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The universal properties of Teichmüller spaces

Vladimir Markovic and Dragomir Šarić

Abstract. We discuss universal properties of general Teichmüller
spaces. Our topics include the Teichmüller metric and Kobayashi
metric, extremality and unique extremality of quasiconformal map-
pings, biholomorphic maps between Teichmüller space, earthquakes
and Thurston boundary.

1. Introduction

Today, Teichmüller theory is a substantial area of mathematics that has
interactions with many other subjects. The bulk of this theory is focused on
studying Teichmüller spaces of finite type Riemann surfaces. In this article
we survey the theory that investigates all Teichmüller spaces regardless of
their dimension. We aim to present theorems (old and recent) that illustrate
universal properties of Teichmüller spaces.

Teichmüller spaces of finite type Riemann surfaces are finite-dimensional
complex manifolds with rich geometric structures. Teichmüller spaces of infi-
nite type Riemann surfaces are infinite-dimensional Banach manifolds whose
geometry differs significantly from the finite case. However, some statements
hold for both finite and infinite cases. The intent is to describe these uni-
versal properties of all Teichmüller spaces and to point out to differences
between finite and infinite cases when these are well understood.

The following is a brief list of topics covered. In the second section we
briefly introduce quasiconformal maps and mention their basic properties.
Then we proceed to give the analytic definition of Teichmüller spaces, regard-
less whether the underlying Riemann surface is of finite or infinite type.
Then we define the Teichmüller metric and introduce the complex struc-
ture on Teichmüller spaces. We discuss the Kobayashi metric, the tangent
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space and the barycentric extensions. In the third section we consider the
geometry of Teichmüller spaces. We discuss the Reich-Strebel inequality and
the Teichmüller theorem, the Finsler structure, the universal Teichmüller
space, the extremal and uniquely extremal quasiconformal maps. In section
four we consider biholomorphic maps between Teichmüller spaces and give a
short proof that the modular group is the full group of biholomorphic maps
of the Teichmüller space of a finite surface following [19]. In section five we
consider earthquakes and bendings on infinite surfaces, and we introduce
the Thurston boundary for general Teichmüller spaces. We refer the reader
to [61] for the discussion of the universal properties of the Weil-Petersson
metric.

2. The Teichmüller space: definition, the Teichmüller and
Kobayashi metric, the complex structure and the

barycentric extension

We start with basic definitions. Let M be a Riemann surface. The Uni-
formization theorem states that the universal covering of M is either the
complex plane C, the Riemann sphere Ĉ = C∪{∞} or the upper half-plane
H. The complex plane C, the once punctured complex plane C\{0} and the
torus T is the short list of Riemann surfaces covered by C. The Riemann
sphere Ĉ is the only Riemann surface whose universal covering is Ĉ. The
Teichmüller spaces of Ĉ, C and C \ {0} consist of a single point, while the
Teichmüller space of the torus T is biholomorphic to the upper half-plane
H and isometric to the hyperbolic plane (for example, see [38]). Thus, the
Teichmüller space of a Riemann surface M whose universal covering is either
Ĉ or C is well understood. We focus on the case when H is the universal
covering.

A quasiconformal map f : H → H is an orientation preserving homeo-
morphism which is absolutely continuous on lines and which satisfies
‖∂̄f/∂f‖∞ < 1. The Beltrami coefficient μ = ∂̄f/∂f of a quasiconformal map
f is defined almost everywhere and it satisfies ‖μ‖∞ < 1. The quasiconfor-
mal constant K(f) of f is given by K(f) = 1+‖μ‖∞

1−‖μ‖∞
. Note that ‖μ‖∞ < 1 if

and only if K(f) < ∞.
Given a measurable function μ on H such that ‖μ‖∞ < 1, there exists

a quasiconformal map f : H → H such that μ = ∂̄f/∂f . The quasiconformal
map f is unique up to post-composition by a Möbius map preserving H
(see [4]).

2.1. Definition of the Teichmüller space. From now on we assume
that the universal covering of a Riemann surface M is the upper half-plane
H. We identify the hyperbolic plane with the upper half-plane H equipped
with the metric ρ(z) = |dz|

2y , where z = x + iy ∈ H. The universal covering
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map π : H → M induces a hyperbolic metric on M . The Riemann surface
M is said to be hyperbolic.

