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Abstract. A subalgebra pair of semisimple complex algebrasB ⊆
A with inclusion matrix M is depth two iff MM tM ≤ nM for some
positive integer n and all corresponding entries. If A and B are the
group algebras of finite group-subgroup pair H <G, the induction-
restriction table equals M and S =MM t satisfies S2 ≤ nS iff the
subgroup H is depth three in G; similarly depth n > 3 by succes-
sive right multiplications of this inequality with alternately M and
M t. We show that a Frobenius complement in a Frobenius group is
a nontrivial class of examples of depth three subgroups. A tower of
Hopf algebras A⊇B ⊇ C is shown to be depth-3 if C ⊆ core(B);
and this is also a necessary condition if A, B and C are group
algebras.

Introduction

Induction of characters from a subgroup to a group is a useful technique
for completing character tables [8] found by nineteenth century algebraists.
At about the same time, Frobenius discovered reciprocity, which in mod-
ern terms states that induction is naturally isomorphic to coinduction of
G-modules, either forming an adjoint pair with the restriction functor, and
applies to any Frobenius extension of algebras.

Finite index subfactors are a certain type of Frobenius extension, where
an analytic notion of finite depth was discovered in connection with classi-
fication, with depth two being part of a remarkable type of Galois theory
of paragroups. The notion of finite depth was eventually made algebraic
and applied to Frobenius extensions; later, depth two and its Galois theory
of quantum groupoids and Hopf algebroids were exposed in simplest terms
for ring extensions (see [18] for an application to J. Roberts field algebra
construction [16]).

It was noted in [10] that the notion of depth two applies to characters
of a finite group and subgroup pair via complex group algebras: a subgroup
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is depth two if no new constituents arise when inducing-restricting-inducing
a character as compared with inducing just one time. By means of general
theory in one direction and Mackey theory in the other, depth two subgroup
is shown to be precisely a normal subgroup [10]. (A similar statement is true
for semisimple Hopf C -subalgebras [4].) In this paper we generalize this
approach to depth two subgroup to a semisimple subalgebra pair, giving a
condition in terms of inclusion matrix [7], which is the same as a induction-
restriction table [1] up to a permutation change of basis. The depth two
condition is essentially that the cube of the inclusion matrix is less entrywise
than a multiple of the inclusion matrix, noted more precisely in the abstract
and Proposition 1.2 below.

In [11] it was shown that finite depth Frobenius extension has a simpli-
fied definition in terms of a generalization of depth two to a tower of three
algebras in the Jones tower. In this paper we extend a particular case of an
embedding theorem in [11] to characterization of certain finite depth separa-
ble Frobenius extension in terms of depth two extension in Jones tower (see
Theorems 2.1 and 2.5 below). Then one may check that a subgroup is depth
three or more by comparing cube of symmetric matrix S of inner products of
induced irreducible characters with multiples of S (see Prop. 2.2). In some-
what the same spirit, Corollary 2.9 below implies that a subgroup is depth
three if no new constituents arise from applying restriction-induction one
extra time to a character.

Although amusing to test for depth three property from character tables
of groups and non-normal subgroup, it is not clear from this definition what
precisely a depth three subgroup is. A number of proposals to remedy this
are given below: depth three quasi-bases are given in Theorem 2.10, a char-
acterization of certain depth three Frobenius extension in terms of similar
bimodules, tensor-square and overalgebra in Theorem 2.7, and a class of
examples in Section 3, a Frobenius group and its Frobenius complement.
Even the notion of depth-3 tower of algebras may be viewed as an alter-
native to defining finite depth in terms of iterated endomorphism algebra
extensions (perhaps applied instead to an iteration of another useful con-
struction). Depth-3 towers of finite group algebras are completely classi-
fied in Theorem 1.1 following the spirit of [11]. Depth-3 towers of Hopf
algebras are also considered at the end of the second section. A tower
of Hopf algebras A⊇B ⊇ C is depth-3 if C ⊆ core(B) (see subsection 1.6
for the definition of the core of a Hopf subalgebra). Using then notion
of kernel of a module introduced in [3] we formulate a conjecture on the
core of a Hopf subalgebra. This conjecture would imply that the condi-
tion C ⊆ core(B) is also a necessary condition for the Hopf algebra tower
A⊇B ⊇ C to be depth-3 (which is true for group algebras by the Theorem
1.1 below).

Although our algebras are often over the complex numbers, we have tried
to write this paper in a change-of-characteristic-friendly way.
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1. Preliminaries on depth two extensions

All algebras in this paper are associative algebras (not necessarily com-
mutative) over a field k. Given an (A,A)-bimodule M , we let MA denote
the A-central elements {m ∈M | ∀ a ∈A, am=ma}.

Two r × s integer matrices M and N satisfy M ≤N if each of the
coefficients mij ≤ nij : this property is independent of permutation of bases.
Note that if X is a third q× r matrix of non-negative integers, then XM ≤
XN ; if X is s×q, then MX ≤NX. We say M is strictly positive if all entries
mij > 0.

1.1. Frobenius extensions. A Frobenius extension A |B is an exten-
sion of associative algebras where the natural bimodule BAA is isomorphic
to the (B,A)-bimodule Hom (AB, BB) (of right B-module homomorphisms)
given by (b · f · a)(x) = bf(ax) for a, x ∈A, b ∈B, f ∈ Hom (AB, BB). This
is equivalent to the existence of a mapping F ∈ Hom (BAB,BBB) with dual
bases {xi}n

i=1 and {yi}n
i=1 such that

∑n
i=1 F (axi)yi = a and

∑n
i=1 xiF (yia) =

a for all a ∈A: we call the data system F a Frobenius homomorphism with
dual bases {xi}, {yi}.

For example, a group algebra A= k[G] is a Frobenius extension of any
subgroup algebra B = k[H], where H ≤G is a subgroup of finite index [G :
H] = n. For if {gi}n

i=1 denotes left coset representatives of H in G, where
g1 = 1G, a Frobenius system is given by xi = g−1

i , yi = gi with bimodule
projection given by (nhgi ∈ k)

(1) F

(
n∑

i=1

∑
h∈H

nhgihgi

)
=
∑
h∈H

nhh,

a routine exercise.
A Frobenius extension A |B enjoys isomorphic tensor-square and endo-

morphism ring as (A,A)-bimodules. We note that A ⊗B A∼= EndAB via
x ⊗B y 	→ λ(x) ◦ F ◦ λ(y). Also A ⊗B A∼= End BA via x ⊗ y 	→ ρ(y) ◦ F ◦
ρ(x) [9]. Composing the two isomorphisms we obtain an anti-isomorphism
EndAB → End BA given by f 	→∑

i F (−f(xi))yi, which restricts to an anti-
automorphism on the subring End BAB, and plays the role of antipode in
case of depth two Frobenius extension defined below.

