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1. Introduction

In 1991, a celebrated conjecture of Witten [Wi1] asserted that the
intersection theory of Deligne-Mumford moduli space is governed by KdV-
hierarchies. His conjecture was soon proved by Kontsevich [Ko]. Since then,
the Witten-Kontsevich theorem has introduced the seemingly alien concept
of integrable hierarchies to the geometry. Immediately after, a great deal
of effort was spent in investigating other integrable hierarchies in Gromov-
Witten theory. A much studied example is 2-Toda hierarchies for P

1 by
Okounkov-Pandharipande. It was generalized recently to orbifold P

1 [J],
[MT], [PR]. A famous problem of similar flavor is the Virasoro constraint
for Gromov-Witten theory for an arbitrary target. The common character-
istics of these problems are: (1) all of them are very difficult; (2) all of them
are mysterious. In particular, the choice of integrable hierarchies seems to
be matter of luck and there is no general pattern to predict the hierarchies
for a given geometrical problem. Therefore, it is particularly important to
explore the relation of integrable hierarchies to Gromov-Witten theory sys-
tematically. This is the main focus of this survey.

In fact, this question was very much in Witten’s mind when he proposed
his famous conjecture in the first place. Around the same time, he also pro-
posed a sweeping generalization of his conjecture [Wi2, Wi3]. The core of
his generalization is a remarkable first order nonlinear elliptic PDE associ-
ated to an arbitrary quasihomogeneous singularity. During the last few years,
Witten’s generalization has been explored and a new Gromov-Witten type
theory has been constructed by Fan-Jarvis-Ruan [FJR1, FJR2, FJR3]. In
particular, Witten’s conjecture for ADE-integrable hierarchies has been ver-
ified. It is important to mention that the geometry behind these integrable
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hierarchies concerns the special cycles of Mg,k and fits well into the main
theme of this volume.

This is a survey article aiming at two purposes. The detailed construction
of Fan-Jarvis-Ruan-Witten is a long one. It will take an interested reader a
while to penetrate all the technical details. In this article, we will omit all
the technical details and focus on the motivation and ideas. More impor-
tantly, ADE-singularities comprise a very special class of singularities. There
is a vast territory beyond ADE-singularities where classical integrable hier-
archies will play an important role and perhaps new integrable hierarchies
should be constructed. Furthermore, mirror symmetry has made a surpris-
ing appearance in integrable hierarchies problems. I feel that this is a good
opportunity for young people to expand their horizons and I hope that this
article will be helpful. In particular, we will discuss some future directions
in the last section of the paper.

This “quantum” singularity theory of Fan-Jarvis-Ruan-Witten has far-
reaching applications to other problems such as the Landau-Ginzburg/
Calabi-Yau correspondence [Wi4, CR1]. It is under rapid development.
We hope to come back to it at another occasion.

The paper is organized as follows. In section two, we will sketch the con-
struction of integrable hierarchies from integrable representations of infinite
dimensional Lie algebras. In section three, we will explain Witten’s original
conjecture for KdV. The main part is section four where we will introduce
the Fan-Jarvis-Ruan-Witten’s theory for quasihomogenenous singularities.
In section five, we sketch the proof of Witten’s ADE-hierarchies conjecture.
In particular, a modification of Witten’s conjecture for Dn (n odd) is needed
due to mirror symmetry. In section six, we will describe a further general-
ization of Witten’s conjecture for singularities beyond ADE.

2. Integrable hierarchies and representation of
Kac-Moody algebras

Integrable hierarchies is a diverse subject and there are many different
points of views. Roughly speaking, it is a system of differential equations
for a function of infinitely many time variables F (x, t1, t2, . . .) where x is a
spatial variable and t1, t2, . . . , are time variables. The PDE is a system of
evolution equations of the form

∂F

∂tn
= Rn(x, Fx, Fxx, . . .),

where Rn is a polynomial. Usually, Rn is constructed recursively.
The traditional approach of integrable hierarchies concerns its bi-Hami-

ltonian structure, Lax pair and so on. Here, we briefly sketch it from the
point of view of the Hirota bilinear equation of integrable representations
of infinite dimensional Lie algebras. This point of view naturally leads to
ADE-hierarchies.
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2.1. Fermonic Fock space and KP-hierarchy. The most famous
example of this point of view is the interpretation of the KP-hierarchy in
terms of the Hirota equation of the fermonic (infinite wedge) representation
of GL∞ by the Kyoto school [DJKM1, DJKM2], [DJKM3, DJKM4].

To motivate the construction, we start from a geometric problem of
the Plücker embedding of the Grassmannian G(n, k). Let W ⊂ C

n be a k-
dimensional subspace of C

n. Its Plücker coordinate is v1∧v2∧· · ·∧vk ∈
∧k

C
n

for a basis v1, . . . , vk of W . If v′
1, . . . , v

′
k is another basis, v′

1 ∧ · · · ∧ v′
k =

cv1 ∧ · · · ∧ vk. Therefore, it uniquely determines a point in P(
∧k

C
n) which

defines an embedding of G(n, k) into P(
∧k

C
n). Now, we want to determine

the image of the embedding. There are two ways to do it. The first method
is to use the action of GL(n, C) on C

n. It induces an action on G(n, k) as
well as an action on

∧k
C

n. The image of the Plücker embedding is the set
of points of

∧k
C

n of the form v1 ∧ · · · ∧ vk. Since GL(n, C) acts transitively
on G(n, k), all of them can be generated by the GL(n, C)-action on

∧k
C

n

from a single element, say e1 ∧ · · ·∧ ek where e1, . . . , en is the standard basis
of C

n. Now, we write down the action of GL(n, C) explicitly. Any matrix
can be written as a linear combination of Eij with a single entry at (i, j). It
is easy to check that Eij acts on

∧k
C

n by

r(Eij) = ψiψ
∗
j

where

ψi(v1 ∧ · · · ∧ vk) = ei ∧ v1 ∧ · · · ∧ vk, ψ∗
j (v1 ∧ · · · ∧ vk) = iej (v1 ∧ · · · ∧ vk),

where iej is the contraction by ej .
The second method is to write down a set of equations whose zero set

is the image. It is also well known in algebraic geometry that the image is
given by a set of quadratic equations (Plücker equations)

∑

i

ψi(τ) ⊗ ψ∗
i (τ) = 0.

Now, we generalize the above setting to the infinite dimensional situa-
tion. We replace C

n by an infinite dimensional vector space V generated by
a basis ej for j ∈ Z.

∧k
C

n is replaced by the following infinite wedge space∧∞ V , linear combinations of vectors of the form

ei0 ∧ ei1 ∧ · · ·

such that in = −n for n � 0. The above object is called a semi-infinite mono-
mial.

We start from constructing the action of Lie algebra g̃l∞. One has to
be more careful since two arbitrary Z × Z matrices may not be able to
be multiplied. A j-th diagonal matrix means

∑
i∈Z

aiEi,i+j . We require an
element of g̃l∞ to be a sum of finitely many diagonal matrices. It is easy to
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see that the product of two such matrices is of the same type and hence we
can define its Lie bracket. g̃l∞ acts on V and induces an action on

∧∞ V .∧∞ V is also a so-called highest weight representation of the central
extension ĝl∞ of g̃l∞. To see this, it is enough to consider the action r(Eij).
r(Eij) for i �= j works well in the infinite dimensional case. But we have to
modify the action of Eii as

r(Eii) =: ψiψ
∗
i :=

{
ψiψ

∗
i for i ≤ 0

ψ∗
i ψi for i > 0

We also use : ψiψ
∗
j : to denote ψiψ

∗
j even for i �= j. With the above modifica-

tion, we no longer get a representation of g̃l∞. Instead, we obtain a represen-
tation of certain central extension ĝl∞. Finally, we replace e1 ∧ e2 · · · ∧ ek by

|0〉 = e0 ∧ e−1 ∧ · · · .

We call |0〉 the vacuum vector. Furthermore, every other vector can be gener-
ated from |0〉 by repeatedly applying r(Eij) for i > j. For this reason,

∧∞ V
is also called a highest weight representation and |0〉 is called a highest weight
vector.

∧∞ V is often referred to as the fermionic representation of gl∞ or
fermionic Fock space. Finally, we define G̃L∞ to be the Lie group of g̃l∞.
We remark that for R ∈ G̃L∞, r(R)(|0〉) is an infinite sum of semi-infinite
monomials. Namely, we really should think that G̃L∞ acts on the completion
of

∧∞ V .
Now, we are interested in the infinite Grassmanian as the orbit of Ω =

G̃L∞(|0〉). The analogue of the Plücker equation is
∑

j∈Z

ψj(τ) ⊗ ψ∗
j (τ) = 0.

The key to make contact with integrable hierarchies is the boson-fermion
correspondence

∧∞ V ∼= C[x1, x2, . . . , ]. The easiest way to understand this
correspondence is to use the following Heisenberg subalgebra of g̃l∞. Let
∧k =

∑
i Ei,i+k. One can show that

∧∞ V is generated by applying r(∧k)
for k < 0. Now, we define a representation of ∧k on C[x1, x2, . . . , ] by,

∧k =
∂

∂xk
; ∧−k = kxk.k > 0

The boson-fermion correspondence is given by mapping |0〉 to 1 and matching
the representation of ∧k.

With this identification, an element τ ∈ Ω is identified with a power series
(also denoted by τ ) in C[x1, x2, . . .]. The Plücker equation is identified with
a series of differential equations called the Hirota equation. The relation
between the Hirota equation and the KP-hierarchies is that τ = eF where
F is the solution of the KP-hierarchies. For our purpose, we do not need to
know the explicit form of the KP-hierarchies. It is equally sufficient for us
to work with the corresponding Hirota equation.
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There is a more compact expression of the Hirota equation using the
vertex operator formulation. Then, we need to make sense of the fermionic
operators ψi, ψ

∗
j individually. We define

∧∞
m V for m ∈ Z as the vector space

generated by the semi-infinite monomials

ei0 ∧ ei1 ∧ · · ·

with ik = k + m for k � 0.
∧∞

m V has its own vacuum vector

em ∧ em−1 ∧ · · · .

It is clear that
∧∞ V =

∧∞
0 V. Then, let V =

⊕
m(

∧∞
m V ), and then

ψi, ψ
∗
j : V → V.

The boson-fermion correspondence defines an isomorphism

V ∼= C[x1, x2, . . . , z, z−1] =
⊕

m

zm
C[x1, x2, . . .].

Let us introduce the generating series of operators

X(u) =
∑

j∈Z

ujψj , X∗(u) =
∑

j∈Z

u−jψ∗
j .