Let G be a Fuchsian group acting on the upper half-plane H such that M
is conformal and isometric to H/G. (The group G is unique up to conjugation
by a Möbius map fixing H.) Let PSL2(R) denote the subgroup of the Möbius
group which fixes the upper half-plane H.

Definition 2.1. Let M be a hyperbolic surface. Let G be a Fuchsian
group such that M is isomorphic to H/G. The Teichmüller space T (M) of
M consists of equivalence classes of quasiconformal maps f : H → H which
satisfy the following condition

(1) f ◦ γ ◦ f−1 ∈ PSL2(R),

for all γ ∈ G. Two such quasiconformal maps f1, f2 : H → H are equivalent
if their extensions to the extended real line R̂ = R∪{∞} agree up to a post-
composition by a Möbius map, i.e., f1 is equivalent to f2 if f1|̂R = β ◦ f2|̂R
for some β ∈ PSL2(R).

Remark. The definition of T (M) depends on the choice of the Fuchsian
group G. Since G is unique up to conjugation by an element of PSL2(R)
it is easy to check that all subsequent definitions are independent of this
choice. We denote by [f ] the equivalence class of the quasiconformal map
f : H → H satisfying the invariance property (1). Then [f ] ∈ T (M).

Remark. In the above definition, we could replace quasiconformal maps
of H with quasisymmetric maps of R̂ which satisfy the invariance property
(1) on R̂. This follows from the Douady-Earle barycentric extension [11].

Remark. The map f : H → H which satisfies the invariance property
(1) projects to a quasiconformal map f̂ : M → M1, where M = H/G and M1
is a Riemann surface whose covering Fuchsian group is fGf−1. The condition
that f1|̂R = β ◦ f2|̂R is equivalent to the property that the projections f̂1

and f̂2 map M onto the same surface and that they are isotopic through
a bounded quasiconformal isotopy. The last statement was proved by Earle
and McMullen [21] using the Douady-Earle extension.

2.2. The Teichmüller metric. The Teichmüller space T (M) carries
a natural metric defined as follows.

Definition 2.2. Let [f ], [g] ∈ T (M). The Teichmüller distance between
[f ] and [g] is given by

d([f ], [g]) = inf
g1∈[g],f1∈[f ]

1
2

log K(g1 ◦ f−1
1 ).

It is easy to check that this distance is in fact a metric. The space
(T (M), d) is a complete and non-compact metric space.



264 V. MARKOVIC AND D. ŠARIĆ

2.3. The complex structure on the Teichmüller space. The
Teichmüller space is equipped with a natural complex structure as follows.
Let [f ] ∈ T (M) and let μ = ∂̄f/∂f be the Beltrami coefficient of f . Then
‖μ‖∞ < 1 and

(2) μ(z) = μ(γ(z))
γ′(z)
γ′(z)

for z ∈ H and γ ∈ G. Let L = C\H be the lower half-plane. Given a Beltrami
coefficient μ on H which satisfies (2), we define the Beltrami coefficient μ̂

on Ĉ by μ̂(z) = μ(z) for z ∈ H, and μ̂(z) = 0 for z ∈ L. Then μ̂ satisfies (2)
for all z ∈ Ĉ. There exists a quasiconformal map f : Ĉ → Ĉ whose Beltrami
coefficient is μ̂ (see [4] for the solution of the Beltrami equation ∂̄f = μ̂ ·∂f).
Moreover, f is unique up to a post-composition by a Möbius map of the
Riemann sphere Ĉ, it is conformal in L and it satisfies the invariance relation
(1) in Ĉ. Denote this map by f μ̂.

Let g be a holomorphic map defined in a domain on Ĉ. Then the
Schwarzian derivative S(g) of g is given by

S(g) =
g′′′

g′ − 3
2

(g′′

g′

)2
.

We recall that the Schwarzian derivative measures by how much a holo-
morphic map distorts cross-ratios of four points (see [31, Section 6.1]). In
particular, the Schwarzian derivative of a Möbius map is zero.

If we apply the Schwarzian derivative to f μ̂ in L, then we obtain a
holomorphic map S(f μ̂) on L which satisfies

(3) (S(f μ̂) ◦ γ)(z)(γ′(z))2 = S(f μ̂)(z)

and

(4) sup
z∈L

|S(f μ̂)(z)ρ−2
L (z)| < ∞

for z ∈ L and γ ∈ G, where ρL(z) = |dz|
2|y| is the Poincaré metric on L (see [6],

[26] or [31]).