1.2. Separable extensions. If the characteristic of the ground field k
is coprime to [G :H] = n, then the extension of group algebras A |B noted
above is a separable extension: i.e. the multiplication map μ :A ⊗B A→
A is a split (A,A)-epimorphism. The image of 1A under a section A→
A⊗B A is a separability element e=

∑n
i=1 ei ⊗B fi satisfying ae= ea for all

a ∈A and μ(e) =
∑n

i=1 eifi = 1A, which characterizes separable extension.
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Notice that

(2)
1

[G :H]

n∑
i=1

g−1
i ⊗B gi

is a separability element for the group algebras A over B.
In the situation that C ⊇A⊇B is a tower of algebras and A |B is a

separable extension, the canonical epi C⊗BC → C⊗AC given by c1⊗B c2 	→
c1 ⊗A c2 splits. A section for this mapping is of course given by c1 ⊗A c2 	→∑n

i=1 c1ei ⊗B fic2.

1.3. Depth-3 towers of algebras. A tower of three algebras A⊇B ⊇
C, where C is a unital subalgebra of B which is in turn unital subalgebra
of A, is said to be right depth-3, or right d-3, if there is a complementary
(A,C)-bimodule P and n ∈ N such that

(3) A⊗B A ⊕ P ∼=An

as natural (A,C)-bimodules. Equivalently, there is a split (A,C)-bimodule
epimorphism from a finite direct sum of A with itself to A ⊗B A (P is the
kernel of such an epi).

Left d-3 towers are defined oppositely, so that A⊇B ⊇ C is left d-3 iff
the tower of opposite algebras Aop ⊇Bop ⊇ Cop is right d-3. It has been
noted in [11, 5] that if A |B is a Frobenius, or quasi-Frobenius (QF, where
isomorphisms above are replaced by similarity of bimodules) extension, then
left d-3 is equivalent with right d-3 extension.

For example, a subnormal series of subgroups G � N � H with cor-
responding group algebras A⊇B ⊇ C (over any ground field) is a depth-
3 tower, since the normal closure HG ⊆NG =N and [11, Theorem 3.1]
applies.

1.3.1. Depth-3 towers of semisimple algebras. Suppose a tower A⊇B ⊇
C of semisimple finite dimensional k-algebras is right d-3. Tensoring 3 by
−⊗C M this implies that the following inequality:

〈M ↑A
C↓A

B↑A
B, Q〉 ≤ n〈M ↑A

C , Q〉
holds for any simple C-module M and any simple A-module Q.

Using this relation a necessary and sufficient condition for a tower of
groups to be depth-3 will be given in the next theorem. For H a subgroup
of G let

coreG(H) = ∩g∈G
gH

be the largest subgroup of H which is normal in G. (Here gH = gHg−1.)
Let G⊇N ⊇H be a tower of groups. Since HG is the subgroup of G gen-

erated by the elements ghg−1 with g ∈G and h ∈H note that H ⊆ coreG(N)
if and only if HG ⊆N .

Theorem 1.1. A tower G⊇N ⊇H of groups is depth three if and only
if H ⊂ coreG(N).
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Proof. If H ⊂ coreG(N) then HG ⊆N and the proof of Theorem 3.1
from [11] applies.

Suppose now that the tower is depth-3. The above argument for the
tower kG⊇ kN ⊇ kH of semisimple algebras implies that there is n ∈ N

such that
〈α ↑G

H↓G
N↑G

N , μ〉 ≤ n〈α ↑G
H , μ〉

for any characters α ∈ Irr(H) and μ ∈ Irr(G).
Put μ= 1G , the trivial character in the above inequality. Since 〈α ↑G

H

, 1G〉 = 〈α, 1H 〉 it follows that 〈α ↑G
H↓G

N↑G
N , 1G〉 = 0 if α �= 1H . By Frobenius

reciprocity this implies that 〈α ↑G
H↓G

N , 1N 〉 = 0 if α �= 1H .
On the other hand applying Mackey’s theorem one has:

0 = 〈α ↑G
H↓G

N , 1N 〉 =
∑

NgH∈N\G/H

〈 gα ↓gH
N∩ gH↑N

N∩ gH , 1N 〉

=
∑

NgH∈N\G/H

〈 gα ↓gH
N∩ gH , 1

N∩ gH
〉

=
∑

NgH∈N\G/H

〈α ↓H
g−1

N∩ H
, 1

g−1
N∩ H

〉

=
∑

NgH∈N\G/H

〈α, 1
g−1

N∩ H
↑H

g−1
N∩ H

〉

On the other hand using Frobenius reciprocity again one has

〈1H , 1
g−1

N∩ H
↑H

g−1
N∩ H

〉 = 〈1
g−1

N∩ H
, 1

g−1
N∩ H

〉 = 1

Thus
1

g−1
N∩ H

↑H
g−1N∩ H

= 1H

which implies that H = g−1
N ∩ H or H ⊂ g−1

N = g−1Ng. Thus H ⊂
coreG(N). �

1.4. Depth two algebra extensions. An algebra extension A⊇B is
defined to be right depth two (equivalently, subalgebra B ⊆A is rD2) if the
partially trivial tower A⊇B ⊇B is right d-3; similarly we define left D2 in
terms of partially trivial left d-3 tower.

It is obvious that a finite dimensional algebra A is a depth two extension
of its unit subalgebra B = k1A: if dimk A= n, then of course AA⊗kA∼= AA

n.
Similarly, we may show that if C is a finite dimensional dimensional algebra,
the tensor algebra A= C ⊗ B is a depth two extension of its subalgebra
B = 1C ⊗B.

The main examples in the literature of depth two extension are Hopf-
Galois extensions as well as its classical, weakened and pseudo- variants.

