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Abstract. In superstring theory spin structures are present on
both the 2-dimensional worldsheet and 10-dimensional spacetime.
We present a new proposal for the B-field in superstring theory
and demonstrate its interaction with worldsheet spin structures.
Our formulation generalizes to orientifolds, where various twistings
appear. A special case of the orientifold worldsheet B-field ampli-
tude is a KO-theoretic construction of the Z/8Z-valued Kervaire
invariant on pin− surfaces.

The Type II superstring in the NSR formulation is a theory of maps
from a closed surface Σ—the worldsheet—to a 10-manifold X—spacetime.
The spin structures of the title are present on both the worldsheet and the
spacetime. Their roles have been explored in many works; a sampling of
references includes [GSO1, GSO2, SS1, SS2, R, SW, DH, AgMV,
AgGMV, AW]. In this paper we identify several new phenomena which
are intimately related to a new Dirac quantization condition for the B-field
(Proposal 1.4). For example, in our approach the B-field amplitude depends
on the worldsheet spin structure. In particular, the distinction between
Types IIB and IIA is encoded in the B-field and the worldsheet B-field
amplitude includes the usual signs in the sum over spin structures. In another
direction we answer the question: How does the spacetime spin structure
impact the worldsheet theory in the lagrangian formulation? It turns up in
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the definition of the partition function of worldsheet fermions, i.e., in com-
puting the pfaffian of the Dirac operator on Σ. For orientifolds of the Type II
superstring, including the Type I superstring, there are several new features.
For example, we define precisely the twisted notions of spin structure needed
on Σ and on X. We also consider the worldsheet B-field amplitude and the
partition function of worldsheet fermions. It turns out that each is anomalous
and that these anomalies cancel. That anomaly cancellation is the subject
of a future paper [DFM2]; here we are content to motivate that work and
consider some special cases.

Evidently, these spin structure considerations are closely tied to the
B-field β̌, with which we begin in §1. Quite generally, Dirac quantization of
charges and fluxes is implemented by generalized cohomology theories. For
the oriented bosonic string the B-field has a flux quantized by H3(X; Z).
We locate the superstring B-field quantization condition in a generalized
cohomology theory R which is a truncation of connective KO-theory. Then
the B-field is modeled in the differential cohomology group Ř−1(X) using
the general development of differential cohomology in [HS]. In §2 we take
up the integral of φ∗β̌ on the worldsheet Σ for maps φ : Σ → X. The pres-
ence of KO-theory suggests the dependence on worldsheet spin structures.
We show how the standard Z/2Z-valued quadratic function on spin struc-
tures [A1] is embedded in the B-field amplitude, leading to the distinction
between Types IIB and IIA. A generalization of the Scherk-Schwarz con-
struction [SS1, SS2] is also part of our B-field amplitude. Orbifolds (in the
sense of string theory) and orientifolds are introduced in §3. To accommodate
the former we allow X to be an orbifold (in the sense of differential geom-
etry); the orientifold is encoded in a double cover π : Xw → X of orbifolds.
The B-field β̌ is now quantized by the R-cohomology of the Borel construc-
tion applied to X, with local coefficients determined by the double cover π
(Proposal 3.7). The integral of φ∗β̌ is taken up in §4. We posit a spin struc-
ture on the orientation double cover π̂ : Σ̂ → Σ of the worldsheet. In case this
refines and is refined to a pin− structure the integral of φ∗β̌ may be easily
defined. For a certain universal B-field this yields a KO-theoretic construc-
tion of the Z/8Z-valued Kervaire invariant on pin− surfaces [Bro], [KT, §3].
For a general (non-pin−) spin structure on Σ̂ the B-field amplitude is anoma-
lous (4.13); its definition is postponed to [DFM2]. In §5 we prove a formula
for the pfaffian line of the Dirac operator in a related one-dimensional super-
symmetric quantum mechanical model, the one which computes the index
of the Dirac operator. That formula is a categorified index theorem in low
dimensions. We see explicitly how the spin structure on spacetime enters.
This result is included here as motivation for [DFM2], where we take up the
analogous problem on the two-dimensional worldsheet. The precise nature
of the spin structure on spacetime for orientifolds is the subject of §6. It
is a twisted version of the usual notion of spin structure, where the twist-
ing depends on the orientifold double cover π : Xw → X as well as the
B-field β̌.
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The telegraphic précis [DFM1] outlines many aspects of orientifold the-
ory. This is the first of several papers which expatiate on this résumé. These
papers provide motivation, give precise definitions, develop some background
mathematics, state and prove the main theorems, and give applications to
physics. The geometry of the B-field is further developed in subsequent
papers. In [DFM2] we build a geometric model of Ř−1(X). The geometric
model is used in [DFM3] to twist K-theory and its cousins, thus defining
the home of the Ramond-Ramond field on X. The B-field is a twisting of
K-theory. This relation to twistings of K-theory is one of the main motiva-
tions for the choice of Dirac quantization condition for the B-field.

The ideas here touch on many mathematical works of Isadore Singer:
among others his recent paper [HS] on quadratic forms and generalized
differential cohomology, his many contributions to index theory and the
geometry of Dirac operators, and even his use of frame bundles to express
geometric structures on manifolds [S]. Beyond that his prescient recognition
30 years ago of the role that theoretical high energy physics would play
in late 20th century and early 21st century mathematics has had enormous
influence on the entire field.

We thank Andrew Blumberg, Mike Hopkins, Isadore Singer, and Edward
Witten for helpful discussions.

1. B-fields and generalized differential cohomology

In classical physics an abelian gauge field is determined by its field
strength F , a closed differential form on spacetime X. The archetype is the
Maxwell electromagnetic field, a closed 2-form in 4 spacetime dimensions.1

Abelian gauge theories include an electric current j, which in Maxwell the-
ory is a closed 3-form with compact support on spacelike hypersurfaces.
The de Rham cohomology class of F is called the classical flux 2 and the
de Rham cohomology class of j the classical charge. (The latter is taken
with compact supports in spatial directions.) In quantum theories Dirac’s
quantization principle constrains these classical fluxes and charges to full
lattices inside the appropriate de Rham cohomology groups. For exam-
ple, the quantum Maxwell electromagnetic flux is constrained to the image
of H2(X; Z) in H2(X; R) ∼= H2

dR(X). It is natural to refine the flux to the
abelian group H2(X; Z). Indeed, in the quantum theory the Maxwell elec-
tromagnetic field is modeled as a connection on a principal circle bundle
P → X, and the flux is the topological equivalence class of P . The electric
charge is then refined to H3(X; Z) (with appropriate supports), and there is
a magnetic charge in the quantum theory as well. This leads to the notion
that for any abelian gauge field, charges and fluxes lie in abelian groups
which are cohomology groups of spacetime. It is a relatively recent discovery

1The word ‘gauge’ in ‘classical gauge theory’ applies when we identify Ω2(X)exact
∼=

Ω1(X)/Ω1(X)closed.
2Our usage of ‘flux’ is not entirely standard.
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that generalized cohomology groups may occur. Spacetime anomaly cancel-
lation [GHM, MM] led to the proposal, further elaborated in [W2], that
the Ramond-Ramond charges in superstring theory are properly quantized
by K-theory, at least in the large distance and weak coupling limit. Similarly,
the fluxes are also quantized by K-theory [FH, MW]. In general, to quan-
tize a classical abelian gauge field one must choose a generalized cohomology
group which reproduces the appropriate de Rham cohomology vector space
after tensoring over the reals. The choice of cohomology theory is an input.
There are many physical considerations which motivate the choice and can
be used to justify it. See [F1, Part 3], [W3, OS, M] for leisurely expositions
of these ideas, including some examples.

In string theory, spacetimeX is a smooth manifold whose dimension is 26
for the bosonic string and 10 for the superstring.3 In each case there is an
abelian gauge field—the “B-field”—whose field strength is a closed 3-form
H ∈ Ω3(X). Dirac’s principle applies and we must locate the quantum flux
in a cohomology group. The most natural choice applies a simple degree
shift to the Maxwell case.

Supposition 1.1. The flux of the oriented bosonic string B-field lies
in H3(X; Z).

This supposition is certainly well-established [RW]. In this section we make
a new proposal for the oriented superstring.

1.1. The cohomology theory R. Let ko denote connective KO-
theory. One construction [Se] starts with the symmetric monoidal cate-
gory of real vector spaces and applies a de-looping machine to construct
an infinite loop structure on its classifying space. More concretely, ko is the
real version of K-theory developed in [A2] before inverting the Bott ele-
ment; for any space M the abelian groups koq(M) vanish for q > 0 and
ko−q(M) ∼= KO−q(M) for q ≥ 0. Define the Postnikov truncation4

(1.2) R := ko〈0 · · · 4〉.

Then R is a generalized multiplicative cohomology theory, more precisely
an E∞-ring spectrum. Its nonzero homotopy groups are

(1.3) {π0, π1, π2, π3, π4}(R) ∼= {Z,Z/2Z,Z/2Z, 0,Z},

a truncated Bott song. These are also the nonzero R-cohomology groups of
a point and they occur in nonpositive degrees, as R−q(pt) = πq(R). If we
represent the theory as a (loop) spectrum {Rp}p∈Z, so that for any space M

3We use ‘superstring’ as a shorthand for ‘Type II superstring’ in a sigma model
formulation.

4We use the version of Postnikov truncation for connective E∞-ring spectra [B]. The
notation ‘R’ for a multiplicative spectrum is generic, ergo uninformative, but it would be
cumbersome to use ‘ko〈0 · · · 4〉’ instead.
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and q ≥ 0 we computeR−q(M) = [M,R−q] as the abelian group of homotopy
classes of maps into the space R−q, then (1.3) are the homotopy groups of
the space R0.

Here is our new proposal for the B-field in superstring theory. Let X be
a smooth 10-dimensional manifold which plays the role of spacetime in the
superstring.

Proposal 1.4. The flux of the oriented superstring B-field β̌ lies in
R−1(X).

As a first check we note that the nonzero homotopy groups of the space
R−1 are

(1.5) {π0, π1, π2, π3}(R−1) ∼= {Z/2Z,Z/2Z, 0,Z},

so after tensoring with the reals we obtain the Eilenberg-MacLane space
K(R, 3) which computes real cohomology in degree 3. This is as it should
be: the classical fluxes of the classical field H lie in the degree 3 de Rham
cohomology of the manifold X. We explore some physical consequences of
the nonzero torsion homotopy groups in §2.

