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1. Introduction

The purpose of this chapter is to describe recent progress in the study
of Teichmüller geometry. We focus entirely on the Teichmüller metric. A
survey of the very important Weil-Petersson metric can be found in [W]. The
study of the Teichmüller metric has different aspects. One major theme in
the subject is to what extent Teichmüller space with the Teichmüller metric
resembles a metric of negative curvature, and to what extent it resembles
a metric of nonnegative curvature. This theme will occupy much of this
survey and we will describe results in both directions. With somewhat the
same theme we describe recent results about the Teichmüller geodesic flow
on moduli space.

Along somewhat different lines we describe some recent important work
of K. Rafi that gives a combinatorial description of the Teichmüller metric.
Another important subject is the study of the action of the action of the
mapping class group on Teichmüller space. We will discuss some very impor-
tant recent work of Eskin, Mirzakhani and co-authors on counting problems
for the mapping class group.We will also describe some recent joint work
with Benson Farb on the Teichmüller geometry of moduli space.

There has also been a great deal of recent work on the related topics of
the SL(2,R) action on spaces of quadratic differentials, Veech groups and
Veech surfaces. These fall outside the scope of this article. We refer to the
article of Hubert, Lanneau and Moeller in these proceedings for a discussion
of these last subjects.

For general references for Teichmüller theory, and quasi-conformal map-
pings I refer to the books of L. Ahlfors ([A]), J. Hubbard ([H]) and A. Pap-
doupolous ([P]). For a reference to the mapping class group I refer to the
book of N. Ivanov ([I1] and the recent book of B. Farb and D. Margalit
([FMa]). For references to the theory of quadratic differentials there are
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the books of Strebel ([St]) and F. Gardiner ([G]). See the paper of L. Bers
([B1]) for a discussion and proof of Teichmüller’s theorem and [FLP] for a
discussion of measured foliations and Thurston’s boundary of the mapping
class group.

I would also like to thank the referee for several helpful comments.

2. Preliminaries

Let S = Sg,n be a surface of genus g with n punctures. To avoid sporadic
cases we will assume 3g−3+n > 0. In some cases we will assume 3g−3+n >
1 so that we avoid the cases of the once punctured torus and four times
punctured sphere. A complex structure or Riemann surface structure X on
S is an atlas of charts

{zα : Uα → C}
such that the transition functions z−1

β ◦zα are biholomorphic, where defined.
Then the Teichmüller space of S denoted Teich(S) is the space of complex
structures X on S up to equivalence. We say that X ∼ Y if there is a map
f : X → Y , biholomorphic in the coordinate charts, which is isotopic to the
identity on S.

By the uniformization theorem, each point X in Teich(S) has a metric of
constant curvature −1, and so equivalently, we can describe Teich(S) as the
space of hyperbolic metrics ρ of constant curvature −1 on S up to equiv-
alence, where ρ1 ∼ ρ2 if there is an isometry of S isotopic to the identity
taking ρ1 to ρ2. A theme of much of Teichmüller theory is to compare the
complex analytic theory where points are given by Riemann surfaces and the
hyperbolic geometry. Since the correspondence is given by the uniformiza-
tion theorem, there are rarely exact formulae and one often has to rely on
estimates in making comparisons.

Given a hyperbolic structure ρ on S there is a unique geodesic in the
homotopy class of every simple closed curve α. We denote by �ρ(α) the
length of the geodesic. For X a Riemann surface we will also write �X(α),
where by this we mean we have given X its hyperbolic structure. We will
let S be the set of homotopy classes of homotopically nontrivial essential
simple closed curves on S.

The Teichmüller metric on Teich(S) is the metric defined by

dT (X, Y ) :=
1
2

inf
f∼Id

{log K(f) : f : X → Y }

where f is quasiconformal and

K(f) := ||Kx(f)||∞ ≥ 1

is the quasiconformal dilatation of f , where

Kx(f) :=
|fz(x)| + |fz(x)|
|fz(x)| − |fz(x)|

is the pointwise quasiconformal dilatation at x.
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The mapping class group Mod(S) is the group of homotopy classes of
orientation-preserving homeomorphisms of S. This group acts properly dis-
continuously and isometrically on Teich(S) with the Teichmüller metric and
so the quotient

M(S) = Teich(S)/ Mod(S)

has the induced metric. The space M(S) is the moduli space of (unmarked)
Riemann surfaces, or what is the same thing, conformal structures on S.

Given a Riemann surface X and α ∈ S, the extremal length of α on X is
defined by

ExtX(α) = sup
σ

L2
σ(α)

A(σ)
,

where the supremum is over conformal metrics σ(z)|dz|,

Lσ(α) = inf
α′∼α

∫
α′

σ(z)|dz|

and
A(σ) =

∫
X

σ2(z)|dz|2.

The following formula of Kerckhoff ([Ke]) has proven to be extremely
useful in estimating Teichmüller distances.

(1) dT (X, Y ) = sup
α∈S

1
2

log
ExtX(α)
ExtY (α)

.