The defining Condition (3), with B = C, for right depth two extension
is similar to the characterization of projective module as isomorphic to a
direct summand of a free module. Like the derivation of projective bases for
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a projective module, we may derive from this condition right D2 quasi-bases
for the right D2 extension A |B as follows. For any ring extension, using
the hom-tensor relation, note that Hom (AA ⊗B AB,AAB) ∼= End BAB. By
evaluation at 1A note that Hom (AAB,AA⊗B AB) ∼= (A⊗B A)B.

Then the split epi from π :An →A ⊗B A satisfies an equation π ◦ σ =
idA⊗BA. We have n standard split epis An →A, which compose with π and σ
to give the equation

∑n
i=1 fi ◦gi = idA⊗BA, where fi ∈ Hom (A,A⊗BA) and

gi ∈ Hom (A ⊗B A,A), to which we apply the simplifications noted above.
Suppose fi 	→ ui ∈ (A⊗BA)B, while gi 	→ γi ∈ End BAB for each i= 1, . . . , n.
As a consequence, we obtain for any x, y ∈A the identity

(4) x⊗B y =
n∑

i=1

xγi(y)ui

Note that an extension A |B having elements ui ∈ (A⊗B A)B and endo-
morphisms γi ∈ End BAB satisfying this identity, eq. (4), also implies that
A |B is right D2, since An →A⊗B A given by (a1, . . . , an) 	→∑

i aiui is an
(A,B)-epimorphism with section given by x⊗B y 	→ (xγ1(y), . . . , xγn(y)).

For example, a normal subgroup N of index n in any group G (over any
ground ring) is depth two with D2 quasi-bases given by ui = g−1

i ⊗ gi and
γi(g) = F (gg−1

i )gi for coset representatives {g1 = e, g2, . . . , gn}.

1.5. When inclusion matrix is depth two. Let the ground field
k = C be the complex numbers when we consider semisimple algebras, which
consequently become multi-matrix algebras (or split semisimple algebras).
SupposeB ⊆A is a subalgebra pair of semisimple algebras. As one constructs
an induction-restriction table for a subgroup H in a finite group G [1, p.
166], we briefly review the procedure for generalizing to any pair of semisim-
ple algebras (such as finite dimensional complex group algebras). Label the
simples of A by V1, . . . , Vs and the simple modules of B by W1, . . . ,Wr. To
obtain the i’th column restrict the i’th simple A-module Vi to a B-module
and express in terms of direct sum of simples

(5) Vj↓B
∼= ⊕r

i=1mijWi

We let M be the r × s-matrix, or table, with entries mij : M = (mij). By a
well-known generalization of Frobenius reciprocity, the rows give induction
of the B-simples:

(6) Wi↑A =WA
i = ⊕s

j=1mijVj

since WA
j =Wj ⊗B A and Vi ↓B

∼= Hom (AB, Vi); i.e. if [WA
j , Vi] denotes the

number of constituents in WA
j isomorphic to Vi, Frobenius reciprocity is

given by

(7) [WA
i , Vj ] =mij = [Wi, Vj↓B]

The matrix M is also known as the inclusion matrix of B in A [7].
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For example, the induction-restriction table (based on Frobenius reci-
procity (ψG

i , χj)G = (ψi, χj ↓H)H) for the standard embedding of permuta-
tion groups S2 ≤ S3 is given by

S2 ≤ S3 χ1 χ2 χ3

ψ1 1 0 1
ψ2 0 1 1

M =
(

1 0 1
0 1 1

) 1• 2• 1•

\ / \ /

◦
1

◦
1

where ψ1 = 1H , χ1 = 1G denote the trivial characters, ψ2, χ2 the sign char-
acters, and χ3 the two-dimensional irreducible character of S3. Note too the
inclusion diagram or Bratteli diagram, a bicolored weighted multigraph [7].

For example, 1H
G = χ1 + χ3 and 1H

G ↓H= 2 · 1H + ψ2. Burciu [3] notes
that a subgroup H is normal in G if and only if 1H

G ↓H= [G :H]1H . In [10]
it is established that the notion of depth two subalgebra for subalgebra pair
of complex group algebras is equivalent to the notion of normal subgroup.

Proposition 1.2. The inclusion matrix M of a subalgebra pair of
semisimple complex algebras B ⊆A satisfies

(8) MM tM ≤ nM

for some positive integer n if and only if B is depth two subalgebra of A.

Proof. (⇐) The depth two condition A ⊗B A ⊕ P ∼=An as natural
B-A-bimodules, becomes

(9) [WA
i ↓B↑A, Vj ] ≤ n[WA

i , Vj ] = nmij

for all i= 1, . . . , r and j = 1, . . . , s. But WA
i is given by row i of M , or

eiM , where ei denotes row matrix with all zeroes except 1 in i’th column.
Then WA

i ↓B is given by M(eiM)t =MM teti. Finally WA
i ↓B↑A is given by

(MM teti)
tM , i.e. row i of MM tM .

(⇒) If the inclusion matrixM of semisimple subalgebra pair B ⊆A satis-
fies MM tM ≤ nM for some n ∈ Z +, then [IndA

BResA
BIndA

BWi, Vj ] ≤
n[IndA

BWi, Vj ] for all B-simples Wi and A-simples Vj(fix these orderings).
Via unique module decomposition into simples, we find a monic natural
transformation IndA

BResA
BIndA

B ↪→ nIndA
B from category B-Mod into A-Mod.

Now B, A and so Bop ⊗A are separable C -algebras, so as in [[10], Theorem
2.1(6), pp. 3107–3108], we apply the natural monic to the right regular mod-
ule BB, apply the natural transformation property to all left multiplications
λb (b ∈B), and note that A⊗BA ↪→An splits by Maschke as B-A-bimodule
monic. Hence A is depth two over its subalgebra B. �
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1.6. Depth-3 tower of of Hopf algebras. For B ⊂A an extension
of finite dimensional Hopf algebras, define core(B) to be the largest Hopf
subalgebra of B which is normal in A. It is easy to see that core(A) always
exists (see also [3]). If H ⊂G is a group inclusion with A= kG and B = kH
note that core(B) = kcoreG(H).

Theorem 1.3. Suppose that A⊇B ⊇ C is a tower of semisimple Hopf
algebras. If C ⊂ core(B) then the tower is depth three.