We record the exact sequence of abelian groups
(1.6)

0 −→ H3(M ; Z) −→ R−1(M)
(t,a)−−−→ H0(M ; Z/2Z) ×H1(M ; Z/2Z) −→ 0

which follows from the Postnikov tower (see (1.5)) and holds for any spaceM .
There is not a corresponding exact sequence of cohomology theories; the
k-invariant between the bottom two homotopy groups is nonzero. The quo-
tient group in (1.6) is more properly regarded as the group of equivalence
classes of Z/2Z-graded real line bundles (equivalently: Z/2Z-graded double
covers) over M . The exact sequence (1.6) immediately implies

(1.7) R−1(pt) ∼= Z/2Z,

and we can identify a generator with the nonzero element η ∈ ko−1(pt) ∼=
KO−1(pt) ∼= Z/2Z.

There is a natural splitting of (1.6) as sets (not as abelian groups). To
construct it we interpret the quotient group as the group of Z/2Z-graded
real line bundles and apply the following lemma.

Lemma 1.8. Let V → M be a real vector bundle over a space M and
[V ] ∈ R0(M) its equivalence class under the map ko0(M) → R0(M). Then
for η[V ] ∈ R−1(M) we have

t
(
η[V ]

)
= rank(V ) (mod 2)(1.9)

a
(
η[V ]

)
= w1(V ),(1.10)

where rank(V ) : π0M → Z is the rank.
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Proof. The map t in (1.6) is determined on the 0-skeleton M0 of M ,
and V is equivalent to rank(V ) in ko0(M0). This reduces (1.9) to the asser-
tion t(η) = 1, which is essentially the isomorphism (1.7). The map a in (1.6)
is determined on the 1-skeleton, and as a(η) = 0 we can replace V by its
reduced determinant line bundle DetV −1, which is equivalent to V −rankV
in the reduced group k̃o

0
(M1). Hence it suffices to prove (1.10) for the uni-

versal real line bundle Luniv → RP
∞. Identify ko−1(pt) ∼= k̃o

0
(RP

1) and
represent η by the reduced Möbius line bundle (H − 1) → RP

1. Then
η[Luniv] is represented by the external tensor product (H−1)⊗Luniv → RP

1×
RP

∞. To compute the a-component in (1.6) we restrict to the 1-skeleton
RP

1 ⊂ RP
∞, over which Luniv is identified with H. Again since a(η) = 0

we may pass to (H − 1) ⊗ (H − 1) → RP
1 × RP

1, and this represents
η2 ∈ ko−2(pt), which is nonzero. This proves η[H−1] is the nonzero class in
R−1(RP

1/RP
0) ∼= H1(RP

1/RP
0; Z/2Z). Therefore a

(
η[H − 1]

)
, hence also

a
(
η[Luniv]

)
, is nonzero. �

1.2. Generalized differential cohomology and superstring
B-fields. Semi-classical models of abelian gauge fields, which appear as
background fields or as inputs to a functional integral, combine the local
information of the classical field strength with the integrality of the quan-
tum flux. As mentioned earlier the model for the Maxwell field is a circle
bundle with connection: its curvature is the classical field strength and its
Chern class the quantum flux. Notice that there are nontrivial connections
for which both of these vanish. In other words, the combination of classical
field strength and quantum flux do not determine the semi-classical gauge
field. Equivalence classes of Maxwell fields, thus of circle connections, on any
smooth manifoldM form an infinite dimensional abelian Lie group Pic∇(M),
a differential-geometric analog of the Picard group in algebraic geometry. Its
group of path components is

(1.11) π0 Pic∇(M) ∼= H2(M ; Z)

the group of equivalence classes of circle bundles. The map Pic∇(M) →
π0 Pic∇(M) forgets the connection. The torusH1(M ; Z)⊗R/Z of equivalence
classes of flat connections on the trivial circle bundle acts freely on the
identity component Pic0

∇(M) by tensor product, and the quotient

(1.12) Pic0
∇(M) → Ω2

exact(M)

is the vector space of exact 2-forms. Other components of Pic∇(M) are
also total spaces of principal H1(M ; Z) ⊗ R/Z bundles; the bases are affine
translates of Ω2

exact(M) in the topological vector space of closed 2-forms,
affine spaces of closed forms with a fixed de Rham cohomology class in the
lattice Image

(
H2(M ; Z) → H2(M ; R)

)
.

Cheeger-Simons [CS] introduced abelian Lie groups Ȟq(M) for all inte-
gers q which generalize Ȟ2(M) ∼= Pic∇(M). The group Ȟ1(M) is the group
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of smooth maps M → T into the circle group. The group Ȟ3(M) may
be modeled as equivalence classes of T-gerbes with connection or bundle
gerbes [Br, Hi, Mu]. The original definition of Ȟq(M) is in terms of
the integral over smooth singular (q − 1)-cycles, generalizing the holonomy
of a T-connection around a loop. There is an alternative approach using
sheaves, modeled after a construction of Deligne in algebraic geometry.
Hopkins-Singer [HS] provide two important supplements. First, they define
differential cohomology groups ȟ•(M) for any cohomology theory h. Sec-
ond, they define spaces5 ȟp(M) such that π0ȟp(M) ∼= ȟp(M). Thus points
of ȟp(M) may be considered as geometric objects whose equivalence class
lies in ȟp(M), just as a circle bundle with connection has an equivalence
class in Pic∇(M). For the specific cohomology theory R in (1.2) fix a singu-
lar cocycle ι ∈ C3(R−1; R) whose cohomology class is a normalized generator
of H3(R−1; R). Then a point of degree −1 is a triple (c, h, ω), where

(1.13)

c : M −→ R−1

h ∈ C2(M ; R)

ω ∈ Ω3(M)

and h satisfies δh = ω − c∗ι. (It follows that dω = 0.) We give Řp(M) the
structure of an abelian Lie group for which

(1.14) π0Ř
p(M) ∼= Rp(M)

and each component is a principal Rp−1(M ; R/Z)-bundle over an affine space
of closed differential forms.

The preceding discussion leads to corollaries of Supposition 1.1 and Pro-
posal 1.4:

The oriented bosonic string B-field β̌ is a point in Ȟ3(X).(1.15)

The oriented superstring B-field β̌ is a point in Ř−1(X).(1.16)

In [DFM2] we give a concrete differential-geometric model of the super-
string B-field, whereas the model in terms of the spaces Řp(X) is more
homotopy-theoretic. In any case for the purposes of this paper we only need
the equivalence class [β̌] ∈ Ř−1(X) of β̌. We remark that β̌ determines
β ∈ R−1 whose equivalence class is [β] ∈ R−1(X); see (1.19) below. Then
using (1.6) we define

(1.17)
(
t(β̌), a(β̌)

)
∈ H0(X; Z/2Z) ×H1(X; Z/2Z).

The physical significance of (1.17) is explained in subsequent sections.
We record the following exact sequences, which are specializations to the

case at hand of general facts about differential cohomology and hold for any

5In fact, they define simplicial sets. We use the moniker ‘points’ for its 0-simplices.
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smooth manifold M :

0 −→ R−(q+1)(M ; R/Z) −→ Ř−q(M) −→ Ω4−q
Z

(M) −→ 0(1.18)

0 −→ Ω3−q(M)/Ω3−q
Z

(M) −→ Ř−q(M) −→ R−q(M) −→ 0(1.19)

Here q = 1, 2, 3 and Ω4−q
Z

(M) denotes the space of closed forms with integral
periods. In particular, it follows from these sequences and (1.7) that

(1.20) R−2(pt; R/Z) ∼= Ř−1(pt) ∼= R−1(pt) ∼= Z/2Z.

The nonzero element η̌ of (1.20) pulls back to any M and is a special B-field
in oriented superstring theory. It may be identified with the generator of
ko−2(pt; R/Z) ∼= KO−2(pt; R/Z) ∼= Z/2Z. Of course, η̌ maps to η under the
Bockstein homomorphism R−2(pt; R/Z) → R−1(pt; Z).

Any real line bundle L→M determines

(1.21) η̌[L] ∈ R−2(M ; R/Z) −→ Ř−1(M)

with t
(
η̌[L]

)
= 1 and a

(
η̌[L]

)
= w1(L); see Lemma 1.8.

Remark 1.22. An oriented superstring spacetime X10 is endowed with
a spin structure κ. (See §2.1 for a review of spin structures. The twisted
notion of spin structure for superstring orientifold spacetimes is the subject
of §6.) Now the B-field β̌ may be written (Lemma 1.8) as a sum of an
object β̌0 in Ȟ3(X) and a Z/2Z-graded double cover K → X, the latter
with characteristic class

(
t(β̌), a(β̌)

)
∈ H0(X; Z/2Z)×H1(X; Z/2Z). We can

shuffle the data: Define two spin structures κ� = κ, κr = κ+K on spacetime
and consider the B-field to be β̌0. The two spin structures then correlate with
the two spin structures α�, αr on the worldsheet; see Definition 2.4 below.
This splitting into ‘left’ and ‘right’ does not generalize to orientifolds.

2. The B-field amplitude and worldsheet spin structures

The spacetime for oriented bosonic string theory is a smooth 26-manifold
X, and the B-field β̌ has an equivalence class in Ȟ3(X); see Supposition 1.1.
The worldsheet in oriented bosonic string theory is a closed 2-manifold Σ
with orientation o and a smooth map φ : Σ → X. (It represents the propaga-
tion of closed strings; for open strings Σ may have a boundary.) One factor
in the exponentiated action of the worldsheet theory is

(2.1) exp
(

2πi
∫

Σ
φ∗β̌

)
;

it only depends on the equivalence class [β̌] ∈ Ȟ3(X) and is defined using
the pushforward in ordinary differential cohomology: φ∗[β̌] ∈ Ȟ3(Σ) and the
orientation o on Σ determines a pushforward map [HS, §3.5]

(2.2)
∫

(Σ,o)
: Ȟ3(Σ) −→ Ȟ1(pt) ∼= R/Z.
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In this section we define the analog for the superstring and explore some
consequences.