Let BL(G) be the Banach space of all holomorphic maps ψ : L → C
which satisfy ψ(γ(z))γ′(z)2 = ψ(z), for z ∈ L and γ ∈ G, and ‖ψρ−2

L ‖∞ =
supz∈L |ψ(z)ρ−2

L (z)| < ∞, where ‖ψρ−2
L ‖∞ is the norm on BL(G). Note that

S(f μ̂) ∈ BL(G).

If a quasiconformal map f : H → H satisfies the invariance property
(1), then the Beltrami coefficient μ = ∂f/∂f of f satisfies the invariance
property (2) (and ‖μ‖∞ < 1). Conversely, given measurable μ : H → C such
that ‖μ‖∞ < 1 and (2) holds for μ, then there exists a quasiconformal map
f : H → H whose Beltrami coefficient is μ and which satisfies (1) (see [4]).
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The map f is unique up to post-composition by an element of PSL2(R).
(Note that [β ◦f ] = [f ] for β ∈ PSL2(R) by the definition of the Teichmüller
equivalence.)

Let L∞(G) be the Banach space of all measurable essentially bounded
functions μ on H which satisfy the property (2). Let U(G) be the open unit
ball in L∞(G), namely U(G) = {μ ∈ L∞(G) : ‖μ‖∞ < 1}. Then we have the
Schwarzian derivative map

(5) S : U(G) → BL(G)

given by S(μ) = S(f μ̂), where μ̂ = μ on H and μ̂ = 0 on L. By the above,
the Teichmüller space T (M) is identified with the quotient of U(G), where
μ1, μ2 ∈ U(G) determine the same point in T (M) if and only if fμ1 |R̂ =
β ◦ fμ2 |R̂ for some β ∈ PSL2(R). The following result of Bers and Ahlfors-
Weil (see [3], [6], [26], [31, Section 6], [47]) gives a natural complex Banach
manifold structure to general Teichmüller spaces.

Theorem 2.1 (Bers Embedding Theorem and Ahlfors-Weil Section).
Let M be a hyperbolic surface and let G be a Fuchsian group such that
H/G is conformal to M . The Schwarzian derivative map S : U(G) → BL(G)
induces an injective map

(6) Φ : T (M) → BL(G)

such that Φ(T (M)) is an open, bounded subset of BL(G). The map Φ is
a homeomorphism onto its image and defines a global holomorphic chart
for T (S). Moreover, given any Φ([μ]) = ϕ ∈ Φ(T (M)) ⊂ BL(G) there exists
a neighborhood Vϕ of ϕ and a holomorphic map sϕ : Vϕ → U(G) such that
S ◦ sϕ = id on Vϕ and sϕ ◦ S(μ) = μ.

Remark. The fact that S : U(G) → BL(G) induces a map on the
Teichmüller space T (M) is equivalent to the statement that if μ and μ1
give rise to two Teichmüller equivalent maps of H then S(f μ̂) = S(f μ̂1).
The fact that the induced map is injective is equivalent to the statement
that if S(f μ̂) = S(f μ̂1) then μ and μ1 are Teichmüller equivalent.

Remark. Let μ be in U(G). Then the quasiconformal map fμ : H → H,
whose Beltrami coefficient is μ, conjugates G onto a Fuchsian group Gμ. Let
Mμ = H/Gμ. There is a natural bijection T (μ) : T (Mμ) → T (M) given by
[g] 	→ [g ◦ fμ] which is an isometry for the Teichmüller metrics. (The map
T (μ) is called the translation map.) Let Φμ : T (Mμ) → B(Gμ) be the Bers
map for Mμ (see above for the definition). The fact that Φ : T (M) → BL(G)
is a global complex chart is equivalent to the statement that Φ ◦ T (μ) ◦
Φ−1

μ : Φμ(T (Mμ)) → Φ(T (M)) is a biholomorphic map. The fact that the
map is holomorphic is a direct consequence of the cocycle property for the
Schwarzian (for example, see [31, Section 6.4]).
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The asymptotic Teichmüller space AT (M) of a geometrically infinite
Riemann surface M is the quotient of the Teichmüller space T (M) as fol-
lows. The quasiconformal map f : M → M1 is said to be asymptotically
conformal if for every ε > 0 there exists a compact set K ⊂ M such that
‖(∂̄f/∂f)|M\K‖∞ < ε. By the definition, [f ], [g] ∈ T (M) determine the same
point in AT (M) if [f ◦ g−1] has an asymptotically conformal representa-
tive (see [14], [32]). The Bers map Φ : T (M) → BL(G) induces the asymp-
totic Bers map Φ̄ : AT (M) → BL(G)/B0