Under the boson-fermion correspondence, X(u) → Γ(u), X∗(u) → Γ∗(u),
where

Γ(u)|zmC[x1,x2,...] = um+1z exp

⎛

⎝
∑

j≥1

ujxj

⎞

⎠ exp

⎛

⎝−
∑

j≥1

u−j

j

∂

∂xj

⎞

⎠ ,

Γ∗(u)|zmC[x1,x2,...] = u−mz−1 exp

⎛

⎝−
∑

j≥1

ujxj

⎞

⎠ exp

⎛

⎝
∑

j≥1

u−j

j

∂

∂xj

⎞

⎠ .

This leads to a formulation of the Hirota equation in C[x1, x2, . . .] as the
vanishing of the u0-term in the expression

u exp

⎛

⎝−
∑

j≥1

2ujyj

⎞

⎠ exp

⎛

⎝
∑

j≥1

u−j

j

∂

∂yj

⎞

⎠ τ(x − y)τ(x + y).

2.2. Affine Kac-Moody algebras and their integrable hierar-
chies. The above picture has been generalized extensively for many differ-
ent types of infinite dimensional Lie algebra/integrable hierarchies. The most
relevant one for us is the one constructed by Drinfeld-Sokolov [DS] and Kac-
Wakimoto [KW]. Both of them are constructed out of the integrable rep-
resentations of affine Kac-Moody algebras. The Drinfeld-Sokolov version is
formulated in terms of the traditional integrable system approach. The Kac-
Wakimoto version is formulated along the lines of the Hirota equation. Fortu-
nately, they are equivalent by the work of Hollowood and Miramontes [HM].
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Here, we describe Kac-Wakimoto’s approach. It is clear that the previous
construction depends on three pieces of data.

(i) An infinite dimensional Lie algebra gl∞.
(ii) An integrable highest weight representation

∧∞ V of g̃l∞.
(iii) The boson-fermion correspondence

∧∞ V ∼= C[x1, x2, . . .].
In Drinfeld-Sokolov-Kac-Wakimoto’s generalization, they replace gl∞,

∧∞ V
by an affine Kac-Moody algebra and its integrable highest weight representa-
tion V . Unfortunately, there is no boson-fermion correspondence in general.
Thus, they replace it by a vertex operator construction R of V . In these
cases, they have written down the corresponding Hirota equation for the
orbit G|0〉 of the corresponding group G.

The affine Kac-Moody algebras are classified by affine Dynkin diagrams.
They come in two types, the untwisted ones and twisted ones. The untwisted
ones are labelled by A

(1)
n (n ≥ 1), B

(1)
n (n ≥ 3), C

(1)
n (n ≥ 2), D

(1)
n (n ≥ 4), G

(1)
2 ,

F
(1)
4 , E

(1)
6 , E

(1)
7 , E

(1)
8 . The affine Kac-Moody algebra is the central exten-

sion of the loop algebra of the corresponding simple Lie algebra. Others
are labelled by A

(2)
n (n ≥ 2), D(2)

n+1(n ≥ 2), E(2)
6 , D

(3)
4 . The second types are

certain orbifoldings of untwisted ones. The (V, R) also have many choices.
Thus, we obtain many different types of integrable hierarchies. For example,
for ADE-affine untwisted Kac-Moody algebras, Kac-Wakimoto constructed
two types of hierarchies, the principal picture and the homogeneous picture
from the different realizations of the basic representation. When we talk
about the principal picture of the untwisted series, we will simply refer to it
as the hierarchies of the corresponding type. Furthermore, if a power series
F satisfies the Hirota equation, we will say that it is a τ -function of the
corresponding hierarchy.

The explicit formula is not important for our purposes. It is an extremely
interesting problem whether all these classical integrable hierarchies can
be realized in geometry such as the theory of Fan-Jarvis-Ruan-Witten for
quasihomogeneous singularities.

It is clear that we do not have to restrict ourselves to affine Kac-Moody
algebras. The same general idea should work in much greater generality. By
going beyond affine cases, we have already entered the frontier of the subject
of the representation theory of infinite dimensional Lie algebras. The affine
case is in some sense corresponding to CP

1. A very interesting case is the
elliptic hierarchies [DJKM5] associated to elliptic curves. An interesting
question is if they are the hierarchies that govern the theory of Fan-Jarvis-
Ruan-Witten for the elliptic singularities P8, X9, J10 (see the last section for
more discussion).

3. Integrable hierarchies in geometry

The first appearance of integrable hierarchies in Gromov-Witten theory
is the KdV-hierarchy. Its geometric counterpart is the intersection theory on
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the moduli space of stable Riemann surfaces Mg,k. The latter can be treated
as the Gromov-Witten theory of the zero dimensional manifold. Let’s review
it in more detail.

Here, Mg,k is the moduli space of isomorphism classes of genus g, stable,
nodal Riemann surfaces with k-ordered marking. Mg,k is a central object
in algebraic geometry and has been studied intensively for decades. It is a
smooth complex orbifold of dimension 3g − 3 + k. It is important to men-
tion that Mg,k is only well-defined in the so-called stable range 2g + k ≥ 3.
Over Mg,k, each marked point xi naturally defines an orbifold line bundle
Li whose fiber at C is T ∗

xi
C. Let ψi = C1(Li). One can define intersection

number for ψi classes.

〈τl1 , τl2 , . . . , τlk〉g =
∫

Mg,k

∏

i

ψli
i .

Here, we define it to be zero unless
∑

i li = 3g − 3 + k. Now, we assemble it
into the generating function

Fg(t0, t1, . . .) =
∑

k≥0

tl1 · · · tlk
k!

〈τl1 , τl2 , . . . , τlk〉.

F is a formal power series in infinitely many variables t0, t1, . . . ,. Then, we
introduce the total descendant potential function

D = exp

⎛

⎝
∑

g≥0

hg−1Fg

⎞

⎠ .

D admits a geometric interpretation as the generating function of intersec-
tion numbers for disconnected stable Riemann surfaces.

We perform the dilaton shift

qi =
{

ti, i �= 1
t1 − 1, otherwise

By the so-called dilaton equation, Fg is a homogeneous power series of
degree 2−2g in the new variables qi. A central problem in mathematics and
physics is to compute Fg or D. We can try to write them as the combination
of known functions such as exponential, trigonometric or more generally
infinite products such as modular forms or hypergeometric functions. If this
happens, we say that Fg or D has a closed formula. Unfortunately, this
almost never happens for Gromov-Witten theory. The next best situation is
to find the differential equations which it satisfies. We hope to find enough
equations from which Fg or D will be uniquely determined. Ideally, these
equations are determined by the classical geometry of the problem. It would
be more striking if they come from entirely different sources. The celebrated
Witten-Kontsevich theorem is one of such examples.

Theorem 3.0.1. D is a τ -function of the KdV-hierarchy.
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Remark 3.0.2. D is uniquely determined by the KdV-hierarchy together
with the so-called string equation.

Since KdV is just the first example of a family of hierarchies, it is natural
to ask about the underlying geometry of other integrable hierarchies. The
basic idea is to consider more general intersection numbers

∫
D

∏
i ψ

l1
i for a

cycle D ∈ H∗(Mg,k, Q). This leads to the interesting subject of special cycles
of Mg,k. Furthermore, we require D to satisfy some general properties which
are captured by the notion of cohomological field theory [KM].

Recall that there are several canonical morphisms between the Mg,k.
Forgetful Morphism:

π : Mg,k+1 → Mg,k

by forgetting the last marked point xk+1. Here, we assume that
2g + k ≥ 3. Furthermore, π is the universal curve.

Gluing the tree:

ρtree : Mg1,k1+1 × Mg2,k2+1 → Mg1+g2,k1+k2 .

Gluing the loop:

ρloop : Mg,k+2 → Mg+1,k.

Suppose that H is a graded vector space with a nondegenerate pairing 〈 . 〉
and a degree zero unit 1. To simplify the signs, we assume that H has
only even degree and the pairing is symmetric. When H has odd degree
elements, everything become ”super” and we leave it to readers to make the
obvious modification. Once and for all, we choose a homogeneous basis φα

(α = 1, . . . ,dim H) of H with φ1 = 1. Let ημν = 〈φμ, φν〉 and (ημν) = (ημν)−1.

Definition 3.0.3. A cohomological field theory is a collection of homo-
morphisms

Λg,k : H⊗k → H∗(Mg,k, Q)

satisfying the following properties:
C1. The element Λg,k is invariant under the action of the symmetric

group Sk.
C2. Let g = g1 + g2 and k = k1 + k2; Then the Λg,n satisfy the compo-

sition property

ρ∗
treeΛg1+g2,k(α1, α2 . . . , αk)

= Λg1,k1+1(αi1 , . . . , αik1
, μ) ημν ⊗ Λg2,k2+1(ν, αik1+1 , . . . , αik1+k2

)(1)

for all αi ∈ H.
C3. Let

(2) ρloop : Mg−1,k+2 → Mg,k
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be the gluing loops morphism. Then

(3) ρ∗
loop Λg,k(α1, α2, . . . , αk) = Λg−1,k+2 (α1, α2, . . . , αn, μ, ν) ημν ,

where αi, μ, ν, and η are as in C2.
C4a. For all αi in H we have

(4) Λg,k+1(α1, . . . , αk, 1) = π∗Λg,k(α1, . . . , αk),

where π : Mg,n+1 → Mg,n is the forgetful morphism.
C4b.

(5)
∫

M0,3

Λ0,3(α1, α2, 1) = 〈α1, α2〉.

For each cohomological field theory, we can generalize the notion of inter-
section number, the generating function and total descendant potential func-
tion. Let

〈τl1,α1 , . . . , τlk,αk
〉Λg =

∫

Mg,k

∏

i

ψli
i Λg,k(φα1 , . . . , φαk

).

Associating a formal variable tαi to τi,α, we define generating functions

Fg
Λ =

∑

k≥0

tα1
l1

· · · tαk
lk

k!
〈τl1,α1 , . . . , τlk,αk

〉g

and its total potential function

DΛ = exp

⎛

⎝
∑

g≥0

hg−1Fg
Λ

⎞

⎠ .

Similarly, we can perform the dilaton shift

qα
i =

{
tαi , tαi �= t11
t11 − 1, otherwise

The goal is to find other cohomological field theories such that their
total descendant potential functions are τ -functions of other integrable hier-
archies.

4. The theory of Fan-Jarvis-Ruan-Witten

The classical integrable hierarchies are related to certain Dynkin dia-
grams. It is well-known that Dynkin diagrams naturally appear in singularity
theory to describe the intersection pairing of its vanishing cycles. It has long
been speculated in mathematics that the representation theory and singu-
larity from the same Dynkin diagram should be related. This led to Witten’s
insight that the right place for the new geometry of integrable hierarchies is
singularity theory. Singularity theory is a classical subject in mathematics.
In the physical literature, it was referred as the Landau-Ginzburg model. In
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this section, we review Fan-Jarvis-Ruan’s construction of “quantum” singu-
larity theory based on Witten’s remarkable PDE.

