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Abstract. We describe a version of AdS/CFT duality proposed
by Sezgin, Sundell, Klebanov and Polyakov, between the O(N)
model in two dimensions and Fradkin-Vasiliev higher spin gravity
in three dimensions, and begin to reformulate it as a mathematical
conjecture expressing traces of differential and pseudodifferential
operators in terms of a classical boundary value problem in an
infinite-component Chern-Simons theory.
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1. Introduction

One of the most striking and unexpected discoveries of the 1994-98 “sec-
ond superstring revolution” was the AdS/CFT correspondence [33,41,65],
according to which N = 4 supersymmetric Yang-Mills theory in four dimen-
sions is dual to type IIb superstring theory on AdS5 ×S5. This finally made
precise the physics intuition, developed in the 1970’s by ’t Hooft, Polyakov,
Migdal, Witten and others [49, 58], that a four-dimensional gauge theory
should have a string description in the large N limit. Since then, the corre-
spondence has been much generalized [1] and has found many applications,
especially in providing simple solvable models exhibiting nonperturbative
physical phenomena such as confinement, dissipation and quantum phase
transitions [56].

However, despite a good deal of work, the microscopic workings of the
duality are still not well understood. Various ideas have been developed,
such as the holographic renormalization group [18], and integrability [44],
which has led to very impressive computations and comparisons at finite
gauge coupling [9,31]. But many basic questions, such as the class of field
theories with gravity duals, or the mapping between the variables on the
two sides, seem to not yet have precise answers.

Although dualities can be understood in depth in simple models [16],
usually the complexity of the two theories being related puts most pre-
cise statements out of reach. For example, just to define the N = 4 super
Yang-Mills correlation functions requires renormalization – although the
beta function is zero, all nontrivial gauge invariant operators are composite
operators, which must be renormalized. The usual way this renormalization
is phrased in physics requires making choices, at the very least a basis for
Hilbert space, and usually much more structure. This dependence plausi-
bly corresponds to some scheme dependence in the dual superstring theory,
including and generalizing coordinate transformations, field redefinitions,
and perhaps other symmetries. But to make the duality precise for corre-
lation functions of generic operators, one must get these prescriptions to
match, which is a formidable technical problem.

Another symptom of this complexity is that, compared to other topics
in string theory, so far AdS/CFT has inspired relatively few mathematical
developments. While there are some very interesting works along these lines,
such as [42,66], more typically what is discussed is rather intricate, and often
simpler to understand in other terms. From this point of view, we should
start with simpler versions of the duality, still involving field theory in higher
dimensions, to make more fundamental contact with mathematics.

Probably the simplest field theory-gravity duality, after the “old matrix
models” [22] which are dual to linear dilaton backgrounds rather than AdS,
is the conjecture of Sezgin and Sundell [53] and Klebanov and Polyakov [38],
which states that the so-called O(N) model in D = 3 dimensions is dual to
a D+ 1 = 4 dimensional theory of higher spin gravity developed by Fradkin
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and Vasiliev, and many others [59]. Although less discussed, both the O(N)
models and higher spin gravity make sense in arbitrary dimension D [60],
and one can make analogous duality conjectures for any D.

The O(N) model is exactly solvable in the large N limit, because (as we
review shortly) it is simply related to a quantum theory of N free bosons.
This theory has an infinite series of higher spin conserved currents, and by
physics arguments we will explain, the dual gravitational theory must have
a corresponding series of massless fields with spin greater than two. It turns
out to be difficult to find unitary quantum field theories of this type, and
the consistency of the Fradkin-Vasiliev type theory is nontrivial. It turns out
to make sense only in AdS backgrounds, which is part of the motivation for
the duality conjecture.

Since the conjecture was made, it received support from several compar-
isons of correlation functions, however since there are significant differences
with the standard AdS/CFT conjectures (for example, the O(N) model is
not a gauge theory) its status remained unclear. But recently, a complete
check at cubic order has been done by Giombi and Yin [28], which seems to
us fairly compelling evidence.

Physically, although theO(N) model itself is now considered a bit trivial,
in principle the duality extends to a much larger class of theories, with
arbitrary kinetic terms and thus arbitrary dispersion relations for free bosons
or fermions, which are of interest in condensed matter physics. The problem
of finding the gravity dual of a free field theory has also attracted attention
as a starting point for understanding AdS/CFT in more depth [29].

From a mathematical point of view, the partition function of N free
bosons is simply the determinant of a Schrödinger operator (raised to the
power −N/2) on a D-dimensional Riemannian manifold, while its general-
ization to the generating functional of correlation functions is the determi-
nant of a general multi-parameter family of partial differential operators.
Thus, the mathematical statement of this duality is an exact formula for
such determinants,1 in terms of critical points of an action functional of
D+ 1-dimensional fields evaluated with specified boundary conditions, cor-
responding to the choice of operator. This sounds rather interesting and
surprising, as determinants and traces of partial differential operators have
been studied very extensively and, at least to the author, no such general
mathematical results come to mind.

One goal of the present note is simply to explain this duality in a way
that we hope a mathematician can more easily follow. Besides the usual
language barriers, which by now are not that major (especially for Is), there
are a number of significant differences in how these topics are approached in
math and in physics, which need to be overcome to make a satisfactory and
precise mathematical statement. We will also try to explain these differences
to physics readers.

1At least for manifolds which can appear as a conformal boundary, such as the sphere.
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In section 2, we briefly review gauge-gravity dualities, their origins in
the large N limit, and the development of the gravitational point of view. A
particularly important point for us, which was actually discovered before the
rest of the picture [14], is the relation between symmetries of the gauge the-
ory, and asymptotic symmetries of gravity. A good mathematical introduc-
tion to AdS/CFT is [3], and many points which we skim over are explained
in more detail there.

In section 3, we describe the physics duality conjecture relating the O(N)
model with Vasiliev theory, and explain why this is essentially equivalent to
a duality conjecture involving a free bosonic theory. We then discuss some
of the physics background behind the conjecture.

In section 4, we survey a few of the questions we should answer in
explaining how such dualities work. We then turn to a simple but so far
as we know unexplored special case, that of D = 0, in which the mathemat-
ics reduces to the need to take the inverse and the trace of the logarithm
of a matrix. We find that, as one might hope, a simple 1d bulk theory can
work in this case. Since the D ≥ 1 theories involve analogous mathematics,
with matrices replaced by differential operators, a reasonable way to proceed
might be to carefully make this replacement, which might enable a simple
and explicit proof of the duality.

In section 5, we begin to turn this idea into a mathematical conjecture
about determinants of families of pseudo-differential operators. While the
physics arguments suggest that there will be a similar conjecture in any
dimension D, here we will only cover the case D = 2, where it generalizes a
known

Fact 1. The logarithm of the determinant of the scalar Laplacian Δ
on a two-dimensional manifold Σ, as a functional of the metric on Σ, is
equal to the action of a particular solution of an SL(2,R)×SL(2,R) Chern-
Simons theory on a three-dimensional manifold M with boundary ∂M ∼= Σ,
with boundary conditions determined by the metric on Σ.

This follows by combining the Polyakov formula for these determinants
[2,48] with results in 2 + 1 gravity [7,17,43,55]. Conceptually, this is an
example of a general relationship between anomalies in D-dimensional QFT
(here the conformal anomaly) and Chern-Simons terms in D+1-dimensions.

Similarly, by combining the proposed O(N) model duality with results
on higher spin gravity, we make

Conjecture 1. The logarithm of the determinant of a pseudo-
differential operator O on a two-dimensional manifold Σ, or a family of
operators O(t), is equal to the action of a particular solution of an G × G
Chern-Simons theory on a three-dimensional manifold M with boundary
∂M ∼= Σ, and boundary conditions determined by the choice of O(t). Here G
is an infinite dimensional Lie algebra called hs(1, 1) and defined in §3.1.