Proof. Since core(B) is a normal Hopf subalgebra of A it follows that
the extension core(B) ⊂A is D2 and therefore A⊗core(B) A is a direct sum-
mand of the bimodule A(An)core(B). Thus A⊗core(B) A is also a direct sum-
mand of the A− C bimodule A(An)C since C ⊂ core(B).

Since core(B) ⊂B the canonical map

A⊗core(B) A→A⊗B A

is a surjective morphism of A−A-bimodules, in particular of A−C bimod-
ules. Since the category of A ⊗ Cop-modules is semisimple it follows that
A⊗B A is a direct summand in A(An)C . �

1.6.1. Kernel of a module. Let A be a semisimple Hopf algebra over an
algebraically closed field k. Then A is also cosemisimple and S2 = Id (see
[13]). Let ΛA be the idempotent integral of A. Denote by Irr(A) the set of
irreducible A-characters and let C(A) be the character ring of A with basis
Irr(A). There is an involution “ ∗ ” on C(A) determined by the antipode.

Remark 1.4. and If X ⊂ C(A∗) is closed under multiplication then it
generates a subbialgebra of A denoted by AX [15]. Moreover if X is also
closed under “ ∗ ” it follows from the same paper that AX is a Hopf subal-
gebra. Since A is finite dimensional any subbialgebra is a Hopf subalgebra
and therefore any subset X closed under multiplication is also closed under
“ ∗ ”.

Let M be an A-module with character χ. Define kerM to be the set
of simple subcoalgebras C of A such that cm= ε(c)m for all c ∈ C. It can
be proven that the set kerM is closed under multiplication and “ ∗ ” and
therefore from [15] it generates a Hopf subalgebra AM (or Aχ) of A [3]. One
has AM = ⊕C∈kerM

C.

Remark 1.5.
1. Aχ is the largest subbialgebra B of A such that χ ↓A

B= χ(1)εB .
Equivalently, Aχ is the largest subbialgebra B of A such that
AB+A⊂ AnnA(M).

2. If A= kG is a group algebra then Aχ = k[ker χ] where ker χ is the
kernel of the character χ.

3. It is not known if Aχ is a normal Hopf subalgebra of A. In [3] it
was proven that Aχ is normal in A if χ ∈ Z(A∗).
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4. If N is a submodule or a quotient of M then clearly AM ⊂AN .
(since A is semisimple.)

Notation: If B is a Hopf subalgebra of A then we denote by ε ↑A
B the

character εB ↑A
B.

Proposition 1.6. Suppose B and C are Hopf subalgebras of a finite
dimensional semisimple Hopf algebra A. If

(10) A(A⊗B ⊗A)C ⊕ ∗ ∼=A A
n

C

as A− C- bimodules then
C ⊂A

ε↑A
B

.

Proof. As in subsection 1.3.1 it follows that that

〈M ↑A
C↓A

B↑A
B, P 〉 ≤ n〈M ↑A

C , P 〉
for any simple C-module M and any simple A-module P .

In terms of the characters this can be written as

(11) mA(α ↑A
C↓A

B↑A
B, χ) ≤ n mA(α ↑A

C , χ)

for any irreducible character α of C and any irreducible character χ of A.
Here mA is the usual multiplication form on the character ring C(A). Put
χ= εA , the trivial A-character, in the above inequality. Since mA(α ↑A

C , εA)
=mC (α, εC ) it follows that mA(α ↑A

C↓A
B↑A

B, εA) = 0 if α �= εC . By
Frobenius reciprocity this implies that mB (α ↑A

C↓A
B, εB ) = 0 if α �= εC .

Adding over all irreducible characters α ∈ Irr(C) it follows that

(12) mB

⎛⎝⎛⎝ ∑
α∈Irr(C)

α(1)α

⎞⎠ ↑A
C↓A

B, εB

⎞⎠=mB (ε ↑A
C↓A

B, εB )

Since
∑

α∈Irr(C) α(1)α is the regular character of C (see [14]) it follows

that (
∑

α∈Irr(C) α(1)α) ↑A
C↓A

B is the regular character of B multiplied by |A|
|C| .

Thus mB (ε ↑A
C↓A

B, εB ) = |A|
|B| . Frobenius reciprocity implies that mC (ε ↑A

B↓A
C ,

εC ) = |A|
|B| . A dimension argument now shows that ε ↑A

B↓A
C= |A|

|B|εC and first
item of Remark 1.5 implies that C ⊂A

ε↑A
B

. �

The above Proposition and Theorem 1.3 suggest the following
conjecture:

Conjecture 1. For any Hopf subalgebra B of a semisimple Hopf alge-
bra A one has:

(13) core(B) =A
ε↑A

B

.
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The next Proposition gives a description of core(B) in terms of kernels
and shows the inclusion core(B) ⊆A

ε↑A
B

. In order to prove it we need the

following lemmas.

Lemma 1.7. Let K and L be two Hopf subalgebras of a semisimple Hopf
algebra A. If ΛK ΛL = ΛL then K ⊂ L.

Proof. By Corollary 2.5 of [2] there is a coset decomposition for A

(14) A= ⊕C/∼CL.

where ∼ is an equivalence relation on the set of simple subcoalgebras of A
given by C ∼ C ′ if and only if CL= C ′L. In [2] this equivalence relation is
denoted by rA

k, L
. The equality ΛK ΛL = ΛL shows that any subcoalgebra of

K is equivalent to k1 and therefore it is contained in L. �

Lemma 1.8. Suppose that B is a Hopf subalgebra of a semisimple finite
dimensional Hopf algebra. Then A

ε↑A
B

⊂B. Equality holds if and only if B

is normal in A.

Proof. Let K =A
ε↑A

B

. By the definition of K it follows that AK+ anni-

hilates A ⊗B k. On the other hand A ⊗B k ∼=A/AB+ as A-modules and
therefore AK+ ⊂AB+. Thus 1 − ΛK ∈AB+ which implies ΛK ΛB = ΛB .
The above Lemma implies that K ⊂B. The second statement of the lemma
is Corollary 2.5 from [3]. �

Proposition 1.9. Suppose that B is a Hopf subalgebra of a semisimple
finite dimensional Hopf algebra A. Define inductively

B0 =B, Br+1 =A
ε↑A

Br

.