4.1. The singularity theory and its state spaces. In this sec-
tion, we set up the cohomological data or state space of the theory. The
input of the theory is a pair (W, G) where W is a “non-degenerate” quasi-
homogeneous polynomial W : C

N → C and G is a group of abelian symme-
tries of W . Recall that W is a quasihomogeneous polynomial if there is an
N -tuple of rational numbers (q1, . . . , qN ) such that

W (λq1x1, . . . , λ
qN xN ) = λW (x1, . . . , xN )

for λ ∈ C
∗. qi is called the degree or charge of xi. W is called non-degenerate

if: (1) W defines a unique singularity at zero; (2) the choice of qi is unique. A
counterexample would be W = xy where the choices of degree are not unique.
To get ride of this example, we also assume that W does not contain a term
of the form xy. g is called an abelian or diagonal symmetry of W if g is a
diagonal matrix of the form diag(λ1, . . . , λN ) such that

W (λ1x1, . . . , λNxN ) = W (x1, . . . , xN ).

We will use Gmax to denote the full diagonal symmetry group. Gmax is
always nontrivial since it contains the element J = diag(e2πiq1 , . . . , e2πiqN ).
A certain subgroup 〈J〉 ⊂ G ⊂ Gmax plays an important role in the theory
as well.

4.1.1. B-model. We start from the B-model theory which is more classi-
cal. The first classical B-model invariant is the local algebra (also known as
the chiral ring or the Milnor ring)

OW := C[x1, . . . , xN ]/Jac(W ),

where Jac(W ) is the Jacobian ideal generated by partial derivatives:

Jac(W ) :=
(

∂W

∂x1
, . . . ,

∂W

∂xN

)
.

Then any symmetry group G acts on the local algebra in the obvious way.
But this is not the correct action. It is well-known that

OW
∼= ΩN/dW ∧ ΩN−1,

by
α → αdx1 ∧ dx2 · · · ∧ dxN ,

where Ωi is the space of holomorphic i-forms on C
N . We will use the action

of G on ΩN/dW ∧ ΩN−1.
Let’s review some of the basic facts about the local algebra. It is clear

that the local algebra is generated by monomials. The degree of a monomial



RIEMANN SURFACES, INTEGRABLE HIERARCHIES 381

allows us to make the local algebra into a graded algebra. There is a unique
highest-degree element det

(
∂2W

∂xi∂xj

)
with degree

ĉW =
∑

i

(1 − 2qi).

The degree ĉW is called the central charge and is a fundamental invariant
of the singularity W .

The singularities with ĉW < 1 are called simple singularities and have
been completely classified in the famous ADE-sequence. Quasi-homogeneous
singularities of integral ĉW with some additional conditions correspond to
Calabi-Yau hypersurfaces in weighted projective space. Here, the singul-
arity/LG-theory makes contact with Calabi-Yau geometry. There are many
examples with fractional value 1 ≤ ĉw. These can be viewed as “fractional
dimension Calabi-Yau manifolds” in a naive sense.

The dimension of the local algebra is given by the formula

μ =
∏

i

(
1
qi

− 1
)

.

Let hi be the dimension of the subspace of the local algebra of elements
of degree λi. Its Poincaré polynomial P (t, W ) =

∑
i hit

λi can be computed
explicitly. Recall that d is the common denominator of the charges qi and
that qi = ni

d . We have

P (td, W ) =
N∏

i=1

1 − td−ni

1 − tni
.

From the modern point of view, local algebra is considered to be part of
the B-model theory of singularities. For its application, it is also important
to orbifold the construction by G. The orbifold B-model graded vector space
with pairing OW,G was essentially worked out by the physicists Intriligator-
Vafa [IV] (see [Ka1] for a more mathematical account). The ring structure
was constructed by Kaufmann-Krawitz [Ka1], [Kr].

First of all, for each monomial in OW , we assign a double or Hodge
grading (dC, dC) where dC is the degree of the monomial. For each γ ∈ G,
let C

N
γ be the fixed points of γ and Wγ = W |CN

γ
. Wγ is a quasihomogeneous

singularity in fewer variables. Let γ = (e2πiΘγ
1 , . . . , e2πiΘγ

N ) where Θγ
i ∈ [0, 1).

Define

ιL =
∑

Θγ
i 	=0

(
Θγ

i − 1
2

)
+

∑

Θγ
i 	=0

(
1
2

− qi

)
;

ιR = −
∑

Θγ
i 	=0

(
Θγ

i − 1
2

)
+

∑

Θγ
i 	=0

(
1
2

− qi

)
.



382 Y. RUAN

We define
Oγ = OG

Wγ

with the degree shifted by (ιL, ιR). Namely, for any monomial α ∈ Oγ , we
define

deg(α) = (dC(α) + ιL, dC(α) + ιR).

Define
OW,G =

⊕

γ∈G

Oγ .

OW,G is a doubly graded vector space. It is clearly a module over OG
W . Notice

that Oγ is canonically isomorphic to Oγ−1 . The pairing of OW,G is the direct
sum of residue pairings

〈 , 〉 : Oγ ⊗ Oγ−1 → C

via the above canonical isomorphism.
The main problem is to construct an associative multiplication.

Definition 4.1.1. Let W =
∑T

j cjWj be a nondegenerate quasihomoge-
neous polynomial, where Wj are monomials. W is called invertible if T = N .

The notion of invertible singularity first appeared in the physics litera-
ture [BH] and is extremely important in mirror symmetry. An important
result due to Kreuzer [KR] is that W is the sum of three types of basic
invertible singularities

Fermat: xi.
Loop: xa1

1 x2 + xa2
2 x3 + · · · + xan

n x1.
Chain: xa1

1 x2 + xa2
2 x3 + · · · + xan

n .
For invertible singularities, Kaufmann-Krawitz defined an associative

multiplication as follows. We define a product on
⊕

γ OWγ and then take
invariants. The product has the properties

OWγ1
⊗ OWγ2

→ OWγ1γ2
.

as well as respecting the OW -module structure in the sense that

α1g1 � β1g2 = αβ1g1 � 1g2 ,

where α, β ∈ OW1 and 1g is the unity in OWg . Let

1g1 � 1g2 = γg1,g21g1g2 .

Then,

γg1,g2 =

⎧
⎪⎨

⎪⎩

0, there exists zi such that g1zi �= zi,

g2zi �= zi, g1g2zi �= zi

Hess(W |CI ), i ∈ I iff g1zi �= zi, g2zi �= zi, g1g2zi = zi

,

where Hess means the Hessian and we use the convention that HessW |{0} = 1.
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Theorem 4.1.2. (Kaufmann-krawitz) For invertible W and G ⊂ SL ∩
Gmax, i.e., matrix of determinant one, � is associative with unit 1 ∈ OW and
invariant under G. Furthermore, it preserves the double or Hodge grading.

By taking invariants, we obtain a Frobenius algebra OW,G for an invert-
ible polynomial and G ⊂ SL ∩ Gmax.

Notice that the miniversal deformation space D(W ) of W has a structure
of Frobenius manifold. A major problem of the subject is to orbifold this
Frobenius manifold in the sense of Kauffman-Krawitz’s orbifolding Frobenius
algebra OW,G.

4.1.2. A-model. The A-model state space was introduced by Fan-Jarvis-
Ruan [FJR1, FJR2, FJR3] as part of the moduli theory of the Witten
equation. It is closely related to the theory of vanishing cycles, Lefschetz
thimbles, and Picard-Lefschetz theory.

Consider the Milnor fibration W : C
N → C. It is an honest fiber bun-

dle away from critical values. Fix a base point z0 with |z0| >> 0. The fiber
W−1(z0) is a Stein manifold, homotopy equivalent to a bouquet of middle-
dimensional spheres. Therefore, its reduced homology vanishes, except in
the middle dimension. There is a geometric way to describe these homol-
ogy classes as follows. Suppose that U is the miniversal deformation space
of the singularity. Topologically, U is a ball in C

μ. Incidentally, the local
algebra can be interpreted as the tangent space of U . We extend the Milnor
fibration to F : U ×C

N → U ×C as F (λ, x) = (λ, Fλ(x)), where Fλ(x) is the
miniversal deformation of W , i.e., F (0, x) = W . Here, everything is in the
germ sense, and we can assume that the critical values of F are in U × DM

for a large disc DM . We can also assume that z0 �∈ DM , so F−1
λ (z0) → U is

a fiber bundle. Hence, HN−1(F−1
λ (z0)) forms a vector bundle. Furthermore,

the integral homology defines a lattice and hence a Gauss-Manin connec-
tion. The Gauss-Manin connection is characterized by the property that the
covariant constant sections are precisely the sections of integral homology
classes. We use a section of an integral homology class, or Gauss-Manin con-
nection, to trivialize the vector bundle and identify the class of W−1(z0) as
a flat section of the middle dimension homological bundle.

For a generic value of λ, the function Fλ is a holomorphic Morse function.
A distinguished basis of HN−1(F−1

λ (z0)) can be constructed from a system
of paths ui : [0, 1] → C connecting z0 to the critical values where C ∼= {λ} ×
C ⊂ U × C. A system of paths connecting z0 to critical values zi is called
distinguished if

(i) ui has no self-intersection,
(ii) ui, uj has no intersection except ui(0) = uj(0) = z0, and
(iii) the paths u1, . . . , uμ are numbered in the same order in which they

enter the point z0, counter-clockwise.

For each ui, we can associate a homology class δi ∈ HN−1(F−1
λ (z0)) as

a vanishing cycle along ui. More precisely, the neighborhood of the critical
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point of zi contains a local vanishing cycle. Then δi is obtained by transport-
ing the local vanishing cycle to z0 using the homotopy lifting property. The
cycle δi is unique up to homotopy of ui as long as the homotopy does not pass
through another critical value. Then, δ1, . . . , δμ defines a distinguished basis
of HN−1(F−1

λ (z0)). When we deform λ, the critical values of Fλ deform. One
can deform the system of paths homotopically. The corresponding vanishing
cycles define an integral section of the middle dimensional homological bun-
dle, and hence a parallel transport from HN−1(F−1

λ (z0)) to HN−1(F−1
λ′ (z0)).

The choice of distinguished system of paths is not unique. They are
related by Picard-Lefschetz transformations. One can associate a loop βi

going along the path ui from the point z0 to the point zi, going round the
point zi in the positive direction (counter-clockwise) and returning along
the path ui to the point z0. We can use βi to change a path uj to u′

j by
following βi first and then uj . The effect on the vanishing cycle is denoted
by hβi

(δj), where

hβi
(δj) = δj + (−1)N(N+1)/2(δi ◦ δj)δi,

where δi ◦ δj is the intersection number. This is called a Picard-Lefschetz
transformation. It turns out that any two systems of distinguished paths
can be transformed into each other by a sequence of Picard-Lefschetz trans-
formations.