OPERATOR TRACES AND HOLOGRAPHY 135

One realization of hs(1, 1) is the subalgebra of area-preserving vector
fields on the two-dimensional hyperboloid a2 − b2 − c2 = 1, which are odd
under inversion. To begin explaining why this conjecture extends the the-
orem, we note that since SL(2,R) acts on this hyperboloid by isometries,
we have SL(2,R) ⊂ G. Thus, the case O(t) = Δ corresponds to a subset of
boundary conditions in which the G×G solution actually lives in SL(2,R)×
SL(2,R). Of course, we will need to say far more to motivate a conjecture
of this generality.

It is a pleasure to thank Luca Mazzucato, Leonardo Rastelli and Shlomo
Razamat for discussions on these topics, and Is Singer for encouraging me
over the years to think more mathematically about large N limits.

2. Dualities between quantum field theory and gravity

Let us start by reviewing the physical framework of large N limits. We
begin by defining a quantum field theory partition function ZQFT,N for a
sequence of QFTs labelled by N ∈ Z

+, schematically

(1) ZQFT,N =
∫

[dΦ] e−N
2
∑

i t
iOi[Φ]

Here (∂M, γ) is a manifold with Riemannian metric γ, and Φ is a map from
∂M to a ‘configuration space’ – this could be a U(N) connection, a map
to a vector space with a linear U(N) action, a direct sum of these, perhaps
with some fermionic (odd) variables, and so on. We denote the space of
such maps as CN . Thus, for dimM ≥ 1, the integral

∫
CN

[dΦ] is a functional
integral, requiring regularization, renormalization, and the whole works.

The Oi are real or complex valued functionals on CN , usually called
‘observables’ or ‘operators.’ They appear in Eq. (1) weighed by parameters
(or ‘couplings’) ti. One way to think about this is to regard ZQFT,N as a
generating function for expectation values under the integral, as in

(2)
∂

∂ti
logZQFT,N = E[Oi] ≡ 〈Oi〉,

and analogous n’th order derivatives, the n-point correlation functions.
To some extent, the metric γ can also be thought of as one of the param-

eters t, and its corresponding observable Oγ is called the ‘stress-energy ten-
sor.’ However, in the standard discussions, since almost all of the other
observables Oi depend on the metric, typically in a nonlinear way, the met-
ric dependence is more complicated than that suggested by Eq. (2). And
this is the tip of an iceberg, as once one gets into regularization and renor-
malization, the exponentiated linear dependence on the ti which we wrote
in Eq. (1) turns out to be a great oversimplification.

The defining property of the sequences of QFTs we consider is that the
CN have a uniform definition in terms of a space C of maps into an algebra
A, or related structures such as a module for A and a connection over it. We
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will also need a trace on A, and might also need an involution on A or other
structure. The concrete physics model ZQFT,N is then obtained by taking
A = MatN ≡ Hom(CN ,CN ). Thus CN admits an action of U(N) inherited
from the linear action on C

N . We require that this is a symmetry; in other
words U(N) acts on CN in a way which preserves the measure [dΦ] and the
observables Oi.

Although normally one discusses gauge theories in which C includes a
connection over ∂M , the focus in this paper will be on the simpler case
CN ∼= Map(∂M,CN ), in more abstract terms C is a module for A.

Having defined the sequence of QFTs, a basic claim about the N →∞
limit is

Claim 1. (’t Hooft, Witten): There is a list of observables Oi which
have good limits, obtained by taking a normalized trace of elements of A,
such that the limiting partition function is a sum over saddle points in the
following sense:

(3) lim
N→∞

ZQFT,N [∂M, γ, t] = lim
N→∞

eN
2SQG[∂M,γ,Oi]

∣∣∣∣
∂SQG/∂Oi=0

.

In words, the large N limit of the logarithm of ZQFT (the free energy or
effective action) is given by evaluating a functional SQG, which is universal
for a particular QFT, at its critical point(s) dSQG = 0.

Let us sketch a proof of this in the simplest case, of a matrix integral,
following [12]. We take ∂M to be a point, and C to be the hermitian elements
Φ = Φ∗ of A. We then consider the integral

(4) ZMM,N [g] =
∫
C
[dΦ] e−N

∑
i≥1 tiTrΦi

,

where [dΦ] is the product of Lebesgue measure for each matrix component.
Since the integrand is invariant under the conjugation Φ → U †ΦU with U ∈
U(N), it is a function of the N eigenvalues of Φ, or equivalently the first N
moments Tr Φi.

One can then change variables in the integral from the components of Φ,
to a choice of group element U ∈ U(N) and a choice of moments. This brings
in a Jacobian, which is the volume of a U(N) orbit with specified moments.
It has a simple closed form expression, which can be found in [12].

To heuristically justify the large N limit, we make the following two
observations. First, for a ‘typical’ orbit in which Φ has order 1 eigenvalues,
the moments Tr Φi ∝N , so the exponent in Eq. (6) is of order N2. Thus we
define the observables

(5) Oi ≡ 1
N

Tr Φi,
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and write

(6) ZMM,N [g] =
∫ ∏

i

dOi Vol (Oi) e−N
2
∑

i≥1 t
iOi ,

where Vol (Oi) is the volume of a U(N) orbit. Then, the volume of a typical
orbit has the large N asymptotics

(7) Vol (Oi) ∼ expN2Seff (Oi),

in terms of an ‘entropy functional’ Seff , the ‘free entropy’ of Voiculescu [61].
Thus, in the limit, Eq. (6) is dominated by its saddle points, and we recover
Eq. (3) with

(8) SSG = Seff (Oi) −
∑
i

tiOi.

It is natural to try to explain this by finding an algebra with trace A,
such that the values of Oi at the saddle point are obtained by evaluating
Eq. (5) for a particular Φ ∈ A, the ‘master field.’ In this example, this can
be done using the free probability theory of Voiculescu [62]. Equally explicit
treatments of the limit have been made for other simple quantum theories,
such as matrix quantum mechanics, and D = 2 Yang-Mills [54]. It is tempt-
ing to believe that someday this will be made precise for more complicated
quantum field theories. There are also probabilistic definitions of the limit
of the integral Eq. (6), based on large deviation principles [34].

2.1. Matrix model/noncritical string duality. So far, while we
have motivated the claim of Eq. (3), we have not explained why SSG should
have any relation to string theory or quantum gravity in D+ 1 dimensions.
Let us briefly recall how this works in the simpler matrix model examples,
developed in the late 1980’s. In these theories, the relation to string theory is
precisely the one postulated by ’t Hooft, that a planar diagram is a discrete
approximation to a string world-sheet, and that string theory is obtained by
taking a continuum limit.

The simplest example or “pure gravity” is defined in terms of the matrix
integral Eq. (4) as a “double scaling limit” [13,23,32] taking the couplings ti

to a critical point as N →∞. Here D = 0 and the dual theory is the so-called
“c= 0 string,” a non-critical bosonic string with a one-dimensional target
space. In terms of the Φ variable, one formulates observables depending on
a new coordinate r, as

(9) Or ≡ Tr e−rΦ

or some functional transform of this, and rewrites Eq. (8) in terms of these.
The coordinate r then parameterizes a one dimensional manifold M ∼= R

+,
whose boundary at r = 0 might be identified with the point ∂M .
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The idea that the D = 1 theory should be geometric and thus is some
theory of gravity is motivated by the general arguments that closed string
theory contains gravity. Of course, readers who have heard that bosonic
string theory requires D = 26 may be wondering how a one dimensional
string theory can make sense. The answer [49] is that one can turn on
a world-sheet coupling which shifts the conformal central charge. Such a
coupling arises naturally upon considering a two-dimensional world-sheet
metric, so that the new coordinate r then corresponds (loosely) to a distance
scale on the world-sheet. This suggests that fixing the couplings t to local
observables on the world-sheet, corresponds to putting boundary conditions
at r→ 0, leading to a string theory space-time picture.