Then
B1 ⊇B2 ⊇ · · · ⊇Bs ⊇Bs+1 ⊇ · · · .

If Bs =Bs+1 then Bs = core(B).

Proof. The above proposition implies that Bi ⊇Bi+1 for any i. Since
B is finite dimensional there is s such that Bs =Bs+1 =Bs+2 = · · · . Thus
Bs =A

ε↑A
Bs

and the above lemma implies that B is normal in A. We have to

show that core(B) =Bs. Suppose that K is normal in A and that K ⊆B.
It is enough to show K ⊆Bs. Clearly K ⊆B0. If K ⊆Bi then there is a
canonical surjection of A-modules A/AK+ →A/AB+

i . Thus A
ε↑A

K

⊂A
ε↑A

Bi

by the last item of Remark 1.5. On the other hand A
ε↑A

K

=K since K is

normal. Therefore K ⊆Bi+1. �



SUBGROUPS OF DEPTH THREE 27

1.6.2. The correspondent of conjugate Hopf subalgebras. Let A be a
semisimple Hopf algebra over an algebraically closed field k and let Â∗ be
the set of simple subcoalgebras of A. Since A is cosemisimple note that Â∗
can be identified with Irr(A∗) [12]. Let B be a Hopf subalgebra of A and C
a simple subcoalgebra of A. Define

XCB
= {D ∈ Â∗ | dcΛB = ε(d)cΛB for all c ∈ C, d ∈D }

Proposition 1.10. The set XCB
is closed under multiplication and “ ∗ ”

and it generates a Hopf subalgebra CB of A.

Proof. By Remark 1.4 it is enough to show that the above set is closed
under multiplication. Suppose that D and D′ are subcoalgebras in XCB

.
If E is a simple subcoalgebra of DD′ then any e ∈ E can be written as∑s

i=1 did
′
i with di ∈D and d′i ∈D′. Then ecΛB = ε(e)cΛB which show that

E ∈XCB
. �

Notation: CB will also be denoted with cB if c is the irreducible char-
acter of A∗ corresponding to C.

Example 1.11. Let A= kG and B = kN where N is a subgroup of
G. The simple subcoalgebras of A are kg with g ∈G and ΛB = 1

|N |
∑

n∈N n.
Then gB = gBg−1 for all g ∈G. IndeedXgB

= {h ∈G | hgΛB = gΛB} = {h ∈
G | hgN = gN} = gNg−1

Proposition 1.12. Let B be a Hopf subalgebra of A and g ∈G(A) be a
grouplike element of A. Then gB = gBg−1.

Proof. First note that 1B =B. Clearly B ⊂ 1B. On the other hand
the definition of 1B implies that Λ 1B

ΛB = ΛB . Then Lemma 1.7 implies
1B ⊂B.

Let now C be a simple subcoalgebra of gB. Then cgΛB = ε(c)gΛB for all
c ∈ C. Thus g−1cgΛB = ε(c)ΛB which shows that g−1Cg ⊂ 1B =B. There-
fore C ⊂ gBg−1 which shows that gB ⊂ gBg−1. A direct computations shows
that gBg−1 ⊂g B. Thus gB = gBg−1. �

Proposition 1.13. Let B be a Hopf subalgebra of A. Then

A
ε↑A

B

= ∩
C∈Â∗

CB.

Proof. Recall the coset decomposition

(15) A= ⊕C/∼CB.

form Corollary 2.5 of [2]. If k is the trivial B-module then

k ↑A
B= ⊕C/∼CB ⊗B k.
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From the definition of CB it follows that CB ⊗B k is trivial as left
CB-module. Therefore ∩

C∈Â∗
CB ⊂A

ε↑A
B

.

Note that k ↑A
B=A⊗B k ∼=AΛB as left A-modules via aΛB 	→ a⊗B ΛB .

The decomposition 15 implies that CB⊗Bk ∼= CΛB under the above isomor-
phism. Any simple subcoalgebra of A

ε↑A
B

acts trivially on k ↑A
B and therefore

on each CB ⊗B k. This implies that any such coalgebra is contained in CB.
Thus A

ε↑A
B

⊂C B for any simple coalgebra C ∈ Â∗. �

Corollary 1.14. Let B be a Hopf subalgebra of A. Then B is a normal
Hopf subalgebra if and only if

B = ∩C
C∈Â∗B.

Proof. Since A
ε↑A

B

= ∩C
C∈Â∗B this is Corollary 2.5 of [3]. �

Remark 1.15.
1. Theorem 1.9 implies that core(B) ⊂A

ε↑A
B

= ∩C
C∈Â∗B. This can also

be seen directly as follows. Fix C ∈ Â∗. For any x ∈ core(B) and c ∈
C one has that xcΛB = c1(S(c2)xc3)ΛB = c1ε(x)ε(c2)ΛB = ε(x)cΛB

since core(B) is normal in A. Thus core(B) ⊂C B.
2. If Aχ is normal Hopf algebra for any χ ∈ Irr(A) then Proposition

1.9 implies the above conjecture on the core of a Hopf subalgebra.

2. Depth three Frobenius extension

A Frobenius extension A |B is defined to be depth three if the following
tower of subalgebras in the endomorphism ring E = EndAB is right or left
depth-3: via the algebra monomorphism, left multiplication λ :A ↪→ E given
by λ(a)(x) = ax (x, a ∈A) we obtain the (ascending) tower, λ(B) ⊆ λ(A) ⊆
E. By [11, Theorem 3.1] the given tower is left d-3 if and only if the tower
is right d-3.

The definitions and first properties of depth two and three extensions
are introduced in detail in [11]. There it is determined that a tower of
three group algebras corresponding to the subgroup chain G≥H ≥K is
depth three if the normal closure KG (of K in G) is contained in H. In
[10] it is shown that, with k = C and G a finite group, the group algebra
A of G is depth two over subgroup algebra B of H if and only if H is a
normal subgroup of G. This normality result for depth two subalgebras is
extended to semisimple Hopf algebras over an algebraically closed field of
characteristic zero in [4].

The following is a characterization of depth three for a separable, Frobe-
nius extension in terms of the more familiar depth two property. The fol-
lowing is true more generally for QF-extensions [5, Theorem 3.8].
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Theorem 2.1. Suppose A |B is a separable extension and Frobenius
extension. Let E denote EndAB and λ :A ↪→ E be understood as the exten-
sion E |A. The A |B is depth three if and only if the composite extension
E |B is depth two.

