hi∂/∂ξi + ki∂/∂xi such that

ω(X, Y ) 
= 0

Example 3.3. (compact graded contact super manifold)
With the notation of the above example suppose that α = (1, a12, . . . ,

a12s+2) and suppose as above that Γ is the Grassmanian algebra generated by
ξ1 . . . ξq. Now the construction of Example 3.1 gives a torus T = G1/H ∩G1

modeled on ((Γq)0)2s+1⊕(Γq)1) of real dimension 2q−1(2s+2). Consider the
unique 1-form ω ∈ Γ(T �

ΓT ) such that Π�(ω(identity)) = 2
∑s

i=1(xidxi+s −
xs+idxi) +

∑q
i=1 ξidξq−i+1.

Example 3.4. (graded compact odd contact super manifold) In Example
3.3 we suppose Γ is generated by ξ1 . . . ξn+1 and that T = G/H is the torus
modeled on ((Γ)0)n⊕(Γ)1 of real dimension 2n+1(n+1). Consider the unique
1-form

ω ∈ Γ(T �
ΓT )

such that Π�(ω(identity)) = dξn+1 +
∑n

i=1(xidξi + ξidxi).

4. Automorphisms of graded compact manifolds

It is known [5] that

Theorem 4.1. Suppose that M is a compact G∞ manifold modeled on
Γn

0⊕Γm
1 , where Γ is the algebra generated by the finite sequence ξ1, . . . , ξk, . . . ,

ξN . The tangent space TxM has canonically Γ0 module structure such that
TM is a G∞ manifold and such that the canonical projection TM �→ M is
a G∞ bundle.

Let Diff∞(M) and DiffG∞
(M) be respectively the group of C∞ (resp.

G∞) diffeomorphisms of M , Diff∞(M) and DiffG∞
(M) are regular diffe-

ological Lie groups with Lie algebras X and D, where X represent the C∞
vector fields on M and D is the closed Lie subalgebra of X of G∞ vector
fields on M with the canonical Γ0 module structure. Further X and D are
strongly integrable Lie algebras in the sense of section 2.

Remark 4.1. The modeling of DiffG∞
(M) is done by the restriction of

the exponential map of a G − connection on M , expG : X �→ Diff∞(M) to
D and defines a G∞ map (expG|D) : D�→ DiffG∞

(M), where G ⊂ GL(Γn
0 ⊕

Γm
1 ) = GL(2N−1(m + n), R), is the subgroup of of Γ0 automorphisms of

Γn
0 × Γm

1 .
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DiffG∞
(M) is the group of automorphisms of this G structure. The

manifold structure on DiffG∞
(M) is the canonical closed submanifold

structure induced by the C∞ manifold structure on Diff∞(M).
Now we recall that the Lie exponential exp : X �→ Diff∞(M) is the

unique solution of the differential equation on the compact manifold M
determined by

(��)d/dt(exp(t, X) = X(exp(t, X)), exp(0, X) = idM ∈ Diff∞(M).

This differential equation restricted to D determines a G∞ differential equa-
tion on the compact G∞ manifold M so that exp detemines locally a G∞
mapping exp : D�→ DiffG∞

(M).

Corollary 4.1. Given X ∈ D the Lie derivative defines a Γ0 p con-
travariant (q covariant) homorphism LX : Γ(∧p(T �

ΓM ⊗Γ0 ⊗q
Γ0

TΓM)) �→
Γ(∧p(T �

ΓM ⊗Γ0 ⊗q
Γ0

TΓM)), where Γ(∧p(T �
ΓM) ⊗Γ0 ⊗q

Γ0
TΓM) represents the

smooth sections of the bundle

ΠM : ∧pT �
ΓM ⊗Γ0 ⊗q

Γ0
TΓM �→ M,

and induces a G∞ map (X, ω) �→ LX(ω), D× Γ(∧p(T �
ΓM)⊗Γ0 ⊗q

Γ0
TΓM) �→

Γ(∧p(T �
ΓM) ⊗Γ0 ⊗q

Γ0
TΓM).

Theorem 4.2. Suppose that M is a compact G∞ manifold modeled on
Γn

0 ⊕Γm
1 , where Γ is the Grassmann algebra generated by the finite sequence

ξ1, . . . , ξk, . . . , ξN . Given ω ∈ Γ(∧p(T �
ΓM) ⊗Γ0 ⊗q

Γ0
TΓM), Let W = {X ∈ D :

LX(ω) = 0}.If W is Lie sub algebra of D, then W is a strongly integrable Lie
sub algebra of D.

Idea of Proof: W ⊂D ⊂X is a closed Lie sub algebra for the C∞ topol-
ogy, and therefore the differential equation (�)y′ = g(t) + P (ada1(t), . . . ,
adan(y),

∫ s) of definition 2.4 induces a smooth differential equation on the
compact manifold M , the existence and uniqueness theorem for compact
manifolds imply that � admits a solution in W with the required properties.
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