2.1. Spin structures on superstring worldsheets. As a prelimi-
nary we quickly review spin structures. Recall that the intrinsic geometry of
a smooth n-manifold M is encoded in its principal GLnR-bundle of frames
B(M) → M . A point of B(M) is a linear isomorphism R

n → TmM for
some m ∈M . Choose a Riemannian metric on M , equivalently, a reduction
to an On-bundle of frames BO(M) →M . The spin group

(2.3) ρ : Spinn −→ On

is the double cover of the index two subgroup SOn ⊂ On. A spin structure
on M is a principal Spinn-bundle BSpin → M together with an isomor-
phism of the associated On-bundle with BO(M). It induces an orientation
on M via the cover Spinn → SOn. The space of Riemannian metrics is con-
tractible, so a spin structure is a topological choice and can alternatively be
described in terms of a double cover of an index two subgroup of GLnR.
An isomorphism of spin structures is a map BSpin → B′

Spin such that the
induced map on On-bundles commutes with the isomorphisms to BO(M).
The opposite spin structure to BSpin → M is the complement of BSpin

in the principal Pin−
n -bundle associated to the inclusion Spinn ↪→ Pin−

n ;
see [KT, Lemma 1.9] for more elaboration.6 If M admits spin structures,
then the collection of spin structures forms a groupoid whose set of equiva-
lence classes S(M) is a torsor for H0(M ; Z/2Z) ×H1(M ; Z/2Z); the action
of a function δ : π0M → Z/2Z in H0(M ; Z/2Z) sends a spin structure to
its opposite on components where δ = 1 is the nonzero element. The auto-
morphism group of any spin structure is isomorphic to H0(M ; Z/2Z); a
function δ : π0M → Z/2Z acts by the central element of Spinn on compo-
nents where δ = 1. The manifold M admits spin structures if and only if
the Stiefel-Whitney classes w1(M), w2(M) vanish.

A superstring worldsheet (Σ, o) is oriented and is equipped with a pair of
spin structures7 α�, αr which induce opposite orientations at each point. Our
convention is that the left spin structure α� induces the chosen orientation o.
Observe that a spin structure is local and can be considered as a field in
the sense of physics. It is a discrete field, in fact a finite field on a compact
manifold: there are only finitely many spin structures up to isomorphism. As
with gauge fields, spin structures have automorphisms so there is a groupoid
of fields rather than a space of fields.

Definition 2.4. The topological data on an oriented superstring world-
sheet (Σ, o) is a discrete field α which on each connected orientable open

6Recall that Pin±
n sits in the Clifford algebra Cliff±

n whose generators satisfy γ2 = ±1.
Either sign can be used to construct the opposite spin structure.

7‘�’ and ‘r’ stand for ‘left’ and ‘right’.
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set U ⊂ Σ is a pair of spin structures which induce opposite orientations
of U .

In more detail, this is the indicated data on each connected orientable open
set, isomorphisms of the spin structures on intersections of such open sets,
and a coherence condition among the isomorphisms on triple intersections.
The global orientation o is used to construct from α a global spin struc-
ture α� which induces o and a spin structure αr which induces the opposite
orientation −o. The global spin structures α�, αr need not be opposites (as
defined in the previous paragraph). For orientifold models (§3) the world-
sheet does not have a global orientation, indeed may be nonorientable, but it
retains the discrete field α; see Definition 4.8. In string theory one integrates
over α, i.e., sums over the spin structures.

Remark 2.5. We could, of course, replace α in Definition 2.4 with the
pair of spin structures α�, αr. Our formulation emphasizes both the local
nature of the spin structure and that the same local field is present on
worldsheets in orientifold superstring theories.

2.2. Superstring B-field amplitudes. Let X be a 10-manifold—a
superstring spacetime—and β̌ a B-field on X as defined in (1.16). We define
the oriented superstring B-field amplitude (2.1), which only depends on the
equivalence class [β̌] ∈ Ř−1(X). To do so we replace (2.2) with a pushforward
in differential R-theory. The main point is that the cohomology theory R is
Spin-oriented, that is, there is a pushforward in topological R-theory on spin
manifolds. It is the Postnikov truncation of the pushforward in ko-theory
defined from the spin structure (which by the Atiyah-Singer index theorem
has an interpretation as an index of a Dirac operator). In fact, because we are
in sufficiently low dimensions we can identify it exactly with the pushforward
in ko, a fact which is useful in the proof of the Theorem 2.9 below. Combining
with integration of differential forms we obtain a pushforward [HS, §4.10]

(2.6)
∫

Σ,α�

: Ř−1(Σ) −→ Ř−3(pt) ∼= R/Z

in differential R-theory defined using the spin structure α� on Σ. (Use (1.18)
to see the isomorphism Ř−3(pt) ∼= R/Z.) This completes the definition of
the B-field amplitude. In the remainder of this section we investigate special
cases which go beyond the B-field amplitude for the oriented bosonic string.

Let (Σ, o) be a closed oriented surface and S(Σ, o) the set of equivalence
classes of spin structures which refine the given orientation. Note S(Σ, o) is
a torsor for H1(Σ; Z/2Z). Let

(2.7) q : S(Σ, o) −→ Z/2Z

be the affine quadratic function which distinguishes even and odd spin struc-
tures. It dates back to Riemann and is the Kervaire invariant in dimension
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two; see [HS, §1] for some history. The characteristic property of the qua-
dratic function q is

q(α+ a1 + a2) − q(α+ a1) − q(α+ a2) + q(α) = a1 · a2,

α ∈ S(Σ, o), a1, a2 ∈ H1(Σ; Z/2Z),(2.8)

where a1 · a2 ∈ Z/2Z is the mod 2 intersection pairing.

Theorem 2.9. Let η̌ be the nonzero universal B-field in (1.20). For any
superstring worldsheet φ : Σ → X, the B-field amplitude is (−1)q(α�).

This demonstrates that the B-field amplitude (2.1) is sensitive to the world-
sheet spin structure.

Proof. Let p : Σ → pt and p
α�∗ : ko0(Σ; Z) → ko−2(pt; Z) the pushfor-

ward (2.6) defined using the spin structure α�. . Since [HS, §4.10] push-
forward is compatible with the exact sequence (1.18), we use push-pull to
compute the integral in (2.1) as

(2.10) p
α�∗ p∗η̌ = η̌p

α�∗ (1).

The main theorem in [A1] states that pα�∗ (1) = q(α�)η
2, where η2 ∈ ko−2(pt;

Z) ∼= Z/2Z is the generator. Finally, η̌ · η2 ∈ ko−4(pt; R/Z) ∼= R/Z is the
nonzero element 1/2 of order two [FMS, Proposition B.4]. �

The space of fields F in the worldsheet formulation has many compo-
nents, distinguished by the equivalence class of the spin structures α, the
homotopy class of φ : Σ → X, etc. If β̌ is any B-field on X, then Theorem 2.9
implies that the theory with B-field β̌ + η̌ differs only by the sign (−1)q(α�)

on components of F with spin structure α�. Note that t(β̌ + η̌) = t(β̌) + 1.
Recall the notation in (1.17).

Definition 2.11. An oriented superstring has Type IIB on components
of X on which t(β̌) : π0X → Z/2Z vanishes and has Type IIA on compo-
nents of X on which t(β̌) is nonzero.

Remark 2.12. In the Hamiltonian formulation the distinction between
Type IIA and Type IIB is a sign in the GSO projection. In the Lagrangian
formulation this sign is manifested by the sign (−1)q(α�) in the sum over
spin structures [SW]. Also, since the set of isomorphism classes of B-fields
is an abelian group there is a distinguished element, namely zero. In this
sense our approach favors Type IIB as more “fundamental” than Type IIA.

Next, we consider the worldsheet amplitude for the special flat B-fields
defined in (1.21).
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Theorem 2.13. Let L→ X be a real line bundle and η̌L the correspond-
ing B-field. For a superstring worldsheet φ : Σ → X, the B-field amplitude
is (−1)q(α�+φ∗L).

Proof. We proceed as in the proof of Theorem 2.9. The right hand
side of (2.10) is now η̌p∗[φ∗L]. Conclude by observing that the pushforward
of [φ∗L] in the spin structure α� is equal to the pushforward of 1 in the spin
structure α� + φ∗L. �

Lemma 1.8 implies that t
(
η̌[L]

)
= 1 and a

(
η̌[L]

)
= w1(L). We can

consider instead the B-field η̌(L−1) for which t = 0 and a is as before; then
combine Theorem 2.9 and Theorem 2.13 to compute the B-field amplitude

(2.14) (−1)q(α�+φ∗L)−q(α�)

for the B-field η̌(L− 1).

3. Orbifolds and orientifolds

In this section we take up two important variations of the basic Type II
superstring. First, suppose a finite group Γ acts on a smooth 10-manifold Y .
Then there is a superstring theory—the orbifold—whose spacetime is con-
structed from the pair (Y,Γ) by “gauging” the symmetry group Γ. The
main new feature is the inclusion of twisted sectors [DHVW]: in addition
to strings φ : S1 → Y one considers for each γ ∈ Γ maps φ : R → Y such that
φ(s+ 1) = γ · φ(s) for all s ∈ R. The analog for surfaces is a bit more com-
plicated. Twisted sectors are labeled by a principal Γ-bundle P → Σ over a
superstring worldsheet Σ, and then a map to spacetime is a Γ-equivariant
map φ̃ : P → Y . If φ̃′ : P ′ → Y is another orbifold worldsheet, then a mor-
phism φ̃→ φ̃′ is an isomorphism P → P ′ of principal Γ-bundles which inter-
twines φ̃, φ̃′. The space of these fields is an infinite-dimensional groupoid.

Points of Y connected by elements of Γ represent the same points of
spacetime—Γ is a gauge symmetry—so it is natural to take spacetime as
the quotient Y//Γ. We keep track of isotropy subgroups, due to non-identity
elements γ ∈ Γ and y ∈ Y with γ · y = y. Now an old construction in
differential geometry [Sa], also dubbed [Th] ‘orbifold’, does exactly that.
Furthermore, we can admit as spacetimes orbifolds X which are not global
quotients by finite groups, thus widening the collection of models introduced
in the previous paragraph. Orbifolds are presented by a particular class of
groupoids8 [ALR], a special case being the presentation of a global quo-
tient X = Y//Γ by the pair (Y,Γ). We take up groupoid presentations in
subsequent papers, but here simply work directly with X. A worldsheet is
then a map φ : Σ → X of orbifolds, and the infinite-dimensional orbifold of

8We could write ‘orbifold’=‘smooth Deligne-Mumford stack’, smooth understood as
in ‘smooth manifold’.
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such maps includes twisted sectors. The reader unfamiliar with differential-
geometric orbifolds may prefer to consider only global quotients Y//Γ and
work equivariantly on Y .