The most important classical invariant of vanishing cycles is the intersec-
tion matrix ΓW = (δi ◦ δj). Choose a basis. One can draw a Dynkin diagram
ΓW for the intersection matrix. It is well-known that the Dynkin diagram
of ADE-singularities is an ADE-Dynkin diagram. This is where singular-
ity theory makes contact with infinite dimensional Lie algebra. It is still
an open question how to construct an infinite dimensional Lie algebras and
its integrable representations for a Dynkin diagram of a general singularity.
When we say integrable hierarchy of W , we mean the integrable hierarchy
corresponding to ΓW . In general, the intersection matrix is not necessarily
non-degenerate.

Consider the exact sequence of relative homology

HN (CN , Z) → HN (CN , F−1
λ (z0), Z) ∂→ HN−1(F−1

λ (z0), Z) → HN−1(CN , Z).

Using this sequence, it is easy to see that ∂ is an isomorphism and has rank
μ. Furthermore, the isomorphism can also be understood geometrically. Let
ui be a path as defined previously. We define the Lefschetz thimble Δi as
the union of vanishing cycles along the path ui. It is clear that ∂Δi = δi

and hence defines a relative homology class. The boundary map ∂ gives
the above connecting homomorphism. It is clear that the Picard-Lefschetz
theory is trivially adapted to the basis Δ1, . . . ,Δμ.

It is convenient for us to push the base point z0 to −∞ by considering
HN (CN , (Re Fλ)−1(−∞,−M), Z) for M � 0. To simplify the notation, we
denote (Re Fλ)−1(−∞, M) (resp. (Re Fλ)−1(M,∞)) for M � 0 by F−∞

λ
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(resp. F∞
λ ). In this case, we consider virtually horizontal paths extending

from a critical value and becoming a horizontal path eventually.
The Lefschetz thimble along a virtually horizontal path γ defines an

integral class Δγ ∈ HN (CN , F−∞
λ , Z) A particular important case is when

Fλ is strongly regular in the sense that the critical values have distinct imag-
inary parts. The horizontal paths give a canonical choice and hence define a
distinguished basis of the middle dimension homology. By abusing notation,
we call the relative homology HN (CN , F−∞, Z) the space of Lefschetz thim-
bles. A theorem of Wall [Wa1, Wa2] shows that the dual space of Lefschetz
thimbles (as well as the space of vanishing cycles) is isomorphic to the local
algebra as a G-space.

The main advantage of considering Lefschetz thimbles is the fact that
the intersection pairing

HN (CN , F∞
λ , Z) ⊗ HN (CN , F−∞

λ ,∞), Z) → Z

is perfect, whereas the intersection pairing for vanishing cycles may be degen-
erate. The pairing for Lefschetz thimbles is well-defined for all λ and is pre-
served by parallel transport via the Gauss-Manin connection. It is easy to
check that the pairing for holomorphic Morse functions is given by the inter-
section of stable with unstable manifolds of critical points. Therefore, it is
perfect.

The above pairing induces a pairing on relative cohomology

HN (CN , F−∞
λ , C) ⊗ HN (CN , F∞

λ , C) → C

as follows. Suppose that {Δ1, . . . ,Δμ} is a basis of HN (CN , F−∞
λ , Z), and

{Δ̃1, . . . , Δ̃μ} is a basis of HN (CN , F+∞
λ , Z). Let Δ∗, Δ̃∗ be the dual bases.

We define the intersection matrix

(〈Δ∗
i , Δ̃

∗
j 〉) = (〈Δi, Δ̃j〉)−1.

Then, we define

〈α, β〉 =
∑

Δi,Δ̃j

α(Δi)β(Δ̃j)〈Δ∗
i , Δ̃

∗
j 〉.

We remark that the above pairing is not the wedge product, even if α and
β are viewed as differential forms.

Back to our situation of W (i.e., λ = 0), we wish to consider the following
pairing. As we have done before, write qi = ni/d for a common denominator
d, and choose ξ such that ξd = −1. Multiplication by the diagonal matrix
(ξn1 , . . . , ξnN ) defines a map

I : C
N → C

N

sending W±∞ → W∓∞. Hence, it induces an isomorphism

I∗ : HN (CN , W∓∞, C) → HN (CN , W±∞, C).
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Definition 4.1.3. We define a pairing on HN (CN , W±∞, Z) by

〈Δi, Δj〉 = 〈Δi, I∗(Δj)〉.
It induces a pairing 〈α, β〉 = 〈α, I∗(β)〉 on HN (CN , W±∞, C). As noted ear-
lier, changing the choice of ξ will change the isomorphism I by an element
of the group 〈J〉, and I2 ∈ 〈J〉. Therefore, the pairing is independent of the
choice of I on the invariant subspace HN (CN , W∞, Z)〈J〉.

Now we shall “orbifold” the previous construction.

Definition 4.1.4. We define the γ-twisted sector Hγ of the state space
to be the G-invariant part of the middle-dimensional relative cohomology
for Wγ . That is,

Hγ := HNγ (CN
γ , W∞

γ , Q)G,

with its intersection pairing, where Nγ is the dimension of C
N
γ . The central

charge for the singularity Wγ is

ĉγ :=
∑

i:Θγ
i =0

(1 − 2qi).

As in Chen-Ruan orbifold cohomology theory, we should shift the degree.

Definition 4.1.5. Suppose that γ = (e2πiΘγ
1 , . . . , e2πiΘγ

N ) for rational
numbers 0 ≤ Θγ

i < 1.
We define the degree shifting number

ιγ =
∑

i

(Θγ
i − qi)(6)

=
ĉW − Nγ

2
+

∑

i:Θγ
i 	=0

(Θγ
i − 1/2)(7)

=
ĉγ − Nγ

2
+

∑

i:Θγ
i 	=0

(Θγ
i − qi).(8)

For a class α ∈ Hγ , we define

degW (α) = deg(α) + 2ιγ .

Proposition 4.1.6. For any γ ∈ GW we have

ιγ + ιγ−1 = ĉW − Nγ ,

and for any α ∈ Hγ and β ∈ Hγ−1 we have

degW (α) + degW (β) = 2ĉW .

Remark 4.1.7. HN (CN , W−1(z0), C) also carries an internal Hodge
grading due to its mixed Hodge structure. This defines a bi-grading for
Hγ with double shifts (ιγ , ιγ).
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Definition 4.1.8. The quantum cohomology group or A-model state
space of the singularity W/G is defined [FJR2] as

HW,G =
⊕

γ∈G

Hγ .

Definition 4.1.9. The J-sector HJ is always one-dimensional, and the
constant function 1 defines a generator ∈ HJ of degree 0. This element is
the unit in the ring HW,G.

Definition 4.1.10. For any γ ∈ G, we say that the γ-sector is Neveu-
Schwarz if the fixed point locus is trivial (i.e., Nγ = 0). If the fixed point
locus is non-trivial, we say that the γ-sector is Ramond.

Since γ and γ−1 have the same fixed point set, there is an obvious
isomorphism

ε : Hγ → Hγ−1 .

We define a pairing on HW as the direct sum of pairings

〈 , 〉γ : Hγ ⊗ Hγ−1 → C

as 〈f, g〉γ = 〈f, ε∗g〉, where the second pairing is the pairing of the space
of relative cohomology. The above pairing is obviously symmetric and non-
degenerate.

Lemma 4.1.11. The above pairing preserves the degree. Namely, it is a
pairing of Ha

W,G with H2ĉ−a
W,G :

Ha
W,G ⊗ H2 ˆcW −a

W,G → C.

Remark 4.1.12. The lemma indicates that one can view W/G as an
object of complex dimension ĉW . Under the shift, HJ has degree 0. On the
other hand, the non-twisted sector has degree ĉW , and the sector HJ−1 has
degree 2ĉW . We have not yet defined the multiplication on HW,G which
is part of the quantization theory of Fan-Jarvis-Ruan-Witten (see next
section).

4.2. Witten equation and quantization of singularity theory.
We have introduced the state space of a singularity for the A-model. Next,
we will construct the cohomological field theory ΛW,G

g,k for the A-model state
space. It can be viewed as the quantization of A-model singularity theory.
This was accomplished by Fan-Jarvis-Ruan. The central problem is to solve
the following Witten equation for any quasihomogeneous singularity. All the
information such as state space described in the last section is the natural
outcome of a solution to this problem.
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The Witten equation is a system of nonlinear elliptic PDE associated to
a quasihomogeneous polynomial W . Formally, it has the simple form

∂̄ui +
∂W

∂ui
= 0,

where W is a quasi-homogeneous polynomial, and ui is interpreted as a
section of an appropriate orbifold line bundle Li on a Riemann surface C.
Some simple examples are

(Ar-case): ∂̄u + ūr = 0
(Dn-case): ∂̄u1 + nūn−1

1 + ū2
2 = 0, ∂̄u2 + 2ū1ū2 = 0.

(E7-case): ∂̄u1 + 3ū2
1 + ū3

2 = 0, ∂̄u2 + 3ū1ū
2
2 = 0.

For the Witten equation to make sense, Li is required to have some spe-
cial properties. This can be summarized as the following interesting moduli
problem in algebraic geometry. It can be thought of as background data for
the Witten equation.

4.2.1. Moduli space of W-structures. Let’s first set up some notation. C
denotes a marked nodal stable Riemann surface. Li is an orbifold line bundle
associated to the variable zi. Without loss of generality, we assume that all
the orbifold points of Li are marked or nodal points.

Klog,C = KC ⊗ O(x1) ⊗ · · · ⊗ O(xk)

where x1, . . . , xk are all the marked points.

Definition 4.2.1. Suppose that W =
∑s

j=1 cjWj where Wj =
∏N

i=1 z
bij

i

is a monomial. For any non-degenerate, quasi-homogeneous polynomial W ∈
C[x1, . . . , xN ], we define a W -structure to be the data of an N -tuple
(L1, . . . , LN ) of orbifold line bundles on C and isomorphisms ϕj : Wj(L1, . . . ,
LN ) → KC,log for every j ∈ {1, . . . , s}, where

Wj(L1, . . . , LN ) = L
⊗b1,j

1 ⊗ · · · ⊗ L
⊗bN,j

N .

Without the loss of generality, we assume that the orbifold structure only
happens at marked or nodal points.

Definition 4.2.2. Given any two W -structures L := (L1, . . . , LN , ϕ1, . . . ,
ϕs) and L

′ := (L′
1, . . . , L

′
N , ϕ′

1, . . . ϕ
′
s) on C, it is clear that a set of mor-

phisms ξj : Lj → L′
j of orbifold line bundles for j ∈ {1, . . . , N} will induce a

morphism Ξl : Wl(L1, . . . , LN ) → Wl(L′
1, . . . , L

′
N ) for every l ∈ {1, . . . , s}.