This picture became clearer in the “c= 1 model,” for which the QFT is
the D = 1 quantum mechanics of a hermitian matrix M , with a potential
V = −tr Φ2. Now we can take the field theoretic dimension to be ‘time’ and
the extra r dimension of Eq. (9) to be ‘space,’ so that the dual D + 1 = 2-
dimensional theory naturally lives on a Lorentzian space-time. In this case,
the equations of motion dSSG = 0 following from the counterpart of Eq. (8)
are a second order hyperbolic PDE [19, 47], one can develop a scattering
theory, according to which waves (small perturbations) sent in at r ∼ 0 enter
the system, bounce off a ‘wall’ at large r, and come back to r ∼ 0, defining
an S-matrix. Again, Eq. (3) holds with a QFT coupling–boundary data
relation.

The heuristic physics explanation for this relation is the ‘UV/IR corre-
spondence,’ according to which the extra dimension r in the quantum gravity
corresponds to a ‘renormalization group scale’ parameter, here acting on the
world-sheet. The boundary condition corresponds to fixing the QFT action
at short distances (the UV), while the evolution equation dSSG = 0 some-
how corresponds to incorporating quantum fluctuations at larger distances.
Finally, the large r boundary condition or ‘wall’ is a regularity condition,
corresponding to the fact that the renormalization group removes (and does
not create) degrees of freedom. Thus many elements of gauge-gravity dual-
ity were visible in these models; on the other hand supersymmetry played
no role, and the extra dimension looked very different from the field theory
dimensions, giving little guidance for how to go to D > 1.

2.2. AdS/CFT and the conformal boundary. Before AdS/CFT,
the search for string duals of gauge theory had generally focused on modify-
ing the world-sheet action for the string, to avoid the following paradox: In
quantum field theory, local observables, for example a correlation function
of a set of operators at distinct points, are easy to define. On the other
hand, in quantum gravity, diffeomorphism invariant local observables are
nearly impossible to define, because they are highly nonlinear in the metric,
a fluctuating quantum variable. And in string theory, the extended nature
of the string makes this problem even worse.
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The now accepted solution of this paradox seems to have first appeared
in [50], and consists of taking the string to propagate in a D+1-dimensional
metric of the form

(10) ds2 =
�2

r2
(
dr2 + γ

)
,

where r is an extra ‘radial’ coordinate, and � is a (fixed) curvature length.
In words, we introduce a family of space-time metrics parameterized by an
extra coordinate r, related by an overall rescaling. For γ the Minkowski
metric on space-time, the metric Eq. (10) covers part of a constant negative
curvature metric with isometry group SO(D, 2), the anti-de Sitter (AdS)
space-time.

The metric Eq. (10) first appeared this way in string theory by look-
ing at the geometry near the horizon of a group of D3-branes; it is the
direct product of Eq. (10) with a round S5. Since the D3-branes can also
be described (at low energies) by N = 4 super Yang-Mills theory, there is
a direct physical argument for the duality in this case [41]. The relation of
correlation functions to boundary conditions was then proposed in [33,65].

N = 4 super Yang-Mills, here denoted MSYM4, is a D = 4 Yang-Mills
theory with various scalar and fermionic fields and an action chosen to real-
ize the maximal supersymmetry possible in D = 4 in a non-gravitational
theory. By doing quantum perturbation theory, one learns that it is a super-
conformal field theory, so the Yang-Mills coupling is a parameter of the
quantum theory. Doing the functional integral over fields which live on a D-
dimensional Riemannian manifold (∂M, γ), one obtains ZQFT,N of
Eq. (3).

The right-hand side of Eq. (3), at finite N , is a quantum gravity or
string theory partition function. For MSYM, it is type IIb superstring the-
ory compactified on S5, to get a D + 1 = 5-dimensional quantum gravity.
Heuristically, one also thinks of this partition function as defined by a func-
tional integral, now over a fluctuating metric g and various fields φ. While
this intuition has never been made precise for quantum gravity or string the-
ory, even to physics standards, in Eq. (3) we sidestep this issue by arguing
that in the large N limit, the quantum gravity partition function reduces
to a sum over critical points of the supergravity action SQG. Thus, granting
the picture of the previous subsection, we obtain a concrete form of Eq. (3).

Now, to explain the solution of the paradox, let us grant that the problem
with local observables in quantum gravity only arises when we try to localize
on length scales shorter than some fixed length scale L, which characterizes
the fluctuations of the metric (the Planck scale), the size of a string (the
string scale), or other quantum gravity fluctuations. This is physically rea-
sonable: after all, despite the underlying quantum nature of gravity, exper-
imental physicists can work with very short distances d using the ordinary
classical picture of space-time, because L∼ 10−33 or so (the Planck scale in
our universe) and d� L.
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Applying these ideas to quantum gravity in AdS, since L is a physical
length scale, it relates to distances defined using the metric Eq. (10). But, a
fixed space-time distance d measured in the metric γ corresponds to an AdS
metric distance d/r, which as r→ 0 becomes much greater than L. Thus, by
associating QFT correlation functions with boundary conditions at r→ 0,
we can localize them on arbitrarily short scales d, and avoid the paradox.

It is convenient that the metric Eq. (10) is conformal to a metric d̃s
2
=

r2ds2 which is non-singular at r = 0. Indeed, since r = 0 is at finite distance
in this metric, we can think of it as the boundary ∂M of a closed man-
ifold with metric (M, g̃). In mathematical terms, (M, g̃) is the conformal
compactification of (M, g). In this way, we can replace the physics idea of
scattering boundary conditions at r ∼ 0, with local boundary conditions on
∂M . Thus we have taken another step towards making Eq. (3) precise.

A familiar variation is to take γ with Riemannian signature, defining a
‘statistical field theory.’ This corresponds to Riemannian γ in Eq. (10). For
example, taking (∂M, γ) to be the round D-sphere, the metric Eq. (10) will
be D + 1-dimensional hyperbolic space.

One then expects the equations dSSG = 0 to be elliptic, and the corre-
sponding boundary value problem to have a unique solution. For example,
a metric on M satisfying the Einstein equation with negative cosmological
constant (constant negative Ricci curvature), should be determined by the
conformal class of its restriction to ∂M . As discussed in [3], the nonlin-
earity of the Einstein equations makes such a claim highly nontrivial, and
false without restrictive assumptions. But, as shown by Fefferman and Gra-
ham [27], it is generally true in the sense of an asymptotic expansion: given
γ on ∂M , one can solve for the higher order terms γ(k) in

(11) ds2 =
�2

r2

(
dr2 + γ + r2γ(2) + · · ·

)
,

if D is odd to all orders. This can be used to define correlation functions of
the metric as in Eq. (2) (with t→ γ).

A simpler example is a scalar field φ whose equation of motion
∂SSG/∂φ= 0 is simply the Laplace equation on M . By taking Dirichlet
boundary conditions, one gets a well posed problem, whose solution is given
by a “boundary-to-bulk Green function,”

(12) φ(x, r) =
∫
∂M

dDx′ φ(x′, 0)G(x′; x, r).

One can then treat nonlinear terms in ∂SSG/∂φ by the usual perturbative
approach. Since one only needs a classical solution, the series expansion for
an n-point function will have a finite number of terms, and there are many
such calculations for low n in the literature.

2.3. Global symmetries and gauge symmetries. It is rather magi-
cal that the large N action SSG of Eq. (3), which according to the arguments
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so far might be too complicated or abstract to work with, ever takes such
a simple and explicit form as a supergravity action. While this follows from
the string theory intuition, a priori this argument is very closely tied to
the specific theories which come out of string and M theory, leaving the
question of what class of QFTs might admit gravity duals completely open.
Is it only these theories, or theories which can be obtained from these by
adding operators? If it is a larger class, what characterizes it – gauge symme-
try? conformal invariance? supersymmetry? In some cases such as MSYM4,
one has integrability. Each of these properties have been suggested to be
important.

Perhaps the best clue we have at present is the relation between global
symmetries of the QFT, and gauge symmetries of the gravity theory. For
example, MSYM4 has an SU(4) R-symmetry (a global symmetry under
which the supercharges transform nontrivially), while IIb supergravity com-
pactified on S5 leads to a five-dimensional gauged supergravity with SU(4)
gauge fields. The most far reaching case is the relation between the stress-
tensor of QFT, a spin two operator which generates diffeomorphisms acting
on (∂M, γ), and the metric g of the dual gravity theory. Clearly this relation
lies at the heart of the matter.