3.1. Equivariant cohomology and orbifold B-fields. There are
many extensions of a given cohomology theory h to an equivariant cohomol-
ogy theory for spaces Y with the action of a compact Lie group G. The sim-
plest is the Borel construction. It attaches to (Y,G) the space YG = EG×GY ,
where EG is a contractible space with a free G-action. Then one defines the
Borel equivariant h-cohomology as hG(Y ) := h(YG). This is not a new coho-
mology theory, but rather the nonequivariant theory applied to the Borel
construction, a functor from G-spaces to spaces. That functor generalizes to
orbifolds which are not necessarily global quotients—the functor is geometric
realization—and so leads to a notion of “Borel cohomology” theories on orb-
ifolds. But usually h has other extensions to an equivariant theory. For exam-
ple, the Atiyah-Segal geometric version of equivariant K-theory, defined
in terms of equivariant vector bundles, is more delicate: Borel equivariant
K-theory appears as a certain completion [AS]. The Atiyah-Segal theory is
extended to orbifolds, in fact to “local quotient groupoids”, in [FHT].

We recalled at the beginning of §1 that the charges and fluxes associ-
ated to an abelian gauge field in a quantum gauge theory lie in generalized
cohomology groups. When we pass to theories formulated on orbifolds we
must additionally specify a flavor of equivariant cohomology to locate the
charges and fluxes. For example, the Ramond-Ramond field in superstring
theory has charges and fluxes in K-theory. In the corresponding orbifold
theory they are in Atiyah-Segal equivariant K-theory. This choice has con-
sequences even locally, at the level of differential forms: it is consistent with
extra Ramond-Ramond fields in twisted sectors. We hope to elaborate in a
future paper. Here we limit consideration to B-fields on orbifolds.

Let M be a 26-dimensional orbifold. We posit the following generaliza-
tion of Supposition 1.1.

Supposition 3.1. For the oriented bosonic orbifold the flux of the
B-field β̌ lies in the Borel cohomology H3(X; Z).

Furthermore, there is a generalization of differential cohomology to orb-
ifolds [LU, G]. So an immediate reformulation locates the B-field itself in
orbifold differential cohomology (see (1.16)). Supposition 3.1 is implicit in
the literature, for example in [Sh, GSW]. The B-field amplitude (2.1) is
defined as before; the integration is still over a smooth manifold, the world-
sheet Σ.

For the superstring case we also posit Borel cohomology for the B-field.
Let X be a 10-dimensional orbifold.

Proposal 3.2. For the superstring orbifold the flux of the B-field β̌ lies
in the Borel cohomology R−1(X).
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We are not aware of any general equivariant version of generalized differential
cohomology, much less a version for orbifolds. In [DFM2] we develop a
geometric model of Ř−1(X) for a local quotient groupoid X and locate the
B-field there. The pullback to a worldsheet then lives in the differential
R-theory as in the non-orbifold case, and the amplitude (2.1) is defined as
before.

3.2. Orientifolds and B-fields. The orientifold construction applies
to both the bosonic string and the superstring. In its simplest incarnation the
construction involves a pair (Y, σ) of a smooth manifold Y and an involution
σ : Y → Y . Fields on Y have a definite transformation law under σ. For
example, the metric is invariant whereas the 3-form field strength H of the
B-field is anti-invariant: σ∗H = −H. We combine the orbifold and this
simple orientifold by starting with a triple (Y,Γ, υ) consisting of a finite
group Γ, a smooth Γ-manifold Y , and a surjective homomorphism υ : Γ →
Z/2Z. Then fields on Y transform under Γ: e.g., the 3-form field strength of
the B-field satisfies

(3.3) γ∗H = (−1)υ(γ)H, γ ∈ Γ.

As before Γ acts as a gauge symmetry and the physical points of spacetime lie
in the quotient. Therefore, we arrive at a more general model in a geometric
formulation.

Definition 3.4. The spacetime of an orientifold string model is an orb-
ifold X equipped with a double cover of orbifolds π : Xw → X.

The equivalence class w ∈ H1(X; Z/2Z) of the double cover lies in the Borel
cohomology of X. For the triple (Y,Γ, υ) the double cover is π : Y// ker υ →
Y//Γ with characteristic class in H1

Γ(Y ; Z/2Z).
Definition 3.4 applies to both the bosonic string and the superstring.

There is a particular special case of the orientifold construction which goes
back to the early superstring theory literature.

Definition 3.5. The Type I superstring on a smooth 10-manifold Y is
the orientifold with spacetime X = Y ×pt // (Z/2Z), the orbifold quotient of
the trivial involution on Y .

We next generalize Supposition 3.1 and Proposal 3.2 to bosonic and
superstring orientifolds. First, recall that if M is any space and A → M a
fiber bundle of discrete abelian groups—a local system—then we can define
twisted ordinary cohomology H•(M ;A) with coefficients in A. In particular,
if Mw →M is a double cover, then we form the associated bundle Aw →M
of free abelian groups of rank one, defined by the action of {±1} on Z. We
denote the associated twisted cohomology by Hw+•(M ; Z). It has a concrete
manifestation in terms of cochain complexes: the deck transformation of
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the double cover Mw → M acts on the cochain complex C•(Mw; Z), and
Hw+•(M ; Z) is the cohomology of the anti-invariant subcomplex. If M is
a smooth manifold there is a corresponding twisted version Ȟw+•(M) of
differential cohomology. We use the model of differential cohomology as a
cochain complex of triples (c, h, ω), where c ∈ C•(Mw; Z), ω ∈ Ω•(Mw), and
h ∈ C•+1(Mw; R) (see [DF, §6.3], [HS, §2.3]), and take the anti-invariant
subcomplex.

Supposition 3.6. Let Xw → X be a double cover of 26-dimensional
orbifolds and suppose X is the spacetime of a bosonic orientifold. Then the
flux of the B-field β̌ lies in the twisted Borel cohomology Hw+3(X; Z).

This appears in the literature using a different model of twisted degree three
cohomology [GSW]. The equivalence class of the B-field lies in the twisted
differential cohomology group Ȟw+3(X), consistent with the transformation
law (3.3).

The B-field quantization law for the superstring orientifold is expressed
in terms of twisted R-cohomology. The following discussion applies to any
cohomology theory h. Let Mw → M be a double cover of a space M with
deck transformation σ, and as after (1.3) let {hp}p∈Z denote a spectrum rep-
resenting h-cohomology. Recall that hp(M) is the abelian group of homotopy
classes of maps M → hp. Let ip : hp → hp be a map which represents the
additive inverse on cohomology classes, and we may assume ip ◦ ip = idhp .
Define a w-twisted h-cocycle of degree p on M to be a pair (c, η) of a map
c : Mw → hp and a homotopy η from σ∗c to ipc. A homotopy of w-twisted
h-cocycles is a w-twisted h-cocycle on Δ1 ×M , where Δ1 is the 1-simplex.
Then hw+p(M) is defined as the group of homotopy classes of w-twisted
h-cocycles of degree p. A small elaboration using triples as in (1.13) defines
w-twisted ȟ-cohomology if M is a smooth manifold. In [DFM2] we develop
a differential-geometric model for Řw−1(M).

Proposal 3.7. Let Xw → X be a double cover of 10-dimensional orb-
ifolds and suppose X is the spacetime of a superstring orientifold. Then the
flux of the B-field β̌ lies in the twisted Borel cohomology Rw−1(X).

Remark 3.8. There is an important restriction on the B-field flux which
we will derive in §6. Namely, a superstring orientifold spacetime X carries
a suitably twisted spin structure defined in terms of the B-field, and its
existence leads to the constraints (6.9), (6.10).

3.3. Universal B-fields on orientifolds. Let BZ/2Z = pt // (Z/2Z)
and π0 : pt → BZ/2Z the universal double cover, which we denote w0.
The geometric realization of BZ/2Z is RP

∞, so the Borel R-cohomology
of BZ/2Z is the R-cohomology of RP

∞. For orientifolds there are universal
B-fields pulled back from the classifying map X → BZ/2Z of the orientifold
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double cover Xw → X. For the bosonic orientifold we first apply the exact
sequence analogous to (1.18),

(3.9) 0 −→ Hw+2(M ; R/Z) −→ Ȟw+3(M) −→ Ωw+3
Z

(M) −→ 0,

to M = BZ/2Z and deduce Ȟw0+3(BZ/2Z) ∼= Hw0+2(BZ/2Z; R/Z). Now
the twisted chain complex of the geometric realization RP

∞, starting in
degree zero, is

(3.10) Z Z
2

Z
0

Z
2

Z
0 · · ·

Apply Hom(−,R/Z) to compute

(3.11) Ȟw0+3(BZ/2Z; Z) ∼= Hw0+2(BZ/2Z; R/Z) ∼= Z/2Z.

This is the universal group of B-fields on bosonic orientifolds.

Remark 3.12. The Bockstein map Hw0+2(BZ/2Z; R/Z) → Hw0+3

(BZ/2Z; Z) is an isomorphism, as follows easily from the long exact sequence
associated to Z → R → R/Z. This is also obvious from the geometric
picture of differential cohomology given around (1.14) since in this case
Ȟw0+3(BZ/2Z) is finite, hence equal to its group of components Hw0+3

(BZ/2Z; Z).

For superstring orientifolds we also have a finite group of universal twist-
ings.

Theorem 3.13. The group Řw0−1(BZ/2Z) ∼= Rw0−2(BZ/2Z; R/Z) ∼=
Rw0−1(BZ/2Z; Z) is cyclic of order 8. For any generator θ̌ we can identify 4θ̌
with the nonzero element in (3.11). Furthermore, the pullback of θ̌ under
π0 : pt → BZ/2Z is η̌.

Recall that η̌ is the nonzero class in (1.20). In [DFM3] we interpret Rw0−1

(BZ/2Z; Z) as a group of universal twistings of KO-theory (modulo Bott
periodicity), which may be identified with the super Brouwer group [Wa,
p. 195], [De, Proposition 3.6].

Proof. All cohomology groups in this proof have Z coefficients. We first
show

(3.14) Rw0−1(BZ/2Z) := Rw−1(RP
∞) ∼= Rw−1(RP

4) ∼= kow−1(RP
4),

where ‘w’ denotes the nontrivial double cover of projective space. The first
equality is the definition of (twisted) Borel cohomology. The second group is
computed as the space of sections of a twisted bundle of spectra over RP

∞

whose fiber is R−1; see [ABGHR, MS]. The second isomorphism fol-
lows from elementary obstruction theory since R−1 has vanishing homotopy
groups above degree 3; see (1.5). Finally, the (−1)-space of the ko-spectrum
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and R−1 have the same 5-skeleton, which justifies the final isomorphism
in (3.14).