2.1. Quadratic differentials and Teichmüller rays. Let X be a
Riemann surface. A (meromorphic) quadratic differential q on X is a tensor
locally given by q = q(ζ)dζ2, where q(ζ) is a meromorphic function of the
holomorphic coordinate ζ. A quadratic differential has a finite number of
zeroes and poles. We allow simple poles at the punctures of S. The number
of zeroes and poles of q counting multiplicity is 4g − 4. A simple pole has
multiplicity −1. In a neighborhood of a regular point p choose a coordinate
ζ with p corresponding to ζ = 0 and take a branch of q1/2(ζ). Define

z(ζ) =
∫ ζ

0
q1/2(u)du.

Then z becomes a new natural coordinate in a neighborhood of p and in this
coordinate, q is given by q(ζ)dζ2 = dz2. In a neighborhood of a zero of order
k ≥ 1 there are natural coordinates such that q(ζ)dζ2 = zkdz2. The set of
quadratic differentials on X is denoted by QD(X) and is a complex vector
space of dimension 3g − 3 + n.

The fact that there are natural coordinates z so that q(ζ)dζ2 = dz2 allows
one to say that q defines a local Euclidean metric |dz|2, with finitely many
singular points corresponding to the zeroes and poles of q. At a zero of order
k, the metric is not Euclidean; there is a cone angle singularity. The cone
angle of the metric is π(k+2). The total area of X in this metric is finite. The
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area of the surface induced by the quadratic differential is denoted by ||q||.
This defines a norm on QD(X). A saddle connection is a geodesic segment
joining two (not necessarily distinct) singular points which has no singular
points in its interior.

The description of a quadratic differential in terms of a Euclidean metric
also allows one to describe quadratic differentials in purely geometric terms
as consisting of a collection of polygons Δ1, . . . ,ΔN in the plane with the
property that for every side si of Δi there is a unique side sj of some Δj

such that si is glued to sj by a translation or a rotation by π followed
by a translation. The polygons then provide the natural coordinates z and
the fact that the side gluings are of the given form means that the overlap
functions are of the form

z → ±z + c

so that q = dz2 is really a quadratic differential. The vertices of the polygons
give rise to zeroes and simple poles of the quadratic differential. If there are
no rotations, then the resulting object is called a translation surface and
corresponds to an Abelian differential ω on a Riemann surface X with ω2 = q
a quadratic differential.

Consider the data k̂ = (k1, . . . , kn,±) where the ki are the orders of the
zeroes and poles and one has a + sign if q is the square of an Abelian differ-
ential and − sign if not. The set of all quadratic differentials over Teich(S)
with data k̂ is called a stratum and is denoted QDk̂. As k̂ varies, these
strata fit together to form the bundle QD of all quadratic differentials over
Teich(S). We denote by QD1

k̂
the set of elements q ∈ QDk̂ with ||q|| = 1. In

the compact case the principal stratum corresponds to k̂ = (1, . . . , 1,−). The
mapping class group acts on each stratum QDk̂ with quotient denoted Qk̂.

A quadratic differential also determines a pair of transverse measured
foliations Fh(q) and Fv(q), called the horizontal and vertical foliations for
q. In the natural coordinates z = x + iy, away from the zeroes, the leaves of
Fh(q) are given by

y = const;
and the leaves of Fv(q) are given by

x = const,

and the transverse measures are |dy| and |dx|. The foliations Fh(q) and
Fv(q) have the zero set of q as their common singular set, and at each zero
of order k they have a (k + 2)-pronged singularity, locally modelled on the
singularity at the origin of zkdz2. The leaves passing through a singularity
are the singular leaves of the measured foliation.

Theorem 2.1 (Teichmüller’s Theorem). Given any X, Y ∈ Teich(S),
there exists a unique quasi-conformal map f , called the Teichmüller map,
such that

dT (X, Y ) =
1
2

log K(f).
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Furthermore the Beltrami coefficient μ := fz
fz

is of the form μ = k q
|q| for

some unique q ∈ QD1(X) and some k with 0 ≤ k < 1. The quadratic differ-
ential q is called the initial quadratic differential of the map. There is a
quadratic differential q′ ∈ QD1(Y ) called the terminal quadratic differential
with the following properties. The map f takes zeroes of q to zeroes of q′ of
the same order. In the natural local coordinates z = x + iy of q away from
the zeroes, and the natural coordinates w = u + iv for q′,

u = K1/2x, v = K−1/2y,

where K = K(f) = 1+k
1−k .

Conversely, given a Riemann surface X, a quadratic differential q ∈
QD1(X) and t ≥ 0, there is a Riemann surface Xt and a terminal quadratic
differential qt on Xt for a Teichmüller map ft : X → Xt such that

dT (X, Xt) = t.

Define K by t = 1
2 log K. The Teichmüller map f expands along the

leaves of the horizontal foliation Fh(q) by K1/2 and contracts along the leaves
of the vertical foliation Fv(q) by K−1/2. Set qt = q′. The family Xt, t ≥ 0 is
the Teichmüller geodesic ray r(t) in Teich(S) determined by q. The quadratic
differentials qt all lie in the same stratum QDk̂ and

q → gt(q) := qt

is called the Teichmüller geodesic flow. It projects to a flow on Qk̂ over
moduli space.