There are various physical arguments for it. In the context of theories
which can be obtained from branes in string theory, such as MSYM4 and D3-
branes, one has the general comment that any gauge symmetry of the string
theory, must couple to some current (operator) on the brane which generates
a corresponding global symmetry [8]. One also has a general relation between
global anomalies on the brane, and corresponding Chern-Simons terms in
the bulk [30,65].

Granting the gauge-gravity duality, one can reverse this logic by observ-
ing that global symmetries of QFT are generated by operators (currents)
with spin (i.e., which transform nontrivially under the Lorentz group). Such
an operator will correspond to a massless field with spin in the bulk the-
ory. But massless fields with spin only make sense in a unitary quantum
theory if there is a corresponding gauge invariance. Without gauge invari-
ance, the Hilbert space for a particle with spin would decompose into finite
dimensional linear representations of the Lorentz group, but this is noncom-
pact and has no finite dimensional unitary representations. This paradox
is evaded by embedding the Lorentz group into a larger group, whose rep-
resentations can be unitary after quotienting by the gauge group (this is
usually done by BRST quantization, i.e. taking equivariant cohomology).
The same logic can be applied to translational symmetry, which is gener-
ated by a spin two current (the stress tensor), to explain the need for general
covariance and derive the Einstein-Hilbert action [21].

A final reversal of this argument would be to derive the global symmetry
of the QFT from the bulk theory, purely in the context of gauge-gravity
duality (as opposed to string theory or branes). In fact such an argument in a
sense precedes the others, as it amounts to deriving the group of symmetries
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which act on the asymptotic region of a space-time in gravity. This is an
old question: for example, how does one see geometrically that the Poincaré
group acts on an asymptotically flat solution, without referring to explicit
coordinates? How does one define the corresponding conserved quantities?
These are subtle problems, about which entire reviews have been written
[57], and are clearly central to this subject.

Recent works on the asymptotic symmetries of higher spin gravity
include [15,36].

3. Free field-higher spin gravity duality

Although the usual discussion involves gauge theory, there is a simpler
and older class of field theories with large N limits, the so-called vector
models. The basic example is a theory of N complex scalar fields denoted
�ψ, with the action

(13) Sft =
∫
∂M

√
γγij∂i�̄ψ · ∂j �ψ + t|�ψ|2 + λ(|�ψ|2)2.

Here �a ·�b is the usual hermitian inner product on C
N , |�a|2 = �a ·�a, λ ∈ R, and

in addition we allow a real-valued function t :M → R (in physics terms, a
position-dependent mass).

It is not hard to obtain a large N action of the form Eq. (8) for this
theory, as done for example in [20]. It is also not hard to compute the
partition function directly. Let us start with the special case λ= 0. Since
the action is then quadratic in �ψ, a straightforward application of the theory
of Gaussian functional integrals tells us that

ZQFT,N [γ, t] ≡ e−N F [g] = det (Δγ + t)−N

= exp−N Tr log (Δγ + t) ,(14)

where Δγ = −γij∇i∇j is the scalar Laplacian. This depends on N , but in a
trivial way.

Of course, this will require regularization to make sense. We could take
det to be the zeta function regularized determinant [51].

(15) detA= exp lim
s→0

∂

∂s
TrAs.

We will return to this point in §4.4.
Having warmed up with λ= 0, to handle the general case, we note that

(16)
∫
dte

t2

2λ
+t|�ψ|2 =

√
2πλ e−λ(�ψ|2)2 .

Thus, we can eliminate the quartic term in Eq. (13) in favor of a quadratic
term, at the cost of doing another functional integral over t. If we take
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λ∝ 1/N , this integral becomes∫
dte

Nt2

2λ ZQFT,N [γ, t](17)

=
∫
dte

N
[

t2

2λ
+Tr log(Δγ+t)

]
(18)

and in the large N limit, it will be dominated by a saddle point. Thus, the
case λ �= 0 can also be solved in the large N limit, if we can get a sufficiently
explicit expression for Eq. (14).

In the usual physics case of γ the Euclidean metric and constant λ, it
is easy to get such an explicit expression by diagonalizing Δγ , and thus
the O(N) model is exactly solvable. However, if we consider more general
metrics, or position-dependent t, this is not so easy. One can of course treat
the case of perturbations around this solvable case, but an explicit formula
for Eq. (14) is not known.

Since the relation between Eq. (13) and Eq. (14) was simply that of
Gaussian functional integration, at least formally it generalizes to an arbi-
trary linear operator in the action,

(19)
∫
dψ e−(�̄ψ,O �ψ) = (const.) exp−N Tr logO,

with

(20) O = t+ γi1∂i + γij2 ∂i∂j + γijk3 ∂i∂j∂k + · · · .

We could treat this expansion in two ways. One is to try to define a functional
of all of these coefficients, say Tr logO[t, γ1, γ2, . . .]. Less ambitiously, we
could regard Eq. (19) as the generating functional of correlation functions
of general local operators, obtained by taking derivatives with respect to the
γn at γ = 0. This allows us to make contact with computations such as that
of [28], so for this section let us be satisfied with this definition.

3.1. Higher spin gravity. Although there are several approaches to
higher spin gravity, perhaps the simplest is to define it as a gauge theory,
along the general lines of Ashtekar’s approach to 3 + 1 gravity [4] and Wit-
ten’s approach to 2 + 1 gravity [64], but with an infinite dimensional gauge
group. In general terms, instead of the basic field being the metric tensor,
one takes as fields the frame (or D-bein) and spin connection, and reinter-
prets these as components of a gauge connection. Just as it turns out that
the Einstein-Hilbert action can be re-expressed as a gauge theory action, so
too can the higher spin gravity action.

Thus, let us first review the analogous formulation of standard 2 + 1-
dimensional gravity. In these dimensions, the simplest gauge theory action
is the Chern-Simons action, and Einstein gravity was reformulated in these
terms in [64]. One starts with a three dimensional manifold M , and a vector
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bundle V overM with structure group SO(2, 1). One then introduces a frame
e ∈ Hom(TM, V ) and a connection ω on V . One then embeds SO(2, 1) in a
larger group G whose additional generators correspond to translations, and
identifies (e, ω) with components of a G-connection. Chern-Simons gravity is
then simply Chern-Simons theory on M with group G, so a classical solution
is a flat G connection.

For 2 + 1 gravity with a negative cosmological constant, so that a solu-
tion has constant negative Ricci curvature −�2, one takes G∼= SL(2,R) ×
SL(2,R), with connections A and Ã and the identification

(21) A= ω +
1
�
e; Ã= ω − 1

�
e.

The action is the difference of two Chern-Simons actions,

(22) SQG = SCS [A] − SCS [Ã]; SCS [A] = tr
∫
AdA+

2
3
A3.

Its simplest classical solution is the group manifold of SL(2,R) itself, taking
its left- and right-invariant connections as A and Ã respectively. Its univer-
sal cover is AdS3. It is conformally compact, with boundary ∂M ∼= R × S1

carrying the flat (Minkowski) metric. The duality conjecture Eq. (3) thus
relates this gravitational theory on AdS3 to a two-dimensional QFT on the
cylinder.

The formulation of higher spin gravity in these terms is attributed in [36]
to [10]. We again take the action Eq. (22), but A and Ã are now connections
on M each taking values in the “higher spin algebra hs(1, 1),” an infinite
dimensional Lie algebra containing an sl(2,R) subalgebra. Thus, one again
has AdS3 as a solution, by embedding the previous connection into this
larger algebra.

There are various definitions of hs(1, 1) in the physics literature, almost
all in terms of generators and relations, or else oscillators. In [11], it is iden-
tified with the odd area preserving vector fields acting on a 2d hyperboloid
with sl(2,R) symmetry (i.e., the hypersurface a2 − b2 − c2 = 1 in R

3, and
‘odd’ means odd under inversion).