Write kow−1(RP
4) ∼= kow0−1

Z/2Z
(S4). Here we use the Atiyah-Segal equivari-

ant ko-theory for the antipodal action on the sphere; the equivariant double
cover w0 is pulled back from a point. Next, we claim

(3.15) kow0−1
Z/2Z

(pt) ∼= ko0(pt).

For in the Atiyah-Bott-Shapiro (ABS) model with Clifford algebras [ABS],
the left hand side is the K-group of a category of Z/2Z-graded real mod-
ules for the Z/2Z-graded algebra A generated by odd elements γ, α with
γ2 = −1, α2 = 1, and αγ = −γα. (That the generator α of Z/2Z is odd
reflects the twisting w0; the Clifford generator γ is always odd.) But A is
isomorphic to the Z/2Z-graded matrix algebra End(R1|1), and so the cate-
gory of A-modules is Morita equivalent to the category of Z/2Z-graded real
vector spaces. Let9 ξ−1 denote the element in kow0−1

Z/2Z
(pt) which corresponds

to 1 ∈ ko0(pt) under the isomorphism (3.15). In the ABS model ξ−1 is
represented by

(3.16) ξ−1 : R
1|1 with γ =

(
0 −1
1 0

)
, α =

(
0 1
1 0

)
.

Then multiplication by ξ−1 induces an isomorphism k̃o 0
Z/2Z

(S4) ∼= kow0−1
Z/2Z

(S4), where the tilde denotes reduced ko-theory. Now k̃o 0
Z/2Z

(S4) ∼= k̃o 0

(RP
4) and k̃o 0(RP

4) is cyclic of order 8 generated by H−1, where H → RP
4

is the nontrivial (Hopf) real line bundle: the order of k̃o 0(RP
4) is bounded

by 8 by the Atiyah-Hirzebruch spectral sequence, and because w4

(
4(H −

1)
)
�= 0 we conclude 4(H − 1) �= 0.
The assertion about 4θ̌ follows from the twisted version of the exact

sequence (1.6) on BZ/2Z: the kernel group Hw0+3(BZ/2Z; Z) is (3.11). To
prove the last statement we observe that the argument in the previous para-
graph identifies the generator of kow0−1

Z/2Z
(S4) as the pullback of ξ−1 under the

Z/2Z-equivariant map h : S4 → pt. Let i : pt ↪→ S4 be the (nonequivariant)
inclusion of a point. Then π∗0(θ̌) is the image of h∗ξ−1 under the composition

kow0−1
Z/2Z

(S4) → ko−1(S4) i∗−→ ko−1(pt), which is evidently the image of ξ−1

under kow0−1
Z/2Z

(pt) → ko−1(pt). (We choose orientations of pt and S4 to triv-
ialize the pullback of w0 under π0.) Finally, in the ABS model this pullback
simply drops the action of α, and what remains of (3.16) is the generator η
of ko−1(pt) ∼= Z/2Z. �

9We reserve the notation ‘ξ’ for the inverse class in twisted periodic KO-theory. It is
the KO-Euler class of the real line with involution −1, viewed as an equivariant line bundle
over a point. It has many beautiful properties, some of which we exploit in [DFM3].
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4. The B-field amplitude for orientifolds

A worldsheet in an orientifold string theory has several fields [DFM1,
Definition 5]. For the bosonic case they all appear in Definition 4.1; for
the superstring there are additional fields articulated in Definition 4.8 and
Definition 5.1.

4.1. Bosonic orientifold worldsheets. As a preliminary recall that a
smooth n-manifold M has a canonical orientation double cover π̂ : M̂ →M
defined as the quotient M̂ := B(M)/GL+

n R, where GL+
n R is the group of

orientation-preserving automorphisms of R
n. The manifold M̂ is canonically

oriented. It is natural to denote the double cover π̂ : M̂ →M as ‘w1(M)’.

Definition 4.1. Let π : Xw → X be the spacetime of an orientifold
string theory. An orientifold worldsheet is a triple (Σ, φ, φ̃) consisting of a
compact 2-manifold Σ, a smooth map φ : Σ → X, and an equivariant lift
φ̃ : Σ̂ → Xw of φ to the orientation double cover of Σ.

In theories with open strings Σ may have nonempty boundary. The surface Σ
is not oriented and need not be orientable. In fact, the existence of the
equivariant lift implies a constraint involving its first Stiefel-Whitney class:

(4.2) φ∗w = w1(Σ);

the equivariant lift φ̃ is an isomorphism of the double covers in (4.2).10

For an orientifold spacetime defined by a triple (Y,Γ, υ) as above, Defini-
tion 4.1 unpacks to a principal Γ-bundle P → Σ, an orientation on P , and a
Γ-equivariant map P → Y . There is a constraint: if υ(γ) = 0, then the action
of γ on P preserves the orientation; if υ(γ) = 1, then γ reverses the orien-
tation. There is an obvious notion of equivalence of triples (Σ, φ, φ̃), and
the collection of such triples forms a groupoid presentation of an infinite
dimensional orbifold.

Remark 4.3. Definition 4.1 applied to a single string clarifies the nature
of twisted sectors in orientifold theories. Namely, if φ : S1 → X is a string,
then the constraint implies that φ∗w = 0, since the circle is orientable. Thus
φ lifts to the double cover Xw. Put differently, the homotopy class of φ does
not detect a nontrivial double cover, so does not sense the orientifold. Now
the “twisting” in a twisted sector for a global quotient orbifold X = Y//Γ
measures the extent to which a string S1 → X fails to lift to a string
S1 → Y . So if X = Y//Γ is a global quotient with υ : Γ → Z/2Z specifying
the orientifold, then φ lifts to Xw = Y// ker υ and the twisted sectors are
labeled by conjugacy classes in ker υ. In case Xw = Y is a smooth manifold
and X the orbifold quotient by an involution, then any string φ : S1 → X

10In our ambiguous notation ‘w’ and ‘w1(M)’ denote both a double cover and its
equivalence class.
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lifts to a loop S1 → Y . Hence there are no twisted sectors in a “pure”
orientifold.

4.2. B-field amplitudes for bosonic orientifolds. Recall that if
M is a smooth compact n-manifold then integration of differential forms

(4.4)
∫

M,o
: Ωn(M) −→ R

is only defined after choosing an orientation o. Absent an orientation one may
integrate densities, which in our current notation are w1-twisted differential
forms: forms on the orientation double cover M̂ which are odd under the
deck transformation. Integration of densities is a homomorphism

(4.5)
∫

M
: Ωw1(M)+n(M) −→ R

which lifts to integration in twisted differential cohomology:

(4.6)
∫

M
: Ȟw1(M)+n+1(M) −→ Ȟ1(pt) ∼= R/Z.

To define (4.6) one may follow [HS, §3.4] working in the model with smooth
singular cochains.

That understood, the definition of the B-field amplitude (2.1) for bosonic
orientifolds is straightforward. Let β̌ be a bosonic orientifold B-field as in
Supposition 3.6; its equivalence class is [β̌] ∈ Ȟw+3(X). Then for an orien-
tifold worldsheet as in Definition 4.1 the isomorphism (4.2) (defined by φ̃

in Definition 4.1) places the pullback φ∗[β̌] in the group Ȟw1(Σ)+3(Σ). The
B-field amplitude is then computed using a twisted integration (4.6) in place
of (2.2). This bosonic orientifold B-field amplitude is described using a par-
ticular model for Ȟw+3(X) in [GSW].

The universal B-field amplitude is easy to compute.

Proposition 4.7. Let β̌ be the nonzero universal B-field in (3.11).
Then for any bosonic orientifold worldsheet the B-field amplitude (2.1) is
(−1)Euler(Σ), where Euler(Σ) is the Euler number of the closed surface Σ.

Proof. If φ : Σ → X is the worldsheet map, then we can identify φ∗[β̌] ∈
Hw1(Σ)+2(Σ; R/Z) as the pullback of x2 ∈ H2(RP

∞; Z/2Z) via the map
w1 : Σ → RP

∞ which classifies w1(Σ). The latter pulls back the generator
x ∈ H1(RP

∞; Z/2Z) to w1(Σ), so φ∗[β̌] = w1(Σ)2. Now w1(Σ)2 = w2(Σ)
since the difference of the two sides is the second Wu class, which vanishes on
manifolds of dimension less than four. Finally, w2(Σ) is the mod 2 reduction
of the Euler class (which in general lives in twisted integral cohomology). �
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4.3. Spin structures on superstring orientifold worldsheets.
Turning to the worldsheet in a superstring orientifold theory we begin by

specifying the appropriate notion of spin structure. We could not find this
definition in the string theory literature, even for the Type I superstring.

Definition 4.8. The topological data on a superstring orientifold world-
sheet Σ is a discrete field α which on each connected orientable open set U ⊂
Σ is a pair of spin structures which induce opposite orientations of U .

Definition 4.8 is identical to Definition 2.4 except for the omission of the
global orientation. Although α is locally a pair of spin structures, there
is no global spin structure on Σ. Rather, the local pair of spin structures
with opposite underlying orientation glue to a global spin structure on the
orientation double cover Σ̂. The global description is equivalent to the local
Definition 4.8, and we use ‘α’ to denote the spin structure on Σ̂ as well as
the local field in Definition 4.8. Let σ̂ denote the involution on Σ̂. If the spin
structures are locally opposite consistent with gluing—more simply, if the
pullback σ̂∗α of the global spin structure on Σ̂ is the opposite (−α)—then a
refinement to a pin− structure on Σ may be possible, but is additional data.

Remark 4.9. The oriented double cover S2 of RP
2 has a unique spin

structure (up to ∼=) compatible with the orientation. It refines to two inequiv-
alent pin− structures on RP

2. On the other hand, the oriented double cover
S1 ×S1 of the Klein bottle K has 4 inequivalent spin structures compatible
with the orientation. Two of them each refine in two inequivalent ways to
give four inequivalent pin− structures on the Klein bottle; the other two each
refine in two inequivalent ways to give four inequivalent pin+ structures on
the Klein bottle.