The Teichmüller flow is part of a larger SL(2,R) action on each stratum.
One can see the SL(2,R) action as follows. We realize q as a union of glued
polygons Δ1, . . . ,Δp. A matrix A ∈ SL(2,R) acts on each polygon linearly,
taking parallel sides of the same length to parallel sides of the same length.
Then A · q is the union of the glued polyogns A(Δ1), . . . , A(Δp). A great
deal of recent work concerns this action. See the article of Hubert-Lanneau-
Moeller in this volume.

We say a quadratic differential is Strebel if all of the leaves of the vertical
foliation Fv(q) are closed. In this case the surface decomposes into a finite
number of Euclidean cylinders each swept out by freely homotopic closed
vertical leaves of the same length. The boundary of the cylinders consist of a
finite number of saddle connections and is called the critical graph. We say q
is mixed Strebel if the vertical foliation Fv(q) contains at least one Euclidean
cylinder. We will call a ray r(t) (mixed) Strebel if it is determined by a
(mixed) Strebel differential.

2.2. Measure on QDk̂. Suppose q0 ∈ QDk̂ where k̂ = (k1, . . . , kp,±)
We represent q0 as a union of glued polygons in some fashion. We may now
find all q ∈ QDk̂ in a neighborhood of q0 by varying the polygons but keeping
the corresponding side gluings. We choose an orientation of each side s of
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each polygon. This gives a collection of vectors. A subcollection {si} of these
vectors determines each q ∈ QDk̂ in a neighborhood of q0. This gives a local
embedding of QDk̂ into R2N for an appropriate N . We pull back normalized
Lebesgue measure from R2N giving a measure μk̂ on QDk̂. The measure is
invariant under the action of Mod(S) giving a measure again denoted μk̂ on
Qk̂. Since SL(2,R) preserves Lebesgue measure, it is easily checked that the
measure μk̂ is invariant under the SL(2,R) action on Qk̂.

3. Curvature aspects of Teichmüller geometry

In this section we summarize much of what is known about the geometry
of Teich(S) with the Teichmuller metric. It follows from the uniqueness of
the Teichmüller map that Teich(S) is a straight space. This means that
between any two points there is a unique Teichmüller geodesic which can be
uniquely extended infinitely in both directions.

We begin with some old theorems. A geodesic metric space has Buse-
mann negative curvature if for any two geodesic rays r1, r2 through a common
basepoint r1(0) = r2(0), and any t > 0,

d(r1(t), r2(t)) ≤ 1
2
d(r1(2t), r2(2t)).

Theorem 3.1. ([M1]) For 3g − 3 + n > 1, the Teichmüller metric does
not have negative curvature in the sense of Busemann.

In fact it follows from work of Strebel ([St]) that on any surface X
and collection of disjoint simple closed curves α1, . . . , αp there is a p − 1
dimensional family of Strebel differentials in QD1(X) determining cylinders
in the homotopy classes of α1, . . . , αp. For p > 1 the corresponding rays r1, r2
satisfy sup d(r1(t), r2(t)) < ∞.

A geodesic metric space is Gromov hyperbolic if there is δ such that for
any geodesic triangle with vertices x, y, z the side [xy] is contained in the δ
neighborhood of [xz] ∪ [yz].

Theorem 3.2. ([MW]) Teich(S) with the Teichmüller metric is not
Gromov hyperbolic.

In fact the lack of hyperbolicity can be explained more fully by a result of
Minsky’s. ([Mi]) Fix ε > 0 smaller than the Margulis constant for hyperbolic
surfaces. This means that two curves with hyperbolic length smaller than ε
must be disjoint.

Let C = {γ1, . . . , γp} be a collection of distinct, disjoint, nontrivial homo-
topy classes of simple closed curves. Let

ΩC(ε) := {X ∈ Teich(S) : �X(γi) < ε for each i = 1, . . . , p}.

Extend C to a maximal collection {γ1, . . . , γd} of homotopy classes
of disjoint simple closed curves. Let {θi, �i)} denote the corresponding
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Fenchel-Nielsen coordinates on ΩC(ε). The θi are certain twist coordinates.
The Fenchel-Nielsen coordinates give global coordinates on Teich(S); hence-
forth we will identify points in Teich(S) with their corresponding coordi-
nates.

Consider the Teichmüller space Teich(S \ C), which is the space of com-
plete, finite area hyperbolic metrics on S \ C. Note that the coordinates
{(θi, �i) : i > p} give Fenchel-Nielsen coordinates on Teich(S \ C).

Let

Φ = (Φ1, Φ2) : ΩC(ε) → Teich(S \ C) ×
p∏

i=1

H2

be defined by

Φ((θ1, . . . , θd, �1, . . . , �d, )) := (θp+1, . . . , θd, �p+1, . . . , �d, ) ×
p∏

i=1

(θi, 1/�i).

We are changing the last set of length coordinates from � to 1/� giving
coordinates in the upper half-space model of H2. We give H2 the metric
ds2 = 1

4(dx2 +dy2)/y2. The factor of 1
4 leads to a factor of 1

2 in the distance,
and is consistent with the factor of 1

2 in the Teichmüller metric. If S \ C is
disconnected, then Teich(S \ C) is itself a product of the Teichmüller spaces
of the components of S \ C; we endow this total product space itself with
the sup metric, denoted by d. We remark that Φ is a homeomorphism onto
its image, and its image is Teich(S \ C) ×

∏p
i=1{(xi, yi) ∈ H2 : yi > 1/ε}.