Another suggested geometric interpretation of hs(1, 1)⊕hs(1, 1), and its
generalizations to arbitrary D, is the Lie algebra contained in the associative
algebra of symmetries of the Laplacian.

Definition 1. (Eastwood, [25]) A symmetry of the Laplacian Δ is a
linear differential operator D such that

(23) ΔD = δΔ

for some linear differential operator δ. The algebra of symmetries of the
Laplacian is the algebra of such operators with the natural product, with the
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equivalence relation

(24) D ∼= D + PΔ

with P a linear differential operator.

Eastwood then argues that symmetries of the Laplacian correspond to
conformal Killing tensors, which are also the natural symmetries which
arise from the point of view discussed in §2.3. In the particular case of the
Laplacian on R

D (with the Euclidean metric), their algebra is the universal
enveloping algebra of SO(D + 1, 1), modulo a two-sided ideal generated by
the Killing form (schematically < V,W >∼ 1). The relation to the algebras
used in defining higher spin gravity is discussed in [60].

For present purposes, however, let us simply cite a concrete definition of
hs(1, 1). It is the space of even polynomials in two variables ξ1, ξ2 modulo
constants, with the bracket derived from the associative product

(25) (f ∗ g)(ξ) ≡ exp i
(

∂

∂ξ1
∂

∂η2
− ∂

∂ξ2
∂

∂η1

)
f(ξ)g(η)

∣∣∣∣
ξ=η

.

The quadratic polynomials generate an sl(2,R) subalgebra, say

(26) J+ ≡ ξ1ξi; J3 ≡ ξ1ξ2; J− ≡ ξ2ξ2.

3.2. Duality between correlation functions. It is easy to develop
a perturbative expansion for Eq. (19), using

(27) Tr log(O + δO) = Tr logO +
∑
n≥1

(−1)n

n
Tr (O−1δO)n.

Let us look at the three-point correlation function, discussed for D = 3 in
Giombi and Yin [28]. We take z to be a coordinate on ∂M and O to be the
Laplacian, so that O−1 is the standard field theoretic Green function. For
∂M ∼= R

D,

(28) 〈ψ̄(z1)ψ(z2)〉 ≡ F (z1, z2) = const. · |z1 − z2|2−D.
An n-point function of operators ψ̄Oiψ is then a sum of (n − 1)! terms of
the form

(29) A =
∫
d2z1 . . . d

2znO1F (z1, z2)O2F (z2, z3) . . .OnF (zn, z1).

For definiteness, consider D = 3 and n= 3, with three operators Ji =:
ψ̄(zi)∂iψ(zi) :, one gets expressions like

(30)
∂

∂zi11

∂

∂zi22

∂

∂zi33

1
|z1 − z2| |z2 − z3| |z3 − z1| + (2 ↔ 3).
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The dual expression is found by following the approach outlined in §2.2;
one finds

(31) A(SG)
k1,k2,k3

(z1, z2, z3) =
∫
d2zdr Gk1(z1; z, r)Gk2(z2; z, r)Gk3(z3; z, r),

where Gki(zi; z, r) is the bulk-to-boundary Green function Eq. (12) for a
massless spin 1 field (Eq. (2.26) in [65]).

At this general level, there is little resemblance between the two expres-
sions. Actually, given a metric on ∂M with enough conformal isometries,
such as the standard cases of R

D or SD, symmetry forces the three-point
functions to have the same functional dependence, so the nontrivial pre-
diction of the duality is the overall normalizations. However this argument
quickly peters out for higher point functions, and loses all strength for gen-
eral metrics and operators O.

The best studied examples come with their own special simplifications.
For example, D = 4 MSYM has a large superconformal symmetry, which
forces many relations between correlation functions. In our primary example
of D = 2, one has holomorphic factorization. In the Chern-Simons dual, this
is reflected in the form G × G for the gauge group.

There has been a fair amount of work trying to give more general argu-
ments for this equality, which could work for any of the proposed dualities.
One of the more interesting ones appears in [29] and involves a relation
between the proper time parameterizations

(32) O−1 =
∫ ∞

0
dτe−τO

for the QFT Green function Eq. (28) and the bulk-to-boundary Green func-
tion Eq. (12), motivated by the physics intuition relating the two sides of
Eq. (3) to open and closed strings. This argument is quite simple for the
three-point function in a symmetric background, but it is not clear how to
take it farther.

In any case, the equality of Eq. (30) and Eq. (31), as demonstrated for
D = 3 in [28], looks sufficiently nontrivial and convinces us to take O(N)-
higher spin gravity duality seriously.

4. Why should gauge-gravity duality work?

Most of the work on this question focuses on the AdS5/MSYM4 duality.
This is a very rich subject which we will not try to do justice to here, instead
raising a few questions which the author finds interesting.

First, compared to previous ideas about large N limits and Eq. (3), a
lot of the power of AdS/CFT comes from the statement that one can take
a second limit, of strong (large) Yang-Mills coupling, in which SSG becomes
a local field theory, such as type IIb supergravity.
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Now there is a simple physics argument for this – it follows from the
mapping of parameters (N, gYM ) to the dual string theory coupling and
string scale ls, which translates the limit gYM →∞ into the limit ls → 0. In
this limit, the higher dimension operators of string theory go off to infinite
dimension, leaving only the fields of supergravity.

While this argument sounds quite reasonable, it remains surprising from
any field theoretic point of view. Are we sure that it is true? After all, there is
another scale in the problem, the AdS curvature radius. There exist gravity
theories which are nonlocal on this scale – in fact the higher spin gravity
we discussed in section 3 is an example. One might entertain a different
conjecture that, even at large Yang-Mills coupling, gravity duals can have
similar nonlocality.

For the case of MSYM4, results from integrability are believed to show
that all non-supergravity operators do in fact go off to infinite dimension at
strong coupling, eliminating this loophole. Granting this, for what class of
theories does this work? Integrability is very special, and almost all theories
of physical interest are not integrable; the principle which makes this work
should be more general.

Second, where does the extra dimension come from? The standard intu-
ition involves the renormalization group. While very believable, it seems fair
to say that this has not yet been made as precise as one would like. This
question is discussed further in [24].

Third, as we commented in the introduction, making a precise statement
away from strong coupling probably requires matching up all of the operators
on both sides of the duality. How do we organize all the higher derivative
operators? This is surely a question of geometry – what geometry underlies
the duality?

4.1. AdS1/CFT0 duality. Let us return to discuss the duality
between free QFT and higher spin gravity. The simplest point of view would
be that this discussion depends so little on details, that even a schematic
expression like Eq. (19) could have a gravity dual. Since readers with some
familiarity with higher spin gravity or other detailed physics discussions may
be skeptical at this point, let us explore this idea in the simplest possible
context.

Thus, let us consider the D = 0 case, in which the operators O[t] are
N ′ × N ′ hermitian matrices, i.e. elements of the Lie algebra u(N ′). The
reason we writeN ′ is that, in the standard discussions, one restricts attention
to gauge theory or at least to u(N) singlet operators, whereas we want to
consider general operators. Of course, one can consider the configuration
space C

N ′ ⊗ C
N , and tensor the operator O[t] of Eq. (19) with the identity

acting on C
N , so in a free theory this is a distinction without a difference.

Thus for ease of notation we simply take C
N as the configuration space in

the following, and consider general operators.
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Let ea be a basis for u(N) and write

(33) O[t] ≡
∑
a

taea;

then the partition function Eq. (14) becomes

Z[t] =
∫
d2N �ψ e−ψ̄ O[t]ψ

= exp−Tr logO[t].(34)

The observables of Eq. (2) are

(35) ua =
∂

∂ta
logZ = TrO[t]−1ea.