Remark 4.10. It is important to emphasize that for general α there
is no refinement to a pin− structure. (Indeed, if α refines to a pin− struc-
ture then the pullback to the orientation double cover is a spin structure
which is invariant under the deck transformation.) This has important ram-
ifications for the physics. Consider a connected open set U ⊂ Σ with the
topology of a cylinder. On U there are four choices of a pair of spin struc-
tures: each spin structure can be either bounding or non-bounding when
restricted to the circle. In the case where one spin structure bounds, and
the other does not, it is impossible to refine α to a pin− structure since
the pullback of the pair to the oriented double cover of U is not invariant
under the deck transformation. From the physical viewpoint, it is clear from
the Hamiltonian formulation of the string theory that this mixed choice of
spin structures occurs for Feynman diagrams in which spacetime fermions
propagate along an internal line corresponding to U . Conversely, restricting
attention to only those α which do refine to a pin− structure misses all of
the sectors of the worldsheet theory in which space-time fermions propagate
along that channel.
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Remark 4.11. Consider an orientifold theory in which the orientifold
double cover π : Xw → X is trivial and trivialized. Then Definition 4.8
reduces to Definition 2.4. For the trivialization may be modeled as a sec-
tion of π. Then for an orientifold worldsheet (Definition 4.1) φ : Σ → X the
equivariant lift φ̃ identifies φ∗(Xw → X) ∼= (Σ̂ → Σ), and so the section
of π pulls back to a section of π̂ : Σ̂ → Σ. But the latter is precisely a global
orientation o of Σ.

4.4. B-field amplitudes for superstring orbifolds. To describe the
B-field amplitude (2.1) for the superstring we need the analog of (4.6) in
differential R-theory. A complete definition involves twistings of cohomol-
ogy theories beyond twists by double covers (see the discussion preceding
Proposal 3.7) and is deferred to [DFM2]. For now recall that R is Spin-
oriented and there is a pushforward (2.6) on spin manifolds. More gener-
ally, the obstruction to a spin structure on an n-manifold M determines a
twisting τR(M) of R-theory, so too of differential R-theory, and a twisted
pushforward

(4.12)
∫

M
: Ř τR(M)−3(M) −→ Ř−3(pt) ∼= R/Z.

The twisting τR(M) includes the dimension of M , as well as the Stiefel-
Whitney classes w1(M), w2(M). A spin structure produces an isomorphism
n → τR(M) and so reduces the pushforward (4.12) to a pushforward on
untwisted differential R-theory, as in (2.6).

Now suppose π : Xw → X is the orientifold double cover of a 10-dimen-
sional superstring spacetime X with B-field β̌. Given a worldsheet as in
Definitions 4.1 and 4.8 the pullback φ∗[β̌] of the equivalence class of the
B-field lies in Řw1(Σ)−1(Σ). It seems, then, that to push forward to a point
using (4.12) we need an isomorphism w1(Σ) → τR(Σ) − 2 of twistings of
R-theory. However, the local spin structures α on Σ—equivalently global
spin structure on Σ̂—do not give such an isomorphism. This puzzle stymied
the authors for a long period. The resolution is that the B-field amplitude
in general is not a number, but rather an element in a complex line:

(4.13) The B-field amplitude for a superstring orientifold is anomalous.11

There is one case in which there is an isomorphism w1(Σ) → τR(Σ) −
2, namely when α is refined to a pin− structure on Σ. Then the B-field
amplitude may be defined as a number. Notice that on a pin− worldsheet
the two local spin structures α are opposites. The anomaly measures the
extent to which that fails for general α.

11We refer to a term in an (effective) action as anomalous if it takes values in a
(noncanoncially trivialized) complex line rather than the complex numbers.
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Remark 4.14. To illustrate, suppose that the superstring orientifold
worldsheet Σ is diffeomorphic to a 2-dimensional torus. Even though Σ is
orientable, the fields do not include an orientation. The field α is equivalent
to a pair of spin structures α′, α′′ on Σ with opposite underlying orientations.
Up to isomorphism there are 4 choices for each of α′, α′′, so 16 possibilities
in total. Of those 4 refine uniquely to pin− structures on Σ. The B-field
amplitudes for the remaining 12 are anomalous.

Recall from Theorem 2.9 that in the oriented case the universal B-field
amplitude for the superstring computes the well-known Z/2Z-valued qua-
dratic form on spin structures. We now investigate the analogous amplitude
in the orientifold case for pin−worldsheets. Let Σ be a closed 2-manifold and
P−(Σ) the H1(Σ; Z/2Z)-torsor of equivalence classes of pin− structures. Let
θ̌ be a generator of the cyclic group Rw0−2(BZ/2Z; R/Z); see Theorem 3.13.
Now the orientation double cover determines a map h : Σ → BZ/2Z and so
a class h∗θ̌ ∈ Rw1(Σ)−2(Σ; R/Z). Let p : Σ → pt. Then a pin− structure α−
on Σ determines a pushforward map

(4.15) pα−
∗ : Rw1(Σ)−2(Σ; R/Z) −→ R−4(pt; R/Z) ∼= R/Z.

Define

(4.16)
q− : P−(Σ) −→ R/Z

α− �−→ pα−
∗ (h∗θ̌)

We can replace the R-cohomology groups in (4.15) with ko-groups or even
periodic KO-groups.

Theorem 4.17. The function q− takes values in 1
8Z/Z ∼= Z/8Z, is a

quadratic refinement of the intersection pairing, and its reduction modulo
two is congruent to the Euler number Euler(Σ).

Proof. The first statement follows since 8θ̌ = 0. We must show that
for a1, a2 ∈ H1(Σ; Z/2Z),

(4.18)

q−(α−+a1+a2)−q−(α−+a1)−q−(α−+a2)+q−(α−) =
1
2
a1·a2, α− ∈ P−(Σ).

The argument of [A1, p. 53] applies verbatim through Lemma (2.3), which
we replace with the following assertion. Let i : pt ↪→ Σ and u = i∗(η2) ∈
ko0(Σ; Z); then

(4.19) pα−
∗ (h∗θ̌ · u) = 1/2.

To prove this we note that u is supported in a neighborhood of a point
in Σ, so by excision we can compute the left side on a sphere S2. Fix an
orientation of S2, which is a section of the orientation double cover w1(Σ).



SPIN STRUCTURES AND SUPERSTRINGS 121

This lifts h : S2 → BZ/2Z to π0 : pt → BZ/2Z. Then since by Theorem 3.13
we have π∗0 θ̌ = η̌, we reduce (4.19) to p∗(η̌ · u), which by push-pull is η̌ · η2.
As in the proof of Theorem 2.9 this is nonzero.

The last statement follows from Proposition 4.7 since 4θ̌ is the nonzero
element of (3.11); see Theorem 3.13. �

Recall [KT, §3] that the pin− bordism group ΩPin−
2 is cyclic of order

eight and the Kervaire invariant is an isomorphism.

Corollary 4.20. With an appropriate choice of generator θ̌ in Theo-
rem 3.13, the quadratic form (4.16) is the Kervaire invariant.

For oriented surfaces the Z/2Z-valued Kervaire invariant (2.7) has a well-
known KO-theoretic interpretation [A1]. Corollary 4.20 provides a similar
KO-theoretic interpretation in the unoriented case.

Proof. The definition (4.16) of q− is evidently a bordism invariant. The
real projective plane RP

2 has two pin− structures; either generates ΩPin−
2 .

Since RP
2 has odd Euler number, the value of q− on either pin− structure

is a generator of Z/8Z. The four possible choices of θ̌ in the definition of q−
give the four generators of Z/8Z, so we can choose the one which matches
the standard Kervaire invariant on RP

2, hence on all pin− surfaces. �

5. Worldsheet fermions and spacetime spin structures

A fermionic functional integral is, by definition, the pfaffian of a Dirac
operator. It is naturally an element of a line, so in a family of bosonic fields a
section of a line bundle over the parameter space [F1, Part 2]. For an orien-
tifold superstring worldsheet the B-field amplitude is also anomalous (4.13).
The main result of [DFM2] is that the product of these anomalies is trivial-
izable, and furthermore the correct notion of spin structure on spacetime (§6)
leads to a trivialization. In this section, after identifying the fermionic fields
in the 2-dimensional worldsheet theory, we work out an analogous phenom-
enon in a familiar 1-dimensional theory: the “spinning particle”. Namely, in
Theorem 5.11 we identify the pfaffian line of the Dirac operator on a circle
in terms of the frame bundle of spacetime, and show how a spin structure
on spacetime leads to a trivialization.

5.1. Fermions on orientifold superstring worldsheets. This is the
last in the triad of definitions (see Definitions 4.1 and 4.8) specifying the
fields on an orientifold superstring worldsheet [DFM1, Definition 5].

Definition 5.1. An orientifold superstring worldsheet consists of (Σ, φ,
φ̃, α) as in Definitions 4.1 and 4.8 together with a positive chirality spinor
field ψ on Σ̂ with coefficients in π̂∗φ∗TX and a negative chirality spinor
field χ on Σ̂ with coefficients in T ∗Σ̂.
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The notion of chirality is defined by the canonical orientation on the
orientation double cover Σ̂; the spinors use the spin structure α. Both ψ
(the “matter fermion”) and χ (the “gravitino”) should be regarded as local
fields on Σ, but the global description on Σ̂ is more transparent; the action is
local on Σ. The crucial factor in the functional integral over ψ, χ for fixed φ
and α is the pfaffian of a Dirac operator on Σ̂, which may be written

(5.2) pfaffD
Σ̂,α

(
π̂∗φ∗TX − T Σ̂

)
.

The pfaffian line bundle is local, so we can heuristically analyze it on a small
contractible open set U ⊂ Σ. Now π−1U ⊂ Σ̂ is the disjoint union of two
oppositely oriented open sets diffeomorphic to U with spin structures α′, α′′
refining the underlying orientations. The pfaffian (5.2) is anomalous on each
component of π−1U . If the spin structures α′, α′′ are opposite, then the
product of the anomalies is trivializable; an isomorphism of α′ with the
opposite of α′′ trivializes the anomaly. So we see that the anomaly measures
the failure of α′ and α′′ to be opposites, just as for the B-field.12 (See the
text leading to Remark 4.14.)

For the oriented superstring a global argument for the triviality of the
pfaffian line bundle—the anomaly in the fermionic functional integral (5.2)—
is given in [FW, §4]. In the non-orientifold case there is no anomaly in the
B-field amplitude (see (2.6)). The argument in [FW] only proves the trivi-
ality; it does not provide a trivialization so does not determine a definition
of (5.2) as a function. (This additional data is sometimes termed a ‘setting
of the quantum integrand’.) In fact, the superstring data does determine a
trivialization: it is the spacetime spin structure which is critical. We explore
this two-dimensional anomaly problem in [DFM2] and show that the triv-
ialization varies under a change of spacetime spin structure.