An isomorphism of W -structures Υ : L → L
′ on C is defined to be a

collection of isomorphisms ξj : Lj → L′
j such that for every l ∈ {1, . . . , s} we

have ϕl = ϕ′
l ◦ Ξl.

Definition 4.2.3. We denote the stack of stable W -orbicurves by Wg,k.
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Note that for each marked point xj ∈ C, an orbifold line bundle L at xj

is given by the local orbifold chart

Li|Δ/Z/mZ
∼= (Δ × C)/Z/mZ,

where Δ is a disc and the generator e ∈ Z/mZ acts as e(z, s) = (exp(2πi/m)z,
exp(2πivi/m)s). We choose the same m for each Li. Let γ = diag(exp(2πiv1/
m), . . . , exp(2πivk/m)). We further requires that 〈γ〉 acts on C

N effectively.
It is rather amazing that

Lemma 4.2.4. γ ∈ Gmax. Namely, γ defines an automorphism of W .

The upshot of the lemma is that the orbifold structure of
⊕

i Li is com-
pletely parameterized by the automorphisms of W . Therefore, the group
Gmax enters the theory in a natural way. One may wonder if we can insist
that Li is an honest line bundle. Then, there will be no W -structure in gen-
eral. Even if it exists sometimes, its degeneration on a nodal Riemann surface
will naturally introduce an orbifold structure at nodes. In short, there is no
way one can avoid the orbifold structure. The theory of Fan-Jarvis-Ruan-
Witten naturally corresponds to the orbifolded singularity W/Gmax. It is
possible to generalize it to W/G for 〈J〉 ⊂ G (see the discussion of admissi-
ble groups). The current theory does not work for any group smaller than
〈J〉 in any generality.

Definition 4.2.5. A marked point xj of a W -curve is called Neveu-
Schwarz if the fixed point locus C

N
γ ⊆ C

N is just {0}. The point xj is called
Ramond otherwise and the variable zi ∈ C

N
γ is called a Ramond variable.

Another classical construction is to desingularize the orbifold structure.
Namely, one can change the local trivialization of Li by

(z, s) → (zm, zvis).

Under the new local trivialization, Li − (Li|xj ) extends to an orbifold line
bundle |Li|(xj) smooth over xj . Furthermore,

H0(C, Li) = H0(C, |Li|(xj)), H1(C, Li) = H1(C, |Li|(xj)).

After we desingularize all the orbifold structure, we denote it by |Li|.
There are several natural morphisms analogous to that of Mg,k.
Stabilization. Forgetting the W -structure and the orbifold structure gives

a morphism

st : Wg,k → Mg,k.

Theorem 4.2.6. Wg,k is a compact smooth complex orbifold and st is a
finite map.
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Components. Wg,k has many components. It is easy to show that the
orbifold structure at each marked point remains the same for each compo-
nent.

Definition 4.2.7. For any choice γ := (γ1, . . . , γk) ∈ Gk
max we define

Wg,k(γ) to be the open and closed substack of Wg,k with the given orbifold
structure specified by γ.

We define the type of any W -structure in Wg,k(γ) to be γ ∈ Gk
max.

There is an important selection rule that must be satisfied for Wg,k(γ) to
be non-empty. Although the degree of an orbifold bundle Li on C may be a
rational number, the degree of |Li| must be an integer, so for all i ∈ {1, . . . , s}
the following equations must hold for integral values of deg(|Lj |):

N∑

j=1

bji deg(|Lj |) = 2g − 2 + k −
k∑

l=1

N∑

j=1

bjiΘ
γl
j .

Moreover, because W is non-degenerate, the weights qj are uniquely deter-
mined by the requirement that they satisfy the equations

∑N
j=1 bjiqj = 1 for

all i ∈ {1, . . . , s}, so we find that for every j ∈ {1, . . . , N} we have

deg(|Lj |) =

(
qj(2g − 2 + k) −

k∑

l=1

Θγl
j

)
∈ Z.

Forgetful morphism. As we mentioned earlier, we can desingularize the
orbifold structure at a marked point xj and obtain orbifold line bundles
|Li|(xj). But |L1|(xj), . . . , |LN |(xj) is not a W-structure in general except
that the orbifold structure at xj is J .

If γ = (γ1, . . . , . . . , J), then we can forget the last marked point in the
same way as the forgetful morphism for Mg,k. More precisely, If (L1, . . . , LN )
is a W -structure with the above orbifold decorations. (|L1|(xk), . . . , |LN |(xk))
is a W -structure on C with xk being forgotten. The reason that this happens
is the following calculation:

Wi(|L1|(xk), . . . , |LN |(xk)) → KC,log ⊗ O

⎛

⎝

⎛

⎝−
N∑

j=1

bijΘJ
j

⎞

⎠ xk

⎞

⎠

= KC,log ⊗ O

⎛

⎝

⎛

⎝−
N∑

j=1

bijqj

⎞

⎠ xk

⎞

⎠

= KC,log ⊗ O(−xk)
= KC′,log,

where C ′ is the marked Riemann surface obtained from C by forgetting xk.
Therefore, we define a morphism

π : Wg,k(γ1, . . . , γk−1, J) → Wg,k−1(γ1, . . . , γk−1).
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We call it the forgetful morphism.
Note that the essential property of γi that allows the forgetful morphism

to exist is the fact that
∑N

j=1 bljΘ
γi
j = 1 for every l ∈ {1, . . . , s}. Since the

weights qj are uniquely determined by W , this means that a marked point
xi may not be forgotten unless γi = J .

Example 4.2.8. For the three-pointed, genus-zero W -structure, the
choice of orbifold line bundles L1, . . . , LN providing the W -structure is
unique, if it exists at all. If it exists, then W0,3(γ) is isomorphic to BGmax.

Unfortunately, there is no direct lift of ρtree, ρloop from page 9 to the
moduli stack of W -curves because there is no canonical way to glue the
fibers of the line bundles Li on the two points that map to a node.

But we could describe a gluing process in terms of an additional struc-
ture that we call rigidification. Suppose the fiber of the W -structure at the
marked point p is [(L1 ⊕ L2 ⊕ · · · ⊕ LN )/Gp], where Gp is the local group.
The rigidification can be thought as a Gp-equivariant map ψ :

⊕
i Li → C

N

commuting with the W -structure. For any element g ∈ Gp, the rigidification
gψ is considered to be an equivalent rigidification.

Alternatively, ψ is equivalent to a choice of basis ei ∈ Li such that
Wj(e1, . . . , eN ) = dz/z and the basis g(e1), . . . , g(eN ) is considered to be an
equivalent choice. In particular, if Li1 , . . . , Lim are the line bundles fixed by
Gp (we call the corresponding variables zij the Ramond variables) then in
each equivalance class of rigidification, the basis elements ei1 , . . . , eim for the
subspace

⊕m
j=1 Lij

∣∣∣
p

are unique, but the basis elements for the terms not

fixed by Gp (the Neveu-Schwarz variables) are only unique up to the action
of Gp.

It is clear that the group Gmax/Gp acts transitively on the set of rigid-
ifications within a single orbit. Let Wrigp

g,k be the equivalence classes of

W -curves with a rigidification at p. The group Gmax/Gp acts on Wrigp

g,k

by interchanging the rigidifications. It is clear that Wrigp

g,k is a principal

Gmax/Gp-bundle over Wg,k. We use Wrig
g,k to denote the moduli stack of

rigidified W -structures at all the marked points.
Now we describe the gluing. To simplify notation, we ignore the orbifold

structures at other marked points and denote the types of the marked points
p+, p− being glued by γ+, γ−. Recall that the resulting orbifold structures
must be balanced, which means that γ− = γ−1

+ . Let

ψ± : j∗
p±(L1 ⊕ · · · ⊕ LN )→[CN/Gp± ]

be the rigidifications. However, the residues at p+, p− are opposite to each
other. The obvious identification will not preserve the rigidifications. Here,
we fix once and for all an isomorphism

I : C
N → C

N
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such that W (I(z)) = −W (z). I has been explicitly constructed previously
as follows. Suppose that qi = ni/d for the common denominator d. Choose
ξd = −1. Then,

I(z1, . . . , zN ) = (ξn1z1, . . . , ξ
nN zN ).

The identification by I induces a W -structure on the nodal orbifold Riemann
surface with a rigidification at the nodal point. Forgetting the rigidification
at the node yields the lifted gluing morphisms

ρ̃tree,γ : Wrigp

g1,k1+1(γ) × Wrigq

g2,k2+1(γ
−1) → Wg1+g2,k1+k2 ,

ρ̃loop,γ : Wrigp,q

g,k+2(γ, γ−1) → Wg+1,k.

4.2.2. Virtual cycle from Witten equation. A casual investigation of the
Witten equation reveals that the Witten equation is much more subtle than
its simple appearance would suggest. Suppose that ui ∈ Ω0(Li). A simple
computation shows

∂̄ui ∈ Ω0,1(Li),
∂W

∂ui
∈ Ω0,1

log(L̄
−1
i ),

where log means a (0, 1)-form with possible singularities of order ≤ 1. Namely,
the Witten equation has singular coefficients! This is a fundamental phenom-
enon for the application of the Witten equation. One of the most difficult
conceptual advances in the entire theory was to generate the A-model state
space from the study of the Witten equation. Now it is understood that the
singularity of the Witten equation is the key. Unfortunately, the appearance
of singularities makes the Witten equation very difficult to study analyti-
cally. In fact, it has taken the authors six years to construct the theory!

Another subtle issue is the fact that we need an isomorphism L̄−1
i

∼= Li

for the two terms of the Witten equation living in the same space. The
required isomorphism can be obtained by a choice of metric. A nontrivial
fact is that such a metric can be constructed uniformly from a metric of the
underlying Riemann surface. Then the question is: which metric should we
choose on the Riemann surface? We should mention that a different choice
of metric often leads to a completely different looking theory, including a
different dimension for its moduli space. Apparently, there is no physical
guidance for the correct metric we should choose. The authors have experi-
mented with both smooth and cylindrical metrics near marked points. Now
we understand that both choices are important for the theory!