If we think of t and u as matrices, we have u= t−1.
Now, one may ask, how can the simple results Eq. (34) and Eq. (35) be

obtained by introducing an extra dimension?
Since the D = 0 theory admits a global symmetry O[t] → g−1O[t]g, we

expect the bulk theory to be a u(N) or even gl(N) gauge theory,. Thus,
we introduce a covariant derivative Dr with connection Ar. Of course, the
connection can be gauged to zero in one dimension, so this is not the key
point.

We take the couplings t to be boundary conditions for a field g(r) which
is an adjoint of u(N). Since we know we will need to take the logarithm, we
define φ(r) to be

(36) g = expφ

Let us try postulating the simplest possible second order equation for φ,

(37)
∂2

∂r2
φ= 0,

as would follow from the action

(38) S =
∫
dr (g−1 Dr g)2

in the gauge Ar = 0. Its general solution is φ=Ar + B. According to the
general philosophy of gauge-gravity duality, we should use the couplings t
as a Dirichlet boundary condition, in other words as the leading or non-
normalizable solution. Thus we take A= log t. We then, as in the matrix
model examples, postulate a wall at r = 1. At the wall, we impose the bound-
ary condition φ(r = 1) = 0, so B = −A. This is consistent with the varia-
tional equation for the gauge connection, which is [φ′, φ] = 0 which forces
[A,B] = 0. Finally, the normalizable mode determining u is B = −A, and
the corresponding part of g is exp− log t= t−1 = u.
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Thus, it is easy to get the relation Eq. (35) from a D + 1-dimensional
dual theory. Of course, we postulated all of its ingredients, so the significance
of this can only be judged by going on to cases with more structure. Still,
we are not done with D = 0 yet, as we need to check that the value of the
action on this solution reproduces Eq. (34) in some sense. This is TrA, but
the action Eq. (38) gives us the (divergent) volume

∫
dr multiplied by TrA2.

Even if we could argue that this divergent term were meaningful, it would
not be correct. Thus, we need to add additional terms and fields to the
action to cancel it.

Since the additional term is negative, adding it will lead to problems of
stability when we go on to higher dimensions. This is a sign that we need
to bring features of gravity into the discussion. In particular, the action
Eq. (38) does not have r-reparameterization invariance.

Thus, we introduce a metric ds2 = e(r)dr2 and consider the reparame-
terization invariant action

(39) S =
∫
dr e−1Tr (g−1Drg)2 +

e

�2
+ αTr (g−1Drg).

Starting with α= 0 and taking constant e gauge, then the constraint from
varying e determines

e2 = �2(g−1Drg)2(40)

= �2TrA2(41)

given our boundary conditions. Thus, the divergent part of the action is now

(42) S ∼
∫
dr
e

�2
∼
∫
dr

1
�

√
TrA2.

This is also not what we want. In fact, the term TrA which would match
Eq. (34), would arise from the αTr (g−1Drg) term. Since it is a total deriv-
ative, it does not change the equation of motion, so we can add it, but we
still need to subtract the term Eq. (42).

To write an action which does this, we drop the � term and instead work
in first order formalism with a canonical pair of variables (φμ,Πν), and write

(43) S =
∫
drTr ΠμDrφ

μ +
1
2
eημνTr ΠμΠν + TrDrφ

1.

with a constant metric ημν . Now the equations of motion and constraint are

(44) Drφ
μ = −eημνΠν ; DrΠμ = 0; ημνΠμΠν = 0.

To solve the constraint with Π �= 0, there must be more than one component
in (φ,Π), and the metric ημν must have indefinite signature, say η00 = −1
and η11 = 1. We take one component, say Drφ

1 to be g−1Drg as above, thus
we control its boundary condition. Then Π1 =A as above and φ1 =Ar+B.
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We also need Tr Π2
0 = TrA2 so the second sector just cancels the unwanted

term in the action. The term TrA we want comes out by taking the total
derivative term to only see φ1.

While we would not make overly strong claims for the importance of this
toy model, it is a very simple illustration of how the dual of a free theory
can work. What did the extra dimension buy us? In terms of the (φ,Π)
variables, the dynamics is linear, and the transformation A→B = −A is
rather trivial. It becomes more nontrivial when we formulate the dynamics
in terms of g = eφ. The equations of motion are now

(45) g−1Drg = −eΠ

(46) DrΠ = [Π, (g−1Drg)].

The second is still solved by constant Π, while the first gives a local evolution
role for g, solved (taking Ar = 0) by

(47) g = g0 · e−
∫ r dr′e(r′)Π(r′).

The “wall” boundary condition g = 1 then determines Π = log g0, and the
dynamics propagates it back to the boundary. In higher dimensions, one can
hope that the ‘wall’ boundary condition will emerge in a less artificial way,
as a consequence of continuity in the interior of AdS.

Thus, we can take the logarithm of O[t] using a local 1d bulk theory. It
exhibits two other features which we might look for in higher dimensions.
First, the indefinite metric and constraint in Eq. (43) is suggestive of the role
of the conformal factor in the Hamiltonian constraint for gravity. Second,
the term αTr (g−1Drg) which reproduced the quantum free energy is a one-
dimensional analog of the Wess-Zumino term of higher dimensions, which
will play an important role in section 5.

4.2. Determinants of operators. From an abstract point of view,
linear differential operators are not so different from matrices, so the D ≥ 1
case could be treated the same way. Several questions present themselves:

• What is the analog of the group U(N) in the D = 0 discussion?
In other words, what are the natural symmetry algebras and
groups associated to a space of differential operators acting on a
D-dimensional manifold ∂M?

• To define a determinant such as Eq. (14), we need to regulate the
theory. This is no surprise and can be done in many ways, but regu-
larization will spoil some of the formal properties used in our argu-
ments, such as cyclicity of the trace TrAB =BA. Can we either
show that all the properties we need are true, or else character-
ize their anomalies and fix up the arguments to take these into
account?
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• Assuming this can be done, and that we can substitute the appro-
priate analog of U(N) into Eq. (43), can we explicitly write done
the resulting effective action in D + 1 dimensions? if so, will it be
local? In any case, why would there be any symmetry relating the
extra dimension to the original D dimensions?

The physics word ‘local’ usually means that one can write the action as an
integral over a functional of the fields and finitely many of their derivatives.
Unfortunately, this definition becomes meaningless in a theory with an infi-
nite number of fields. Probably, higher spin gravity should not be regarded
as local.

Naively, the analog of U(N) in D ≥ 1 is a group of differential operators,
for example the operators −Δ + t and everything we can get by taking
arbitrary combinations of these. Of course, these are unbounded operators
and, although we can add and multiply them, our ability to do anything else
is severely limited. And since the inverse of a differential operator is not a
differential operator, they do not by themselves form a group.

The basic operation in §4.1 turned out to be Eq. (45), the evolution of
g by right action of a semigroup evolving it to the identity. If we can make
sense of the semigroup action exp−rΠ, then a prescription with boundary
conditions along the lines we just gave, could naturally lead to the relation
Π = log g. But while a semigroup action is easier to define mathematically,
the need to work with logarithms of differential operators again forces us to
generalize our space of operators.

4.3. Higher derivative operators. To turn Eq. (3) into a satisfactory
mathematical conjecture, we should also revisit the meaning of operators
like: ψ̄Oψ involving higher derivatives, as in Eq. (20),

O = t+ γi1∂i + γij2 ∂i∂j + γijk3 ∂i∂j∂k + · · · .

In section 3, we regarded Eq. (1) as a formal power series in the couplings
γn. Of course, it would be more attractive to think of Tr logO as a well-
defined real valued function of the couplings γn. However, one cannot sum
these Taylor expansions around zero; if one starts with γn = 0 for n > nmax
(say nmax = 2 as in Eq. (13)) the γn Taylor series is divergent. This is to
say that the higher order derivatives are singular perturbations, on general
grounds and in QFT because they change the high energy behavior of O
and thus require changing the regularization prescription.

Although one can take various approaches to dealing with this inconve-
nience, conceptually the cleanest is to put an explicit cutoff into the defini-
tion of O. If one takes the couplings γn to be constant, this is easily done
in momentum (Fourier transform) space; for example we could take p2 →
p2 exp−αp2. One can then add similarly regulated operators pn exp−αp2, to
get regular perturbations. The precise details tend to depend on the problem
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at hand, because all such regulators complicate the explicit expressions, and
one has to take advantage of specifics to get tractable results.