Remark 5.3. For an oriented superstring worldsheet (Definition 2.4),
the dependence is as follows. Suppose a ∈ H1(X; Z/2Z) is a change of space-
time spin structure and b = αl −αr ∈ H1(Σ; Z/2Z) the difference of the two
global worldsheet spin structures. Then the trivialization for a worldsheet
φ : Σ → X multiplies by

(5.4) (−1)〈φ
∗a,b〉

where 〈−,−〉 is the Z/2Z-valued pairing on H1(Σ; Z/2Z). Combining this
factor with (2.14) one sees that our formulation of the oriented superstring
has the expected left-right symmetry. See (5.10) for a 1-dimensional analog
of (5.4). Equation (5.4) is consistent with [AW].

5.2. A supersymmetric quantum mechanical theory. Here we
illustrate the impact of the spacetime spin structure on the worldsheet pfaf-
fian in a simpler quantum field theory: the 1-dimensional supersymmetric

12The anomaly also depends on the topology of φ∗(TX).
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quantum mechanical system whose partition function computes the index
of the Dirac operator [Ag, FW, W1]. In this theory spacetime X is a Rie-
mannian manifold of arbitrary dimension n. For the classical theory it does
not have a spin structure or even an orientation. However, to simplify we
assume that X is oriented. The worldsheet of superstring theory is replaced
by a 1-dimensional manifold S with a map φ : S → X. The manifold S is
endowed with a single spin structure. The fermionic fields of Definition 5.1
are replaced by a single spinor field ψ on S with coefficients in φ∗TX.

Consider S = S1 with the nonbounding spin structure α. The first step
in computing the partition function is to compute the fermionic functional
integral over ψ for a fixed loop φ : S1 → X, which is the pfaffian

(5.5) pfaffDS1,α(φ∗TX).

As the Dirac operator on the circle is real, the square of its pfaffian line
bundle is canonically trivial and so the square of (5.5) is a well-defined
function. There is a standard regularization and the result (see [A3], for
example) is

(5.6)
(
pfaffDS1,α(φ∗TX)

)2 = det
(
1 − hol(φ)

)
,

where hol(φ) ∈ SOn is the holonomy, well-defined up to conjugacy. We
may as well assume that n is even, or else (5.6) vanishes identically. Now
the function g �→ det(1 − g) on SOn does not have a smooth square root.
However, its lift to Spinn does have a square root f , the difference of the
characters of the half-spin representations:

(5.7) f(g̃) = in/2
(
χ

Δ+(g̃) − χ
Δ−(g̃)

)
, g̃ ∈ Spinn .

Hence given a spin structure on X we can lift the holonomy function hol :
LX → SOn on the loop space of X to a function h̃ol : LX → Spinn, and so
define (5.5) as

(5.8) pfaffDS1,α(φ∗TX) := f
(
h̃ol(φ)

)
.

The right hand side of (5.8) manifestly uses the spin structure on space-
time X. Note that we can equally replace the function f by its negative; the
overall sign is not determined by this argument.

Remark 5.9. If we change the spin structure on X by a class a ∈
H1(X; Z/2Z), then it follows immediately from (5.8) that the pfaffian mul-
tiplies by

(5.10) (−1)φ∗(a)[S1].

The pfaffian is more naturally an element of a line and for the analogy
with the 2-dimensional worldsheet theory it is more illuminating to analyze
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the pfaffian line PfaffDS1,α(φ∗TX) directly. (See [F2, §3] for the definition
of the pfaffian line of a Dirac operator.) Write E → S1 for the oriented
vector bundle φ∗TX. The Dirac operator DS1,α is the covariant derivative ∇
acting on sections of E → S1. It is real and skew-adjoint, so its pfaffian
line is real. Replace a real line L by the Z/2Z-torsor π0

(
L\{0}

)
, so obtain

the pfaffian torsor Pfaff ∇. Let BSO(E) → S1 denote the bundle of oriented
orthonormal frames of E. It is trivializable since SOn is connected. The space
of sections Γ has two components and is naturally a torsor for π1(SOn) ∼=
Z/2Z. Furthermore, a spin structure BSpin → BSO(E) → S1 trivializes the
torsor π0Γ: there is a distinguished component of sections which lift to BSpin.

Theorem 5.11. There is a canonical isomorphism Pfaff ∇ ∼= π0Γ.
Therefore, a spin structure on E determines a trivialization of Pfaff ∇.

Suppose Z is any manifold and E → Z×S1 an oriented bundle with covari-
ant derivative. Then the Pfaffian torsors vary smoothly in z ∈ Z so form
a double cover of Z. Its characteristic class may be computed from the
Atiyah-Singer index theorem as the slant product w2(E)/[S1]; see [FW,
(5.22)]. Theorem 5.11 is a “categorification” of this topological result—an
isomorphism of line bundles rather than simply an equality of their iso-
morphism classes—necessary in order to discuss trivializations. We remark
that more sophisticated categorifications of the Atiyah-Singer index theorem
are needed for anomaly problems in higher dimensions, such as [DFM2];
see [Bu] for a recent result in dimension two.

Proof. Fix a Riemannian metric on S1 of total length 1. The covariant
derivative of a framing e ∈ Γ is a function ∇(e) : S1 → son. Using paral-
lel transport choose e so that ∇(e) is a constant skew-symmetric matrix A
whose eigenvalues a

√
−1 satisfy −π < a ≤ π. Note that exp(A) is the holo-

nomy of ∇. The framing e is determined up to a constant element of SOn.
In particular, the span W of the basis vectors of e in the space H of sections
of E → S1 is independent of this choice. It is easy to see that ∇ is invertible
on the orthogonal complement W⊥ to W in H relative to the L2 metric. So
Pfaff ∇ is canonically the determinant line DetW ∗ of the finite dimensional
vector space W ∗, and the associated Z/2Z-torsor is canonically the Z/2Z-
torsor T of orientation classes of bases of W . But a basis of W is an element
of Γ, so T is canonically π0Γ, as claimed. �

Remark 5.12. Formula (5.10) for the change of trivialization as a func-
tion of the change of spin structure on E follows immediately: E → S1 has
two spin structures and they determine two different points of π0Γ.

6. The twisted spin structure on a superstring orientifold
spacetime

The spacetime X of an oriented superstring theory has a spin structure.
There is a modification for orientifolds in superstring theory: the notion



SPIN STRUCTURES AND SUPERSTRINGS 125

of spin structure is twisted by both the orientifold double cover π : Xw →
X and the B-field. In this section we describe this twisted notion of spin
structure in concrete differential-geometric terms.

Recall quite generally that if ρ : G → G′ is a homomorphism of Lie
groups and P → M a principal G-bundle over a space M , then there is an
associated principal G′-bundle ρ(P ) →M , defined by the “mixing construc-
tion” ρ(P ) = P ×G G

′. Conversely, if Q→M is a principal G′-bundle, then
a reduction to G along ρ is a pair (P,ϕ) consisting of a principal G-bundle
P → M and an isomorphism ϕ : ρ(P ) → Q. If Mn is a smooth manifold
and ρ : G→ GLnR, then a reduction of the GLnR frame bundle B(M) to G
along ρ is called a G-structure on M . We defined orientations in these terms
in §4.1 and spin structures in these terms in §2.1; for convenience we used
a metric and so a homomorphism (2.3) into the orthogonal group. A prin-
cipal G-bundle is classified by a map13 M → BG whose homotopy class is
an invariant of P → M . The topological classification of reductions along
ρ : G→ G′ may be analyzed as a lifting problem:

(6.1) BG

Bρ

M

P

Q
BG′

Two particular cases are of interest here: (i) ρ is the inclusion of an index
two subgroup, in which case Bρ : BG → BG′ is a double cover and the
obstruction to (6.1) lies in H1(M ; Z/2Z); and (ii) ρ is a surjective double
cover, in which case Bρ : BG→ BG′ is a principal K(Z/2Z, 1)-bundle14 and
the obstruction to (6.1) lies in H2(M ; Z/2Z).

The spin group (2.3) is a double cover of an index two subgroup of On.
We now define groups G0, G1 which bear the same relation to Õn := On ×
Z/2Z × Z/2Z via homomorphisms

(6.2) ρi : Gi −→ Õn, i = 1, 2

which factor through an index two subgroup G′
i ⊂ Õn. First, let D4 →

Z/2Z × Z/2Z be the dihedral double cover in which the generators of the
Z/2Z factors lift to anticommuting elements of order two. Define G0, G

′
0 as

the first two groups in

(6.3) ρ0 : (Spinn ×D4)/{±1} −→ SOn × Z/2Z × Z/2Z −→ Õn,

13More precisely, a classifying map for P → M is a G-equivariant map P → EG for
EG → BG a universal G-bundle.

14K(Z/2Z, 1) is an Eilenberg-MacLane space; a topological group model is the group
of projective linear transformations of an infinite dimensional real Hilbert space.
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where −1 ∈ {±1} is the product of the central elements of Spinn and D4.
For G1 we first define the surjective homomorphism

(6.4)
Õn −→ Z/2Z

(g, a, b) �−→ c+ a, det(g) = (−1)c,

and let G′
1 be the kernel. Then G1 is the inverse image of G′

1 under

(6.5) (Pin−
n ×D4)/{±1} −→ Õn.

Suppose X is a superstring spacetime—a 10-dimensional orbifold—and
Xw → X an orientifold double cover. Proposal 3.7 implies that a B-field β̌ is
a geometric object whose equivalence class [β̌] lies in Řw−1(X). As in (1.17)
there are topological invariants t(β̌) : π0X → Z/2Z and a double cover
Xa(β̌) → X.

Definition 6.6. Let Xw → X be the orientifold double cover of a Rie-
mannian orbifold X which represents a superstring spacetime. Let β̌ be a
B-field on X. Then a twisted spin structure is a reduction of the principal
Õ10-bundle

(6.7) BO(X) ×X Xw ×X Xa(β̌) → X

along ρ : Gi → Õ10, where i ∈ Z/2Z is chosen on each component of X
according to the value of t(β̌).

Definition 2.11 expresses the two types in more familiar terms as Type IIB
for t(β̌) = 0 and Type IIA for t(β̌) = 1. Typically spacetime is connected
and only one of these occurs.

Equivalence classes of twisted spin structures, if they exist, form a torsor
for H0(X; Z/2Z) ×H1(X; Z/2Z). The existence is settled by the following.

Proposition 6.8. Let Xw → X and β̌ be as in Definition 6.6. Then a
twisted spin structure exists if and only if

w1(X) = t(β̌)w(6.9)

w2(X) = a(β̌)w + t(β̌)w2(6.10)

These equations live in the Borel cohomology of the orbifold X.