Theorem 3.3. ([Mi]) With notation as above, there exists D such that
for all X, Y ∈ ΩC(ε),

|d(Φ(X), Φ(Y )) − dT (X, Y )| ≤ D.

This product structure with the sup metric allows one to map large
balls BR in Rk for some k > 1, with the Euclidean metric dE(·, ·) quasi-
isometrically to Teich(S). This means that there are constants K, C and for
all large R, a map F : BR → Teich(S) such that

1
K

dE(x, y) − C ≤ dT (F (x), F (y)) ≤ KdE(x, y) + C.

We now give evidence of negative curvature. For each homotopy class α
of a simple closed curve, let Thin(α) denote the set of X ∈ Teich(S) such that
�X(α) < ε. We form the electrified Teichmüller space Teichel(S) by adding a
single point xα for each homotopy class α and assigning distance 1 from xα

to each point of Thin(α).

Theorem 3.4. ([MM]) The electrified space Teichel(S) is a Gromov
hyperbolic space.
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This Theorem is really a Corollary of work on the curve complex C(S).
The vertices of the curve complex are isotopy classes of homotopically non-
trivial, essential simple closed curves on S; namely the set S. A k sim-
plex consists of k + 1 mutually disjoint homotopically distinct simple closed
curves. The dimension of C(S) is 3g − 4 + n. We are interested in the 1
skeleton C1(S).

There is a map
C1(S) → Teichel(S)

which sends α to the point xα. The above theorem is a consequence of the
theorem below.

Theorem 3.5. ([MM]) The space C1(S) is a Gromov hyperbolic space
and the above map is a quasi-isometry.

Now the Teichmüller metric is not Riemannian but rather a Finsler
metric which means that there is a norm on the tangent and cotangent
spaces. The cotangent space at a point X is the space QD(X) of quadratic
differentials on X and the norm of q is ||q||, the area of the flat metric
defined by q.

We next describe some recent work on the geometry of sets in Teich(S).
Perhaps surprisingly, detailed information is sometines unknown. For exam-
ple, it is not known if balls are convex. It is not even known if the convex
hull of a finite set of points is compact. Here is a recent result, however
that gives some good information. Let B(X0, R) denote the ball of radius R
centered at X0 and let S(X0, R) be the sphere.

Theorem 3.6. ([LR]) There is a constant K such that for each X0, R,
the ball B(X0, R) is K-quasiconvex.

This means that for any pair of points X, Y ∈ B(X0, R), the geodesic
joining X, Y stays in the ball B(X0, R + K). The main step is to show that
for each simple closed curve α, the extremal length of α is a quasi-convex
function along Teichmüller geodesics. This means that there is a number K
depending only on the topology of the surface, such that for each Teichmüller
geodesic segment r : [a, b] → Teich(S), each a ≤ t ≤ b, and any simple closed
curve α,

Extr(t)(α) ≤ K max(Extr(a)(α), Extr(b)(α)).

The proof is intricate because in general the flat length of a curve does not
give a good estimate for the extremal length. Along a Teichmüller geodesic
the flat length of a curve is a strictly convex function, while it is possible
to find examples where the extremal length is essentially constant along
long segments of a geodesic. The quasi-convexity of balls follows from the
quasi-convexity of length functions and Kerckhoff’s distance formula (1).

Another question that has been recently answered is the following. Given
any pair of points X, Y on the sphere S(X0, R) of radius R centered at X0,
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we may ask for paths γ(X, Y ) joining X, Y that stay outside B(X0, R). In
a negatively curved space, this distance grows exponentially; that is, there
exists c1 > 0, c2 > 0 such that for all X0, R

sup
X,Y ∈S(X0,R)

inf
γ(X,Y )

|γ(X, Y )| ≥ c1e
c2R.

However we have in Teich(S) the following result.

Theorem 3.7. ([DR]) For Teich(S) with the Teichmüller metric, for
any X0 there are constants c1, c2 > 0 such that

c1R
2 ≤ sup

X,Y ∈S(X0,R)
inf

γ(X,Y )
|γ(X, Y )| ≤ c2R

2.

That is, for any X, Y ∈ S(X0, R) there is a path joining X, Y outside S(X0, R)
of length at most c2R

2, and there exists X, Y such that the shortest path has
length at least c1R

2.

The proof uses the existence of chains of flats joining X, Y and Minsky’s
product formula.

One can ask the question of when two geodesic rays r1, r2 stay bounded
distance apart. This question has been answered completely. First we say
that a measured foliation is minimal if all of its leaves are dense in one
(or both) directions. We say it is uniquely ergodic if it is minimal and the
transverse measure is unique up to scalar multiplication. If it is minimal and
not uniquely ergodic then it is known that the set of transverse measures
forms a finite dimensional convex set. The extreme points of the convext set
are ergodic measures. Here is a result that combines results of [M1], [M2],
[I2], [LM].