Sketch of Proof. (⇒) This direction does not apply separability. By
the Frobenius extension property, we noted above that E ∼=A⊗BA as (A,A)-
bimodules. Then E ⊗A E ⊗A E ∼= E ⊗B E as natural (E,E)-bimodules. By
definition of right D3 extension, E ⊗A E is isomorphic to direct summand
of En as natural (E,B)-bimodules for some n ∈ N , whence E ⊗A E ⊗A E ∼=
E⊗BE is (E,B)-isomorphic to a direct summand of E⊗AE

n, which in turn
is isomorphic to a direct summand of En2

by the right D3 property. Hence
E |B is right D2, since E ⊗B E ⊕ ∗ ∼= En2

as natural (E,B)-bimodules.
(⇐) There is a split (E,B)-epimorphism from En → E⊗BE for some n ∈

N . In addition, there is a split (E,E)-epimorphism from E⊗B E→ E⊗AE
by the separability property of the extension A |B. Composing the two split
epis we obtain a split epi En → E ⊗A E showing A |B is right D3. �

Proposition 2.2. Let M be the inclusion matrix of a subalgebra pair of
semisimple complex algebras B ⊆A, and S =MM t. The symmetric matrix
S satisfies

(16) S3 ≤ nS
for some positive integer n if and only if B is a depth three subalgebra of A.

Proof. Let Mm(C ) = End CA= E where m= dimA, which contains
both A and B via left regular representation. It is shown in [7, 2.3.5] that the
centralizers EA ⊆ EB have transpose inclusion matrix; i.e. inclusion matrix
of A ↪→ EndAB via a 	→ λa is M t. It is not hard to show from transitivity
of induction that matrix multiplication yields new inclusion matrix of two
successive subalgebra pairs. Hence, inclusion matrix of B ↪→ E via b 	→ λb

(b ∈B) is given by MM t.
The algebra A is separable, whence separable extension over B.

The extension A⊇B is a split Frobenius extension by application of [7,
Goodman-De la Harpe-Jones, ch. 2], very faithful conditional expectations.
Then AB is a progenerator since B is semisimple and B ↪→A is split
B-module monic, so E and B are Morita equivalent semisimple algebras.
By the theorem above, B ⊆A is depth three iff B ↪→ E is depth two, and we
may apply Proposition 1.2 to the composite inclusion matrix S =MM t. �

In general for any subgroup H in finite group G with inclusion matrix
M , if the irreducible characters of H are given by {ψ1, . . . , ψr} = Irr(H),
note that the matrix S =MM t is given by

(17) S =

⎛⎝ 〈ψG
1 |ψG

1 〉 . . . 〈ψG
1 |ψG

r 〉
. . . . . . . . .

〈ψG
r |ψG

1 〉 . . . 〈ψG
r |ψG

r 〉

⎞⎠ .
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For example, we revisit the inclusion S2 < S3 analyzed above. Note that

(18) S =MM t =
(

2 1
1 2

)
.

Since S is strictly positive (i.e. has only positive whole number entries), it
is clear that there is positive integer n such that S3 ≤ nS.

The notation in the proposition above with finite dimensional complex
group algebras B = C [H] and A= C [G] is continued in the next corollary:

Corollary 2.3. The subgroup H is depth three in G if symmetric
matrix S is strictly positive.

Another example: the standard inclusion of full permutation group alge-
bras B = C [S3] ↪→ C [S4] =A has inclusion matrix (computed from charac-
ter tables in e.g. [6]) and symmetric matrix:

M =

⎛⎝ 1 0 0 1 0
0 1 0 0 1
0 0 1 1 1

⎞⎠ S =

⎛⎝ 2 0 1
0 2 1
1 1 3

⎞⎠ S3 =

⎛⎝ 15 7 21
7 15 21
21 21 43

⎞⎠
It is clear that there is no positive integer n for which S3 ≤ nS, since

S has zero entries but S3 is strictly positive. We conclude that S3 is not a
depth three subgroup of S4. (Using the next theorem one computes that S3

is a depth five subgroup of S4.)

2.1. Higher depth. Recall from [11] that depth n > 2 is defined as
follows. Begin with a Frobenius extension (or QF extension [5]) B =A−1 ⊆
A=A0. Let A1 = EndAB and inductively An = End (An−1)An−2 . By the
Frobenius hypothesis and its endomorphism ring theorem, An

∼=A⊗B · · ·⊗B

A (n+1 times A). Embedding An ↪→An+1 via left regular representation λ,
we obtain a Jones tower of algebras,

B ↪→A ↪→A1 ↪→ · · · ↪→An ↪→An+1 ↪→ · · ·
The subalgebra B in A is depth n if An−2 ⊇An−3 ⊇B is a depth-3 tower
defined above; infinite depth if there is no such positive integer n. Of course,
this agrees with the definition of depth three subalgebra above. If B and A
are semisimple complex algebras, A⊇B becomes a split, separable Frobe-
nius extension via the construction of a very faithful conditional expection
[7]. This type of extension has an endomorphism ring theorem [9], and enjoys
transitivity, so that all extensions in this Jones tower are split, separable
Frobenius extensions, and all algebras are semisimple by Morita’s theorem
(or Serre’s theorem on global dimension). Indeed, all the odd An’s are Morita
equivalent to B, while all the even An’s are Morita equivalent to A. The proof
of the lemma below is similar to that of Prop. 1.2 and therefore omitted.
(One notes that IndA

C
∼= IndA

BIndB
C is given by the rows of matrix NM .)
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Lemma 2.4. Suppose C ⊆B ⊆A is a tower of semisimple algebras with
inclusion matrices N and M respectively. Then the tower is depth-3 if and
only if there is a positive integer n such that

(19) NMM tM ≤ nNM

Notice that Prop. 1.2 follows from lettingB = C andN equal the identity
matrix of rank dimZ(B). Conversely, if A⊇B is depth two, and C any
subalgebra of B, then the lemma follows in this special case from Prop. 1.2
by multiplying the inequality there from the left by the inclusion matrix N
of C ⊆B.

Let n,m and q denote positive integers below.