Let’s briefly outline the construction. Let Wg,k(γ1, . . . , γk) be the moduli
space of W -structures decorated by the orbifold structure γi at the marked
point xi. It can be considered as the background data to set up the Witten
equation. Unfortunately, it is rather difficult to solve the Witten equation
due to the fact that W is highly degenerate. It is much easier to solve a
perturbed equation for W +W0, where W0 is a linear perturbation term such
that Wγ + W0γ is a holomorphic Morse function for every γ. Here Wγ , W0γ

are the restrictions of W, W0 to the fixed point set C
N
γ . The background data
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for perturbed Witten equation is the moduli space of rigidified W -structures
Wrig

g,k (γ1, . . . , γk).
The crucial part of the analysis is to show that a solution of the Witten

equation converges to a critical point of Wγi + W0γi . This enables us to
construct a moduli space

Ws
g,k(κj1 , . . . , κjk

)

of solutions of the perturbed Witten equation converging to the critical point
κji at the marked point xi. We call W0 strongly regular if (i) Wγi + W0γi

is holomorphic Morse; (ii) the critical values of Wγi + W0γi have distinct
imaginary parts. The first important result is

Theorem 4.2.9. If W0 is strongly regular, then Ws
g,k(κj1 , . . . , κjk

) is
compact and has a virtual fundamental cycle [Ws

g,k(κj1 , . . . , κjk
)]vir of degree

2((cW − 3)(1 − g) + k −
∑

i

ιγi) −
∑

i

Nγi .

Here, ιγi is the degree shifting number defined previously.

It turns out to be convenient to map the above virtual cycle into
H∗(Wrig

g,k , Q) even though it is not a subspace of the latter in any way. This
is the first step of the construction.

We have not yet seen the state space. Then, a crucial new phenomenon
comes into play when we study how the above virtual cycle changes when we
vary the perturbation. It turns out that the above virtual cycle does depend
on the perturbation. It will change when W0 fails to be strongly regular.
Recall that for a strongly regular perturbation we can construct a canonical
system of HORIZONTAL paths u±

i ’s and the associated Lefschetz thimble
Δ±

i . When we perturb W0 crossing the “wall” (where the imaginary parts
of critical values happen to be the same), we arrive at another canonical
system of paths and its Lefschetz thimble Δ′±

i . The relation between Δ±
i

and Δ′±
i is determined by well-known Picard-Lefschetz formula. The “wall

crossing formula” for virtual fundamental cycles can be summarized in the
following quantum Picard-Lefschetz theorem:

Theorem 4.2.10. When W0 varies, [Ws
g,k(κj1 , . . . , κjk

)]vir transforms in
the same way as the Lefschetz thimble Δ−

ji
attached to the critical point kji.

Δ+
i ’s transform in the opposite way as Δ−

i ’s. It is well-known that the
“diagonal class”

∑
i Δ−

i ⊗Δ+
i is independent of perturbation. It suggests the

following definition of an “extended virtual class”. To simplify the notation,
we assume that there is only one marked point with the orbifold decoration
γ. Then, the wall crossing formula of [Ws

g,1(κi)]vir shows precisely that
∑

j

[Ws
g,1(κj)]vir ⊗ Δ+

j
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viewed as a class in H∗(Wrig
g,1 (γ), Q) ⊗ HNγ (CNγ

γ , W∞
γ , Q) is independent of

the perturbation. Now, we define

[Ws
g,1(γ)]vir =

∑

j

[Ws
g,1(κj)]vir ⊗ Δ+

j .

The above definition can be generalized to multiple marked points in an
obvious way. It is obvious that

[Ws
g,k(γ1, . . . , γk)]vir ∈ H∗(Wrig

g,k (γ1, . . . , γk), Q) ⊗
∏

i

HNγi
(CNγi , W∞

γi
, Q)

of degree

2((cW − 3)(1 − g) + k −
∑

i

ιγi).

Corollary 4.2.11. [Ws
g,k(γ1, . . . , γk)]vir is independent of the perturba-

tion W0.

W0 is only part of the perturbation data. Eventually, we want to work
on Wg,k. It is known that so : Ws

g,k → Wg,k is a quasi-finite proper map by
forgetting all the rigidifications. We can define

[Wg,k(γ1, . . . , γk)]vir :=
(−1)χ

deg(so)
(so)∗[Ws

g,k,W (γ1, . . . , γk)]vir,

where

χ = cW (1 − g) + k −
∑

i

ιγi .

The independence of the above virtual cycle on rigidification implies that

[Wg,k(γ1, . . . , γk)]vir ∈ H∗(Wg,k(γ1, . . . , γk), Q) ⊗
∏

i

HNγi
(CNγi , W∞

γi
, Q)G.

One gets a cleaner formula by pushing down [Wg,k(γ)]vir to Mg,k.

Definition 4.2.12. Let ΛW
g,k ∈ hom(H⊗k

W , H∗(Mg,k)) be given for homo-
geneous elements (α1, . . . , αk) with αi ∈ Hγi by

ΛW
g,k(α1, . . . , αk) :=

|Gmax|g
deg(st)

PDst∗

(
[Wg,k(γ)]vir ∩

k∏

i=1

αi

)
,

and then extends linearly to general elements of H⊗k
W .

Let 1 be the distinguished generator of HJ , and let 〈 , 〉W denote the
pairing on the state space HW .
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Theorem 4.2.13. The collection (HW,Gmax , 〈 , 〉W , {ΛW
g,k}, 1) is a coho-

mological field theory.
Moreover, if W1 and W2 are two singularities in distinct variables, then

the cohomological field theory from W1 + W2 is the tensor product of the
cohomological field theories arising from W1 and W2:

(HW1+W2,Gmax , {ΛW1+W2
g,k }) = (HW1,Gmax ⊗ HW2,Gmax , {ΛW1

g,k ⊗ ΛW2
g,k}).

4.3. Admissible group. So far, we are working with the group Gmax.
It is also useful to generalize it to other groups. The group 〈J〉 is particularly
important in application.

Definition 4.3.1. A subgroup G ⊂ Gmax is called admissible if there is
a quasihomogeneous Laurent series Z of the same quasihomogeneity such
that G = Gmax(W + Z).

Let (W + Z)g,k be the moduli space of W -structures defined by W + Z.
It is an open closed substack of Wg,k. One can show that (W + Z)g,k is
independent of Z and we denote it by Wg,k,G. It has the property that all
the orbifold decorations are from G. In essence, we just use Z to single out
an open closed substack of Wg,k satisfying all the formal properties of Wg,k

with orbifold decoration only from G. It was shown in [FJR2] that 〈J〉 is
admissible. Furthermore, Krawitz proved that any group G containing J is
admissible. Furthermore, an explicit description of Wg,k,〈J〉 has been worked
out in [CR1].

One can simply restrict the virtual class to Wg,k,G and define a cohomo-
logical field theory ΛW

g,k,G as well as Fg
W,G,DW,G.

5. ADE-hierarchies and Witten conjecture

The main motivation for Witten to introduce his equation is the follow-
ing conjecture.

Conjecture 5.0.2 (ADE-Integrable Hierarchy Conjecture). : The total
potential functions of the A, D, and E singularities with group 〈J〉 are τ -
functions of the corresponding A, D, and E integrable hierarchies.

The An-case has been established recently by Faber-Shadrin-Zvonkin
[FSZ]. One of the main applications of the theory of Fan-Jarvis-Ruan-
Witten is to verify Witten’s integrable hierarchies conjecture for the DE-
series. It turns out that Witten’s conjecture needs a modification in the Dn

case for n odd. This modification is extremely interesting because it reveals
a surprising role that mirror symmetry plays in integrable hierarchies.

Let’s start from the ADE-hierarchies. As we mentioned in section two,
there are two versions of ADE-integrable hierarchies—that of Drinfeld-
Sokolov [DS] and that of Kac-Wakimoto [KW]. Both of these were con-
structed from the basic representation of affine Kac-Moody algebras. They
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are equivalent by [HM]. The version directly relevant to us is the Kac-
Wakimoto ADE-hierarchies because the following beautiful work of Frenkel-
Givental-Milanov reduces the problem to an explicit problem in Gromov-
Witten theory! Let’s describe their work.

Let W be a nondegenerate quasihomogeneous singularity and φi (1 ≤
i ≤ μ) be the monomial basis of the Milnor ring with φ1 = 1. Consider the
miniversal deformation space C

μ where a point λ = (t1, . . . , tμ) parameter-
izes the polynomial W + t1φ1 + t2φ2 · · · + tμφμ. We can assign a degree
to ti such that the above perturbed polynomial has the degree one, i.e.,
deg(ti) = 1 − deg(φi). The tangent space Tλ carries an associative multipli-
cation ◦ and an Euler vector field E =

∑
i deg(ti)∂ti with the unit e = ∂Wλ

∂t1
.

It is more subtle to construct a metric. We can consider residue pairing

〈f, g〉λ = Resx=0
fgω

∂Wλ
∂x1

· · · ∂Wλ
∂xN

using a holomorphic n-form ω. A deep theorem of Saito [S] states that one
can choose a primitive form ω such that the induced metric is flat. Together,
it defines a Frobenius manifold structure on a neighborhood of zero of C

μ.
We should mention that there is no explicit formula of primitive form in
general. However, it is known that for ADE-singularities the primitive can
be chosen as a constant multiple of standard volume form, i.e., cdx for An

and cdxdy for DE-series.
Furthermore, one can define a potential function F playing the role of

genus zero Gromov-Witten theory with only primary fields. It is constructed
as follows. We want to work in flat coordinates si with the property that
degC(si) = degC(ti) and 〈∂si , ∂sj 〉 are constant. The flat coordinates depend
on the flat connection of metric and hence the primitive form. Its calculation
is important and yet a difficult problem. Nevertheless, we know that the flat
coordinates exist thanks to the work of Saito [S]. Then, consider the 3-
point correlator Cijk = 〈∂si , ∂sj , ∂sk

〉 as a function near zero in C
μ. We can

integrate Cijk to obtain F . Here, we normalize F such that F has the degree
three leading term. We can differentiate F by the Euler vector field. It has
the property LEF = (ĉW −3)F . Namely, F has homogeneous degree ĉW −3.
The last condition means that, in the Taylor expansion

F =
∑

a(n1, . . . , nμ)
sn1
1 · · · snμ

μ

n1! · · ·nμ!
a(n1, . . . , nμ) �= 0

only when
∑

ni −
∑

ni(1 − degC(si)) =
∑

degC(si) = ĉW − 3. Notes that
the degree in Frobenius manifold is different from that of the A-model. For
example, the unit e has the degree 1 instead of zero. The A-model degree
is 1− the B-model degree. With this relation in the mind, we will treat the
insertion si with degree 1 − degC(si). Then, the above formula is precisely
the selection rule of quantum singularity theory.
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It is known that the Frobenius manifold of a singularity is semisim-
ple in the sense that the Frobenius algebra on Tλ at a generic point λ is
semisimple. On any semisimple Frobenius manifold, Givental constructed a
formal Gromov-Witten potential function. We will only be interested in the
case that the Frobenius manifold is the one corresponding to the miniversal
deformation space of a quasihomogenous singularity W . We denote it by

DW,formal = exp

⎛

⎝
∑

g≥0

h2g−2Fg
formal

⎞

⎠ .