Theorem 3.8. Suppose r1, r2 are rays determined by quadratic differen-
tials q1, q2. Suppose they do not coincide on an infinite segment.

• If q1, q2 are both Strebel differentials and determine the same homo-
topy classes of cylinders then the rays stay bounded distance apart.

• If the vertical foliations Fv(q1) and Fv(q2) coincide up to scalar
multiplication and are uniquely ergodic, then the rays stay bounded
distance apart.

• Suppose Fv(q1) and Fv(q2) are minimal and topologically equivalent,
but not uniquely ergodic. Then if the transverse measures are abso-
lutely continuous with respect to each other, the rays stay bounded
distance apart.

• In all other cases the rays diverge.

The hypothesis is equivalent to saying that q2 is not the terminal qua-
dratic differential for the Teichmüller geodesic ray determined by q1 and vice
versa.
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4. Teichmüller geodesic flow

We continue with a short discussion of properties of the Teichmüller
geodesic flow. We present only a few of the many results in the subject
that give a flavor of the subject. They fall into the theme of the negative
curvature of Teichmüller space. Again let Qk̂ be a stratum. A stratum need
not be connected although now the connected components are known ([KZ],
[La], [BL]). We first have ([M4],[V])

Theorem 4.1. μ(Q1
k̂
) < ∞ and the action of the Teichmuller flow gt is

ergodic on each component of each stratum.

There has been a great deal of beautiful work done in recent years. We
do not list all of the results but just two of the most striking. The first is
due to Avila and Viana. ([AV])

Theorem 4.2. On every component of each stratum of Abelian differ-
entials the nontrivial Lyapunov exponents of the flow are distinct.

We also have

Theorem 4.3. ([AGY]) The Teichmüller flow gt is exponentially mixing
on each stratum Qk̂ = Q(k1, . . . , kp, +) of Abelian differentials. There is δ >

0, C > 0 such that for compactly supported C1 functions U, V : Qk̂ → R we
have, ∣∣∣∣∣

∫
Qk̂

U(q)V ◦ gt(q)dμk̂(q) −
∫

U(q)dμk̂(q)
∫

V (q)dμk̂(q)

∣∣∣∣∣
≤ C||U ||C1 ||V ||C1e

−δt.

(The authors actually have a stronger statement that allows for functions
not be compactly supported.)

5. Counting problems in the mapping class group

Now recall μk̂ the measure on each stratum QDk̂. Assume S is com-
pact. We are interested in the principle stratum k = (1, . . . , 1,−) and denote
the corresponding measure simply by μ. let π : QDk̂ → Teich(S) the natu-
ral projection which assigns to each quadratic differential the corresponding
Riemann surface. Then ν =: π∗(μ) defines a volume element on Teichmüller
space.

Theorem 5.1. ([ABEM]) There is a function Λ : Teich(S) → R such
that

ν(B(X, R) ∼ Λ(X)e(6g−6+2n)R)

as R → ∞.
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(The symbol ∼ means that the ratio approaches 1.)
The function Λ can be described as follows. Let MF denote Thurston’s

space of measured foliations ([FLP]) and let PMF be the corresponding
projective space of measured foliations, where we have identified two mea-
sured foliations if they differ by a scalar multiple. There is a natural Thurston
measure μTH on MF invariant under the action of Mod(S). For each mea-
sured foliation F and X ∈ Teich(S) there is a unique quadratic differential
q = q(F, X) ∈ QD(X) such that Fv(q) = F . One can consider the set B(X)
of foliations F ∈ MF such that ||q(F, X)|| ≤ 1. Then

Λ(X) := μTH(B(X)).

This theorem is part of a project to count lattice points in a ball. Fix
points X, Y ∈ Teich(S) and set

Mod(X, Y, R) = {f ∈ Mod(S) : f(Y ) ∈ B(X, R)}.

Let h = 6g − 6 + 2n. (This is the topological entropy of the Teichmüller
geodesic flow.)

Theorem 5.2. ([ABEM]) | Mod(X, Y, R)| ∼ Λ(X)Λ(Y )ehR as R → ∞.

A Pseudo-Anosov element f ∈ Mod(S) determines a pair of transverse
foliations Fa, Fr with the property that f(Fa) = e2λFa and f(Fr) = e−2λFr

for some λ > 0. By a theorem of Bers ([B3]) f determines an axis in Teich(S).
This is a Teichmüller geodesic Af left invariant under the action of f and
such that f translates points along Af by a Teichmüller distance equal
to λ. In fact the geodesic is determined by a quadratic differential q whose
horizontal foliation is Fa and whose vertical foliation is Fr. If g is conjugate to
f , then the conjugating element takes Ag to Af and the translation lengths
along these axes coincide. The conjugacy class [f ] then defines a closed
geodesic in M(S) of length λ. One can then consider PA(λ) the set of
conjugacy classes of Pseudo-Anosov elements [f ] whose corresponding closed
geodesic has length at most λ. This is the same as the set of conjugacy classes
of Pseudo-Anosovs whose expansion factor at most e2λ.

Theorem 5.3. ([EM]) |PA(λ)| ∼ ehλ

hλ as λ → ∞.