Proof. Equation (6.9) is the condition to reduce the structure group
of (6.7) along the inclusion G′

i ↪→ Õ10. For G′
0 = SO10 × Z/2Z × Z/2Z

it is the condition w1(X) = 0 for an orientation. For t(β̌) = 1 the homo-
morphism (6.4) induces a map BÕ10 → BZ/2Z which pulls the generator
of H1(BZ/2Z; Z/2Z) back to w1 + x, where H1(BÕ10; Z/2Z) = H1(BO10;
Z/2Z)×H1(BZ/2Z; Z/2Z)×H1(BZ/2Z; Z/2Z) has generators w1, x, y. Then
(6.9) follows by pullback along the classifying map of (6.7).
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For (6.10) we first observe that the double cover D4 → Z/2Z × Z/2Z

is classified by xy ∈ H2(BZ/2Z × BZ/2Z; Z/2Z). Then the first homomor-
phism in (6.3) induces a principal K(Z/2Z, 1)-bundle BG0 → BG′

0 clas-
sified by w2 + xy, from which (6.10) follows on components with t(β̌) =
0. For components with t(β̌) = 1 we first recall [KT, Lemma 1.3] that
the universal K(Z/2Z, 1)-bundle B Pin−

10 → BO10 is classified by w2
1 +

w2 ∈ H2(BO10; Z/2Z). Then the definition (6.5) of G1 shows that BG1 →
BG′

1 is classified by w2
1 +w2 +xy; equation (6.10) now follows from this

and (6.9). �

Remark 6.11. The occurrence of D4 in our definition of a twisted spin
structure is closely related to the D4 symmetry group15 which appears in
Hamiltonian treatments of orientifolds in the physics literature. We hope to
elaborate on this elsewhere.
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1993.

15generated by the worldsheet transformations (−1)FL , (−1)FR and worldsheet
parity Ω



128 J. DISTLER, D. S. FREED, AND G. W. MOORE

[Bro] Edgar H. Brown, Jr., Generalizations of the Kervaire invariant, Ann. of
Math. (2) 95 (1972), 368–383.

[Bu] U. Bunke, String structures and trivialisations of a pfaffian line bundle,
arXiv:0909.0846.

[CS] Jeff Cheeger and James Simons, Differential characters and geometric
invariants, Geometry and topology (College Park, Md., 1983/84), Lecture
Notes in Math., vol. 1167, Springer, Berlin, 1985, pp. 50–80.

[De] Pierre Deligne, Notes on spinors, Quantum Fields and Strings: a course for
mathematicians, Vol. 1, 2 (Princeton, NJ, 1996/1997), Amer. Math. Soc.,
Providence, RI, 1999, pp. 99–135.

[DF] Pierre Deligne and Daniel S. Freed, Classical field theory, Quantum Fields
and Strings: a course for mathematicians, Vol. 1, 2 (Princeton, NJ,
1996/1997), Amer. Math. Soc., Providence, RI, 1999, pp. 137–225.

[DFM1] Jacques Distler, Daniel S. Freed, and Gregory W. Moore, Orientifold precis,
in “Mathematical Foundations of Quantum Field Theory and Perturbative
String Theory,” B. Jurco, H. Sati, U. Schreiber, eds., American Mathemat-
ical Society, to appear, arXiv:0906.0795 [hep-th].

[DFM2] . in preparation.
[DFM3] . in preparation.
[DH] Lance J. Dixon and Jeffrey A. Harvey, String theories in ten-dimensions

without space-time supersymmetry, Nucl. Phys. B274 (1986), 93–105.
[DHVW] Lance J. Dixon, Jeffrey A. Harvey, C. Vafa, and Edward Witten, Strings on

orbifolds, Nucl. Phys. B261 (1985), 678–686.
[F1] Daniel S. Freed, K-theory in quantum field theory, Current develop-

ments in mathematics, 2001, Int. Press, Somerville, MA, 2002, pp. 41–87.
math-ph/0206031.

[F2] , On determinant line bundles, Mathematical Aspects of String The-
ory (S. T. Yau, ed.), Advanced Series in Mathematical Physics, vol. 1, 1986,
pp. 189–238.

[FH] Daniel S. Freed and Michael J. Hopkins, On Ramond-Ramond fields and
K-theory, JHEP 05 (2000), 044, arXiv:hep-th/0002027.

[FHT] D. S. Freed, M. J. Hopkins, and C. Teleman, Loop groups and twisted K-
theory I, J. Topology, 0711.1906. to appear.

[FMS] Daniel S. Freed, Gregory W. Moore, and Graeme Segal, The uncertainty
of fluxes, Commun. Math. Phys. 271 (2007), 247–274, arXiv:hep-th/

0605198.
[FW] D. Friedan and Paul Windey, Supersymmetric derivation of the Atiyah-

Singer index and the chiral anomaly, Nucl. Phys. B235 (1984), 395.
[G] Kiyonori Gomi, Equivariant smooth Deligne cohomology, Osaka J. Math. 42

(2005), no. 2, 309–337, math/0307373.
[GHM] Michael B. Green, Jeffrey A. Harvey, and Gregory W. Moore, I-brane inflow

and anomalous couplings on D-branes, Class. Quant. Grav. 14 (1997), 47–52,
arXiv:hep-th/9605033.

[GSO1] F. Gliozzi, J. Scherk, and D. Olive, Supergravity and the spinor dual model,
Physics Letters B 65 (1976), no. 3, 282–286.

[GSO2] , Supersymmetry, supergravity theories and the dual spinor model,
Nuclear Physics B 122 (1977), no. 2, 253–290.

[GSW] Krzysztof Gawedzki, Rafal R. Suszek, and Konrad Waldorf, Bundle gerbes
for orientifold sigma models, arXiv:0809.5125 [math-ph].

[Hi] Nigel Hitchin, Lectures on special Lagrangian submanifolds, Winter School
on Mirror Symmetry, Vector Bundles and Lagrangian Submanifolds



SPIN STRUCTURES AND SUPERSTRINGS 129

(Cambridge, MA, 1999), AMS/IP Stud. Adv. Math., vol. 23, Amer. Math.
Soc., Providence, RI, 2001, pp. 151–182. math/9907034.

[HS] M. J. Hopkins and I. M. Singer, Quadratic functions in geometry, topology,
and M-theory, J. Diff. Geom. 70 (2005), 329–452, arXiv:math/0211216.

[KT] R. C. Kirby and L. R. Taylor, Pin structures on low-dimensional manifolds,
Geometry of Low-Dimensional Manifolds, 2 (Durham, 1989), London Math.
Soc. Lecture Note Ser., vol. 151, Cambridge Univ. Press, Cambridge, 1990,
pp. 177–242.

[LU] Ernesto Lupercio and Bernardo Uribe, Deligne cohomology for orbifolds,
discrete torsion and B-fields, Geometric and Topological Methods for Quan-
tum Field Theory (Villa de Leyva, 2001), World Sci. Publ., River Edge, NJ,
2003, pp. 468–482. hep-th/0201184.

[M] Gregory W. Moore, K-theory from a physical perspective,
arXiv:hep-th/0304018.

[MM] Ruben Minasian and Gregory W. Moore, K-theory and Ramond-Ramond
charge, JHEP 11 (1997), 002, arXiv:hep-th/9710230.

[MS] J. P. May and J. Sigurdsson, Parametrized Homotopy Theory, Mathematical
Surveys and Monographs, vol. 132, American Mathematical Society, Provi-
dence, RI, 2006.

[Mu] M. K. Murray, Bundle gerbes, J. London Math. Soc. (2) 54 (1996), no. 2,
403–416.

[MW] Gregory W. Moore and Edward Witten, Self-duality, Ramond-Ramond
fields, and K-theory, JHEP 05 (2000), 032, arXiv:hep-th/9912279.

[OS] Kasper Olsen and Richard J. Szabo, Constructing D-Branes From K-
Theory, Adv. Theor. Math. Phys. 3 (1999), 889–1025, arXiv:hep-th/

9907140.
[R] Ryan Rohm, Spontaneous supersymmetry breaking in supersymmetric string

theories, Nuclear Physics B 237 (1984), no. 3, 553–572.
[RW] R. Rohm and Edward Witten, The antisymmetric tensor field in superstring

theory, Ann. Phys. 170 (1986), 454.
[S] I. M. Singer, The geometric interpretation of a special connection, Pacific

J. Math. 9 (1959), 585–590.
[Sa] I. Satake, On a generalization of the notion of manifold, Proc. Nat. Acad.

Sci. U.S.A. 42 (1956), 359–363.
[Se] Graeme Segal, Categories and cohomology theories, Topology 13 (1974),

293–312.
[Sh] Eric Sharpe, Discrete torsion, Phys. Rev. D (3) 68 (2003), no. 12, 126003,

20.
[SS1] Joel Scherk and John H. Schwarz, Spontaneous breaking of supersymmetry

through dimensional reduction, Phys. Lett. B82 (1979), 60.
[SS2] , How to get masses from extra dimensions, Nucl. Phys. B153 (1979),

61–88.
[SW] Nathan Seiberg and Edward Witten, Spin structures in string theory, Nucl.

Phys. B276 (1986), 272.
[Th] William P. Thurston, Three-dimensional Geometry and Topology. Vol. 1,

Princeton Mathematical Series, vol. 35, Princeton University Press, Prince-
ton, NJ, 1997. Edited by Silvio Levy.

[W1] Edward Witten, Index of Dirac operators, Quantum Fields and Strings: a
course for mathematicians, Vol. 1, 2 (Princeton, NJ, 1996/1997), Amer.
Math. Soc., Providence, RI, 1999, pp. 475–512.

[W2] , D-branes and K-theory, JHEP 12 (1998), 019, arXiv:hep-th/

9810188.



130 J. DISTLER, D. S. FREED, AND G. W. MOORE

[W3] , Overview of K-theory applied to strings, Int. J. Mod.
Phys. A16 (2001), 693–706, arXiv:hep-th/0007175.

[Wa] C. T. C. Wall, Graded Brauer groups, J. Reine Angew. Math. 213
(1963/1964), 187–199.

Theory Group, Department of Physics, and Texas Cosmology Center, Uni-

versity of Texas, 1 University Station C1600, Austin, TX 78712-0264

E-mail address: distler@golem.ph.utexas.edu

Department of Mathematics, University of Texas, 1 University Station

C1200, Austin, TX 78712-0257

E-mail address: dafr@math.utexas.edu

NHETC and Department of Physics and Astronomy, Rutgers University,

Piscataway, NJ 08855–0849

E-mail address: gmoore@physics.rutgers.edu



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