The construction of DW,formal is complicated. We only need its following
formal properties

(1) F0
formal agree with F for primary field, i.e., no descendants.

(2) The coefficients of Fg
formal behaves like the correlators of a Gromov-

Witten theory with C1 = 0 and dimension ĉW .
(3) DW,formal satisfies all the formal axioms of Gromov-Witten theory.

The first property is obvious from the construction. The second property
is the consequence of the fact that DW,formal satisfies dilaton equation and
Virasoro constraint. A fundamental theorem of Frenkel-Givental-Milanov
[GM], [FGM] is

Theorem 5.0.3. For ADE-singularities, DW,formal is a τ -function of the
Kac-Wakimoto ADE-hierarchies.

The main theorem is

Theorem 5.0.4.
(1) Except for Dn (n odd), the total potential functions of DE-singu-

larities with the group 〈J〉 are equal to the corresponding Givental
formal Gromov-Witten potential functions for a linear change of
variables.

(2)
DDn,Gmax = DA2n−3,formal,

up to a linear change of variables.
(3) For DT

n = xn−1y + y2 (n ≥ 4), DDT
n ,Gmax

= DDn,formal, up to a lin-
ear change of variables.

Using the theorem of Frenkel-Givental-Milanov, we obtain

Corollary 5.0.5. (1) Except for Dn (n odd), the total potential
function of DE-singularities with the group 〈J〉 is a τ -function of
the corresponding Kac-Wakimoto hierarchies (and hence Drinfeld-
Sokolov hierarchies).

(2) The total potential function of Dn-singularities with the maximal
diagonal symmetry group is a τ -function of the A2n−3 Kac-Waki-
moto hierarchies (and hence Drinfeld-Sokolov hierarchies).
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(3) The total potential function of DT
n = xn−1y + y2 (n ≥ 4) with the

maximal diagonal symmetry group is a τ -function of the Dn Kac-
Wakimoto hierarchies (and hence Drinfeld-Sokolov hierarchies).

The proof of the main theorem depends on three key ingredients. The
first ingredient is a strong reconstruction theorem of ADE-theory to reduce
the calculation to that of genus zero, 3-point correlators or certain explicit
4-point correlators. The second ingredient is Topological Euler class axioms
for Neveu-Schwarz sectors which enable us to compute all the 3-point and
required 4-point correlators. The last ingredient is to understand the mirror
symmetry of ADE-singularities, which is the subject of another conjecture of
Witten. The required modification in the Dn case will become transparent
once we understand the mirror symmetry.

Remark 5.0.6. There is a technical issue in Givental’s formal theory, as
follows. For any semisimple point t of Saito’s Frobenius manifold, he defined
an ancestor potential At. From this he obtains a descendant potential func-
tion D = ŜtAt, where Ŝt is certain quantization of a symplectic transfor-
mation St determined by the Frobenius manifold. Then, he showed D is
independent of t. However, to compare with our A-model calculation, we
need to expand D as formal power series at t = 0. Although D is expected to
have a power series expansion at t = 0, we have been informed that a proof
is not yet in the literature. Our strategy to avoid this problem is to show
that (i) the A- and B-models have isomorphic Frobenius manifolds, and (ii)
in the ADE cases the ancestor (as well as descendant) functions of both
models are completely determined by their respective Frobenius manifolds.
Therefore, the A- and B-model have the same ancestor potentials and hence
the same descendant potentials.

5.1. Reconstruction theorem. In general, it is difficult to compute
the full GW-invariants. But there is a physical reason to believe that singu-
larity theory is much more accessible to computation. This is particularly
strong in the ADE-case. The key idea is that there is a rather strong recon-
struction theorem for ADE-singularities to reduce the computations to 3-
point correlators and certain specific 4-point correlators. In this subsection,
we will outline the reconstruction theorem simultaneously for ADE-quantum
singularity theory and Givental’s formal Gromov-Witten theory in the ADE
case. We use the fact that (i) both theories satisfy the formal axioms of
Gromov-Witten theories; (ii) both have the same selection rules; (iii) both
have isomorphic quantum rings up to a mirror transformation. The last fact
will be established at the end of this section. To simplify the notation, we
state the theorem for Givental’s formal Gromov-Witten theory. It is under-
stood that the same argument applies to the quantum singularity theory of
the A-model mirror.

We start with the higher genus reconstruction using an idea of Faber-
Shadrin-Zvonkin [FSZ].
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Theorem 5.1.1. If ĉW < 1, then the total descendant or ancestor poten-
tial function is uniquely determined by the genus-zero primary potential (i.e.,
without gravitational descendants). If ĉW = 1, then the potential function is
uniquely determined by its genus-zero and genus-one primary potentials.

The proof of Theorem 5.1.1 is a direct consequence of the following two
lemmas, using the Faber-Shadrin-Zvonkine reduction technique. For this
argument we always assume that ĉW ≤ 1.

Lemma 5.1.2. Let αi ∈ Hγi,G for all i ∈ {1, . . . , k} and let β be any
product of ψ-classes. If ĉW < 1, then the integral

∫
Mg,k

βΛW,G
g,k (α1, . . . , αk)

vanishes if deg(β) < g for g ≥ 1. If ĉ = 1, then the above integral vanishes
when deg(β) < g for g ≥ 2.

Lemma 5.1.3. Suppose that β is the product of ψi classes. If deg(β) ≥ g,
then β is supported on the boundary of Mg,k.

Remark 5.1.4. There is an alternative higher-genus reconstruction, using
Teleman’s recent announcement [Te] of a proof of Givental’s conjecture
[Gi4]. However, the ADE-case is so simple that the above argument achieves
the same goal.

Next, we consider the reconstruction of genus-zero correlators using
WDVV.

Definition 5.1.5. We call a class γ primitive if it cannot be written
as γ = γ1 � γ2 for 0 < degC(γi) < degC(γ) (or, in the case of our A-model
singularity theory 0 < degW (γi) < degW (γ)).

We have the following lemma.

Lemma 5.1.6 (Reconstruction Lemma). Any genus-zero k-point corre-
lator of the form

〈γ1, . . . , γk−3, α, β, ε � φ〉
can be rewritten as

〈γ1, . . . , γk−3, α, β, ε � φ〉 = S + 〈γ1, . . . , γk−3, α, ε, β � φ〉
+ 〈γ1, . . . , γk−3, α � ε, β, φ〉
− 〈γ1, . . . , γk−3, α � β, ε, φ〉,

where S is a linear combination of genus-zero correlators with fewer than k
insertions.

Moreover, all the genus-zero k-point correlators 〈γ1, . . . , γk〉 are uniquely
determined by the pairing, by the 3-point correlators, and by correlators of
the form 〈α1, . . . , αk′−2, αk′−1, αk′〉 for k′ ≤ k, and such that αi primitive for
all i ≤ k′ − 2.
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Definition 5.1.7. We call a correlator a basic correlator if it is of the
form described in the previous lemma, that is, if all insertions are primitive
except for the last two.

For a basic correlator 〈a1, . . . , ak〉, we still have the dimension formula
∑

i

degC(ai) = ĉW + k − 3.

This gives the following corollary.

Corollary 5.1.8. If degC(a) ≤ ĉW for all classes a and if P is the
maximum complex degree of any primitive class, then all the genus-zero cor-
relators are uniquely determined by the pairing and k-point correlators with

k ≤ 2 +
1 + ĉW

1 − P

In particular, k ≤ 4 for all the simple singularities in the (A-model) theory.
For the DT

n+1 case in the (A-model) theory we have k ≤ 5. On the B-model
side, we have k ≤ 4 for the An-series and E6, E7 and E8 as well as DT

n+1,
while we have k ≤ 5 for the Dn+1 series.

To set up the notation for the next reconstruction lemma, we recall

An =
xn+1

n + 1
, Dn = xn−1 + xy2, DT

n = xn−1y + y2,

E6 = x3 + y4, E7 = x3 + xy3, E8 = x3 + y5.

Their local algebras OW are generated by the monomials in the variables
X, Y . The Reconstruction Lemma yields more detailed information for the
basic correlators as well.

Theorem 5.1.9.
(1) All genus-zero correlators in the An−1 case for both the (A-model)

and the Saito (B-model) theory are uniquely determined by the pair-
ing, the 3-point correlators and a single 4-point correlator of the
form 〈X, X, Xn−2, Xn−2〉.

(2) All genus-zero correlators in the Dn+1 case of the (A-model) theory
with maximal symmetry group, and in the DT

n+1 case of the Saito
(B-model), are uniquely determined by the pairing, the 3-point cor-
relators, and a single 4-point correlator of the form 〈X, X, X2n−2,
X2n−2〉.

(3) All genus-zero correlators in the DT
n+1 case of the (A-model) the-

ory, in the Dn+1 case of the theory with n odd and symmetry group
〈J〉, and in the Dn+1 case of the Saito (B-model) are uniquely deter-
mined by the pairing, the 3-point correlators, and 4-point correlators
of the form 〈X, X, Xn−1, Xn−2〉.
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(4) In the E6 case of theory with maximal symmetry group, and in the
E6 B-model, all genus-zero correlators are uniquely determined by
the pairing, the 3-point correlators, and the correlators < 〈Y, Y, Y 2,
XY 2〉 and 〈X, X, XY, XY 〉.

(5) In the E7-case (both A- and B-model), all genus-zero correlators are
uniquely determined by the pairing, the 3-point correlators, and the
correlators 〈X, X, X2, XY 〉, 〈X, Y, X2, X2〉, 〈X, Y, Y 2, X2Y 〉, and
〈Y, Y, XY, X2Y 〉.

(6) In the E8-case of our theory with maximal symmetry group, and
in the E8 B-model, all genus-zero correlators are uniquely deter-
mined by the pairing, the 3-point correlators, and by the correlators
〈Y, Y, Y 3, XY 3〉, and 〈X, X, X, XY 3〉.

5.2. Calculations in the Neveu-Schwarz sector. The remaining
task is to calculate the 3-point and above 4-point correlators explicitly and
match them. On the B-model side, we need to calculate flat coordinates of
a Frobenius manifold and expand the potential function in flat coordinates.
In order to do this, we need an explicit form of the primitive form which
could be problematic in general. Fortunately, the primitive form is known
to be the standard volume cdxdy form for an ADE-singularity. In fact, all
the genus-zero correlators have been calculated already in both mathematics
[NY] and physics.

The problem is mostly on the A-side. An explicit calculation of A-model
correlators requires counting the number of solutions of the Witten equation.
At this point, this is out of reach except for the case of the Neveu-Schwarz
sector. Recall that γ ∈ G is called Neveu-Schwarz if C

N
γ = {0}, i.e., no fixed

point except zero. In the set-up of a smooth metric at the marked point
(smooth theory), it was a lemma of Witten that the unperturbed Witten
equation has only the zero solution. This leads to the following.