6. Rays and the Thurston boundary

We recall some of the basic fundamental theorems of Thurston as des-
cribed in [FLP]. Again denote S the homotopy classes of homotopically
nontrivial simple closed curves with the discrete topology. We form the
projective space PRS with the product topology. There is an embedding
Teich(S) → PRS which sends X ∈ Teich(S) to the function

γ → lX(γ).
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There is also an embedding of PMF into PRS which sends each pro-
jective class of measured foliation [F ] to the (projective class of ) function

γ → i(F, γ)

where i(·, ·) is the geometric intersection number of measured foliations with
homotopy classes of simple closed curves.

Thurston proved that with these embeddings PMF is the boundary of
Teich(S) and the union is a closed ball. We can ask how the Teichmüller
geometry fits in with the Thurston compactification.The issue here is that
Teichmüller rays are defined in complex analytic terms by quadratic differ-
entials, while the Thurston embedding is via hyperbolic geometry. Again
there are some older results and new results.

Theorem 6.1. ([M3]) Suppose r(t) is a ray defined by the quadratic
differential q.

• If Fv(q) is uniquely ergodic then r(t) converges to the same projec-
tive class [Fv(q)] ∈ PMF as t → ∞.

• If q is a Strebel quadratic differential such that Fv(q) has cylinders
in the homotopy classes of β1, . . . , βp then r(t) converges to the
(projective) measured foliation [F ] defined as follows. The leaves of
F are closed and are also in the homotopy classes of β1, . . . , βp and
the heights of the cylinders are all equal.

The second statement means that if α is any simple closed curve then
i(F, α) = c

∑
i(α, βi) for some c > 0.

Theorem 6.2. ([L]) There are examples of rays such that r(t) does not
have a limit in PMF

These rays can be described as follows. Choose two standard square flat
tori T1, T2 of area 1 and segments λ1, λ2 of equal length on each. Let s1, s2
be the slopes of the segments. Assume s1 has unbounded partial quotients
in its continued fraction expansion and s2 has bounded partial quotients.
Let Fi be the foliation on each Ti by lines with slope si. Now rotate each
torus so that λ1, λ2 are vertical and the Fi are now in the vertical direction
on the rotated tori. Slit each torus along λi and glue pairwise. The resulting
quadratic differential has genus 2 and has double zeroes at the endpoints of
the glued λi. The union of the glued λi are a pair of saddle connections that
separate the surface into T1 and T2. The vertical trajectories on each torus
are dense on that torus. Along the corresponding ray r(t) the separating
curve γ is pinched. Each representative F of any limiting foliation in PMF
has the following properties. It satisfies i(F, γ) = 0. Moreover F restricted to
Ti is a multiple riFi of Fi. However what is proved is that there are limiting
F and F ′ such that the corresponding ratios r2

r1

= r′

2
r′
1
. This means that the

projective classes of F and F ′ are different.
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7. Combinatorial Description of the Teichmüller metric

In this section we describe some work of K. Rafi ([Ra]) on the Teichmüller
metric. He gives a formula for the distance between two points in terms of
combinatorial data of subsurface projections. This work can be thought of
as a higher genus analogue of Artin’s work that gives the itinerary of a geo-
desic on the modular curve in terms of the continued fraction expansion of
the endpoint on the real line of the geodesic. To describe subsurface pro-
jections, let Y ⊆ S be an essential subsurface. Previously we described the
curve complex C(S) of a surface. For a subsurface Y we have the arc and
curve complex C(Y ) of Y . The vertices of C(Y ) are isotopy classes of essen-
tial arcs and simple closed curves contained in Y . An essential arc has its
endpoints on ∂Y . If Y is not an annulus, the isotopy is rel ∂Y . If Y is an
annulus then isotopy means rel endpoints. Two vertices of C(Y ) are joined
by an edge if they have disjoint representatives.

Let f : SY → S be the regular cover such that f∗(π1(SY )) is conjugate
to π1(Y ). For any collection of curves ν ⊂ C(S), let ν̃ be their lift to SY .
The components of ν̃, if any, that are essential arcs in SY or closed curves
in SY form a subset of C(SY ). We call this set νY , the projection of ν to
Y . The surface SY is homeomorphic to Y and so we have a corresponding
subset of C(Y ). For ν, ν ′ any pair of subsets of C(S) we denote by dY (ν, ν ′)
the diameter in C(Y ) of νY ∪ν ′

Y . If Y is an annulus in the class of the curve
α, we write dα for this diameter.

A marking on a surface consists of a collection of 6g − 6 + 2n simple
closed curves α1, . . . , α3g−3+n, β1, . . . , β3g−3. The αi are pairwise disjoint and
are called the base of the marking. Each transversal curve βi is disjoint from
αj , j 
= i and intersects αi minimally. Now for any X ∈ Teich(S), given its
hyperbolic metric, we associate a short marking μ(X) to X as follows. We
choose the shortest curve α1 on the surface and then the shortest curve α2
disjoint from α1 and so forth until we have a base for the marking. Then for
each αj , we let βj be the shortest transversal. There are a bounded number
of shortest markings for σ.