In any case, this approach requires us to consider operators O which
are non-polynomial in derivatives. In fact, there are many other reasons to
do this, which in mathematics led to the development of the theories of
pseudo-differential operators (PDOs) and Fourier integral operators. While
we cannot provide an introduction here (see e.g. [52]), the starting point
for this is to consider operators O(t) acting on functions f : R

N → R of the
form

(48) (O(t) f)(x) ≡
∫
dDξ t(x, ξ)

∫
dDy ei(x−y)·ξf(y).

For example, a linear differential operator with constant coefficients is given
by taking t(x, ξ) to be a polynomial in ξ. However, we do not require t(x, ξ)
to be polynomial; rather we impose conditions on how it behaves at infinity,
such as t(x, ξ) ∼ ξm for an m’th order operator (this is not very precise,
see [52] for the actual definitions). The operators satisfying this condition
then form a linear space denoted Sm. One can also define operator classes
with logarithmic growth.

One then has multiplication laws such as

(49) O(t) O(u) = O(t ∗ u)

with

(t ∗ u)(x, ξ) =
1

(2π)n

∫
e−i(x−y)·(ξ−η)t(x, η)u(y, ξ)dDydDη(50)

∼
∑
I

1
|I|!∂

I
ξ tDI,xu,(51)

where ∼ means up to exponentially small corrections. As one might expect,
the product of an operator in Sm with an operator in Sn will be an operator
in Sm+n. Thus the inverse of an operator in Sn can be a PDO in S−n, and
one can define groups of PDOs.

This suggests that we deal with the problem of singular perturbations
which we raised at the beginning of the section, by restricting O[t] to be
in a particular class of operators Sm, with m= 2 for the standard theory
obtained by perturbing the Laplacian. Since we can use non-polynomial
symbols, we can still use a family of operators as general as Eq. (20), in
principle more general since the symbols need not be analytic.

Another style of definition, which would fit better with Eq. (45), would
be to choose a reference operator O[0], say the Laplacian, and consider the
family of operators

(52) exp tiOi · O[0]; Oi ∈ S0.
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Either way, we are led to another question: while the physics duality con-
jecture is made for m= 2; does it make sense for other m? Presumably, the
relevant background solution of gravity for m �= 2 would not be AdSD+1,
but something else.

On the other hand, the Laplacian does seem to play a distinguished
role. As discussed in §3.1, the gauge algebra in D + 1-dimensional higher
spin gravity appears to be the symmetry algebra of the Laplacian on R

D,
which is a small subalgebra of the algebra of differential operators. The
corresponding gauge group would be functions from M to the corresponding
symmetry group. While this group and the group of invertible elements of S0

can both be written formally in terms of star products, the relation between
them is not immediately obvious.

4.4. Multiplicative anomaly. A well studied example of Eq. (52) is
to take O[0] to be a 2d Laplacian, and tiOi to be a general function σ, in
other words the family of operators

(53) O[σ] = e2σ
(
− ∂2

∂z∂z̄

)
.

In D = 2, there is a well-known formula [2,48] for the variation of det Δγ

with respect to the conformal factor σ,

(54) δ (− log det Δγ) =
1
6π

∫
∂M

d2z
√
γ0 (−Δγ0σ +R[γ0]) δσ,

where R[γ] is the curvature scalar. While the scalar Laplacian is confor-
mally invariant in D = 2, the regulator needed to define the determinant
is not, leading to an anomaly. However the variation is a local functional
of the background curvature and conformal factor. It can be integrated to
define the Liouville action Eq. (65), a functional on metrics within a given
conformal class.

To directly apply the finite dimensional formulas of §4.1, we would pre-
sumably want to have a relation such as

(55) detA ·B = detA · detB.

Of course, this is false for these operators. But there are corrected versions
of these relations [40,46] which take regularization into account, and can
lead to anomalies such as Eq. (54). The basic idea is that the functional

(56) F (A,B) = log detA ·B − log detA− log detB

is local, because its second variation δ1δ2F (A,B) can be computed along the
lines of Eq. (27), and vanishes for variations with disjoint support. Thus one
can get a finite series expansion for it, in terms of local functionals of the
coefficients of A and B. In fact it can be expressed as a residue trace [67], a
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natural trace on the pseudo-differential operators which (in favorable cases)
can be computed purely from the symbol of the operator, and agrees with
the log trace.

The Liouville action was computed this way from Eq. (53) in Appen-
dix A of [46]. In principle, the formulas there could be used to compute
the analog of Eq. (54) for an arbitrary operator O[0] in any dimension D.
More generally, since the relation Eq. (55) holds up to a computable local
correction, one could try to follow the approach of §4.1 making this single
modification.

4.5. Relation to the RG. The usual physics intuition is that the extra
dimension is related to renormalization group flow. We can see whether this
has any analog in the toy model, by looking at the following simplified
version of the RG. One of the standard formulations of the RG is to cut off
the functional integral, in other words replace an integral over ‘all’ modes of
a field φ(x), with an integral only over ‘long wavelength’ modes, say those
satisfying Δψ < Λ2ψ for some cutoff Λ. One then derives a formula for the
variation of the functional integral with respect to Λ.

Let us consider a decomposition of the configuration space into orthonor-
mal subspaces

(57) C =
⋃
λ

Cλ,

with projectors dP (λ) onto Cλ satisfying

1 =
∫
dP (λ)(58)

=
∫ Λ

dP (λ) +
∫

Λ
dP (λ).(59)

At fixed Λ, this defines a splitting of C into the λ < Λ and λ > Λ subspaces.
Parameterize these subspaces as u and v, then we could integrate over the
λ > Λ subspace using a formula like

log
∫

[d2v] exp−
(
u† v†

)(
A B
C D

)(
u
v

)
(60)

= Tr logD + u†(A+B ·D−1 · C)u(61)

to get an expression for the result of integrating out the modes v, as a parti-
tion function and a ‘RG transformed’ action A+B ·D−1 ·C. Differentiating
this with respect to Λ will define an RG flow.

In fact, we can look at Eq. (47) as a formally simpler way to accomplish
the same thing, in which the variation of the cutoff is determined by the
operator Π(r′). In this picture, we have some freedom in the specific choice
of Π(r′) at each r′, subject to the overall constraint that the evolution reach
g = 1 at the wall, corresponding to a freedom in how we vary the cutoff.
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Let us compare this D = 0 discussion, with the RG in QFT. One very
important difference is that since C is now infinite dimensional, we can choose
isomorphisms between the subspaces Cλ<Λ for different Λ. This is what is
done in the standard RG, by the device of rescaling space-time after inte-
grating over CΛ. Of course, the operation of rescaling is only canonically
defined for very special metrics; more generally one needs to accept that
these isomorphisms are not canonical, and work with this ambiguity. This
is one of the many arguments that a full understanding of the RG must be
more geometrical than the existing discussions. Perhaps the gauge group in
the dual higher spin gravity is related to this ambiguity; one might even
conjecture that the Chern-Simons higher spin gravity of §3.1 is related to a
multiplicative anomaly in the symmetry algebra of the Laplacian also dis-
cussed there.

Leaving these ideas for future work, we recall the exact renormalization
group equation near a Gaussian fixed point [45],

(62) δΛ e
−S[φ] =

∫
dDxdDyC(x, y)

δ2

δφ(x)δφ(y)
e−S[φ],

where

(63) S[φ] =
∫
dDx(∂φ(x))2 − V (φ(x)) + · · ·

is an action containing all possible operators, and δC(x, y) is the variation
of the covariance with respect to the cutoff Λ.

Conceptually, this is an infinite-dimensional heat equation, and the
mathematical treatments justify this picture. Thus, renormalization group
evolution smooths out the integration measure e−S , and corresponds to par-
abolic evolution. This looks quite different from the elliptic or hyperbolic
Einstein equation, and the problem of how to reconcile these two pictures
has been around since the matrix model days. Perhaps the very recent [35]
will shed light on this point.