Theorem 2.5. Suppose B ⊆A is a subalgebra pair of semisimple alge-
bras. Let M be the inclusion matrix and S =MM t. If n= 2m+1 then A⊇B
is depth n if and only if Sm+1 ≤ qSm for some q. If n= 2m, then A⊇B is
depth n if and only if SmM ≤ qSm−1M for some q.

Proof. The proof follows from noting that if M is the inclusion matrix
of B ⊆A, then M t is the inclusion matrix of A ↪→A1, and S is the inclusion
matrix of their composite B ↪→A1. The proof now follows from applying the
last lemma to the depth-3 tower B ↪→An−3 ↪→An−2 in the even and odd
case. �

It is worth emphasizing that a depth n algebra extension is also depth
n + 1 (so one might denote this as depth ≥ n); in the special case of the
theorem, this is seen by multiplying the given inequality from the right by
the inclusion matrix M or M t. Of course one should strive to use the least
depth to one’s knowledge. Let m be a positive integer and G a finite group
in the next result on subgroups of finite depth.

Corollary 2.6. Suppose H <G is a subgroup with symmetric matrix
S. If Sm is a strictly positive matrix, then H is a subgroup of depth 2m+ 1
in G.

Proof. Applying the theorem we see Sm+1 ≤ qSm for some positive
integer q since Sm is a strictly positive matrix. �

For example, while S3 < S4 is not D3 subgroup, we note that S2 is
already strictly positive order 3 matrix, whence it is a depth five subgroup
(and it may be checked that it is not depth four).

As another example of a more cautionary note, the symmetries of a
square D4 in S4 has zero entries in all powers of its order 5 matrix
S =MM t. However, one computes that S2M ≤ 4SM , so that D4 is a depth
four subgroup of S4 according to Theorem 2.5.

In a forthcoming paper it will be shown that after a permutation of the
indices, the matrix S can be written as a sum of diagonal blocks. Moreover
there is p > 0 such that the p-power of each diagonal block is a positive
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matrix. Applying Theorem 2.5 this implies that the extension B ⊆A is of
depth at least 2p+ 1; in other words, all semisimple subalgebra pairs are of
finite depth.

2.2. Simplified condition for depth three. Again let A⊇B be an
algebra extension. In case AB is a generator, such as when the extension
is free or right split, there is a particularly simplified condition for when a
Frobenius extension is depth three.

Theorem 2.7. Suppose A⊇B is a Frobenius extension where the natu-
ral module AB is a generator. Then A⊇B is depth three if and only if there
is a B-B-bimodule P and positive integer n such that

(20) BA⊗B AB ⊕ P ∼= BAB
n

Proof. (⇒) Let E = EndAB. By the Frobenius extension hypothesis
on A⊇B, as E-A-bimodules E ∼=A⊗BA via the mapping in subsection 1.1.
Recall that A⊇B is depth three if B ⊆A ↪→ E is depth three tower, i.e.
EE ⊗A EB ⊕ Q∼= EE

n
B for some E-B-bimodule Q and positive integer n.

Then by substitution

(21) EA⊗B A⊗B AB ⊕Q∼= EA⊗B An
B.

But AB is a progenerator by hypothesis, whence B and E are Morita equiv-
alent algebras. The context bimodule are BHom (AB, BB)E (the right B-
dual of A denoted by (AB)∗) and EAB with B-B-bimodule isomorphism
Hom (AB, BB)⊗E A

∼=−→B given by evaluation. Now tensor all components
of eq. (21) by B(AB)∗ ⊗E − and cancel B⊗B to obtain eq. (20), where of
course P = (AB)∗ ⊗E Q.

(⇐) Tensor all components of eq. (20) from the left by the natural
bimodule EAB given by f · a · b= f(a)b, obtain eq. (21), and reverse the
argument above it. This direction of proof does not make use of generator
hypothesis. �

Remark 2.8. Since BAB ⊕ Ω ∼= BA⊗B AB is always the case for some
B-B-bimodule Ω, the B-B-bimodules A ⊗B A and A are similar or H-
equivalent under the conditions of the theorem: thus their endomorphism
algebras are Morita equivalent. By Theorem 2.1, left multiplication B ↪→ E
is depth two. There is a general Galois theory of depth two extensions which
in this case specializes to total algebra End BA ⊗B AB and base algebra
EB ∼= End BAB as parts of a bialgebroid. It is interesting to note that base
and total algebras in this case are Morita equivalent.

Let Res = ResG
H denote restriction of G-modules to H-modules in the

corollary below, and Ind = IndG
H denote induction of H-modules to

G-modules.
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Corollary 2.9. A subgroup H of a finite group G is depth three if

(22) 〈ResIndResIndψ |χ〉 ≤ n〈ResIndψ |χ〉
for all irreducible characters ψ, χ of H.

Proof. Note that the corresponding complex group algebras A⊇B
satisfy the conditions of the theorem. One arrives at the condition on inner
products of characters by tensoring a simple B-module V by the components
in eq. (20). Of course, whatever simple B-module components of BA⊗BA⊗
BV has, also BA

n ⊗B V has. �
For example, from the character tables of the permutation groups S4 and

S5 [6] we compute the induction-restriction table by restricting irreducible
characters on S5, given below in matrix form (with first column and row
corresponding to trivial characters):

M =

⎛⎜⎜⎜⎜⎝
1 0 1 0 0 0 0
0 1 0 1 0 0 0
0 0 0 0 0 1 1
0 0 1 0 1 1 0
0 0 0 1 1 0 1

⎞⎟⎟⎟⎟⎠
Let ηi ∈ Irr(H) and χi ∈ Irr(G) (i= 1, . . . , 5). Then from row 1, ηG

1 =
χ1 +χ3, ηG

1 ↓H= 2η1 + η4 and finally ηG
1 ↓H↑G↓H= 5η1 + η3 +5η4 + η5. Note

〈ηG
1 ↓H↑G↓H |η3〉 = 1 �≤ n〈ηG

1 ↓H |η3〉 = 0 for all positive integers n, whence
S4 is not a D3 subgroup in S5.

Computing the 5×5 matrix S =MM t, we may compute that the matrix
S3 and S4 are strictly positive, so that S4 is a depth seven subgroup in S5 by
Theorem 2.5 and its corollary. (Observing the pattern, we might conjecture
at this point that the canonical subgroup Sn < Sn+1 has depth 2n− 1.)