Definition 7.1. Fix ε > 0 small. We say X ∈ Teich(S) belongs to the
ε-thick part of Teich(S) if it does not belong to ΩC(ε) for any collection of
simple closed curves C. (Recall this means that the shortest curve on X has
hyperbolic length at least ε).

Given k > 0 denote by [x]k the function which is equal to x if x ≥ k and
0 otherwise. Also adopt the notation that for two quantities, x 
 y, if there
are constants C1, C2 > 0 just depending on (g, n) such that

1
C1

x − C2 ≤ y ≤ C1x + C2.
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Theorem 7.2. There is k > 0 such that given X1, X2 in the ε-thick part
of Teich(S),

dT (X1, X2) 

∑
Y ⊆S

[dY (μ(X1), μ(X2))]k +
∑
α

log[dα(μ(X1), μ(X2))]k.

The first sum is over subsurfaces Y that are not annuli and the second sum
is over annuli.

If either X1 or X2 is not in the ε-thick part we have to add terms as
follows. If there is a collection of curves C such that both points are in
ΩC(ε) then there is a term as in Minsky’s formula for how far apart they
are in ΩC(ε). For each curve that is short on one surface and on not the
other there is a term corresponding to the distance to a surface for which
that curve has length ε. We refer to Theorem 6.1 of [Ra] for details.

One can say more about the itinerary of geodesics in terms of the sub-
surface projections. Again let r : [a, b] → Teich(S) the Teichmüller geodesic
joining X1 and X2 parametrized by arclength.

Theorem 7.3. ([Ra]) There are constants M1, M2, 0 < ε1 < ε0 depend-
ing only on topology, such that for each subsurface Y , if dY (r(a), r(b)) ≥ M1
there is a nonempty connected interval IY such that

• For [c, d] ∩ IY = ∅ dY (μ(r(c), μ(r(d))) ≤ M2.
• For any t ∈ IY the hyperbolic length of ∂Y on r(t) is at most ε0.
• For t /∈ IY the hyperbolic length of ∂Y on r(t) is at least ε1.

The first conclusion says that up to a constant one only changes pro-
jection to Y while in IY . The second conclusion says that while in IY the
curves in ∂Y are short and the third says that lengths are bounded below
outside IY .

8. Geometry of moduli space and the Deligne-Mumford
compactification

In this section I will describe some recent work joint with Benson Farb.
([FM]) The work here was inspired by the work in [JM]. The Teichmüller
metric descends to a complete metric dM(S) on the quotient moduli space.

Deligne-Mumford [DM] constructed a compactification M(S)
DM

of M(S)
whose points are represented by conformal structures on noded Riemann sur-
faces. They proved that M(S)

DM
is a projective variety. As such, M(S)

DM

as a topological space comes with a natural stratification: each stratum is
a product of moduli spaces of surfaces of lower complexity. We will equip
each moduli space with the Teichmüller metric, and the product of moduli
spaces with the sup metric. In this way M(S)

DM
has the structure of a met-

ric stratified space, i.e., a stratified space with a metric on each stratum. We
note that M(S)

DM
was also constructed topologically by Bers in [B2].
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We reconstruct the Deligne-Mumford compactification (as a metric strat-
ified space) purely from the intrinsic metric geometry of M(S) endowed
with the Teichmüller metric. We then formalize this procedure by creating
a ”functor” for a quite general class of geodesic metric spaces, which asso-
ciates to the space a certain iterated ray space. When applied to moduli
space this gives the Deligne Mumford compactification. To begin, we again
consider Strebel rays.

Again let q be a Strebel differential on a surface of genus g with n
punctures. Associated to a Strebel ray r is an endpoint r(∞) which lives in
a lower dimensional moduli space. The point r(∞) is constructed as follows.
Let C1, . . . , Cp be the cylinders defined by q. Cut each Ci along one of
the closed vertical trajectores. Glue into each side of the cut a half infinite
cylinder. The result is a (possibly disconnected) surface r(∞) with a total
of 2p + n punctures.

We are particularly interested in Strebel rays such that the quadratic
differential has a single cylinder. In that case r(∞) is connected if the homo-
topy class of the closed curve α is a nonseparating curve, and r(∞) has two
components if it is separating. Let M(S \ α) be the moduli space of the
corresponding surface. If S \ α is disconnected, then M(S \ α) is a prod-
uct of two moduli spaces and we give it the sup metric of the corresponding
Teichm’́uller metrics. There are a finite number of possible boundary moduli
spaces determined by the topological type of the curve α.

Theorem 8.1. Suppose r1, r2 are Strebel rays defined by one cylinder
Strebel differentials. If r1(∞) and r2(∞) belong to the same boundary moduli
space then there are initial points r1(0), r2(0) such that limt→∞ d(r1(t), r2(t))
exists and is a minimum among all choices of basepoints. Furthermore the
limit coincides with the Teichmüller distance between r1(∞) and r2(∞) in
the boundary moduli space M(S \ α).

We can define a distance function d(·, ·) defined on asymptote classes
of one cylinder Strebel rays [r] by saying the distance between asymptote
classes is given by the above limit defined by any representatives of the
classes. This space has several components; one component corresponding
to rays defined by Strebel differentials where the cylinder is a nonseparat-
ing curve and one component for each homeomorphism type of separating
curve. By the above Theorem then this space is naturally isometric to the
union of the moduli spaces M(S \ α) where α is allowed to run over all
homeomorphism classes of curves.