For the O(N) model and free QFT, one can make a complete analysis of
Eq. (62), and an attempt to derive gauge-gravity duality from this starting
point will appear in [24].

5. Chern-Simons gravity and generalized Liouville theory

The proposed duality of free QFT and the O(N) model to higher spin
gravity should give us some concrete answers to the questions of the previous
section. It generalizes a fairly well-studied relation which we now review.

5.1. Liouville and Chern-Simons gravity. We begin by reconsid-
ering the simplest case of Eq. (14), the determinant of the D = 2 scalar
Laplacian with metric γ and t= 0, on a cylinder ∂M ∼= R × S1. For any γ,



156 M. R. DOUGLAS

we can find a complex coordinate z, in terms of which

(64) γ = e2σγ0 ≡ e2σ|dz|2.
As discussed in §4, the log determinant is then given by the Liouville action

(65) SL = − 1
24π

∫
∂M

d2z
[|∂σ|2 + λ2e2σ

]
.

More generally, one can consider varying the conformal class of metric. In
a fixed complex coordinate z, this could be expressed in terms of a Beltrami
differential

(66) γ = e2σ|dz + μdz̄|2.
Variations of log det Δγ with respect to μ then define correlation functions,
Eq. (29) with O = γzz∂2

z .
All of these results can be obtained from SL(2,R) × SL(2,R) Chern-

Simons theory in an AdS3 background. This goes back to the 1980’s work
on 2d quantum gravity [39], and was related to 2 + 1 Chern-Simons gravity
in [17]. The point that this relation is a simple version of AdS/CFT has
been made in many works such as [43,55].

The problem is to calculate the value of the Chern-Simons action on a
flat connection (A, Ã) with specified boundary conditions. In general terms,
this can be reduced to a calculation on ∂M by writing

(67) A= g−1 · dg; Ã= dg̃ · g̃−1

and expressing the action as a total derivative in r. This leads to a chiral
Wess-Zumino-Witten action on ∂M for each of the SL(2,R) factors, and
after taking boundary conditions corresponding to Eq. (64), to the Liouville
action [7,17].

One of the difficulties in carrying this out explicitly is that whereas
some components of (A, Ã) correspond to the metric on ∂M , others must
be determined by solving the flatness conditions. These can be simplified
by a clever parameterization of g, g̃. Another subtlety is the need to add
boundary terms to Eq. (22) which correspond to the choice of boundary
conditions. To explain, the variational equations for a first order action

(68)
∫
M
A ∧ dB

will include boundary terms unless we take variations with A|∂M = 0 (Dirich-
let) or (ιndB)|∂M = 0 (Neumann; here n is a normal to ∂M). We can choose
the other boundary conditions (say, Dirichlet for B) at the cost of adding a
boundary term

∫
∂M AB.

Following [7,17], one can write the flat connections Eq. (21) in the form

(69) A= rJ3(d+ α)r−J3 ; Ã= r−J3(d+ α̃)rJ3 ,
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where α and α̃ are flat SL(2,R) connections on a surface of fixed r, and
(J+, J3, J−) is a basis of the Lie algebra sl(2,R). Taking the surface at r→ 0,
we can use (α, α̃) to specify the metric (actually the frame or zweibein) on
∂M .

Expanding Eq. (69) gives us

A=
1
r
α−J− +

(
−dr
r

+ α3

)
J3 + rα+J+(70)

Ã=
1
r
α̃+J+ +

(
dr

r
+ α̃3

)
J3 + rα̃−J−,(71)

so they correspond to a frame and metric on ∂M

e=
1
2
(
α−J− − α̃+J+

)
;(72)

ds2 =
1
r2
(
dr2 − α−α̃+

)
+
dr

r
· (α3 − α̃3) + O(r2).(73)

The cross term dr · α does not belong in an expansion of the form Eq. (11),
but it can be canceled by taking a connection with α3 = α̃3. This implicitly
tells us what type of boundary terms must be added to Eq. (22); see [7] for
the details.

Evaluating the resulting action on Eq. (69), one finds

SSG = −1
3

∫
M

Tr
[
(α)3 − (α̃)3 + 3((α2 + α̃2)J3 dr

]
(74)

+
∫
∂M

r−2α−α̃+ − 1
2
α3α̃3 + r2α+α̃−.(75)

This contains a quadratically divergent term r−2
∫
∂M α−α̃+, and a logarith-

mically divergent term
∫
dr . . .. Both are expected divergences in the QFT,

the first proportional to the volume, and the second reproducing the trace
anomaly.

The rest of the action is finite, and reproduces the Liouville action
Eq. (65) (shown in [7, 17]), as well as the generating functional of stress-
tensor correlators defined using the metric Eq. (66) (shown in [7]). Combin-
ing this with the physics derivations of these results for the 2d free boson,
or the more general approach of §4.4, we have explained ‘Fact 1’ of the
introduction.

5.2. Generalized Liouville theory. We can now explain ‘Conjecture
1’ of the introduction. It is a generalization of the above, starting from higher
spin Chern-Simons gravity, fixing boundary conditions to obtain a general-
ization of the SL(2,R) Wess-Zumino-Witten or Liouville actions. The dual-
ity relation Eq. (3) then states that this is equal to the logarithm of the
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determinant of a general 2d linear pseudo-differential operator. Similar con-
jectures should hold in any dimension D with a higher spin gravity theory,
as in D = 3 where it follows from the physics conjecture of [38,53].

Although the conceptual parallel with the SL(2,R) × SL(2,R) analysis
seems clear, we have not yet worked out the details. Some steps in this
direction are taken in [15,36]. The starting point is to generalize Eq. (69),
and identify the leading coefficients in the expansion of α, α̃ in powers of r,
as coefficients in the expansion Eq. (20). Thus we identify the generators of
SL(2,R) ⊂ hs(1, 1) as in Eq. (26), and generalize Eq. (70) to

A= −dr
r
ξ1ξ2 +

1
r

(
eσdzξ1ξ1 +

√
γ(4)ξ1ξ1ξ1ξ1 +

√
γ(6)(ξ1)6 + · · ·

)
(76)

+ O(r0)

(resp. Ã), where the subleading terms are determined by the flatness con-
ditions, perhaps using a generalization of the Bruhat decomposition of A=
g−1dg used in [7].

Here we have written γ(2) = e2σ and generalized the higher order coeffi-
cients in like fashion. Of course, there are many further components of the
tensors γ(k) in Eq. (20), but as these can be simplified into terms involving
the Laplacian, they only lead to local effects.

We should distinguish the 2d conjecture under discussion from another
statement about determinants. This is based on the well known physics
relation between 2d free QFTs (bosons or fermions) coupled to gauge con-
nections, and Wess-Zumino-Witten theory [63]. For free fermions, this states
that

(77) Tr logDA = SWZW (G) +
∫
∂M

trA ·G−1dG

where DA is a connection on a rank K vector bundle E over ∂M , G is a map
∂M →GL(K), and we evaluate the right hand side at a critical point in G.
This can also be expressed in terms of the Chern-Simons action [26], and
is another example of the relation between anomalies (here in chiral GL(K)
invariance) and Chern-Simons.

Given this relation, and then relating higher order differential operators
to systems of first order operators as

(78) det

(
K∑
k

γ(k)∂k

)
↔ det (∂ · 1 + A) ,

one gets an alternate ‘holographic’ description of these determinants, in
terms of a gauge theory with a finite number of fields. However, no analog
of this second description is known for dimensions D > 2. Perhaps it would
be worth searching for one, but physicists have looked hard for bosonization
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formulas in D > 2, with limited success. The present conjecture is quite
different in using an infinite number of fields.

If Conjecture 1 holds, as do analogous conjectures in other dimensions
D, since the picture is so general, it seems very likely to us that it will have
a simple proof, perhaps along the lines sketched in section 4.
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