L(G), where B0
L(G) is the space of

all ψ ∈ BL(G) which vanish at infinity on L/G (i.e., ψ ∈ B0
L(G) if for every

ε > 0 there exists a compact set K ⊂ L/G such that ‖ψρ−2
L |L\K̃ < ε, where K̃

is the lift of K to L). Earle, Gardiner and Lakic [14] showed that the asymp-
totic Bers map is a local homeomorphism. Later Earle, Markovic and Šarić
[20] proved the following theorem that completed the picture for AT (M).

Theorem 2.2. Let M be a geometrically infinite Riemann surface and
let G be a Fuchsian group such that M is isomorphic to H/G. Then the
asymptotic Bers map

Φ̄ : AT (M) → BL(G)/B0
L(G)

is a biholomorphic map onto a bounded open subset of BL(G)/B0
L(G).

2.4. The Kobayashi metric on the Teichmüller space. On a given
complex Banach manifold one can define (in several ways) a natural pseudo-
metric in terms of the underlying complex structure.

Definition 2.3. Let X be a complex Banach manifold and let TX be its
complex tangent bundle. Let Hol(Dr, X) be the space of holomorphic maps
from the disk Dr into X. Let (v, x) be the tangent vector at x ∈ X. The
Kobayashi pseudo-metric kX : TX → R is given by

(7) kX(v, x) = inf{ 1
r

| ∃f ∈ Hol(Dr, X) : f(0) = x and df0(∂/∂z) = v}.

It is a well-known fact that the Kobayashi pseudo-metric on a complex
manifold X is the largest pseudo-metric such that any map in Hol(D, X) is
weakly contracting for the Poincaré metric on the unit disk D. This metric
is very rarely Riemannian but it has a Finsler structure.

The following theorem is due to Royden [50] in the case of a closed
Riemann surfaces. In the case of a geometrically infinite Riemann surfaces
it is proved by Gardiner [27].

Theorem 2.3. Let M be a hyperbolic Riemann surface. Then the
Teichmüller metric is equal to the Kobayashi metric on the Teichmüller
space T (M) of M .

Remark. In particular, the Kobayashi pseudo-metric is a metric on
T (M).
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Definition 2.4. A holomorphic motion of a set E ⊂ Ĉ is a mapping
f : D × E → Ĉ which satisfies

(1) f(0, z) = z for all z ∈ E
(2) the map z 	→ f(t, z) is injective for all t ∈ D
(3) for each z ∈ E, the mapping t 	→ f(t, z) is holomorphic in t ∈ D

The holomorphic motions were introduced by Mañé, Sad and Sullivan
[41]. They proved the following important property of holomorphic motions
of C.

Theorem 2.4. Let f : D × Ĉ → Ĉ be a holomorphic motion. Then ft =
f(t, ·) is a quasiconformal map for each t ∈ D such that the quasiconformal
constant K(t) of ft satisfies K(t) ≤ 1+|t|

1−|t| . In addition, the map t → μt is a
holomorphic map from D onto the unit ball U of L∞(D) where μt is the
Beltrami coefficient of ft.

A natural question was whether a holomorphic motion of a subset of
Ĉ extends to a holomorphic motion of Ĉ. This was positively answered by
Slodkowski [57].

Theorem 2.5. Let f : D × E → Ĉ be a holomorphic motion of a closed
subset E of Ĉ. Then the holomorphic motion f of E extends to a holomor-
phic motion of Ĉ.

Earle, Kra, and Krushkal [17] obtained a group invariant version of the
Slodkowski’s Extension Theorem as follows.

Theorem 2.6. Let f : D × E → Ĉ be a holomorphic motion of a closed
set E ⊂ Ĉ which contains at least three points. Let G be a group of Möbius
maps which setwise preserve E. If for each γ ∈ G and t ∈ D there exists a
Möbius map γt such that

f(t, γ(z)) = γt(f(z, t))

for z ∈ E and t ∈ D, then f can be extended to a holomorphic motion of Ĉ
which also satisfies the above invariance property.