We may now iterate this procedure by defining asymptote class of one
cylinder Strebel rays on ∪α M(S \ α). The next lower dimensional union of
moduli spaces is then the space of one cylinder Strebel rays on ∪α M(S \α).
This can be thought of as a space of “Strebel rays on rays” on M(S).
Continuing, then we can construct the compactification as an iterated space
of rays on rays.
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We now introduce a functor for any geodesic metric space X that satis-
fies several assumptions. This will be a space X

ir of X, called the iterated
EDM ray space associated to X. The space X

ir will be constructed via equiv-
alence classes of what are called isolated EDM rays, and will have the struc-
ture of a metric stratified space. The above results prove that this functor
applied to M(S) produces the Deligne-Mumford compactification M(S)

DM
;

that is, there is a stratification-preserving homeomorphism from M(S)
ir

to
the Delgine-Mumford compactification M(S)

DM
which is an isometry on

each stratum.
We are given a metric space (X, d). By a geodesic we mean a locally

distance minimizing image of a finite or infinite segment in R.

Definition 8.2 (EDM rays). A ray r : [0,∞) → X in a metric space
X is eventually distance minimizing, or EDM, if there exists t0 such that
for all t ≥ t0:

d(r(t), r(t0)) = |t − t0|

Note that, if r is an EDM ray, after cutting off an initial segment of r we
obtain a globally geodesic ray, i.e., an isometric embedding of [0,∞) → X .

Theorem 8.3. A ray r in M(S) is an EDM ray iff it is a Strebel ray.

There is another definition of independent interest which will not how-
ever be used in the definiton of the iterated ray space.

Definition 8.4 (ADM rays). The ray r(t) is almost distance mini-
mizing, or ADM, if there are constants C, t0 ≥ 0 such that for t ≥ t0:

d(r(t), r(t0)) ≥ |t − t0| − C

It is easy to check that a ray r is ADM if and only if, for every ε > 0
there exists t0 ≥ 0 so that for all t ≥ t0:

d(r(t), r(t0)) ≥ |t − t0| − ε

Theorem 8.5. Let r be a ray in M(S). Then r is ADM if and only if
it is mixed Strebel ray.

Recall in the previous discussion we considered one cylinder Strebel rays.
We make a general definition which in the case of M(S) will give exactly
these rays. Suppose now (X, d) can be written as X1 × . . . Xm of metric
spaces (Xi, di) and the metric d is the sup metric. We will consider rays in
each factor. We say that a ray r is isolated if the following two properties
hold

(1) there is a factor Xj such that r ⊂ Xj (r is constant on other factors)
and r is an EDM ray in Xj .
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(2) for every p ∈ Xj , the set of asymptote classes of EDM rays [r′] ⊂
Xj which are a bounded distance from r, and which have some
representative passing through p, is countable.

Proposition 8.6. A ray in M(S) is an isolated EDM ray if and only
if it is a one-cylinder Strebel ray.

Now consider the set Asy(X) of all asymptote classes of isolated EDM
rays [r] in X. We assume that for any two such rays r1, r2 there is a choice of
basepoint on each such that limt→∞ d(r1(t), r2(t)) exists. With that assump-
tion we can endow Asy(X) with a distance function via

dasy([r1], [r2]) = lim
t→∞

d(r1(t), r2(t))

for a choice of basepoints that minimizes this limit. It is easy to check that
in general this defines a metric.

We also assume that if Asy(X) can be written as a product of factors,
then up to a permutation, it is written uniquely as a product. It probably
holds under quite general conditions on (X, d). Now we wish to define the
iterated ray space.

Let (D0(X), d0) := (X, d).

Step 1 (Inductive step): Suppose we are given the metric space Dk(X),
written as a product of factors X1 × . . .×Xm with the metric dk(·, ·), where
dk is the sup of the metrics dj of the factors. If none of the factors Xj

contains isolated EDM rays, define Dm(X) = ∅ for all m > k and stop the
inductive process. If some factor Xj contains isolated rays then we set

Dj
k+1(X) = X1 × . . . × Xj−1 × Asy(Xj) × Xj+1 × . . . × Xm.

We can endow Dj
k+1(X) with a distance function dj

k+1 as the sup metric
on the factors. From the above assumption, we note that if a component
of Asy(Xj) is a product, then it can be written uniquely as a product.
Thus, given the product representation of Dk(X), we have a unique product
representation of Dj

k+1(X).
Note also that if two points in Dj

k+1(X) have an infinite distance from
each other, then they are in different components of Dj

k+1(X). We then set

Dk+1(X) = �m
j=1D

j
k+1(X)

with metric dk+1 which is the corresponding metric dj
k+1 on each term in

the disjoint union.

Iterating this procedure the result is a space X
ir which then has the

structure of a metric stratified space. Our results show

Theorem 8.7. Applied to M(S) there is a strata-preserving homeomor-
phism M(S)

ir → M(S)
DM

which is an isometry on each stratum.
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