2.3. Depth three quasi-bases. The condition (20) for a depth three
extension has an interpretation in terms of split epis, including the canon-
ical split epis of a product. This should give us depth three condition in
terms of quasi-bases somewhat similar to dual bases for projective modules.
Meanwhile the Frobenius hypothesis on extension A⊇B is needed to reduce
the quasi-bases to simplest terms. Suppose F is a Frobenius homomorphism
A→B with dual bases {xi} and {yi} in A.

Theorem 2.10. Suppose A⊇B is a Frobenius extension where AB is
a generator. Then A⊇B is a depth three extension if and only if there are
elements ui, ti ∈ (A⊗B A⊗B A)B such that for all x, y ∈A,

(23) x⊗B y =
n∑

i=1

t1i ⊗B t2iF (t3iu
1
iF (u2

iF (u3
ix)y))

where u= u1 ⊗ u2 ⊗ u3 is Sweedler notation that suppresses a possible sum-
mation over simple tensors.
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Proof. (⇒) First note from eq. (20) that there are mappings
fi ∈ Hom (BAB,BA⊗B AB) and gi ∈ Hom (BA⊗B AB,BAB) such that

n∑
i=1

fi ◦ gi = idA⊗BA.

Next recall that for any B-module M , CoIndM ∼= IndM for a Frobe-
nius extension A over B [9]; I.e., there is a natural A-module isomor-
phism Hom (AB,MB) ∼=M ⊗BA via f 	→∑

f(xi)⊗yi with inverse m⊗a 	→
mF (a−). Applied to M =A⊗BA, this restricts to Hom (BAB,BA⊗BAB) ∼=
(A⊗B A⊗B A)B via f 	→∑

i f(xi) ⊗ yi with inverse

(24) t 	−→ t1 ⊗ t2F (t3−).

Next apply the hom-tensor relation and the Frobenius isomorphism
between endomorphism ring and tensor-square of extension:

Hom (BA⊗B AB,BAB) ∼= Hom (AB, EB)B

∼= Hom (BAB,BA⊗B AB) ∼= (A⊗B A⊗B A)B.

Following the isomorphisms, the forward composite mapping is given by
g 	→∑

i,j g(xi ⊗ xj) ⊗ yj ⊗ yi with inverse given by

(25) u 	−→ (x⊗ y 	→ u1F (u2F (u3x)y))

for all u ∈ (A⊗B A⊗B A)B, x, y ∈A.
Now suppose the mappings we begin with fi 	→ ti and gi 	→ ui in (A⊗B

A⊗B A)B via isomorphisms displayed above. Then eq. (23) results.
(⇐) Define a split B-B-bimodule epimorphism An →A⊗BA by (a1, . . . ,

an) 	→∑n
i=1 t

1
i ⊗ t2iF (t3i ai) with section A ⊗B A→An given by x ⊗ y 	→

(u1
iF (u2

iF (u3
ix)y))i=1,...,n. �

For example, a left depth two quasi-bases ti ∈ (A ⊗B A)B and βi ∈
End BAB for A⊇B satisfy x ⊗ y =

∑n
i=1 tiβi(x)y for all x, y ∈A. If A is

Frobenius extension of B, then End BAB
∼= (A⊗BA)B via α 	→∑

i α(xi)⊗yi

with inverse t 	→ t1F (t2−). Let ui ∈ (A⊗BA)B satisfy u1
iF (u2

i−) = βi. Then

(26)

⎧⎨⎩∑
j

t1i ⊗B t2ixj ⊗B yj

⎫⎬⎭
i=1,...,n

⎧⎨⎩∑
j

xj ⊗B yju
1
i ⊗B u2

i

⎫⎬⎭
i=1,...,n

are D3 quasi-bases, because∑
i,j,k

t1i ⊗ t2ixjF (yjxkF (yku
1
iF (u2

ix)y)) =
∑
i,k

t1i ⊗ t2ixkF (yku
1
iF (u2

ix)y)

=
∑

i

t1i ⊗ t2iu
1
iF (u2

ix)y = x⊗ y.
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3. Hall subgroup in Frobenius group is depth three

A Frobenius group is a finite group G with nontrivial normal subgroup
M (called the Frobenius kernel) which contains the centralizer of each of its
nonzero elements: CG({x}) ⊆M for each x ∈M∗ [8, 17]. This is equivalent
to G having a Hall subgroup, or Frobenius complement, H such that G=
MH, M ∩H = {e}, H ∩Hx = {e} where Hx =x−1Hx for any x∈G −H;
in addition, M =G− ∪x∈Gx

−1H∗x. The Hall subgroup H is not normal in
G (and therefore not depth two in the terms of this paper). We will see
below that H <G represents a nontrivial class of examples of depth three
subgroup.

For example, the permutation group S3 is a Frobenius group with kernel
M = 〈(123)〉 and H = S2 = 〈(12)〉 or either of the two subgroups 〈(23)〉 or
〈(13)〉 are Hall subgroups.

Theorem 3.1. Let G be a Frobenius group with Hall subgroup H. Then
H is depth three subgroup of G.

Proof. From the defining condition (22), we easily find a positive inte-
ger n if 〈ResIndψ|χ〉> 0 for all irreducible characters ψ, χ of H. We compute
using Mackey subgroup theorem [8, p. 74] and Frobenius reciprocity, where
T denotes a set of n double coset representative {e= g1, g2, . . . , gn}:

〈ψG↓H |χ〉 =
∑
t∈T

〈(ψt↓Ht∩H)↑H , χ〉 =
∑
t∈T

〈ψt↓Ht∩H |χ↓Ht∩H〉 ≥ n− 1

since Ht ∩H = {e} for each t �= g1. Indeed it is easy to check that

〈ψG ↓H |χ〉 = (n− 1)(degψ)(degχ)

if ψ �= χ and equals 1 + (n− 1)(degψ)2 if χ= ψ. �

For example the subgroup S2 in S3 has two double coset reprenta-
tives, both irreducible characters are linear, and the values 〈ψG ↓H |χ〉>=
〈ψG|χG〉 are 1 on the off-diagonal and 2 on the diagonal, the coefficients of
the matrix S in eq. (18). The proof of the theorem also follows from eq. (17),
Corollary 2.3 and Mackey’s theorem.
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