Suppose that all the decorations are Neveu-Schwarz, meaning that C
N
γi

=
{0}, and so we can omit HNγi (CN

γi
, W∞

γi
, Q) = C from our notation (that

is, we assume that all the marked points are decorated with the element
1 ∈ HNγi (CN

γi
, W∞

γi
, Q)).

Consider the universal W -structure (L1, . . . ,LN ) on the universal curve
π : C → Wg,k,G(γ1, . . . , γk) and the two-term complex of sheaves

π∗(|Li|) → R1π∗(|Li|).

There is a family of maps

Wi =
∂W

∂xi
: π∗

⎛

⎝
⊕

j

|Lj |

⎞

⎠ → π∗(K ⊗ |Li|∗) ∼= R1π∗(|Li|)∗.
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The above two-term complex is quasi-isomorphic to a complex of vector
bundles [PV]

E0
i

di→ E1
i

such that
ker(di) → coker(di)

is isomorphic to the original two-term complex. Wi is naturally extended
(denoted by the same notation) to

⊕

i

E0
i → (E1

i )∗.

Choosing a Hermitian metric on E1
i defines an isomorphism Ē1∗

i
∼= E1

i . Define
the Witten map to be the following:

W =
⊕

(di + W̄i) :
⊕

i

E0
i →

⊕

i

Ē1∗
i

∼=
⊕

i

E1
i .

Let πj :
⊕

i E
j
i → Wg,k,G be the projection map. The Witten map defines a

proper section (denoted by the same notation) of the bundle W :
⊕

i E
0
i →

π∗
0(

⊕
i E

1
i ). The above data defines a topological Euler class e(W :

⊕
i E

0
i →

π∗
0(

⊕
i E

1
i )). Then,

Theorem 5.2.1 (Topological Euler Class Axiom).

[Wg,k,G(γ1, . . . , γk)]vir = (−1)χe

(
W :

⊕

i

E0
i → π∗

0(
⊕

i

E0
i )

)

∩ [Wg,k,G(γ1, . . . , γk)],

where χ =
∑

i(dim(E0) − dim(E1)).

The above axiom implies two subcases.
(1) Concavity: Suppose that all marked points are Neveu-Schwarz and

are decorated with 1 ∈ HNγi (CN
γi

, W∞
γi

, Q) = C. If π∗
(⊕N

i=1 Li

)
=

0, then the virtual cycle is given by capping the top Chern class of
the orbifold vector bundle R1π∗

(⊕N
i=1 Li

)
with the usual funda-

mental cycle of the moduli space:

[Wg,k,G(γ1, . . . , γk)]
vir = ctop

(
−R1π∗

N⊕

i=1

Li

)
∩ [Wg,k,G(γ1, . . . , γk)] .

(2) Index zero: Suppose that dimWg,k,G(γ1, . . . , γk) = 0 and all the
marked points are Neveu-Schwarz. If the pushforward π∗ (

⊕
Li)

and R1π∗ (
⊕

Li) are both vector spaces of the same rank, then the
virtual cycle is just the degree deg(W) of the Witten map.
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It turns out that all the required 4-point correlators belong to con-
cave cases where the axiom applies. To compute the top Chern class of
the obstruction bundle, we need to use the orbifold Grothendeck-Riemann-
Roch formula. Conceptually, it is straightforward. The actual computation
requires keeping careful track of fractions! All of the cases have been worked
out in [FJR2] (see another treatment [C]). For 3-point correlators, not all
the cases are Neveu-Schwarz. But in the ADE-case, the 3-point correlators
from the Neveu-Schwarz sectors completely determine the 3-point correla-
tors with Ramond insertion by associativity. Apparently, the phenomenon
that Neveu-Schwarz sectors determine everything occurs also beyond ADE-
singularities.

When we match the 3-point and 4-point correlators of the A-model and
the B-model, another interesting phenomenon arises. Recall that the primi-
tive form (say for the DE-series) is cdxdy where c is an arbitrary constant.
Apparently, the A-model theory singles out a particular constant c on the
B-side. For general singularity theory, there should be a moduli of primitive
forms. In mirror symmetry (see more in the next section), the A-model the-
ory should correspond to a particular point of the moduli of primitive forms
on the B-side.

Finally, we comment on the proof of the topological Euler class axiom.
The topological Euler class axiom is quite obvious if we set up our theory
using the smooth metric at marked points and nodal points. Unfortunately,
it is quite difficult to handle the Ramond sector in the smooth theory. It
took the authors several years to realize that the right choice of metric for
the Ramond sector is the cylindrical metric (cylindrical theory). This is
where the general theory was set up and its formal Gromov-Witten theory
properties were proven. The proof of the topological Euler class axiom is
basically a proof of equivalence of the smooth theory and the cylindrical
theory in the case of Neveu-Schwarz sectors. It takes considerable work and is
probably the most difficult part of the entire construction. Nevertheless, the
topological Euler class axiom reduces the calculation to algebraic geometry
where many more techniques can be applied. It remains a difficult problem
to give a completely algebraic treatment for the Ramond sector.

5.3. ADE-singularities and Mirror symmetry. Now, we focus on
3-point correlators. It is well-known that 3-point correlators define a quantum
ring structure on HW,G. To calculate 3-point correlators means to calculate
the quantum ring structure. We single out the 3-point case for two reasons.
First, this is the starting point of the proof of Witten’s ADE-hierarchies
conjecture. Secondly, this is the subject of Witten’s other conjecture.

ADE-Self-Mirror Conjecture: ADE-singularities are self-mirror in
the sense that HW,〈J〉 are ring isomorphic to OW for ADE-singularities W .

It was a surprise to the authors initially when the ADE-self mirror con-
jecture turned out to be the first step towards the ADE-integrable hierarchies
conjecture. It is even more surprising that this conjecture fails for Dn, n odd.
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The search for the mirror of Dn leads to the singularity DT
n = xn−1y+y2 and

a much better understanding of mirror symmetry of singularities in general.
More precisely, the statement of the theorem is

Theorem 5.3.1. (1) Except for Dn with n odd, the ring HW,〈J〉
of any simple (ADE) singularity W with symmetry group 〈J〉 is
isomorphic, as a Frobenius algebra, to the Milnor ring OW of the
same singularity. For all of these rings the element J generates the
entire maximal diagonal symmetry group Gmax.

(2) The ring HDn,Gmax of Dn with the maximal diagonal symmetry
group Gmax is isomorphic, as a Frobenius algebra, to the Milnor
ring Oxn−1y+y2 ∼= OA2n−1.

(3) The ring HDT
n ,Gmax

is isomorphic,as a Frobenius algebra, to the
Milnor ring ODn of Dn.

The proof of the above theorem is carried out via the index zero case of
the topological Euler class axioms and associativity.

We want to mention that Kaufmann [Ka1] also proved a version of
Witten’s ADE self-mirror conjecture using an entirely different definition of
A-model ring.

6. Beyond ADE

As we mentioned in the introduction, ADE-singularities comprise a spe-
cial class of singularities. On the Kac-Moody algebra side, there are B

(1)
n , C

(1)
n ,

F
(1)
4 -series. They should correspond to simple boundary singularities. For

other more exotic creatures such as G
(1)
2 , A

(2)
n , E

(2)
6 , D

(3)
4 , I do not know if

they correspond to singularity theory. Another interesting class of examples
are the integrable hierarchies associated to elliptic curves [DJKM5]. Recall
that we have three classes of elliptic singularities

P8 = x3 + y3 + z3, X9 = x4 + y4, J10 = x3 + y6.

Do these three classes of elliptic singularities correspond to elliptic inte-
grable hierarchies in [DJKM5]?

Another very interesting class of singularities are Arnold’s exceptional
singularities

: E12 = x3 + y7, E14 = x3 + y8, Z12 = x3y + xy4.
: W12 = x4 + y5, Q10 = x3 + y4 + yz2, Q12 = x3 + y5 + yz2.
: S12 = x2y + y2z + xz3, E13 = x3 + xy5, Z11 = x3y + y5.
: Z13 = x3y + y6, W13 = x4 + xy4, Q11 = x3 + y2z + zx3.
: S11 = x4 + y2z + xz2, U12 = x3 + y3 + z4.

These singularities have a deep connection to hyperbolic geometry in
the same way as ADE-singularities have a deep connection to Euclidean
geometry. It is not inconceivable that the exceptional singularities have some
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integrable hierarchies behind them. This raises an interesting question for
experts in representation theory and integrable hierarchies.

It is clear that the subjects of singularity theory and integrable hierar-
chies are wide open. Our experience in the ADE case tells us that the first
step towards integrable hierarchies is to understand the mirror symmetry of
singularities. Here, a great deal of progress has been made due to the work
of Krawitz and his collaborators [Kr] for the invertible singularities.

Almost twenty years ago, the physicists Berglund-Hübsch proposed the
following elegant mirror symmetry construction for an invertible singular-
ity. Let MW be the matrix of exponents. Namely, if W =

∑N
j=1 cj

∏N
i=1 z

bij

i ,
MW = (bij). The invertibility implies that M is a square matrix. Berglund-
Hübsch proposed that the mirror singularity W T is another invertible sin-
gularity with the property MW T = MT

W . To complete the story, for any
G ⊂ Gmax(W ), we should also construct a dual group GT ⊂ Gmax(W T ).
This was not entirely clear in the literature except in some special cases.
Recently, Krawitz has constructed such a dual group GT . His construction
is a little bit involved and we will refer readers to his paper. Here are some
important special cases.

GT
max = {1}, 〈J〉T = SL ∩ Gmax(W T ).

Here SL ∩ Gmax(W T ) is the subgroup of Gmax(W T ) with determinant one.
Furthermore, he showed that GT for any G ⊂ SL ∩ Gmax is admissible.

Then, Krawitz proved the following elegant theorem:

Theorem 6.0.2. Suppose that W is an invertible singularity and G is an
admissible group. Furthermore, we assume that qi < 1

2 for all i. Then HW,G

is ring isomorphic to OW T ,GT .

The special cases of singularities with modality two were computed pre-
viously by Krawitz and his collaborators. When W is an Arnold exceptional
singularity and G = 〈J〉, it recovers Arnold’s strange duality.

A particular useful case for integrable hierarchies is the mirror symmetry

HW,Gmax
∼= OW T .

Notice that OW T is the part of larger theory in terms of Frobenius manifold
and Givental formal Gromov-Witten theory DW T ,formal. It is natural to
conjecture

Conjecture I: For an invertible singularity W ,

DW = DW T ,formal

up to a linear change of coordinates for a particular choice of primitive form
of W T .

Conjecture II: For an invertible singularity W , DW is a τ -function
of the W T -hierarchy. Here, the W T -hierarchy is the hierarchy (remains to
be constructed for the general case) corresponding to the Dynkin diagram
of W T .
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