Earle, Kra, and Krushkal [17] used Theorem 2.6 to give a new and unified
proof of Royden’s theorem that the Kobayashi metric on T (M) is equal to
the Teichmüller metric. Other applications of the invariant extensions of
holomorphic motions are discussed in the next section. For further study
and applications of holomorphic motions see [43], [44].
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2.5. The tangent space to the Teichmüller space. The Bers
embedding (see Theorem 2.1) shows that the Teichmüller space T (M) of
a hyperbolic surface M is embedded in the Banach space BL(G) as an
open bounded subset. This embedding provides a global holomorphic chart
for T (M). Thus the tangent space at the basepoint of T (M) is identified
with BL(G).

Let [f ] ∈ T (M) and let μ be the Beltrami coefficient of f . Since μ satisfies
(2), it follows that f conjugates G onto another Fuchsian group Gμ. We noted
that the translation map T (μ) : T (Mμ) → T (M) is biholomorphic. (Recall
that the translation map T (μ) sends the basepoint of T (Mμ) to the point
[f ] ∈ T (M).) Thus the tangent space at [f ] ∈ T (M) is isomorphic to the
tangent space at the basepoint of T (Mμ).

The Teichmüller space T (M) is defined as a quotient of the open unit
ball U(G) in L∞(G) with respect to the relation (2). We also note that
the Schwarzian derivative map S : U(G) → BL(G) is holomorphic. This fol-
lows from the measurable Riemann mapping theorem (see Ahlfors and Bers
[4]). This implies that a differentiable path t 	→ μt in U(G) projects to a
differentiable path t 	→ S(μt) in BL(G). The Ahlfors-Weil section gives a
holomorphic section s of the Schwarzian map S : U(G) → BL(G) from a
neighborhood of the basepoint in T (M) into U(G). Thus, a differentiable
path through a neighborhood of the origin in BL(G) lifts to a differentiable
path in U(G) through the origin. Since the derivative of a differentiable path
in U(G) gives an element in L∞(G), we conclude that each Beltrami differ-
ential μ ∈ L∞(G) represents a tangent vector at the basepoint in T (M), and
conversely each tangent vector at the basepoint of T (M) is represented by
some μ ∈ L∞(G). A single tangent vector is represented by many Beltrami
differentials. We denote by [μ]tan the class of all Beltrami differentials which
represent the same tangent vector as μ ∈ L∞(G). (Recall that for μ ∈ U(G),
we denote by [μ] its Teichmüller class, i.e., the point in T (M) represented
by μ.)

The Bers embedding and the Bers reproducing formula [6] provide the
criteria for two Beltrami differentials to represent the same tangent vector at
the basepoint of T (M). Let M = H/G and let ω be a fundamental polygon
for G in H. We denote by BH(G) the space of all holomorphic functions
ψ : H → C which satisfy the condition (3) in H. Let

(8) A(G) =
{

φ ∈ BH(G) : ‖φ‖L1(ω) =
∫∫

ω
|φ(z)|dxdy < ∞

}

and let

(9) N(G) =
{

μ ∈ L∞(G) :
∫∫

ω
μ(z)φ(z)dxdy = 0 for all φ ∈ A(G)

}
.

The following is a theorem of Ahlfors-Bers.

Theorem 2.7. Let M be a hyperbolic Riemann surface and let G be a
Fuchsian group such that M = H/G. Then the Schwarzian derivative map
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S : U(G) → T (M) has a Fréchet derivative Ṡ = P which is a bounded, linear
projection map P : L∞(G) → BL(G) given by

(10) P (μ)(z) = − 6
π

∫∫
H

μ(ζ)
(ζ − z̄)4

dηdξ.

The kernel ker(P ) of the projection map P is N(G). This implies that P
induces a linear isomorphism

P̄ : L∞(G)/N(G) → BL(G).

Remark. Let μ ∈ L∞(G). The above theorem states that [μ]tan = μ +
N(G).

2.6. The Douady-Earle extension. Every quasiconformal homeo-
morphism f : H → H extends continuously to a homeomorphism of R̂, and
this extension is a quasisymmetric map [3]. Conversely, a quasisymmetric
map of R̂ extends to a quasiconformal map of H [10]. This shows that
there is a bijection between the Teichmüller space T (H) of the upper half-
plane H (called the universal Teichmüller space) and the space of all qua-
sisymmetric maps of R̂ up to an equivalence, where two quasisymmetric
maps h1, h2 : R̂ → R̂ are equivalent if there exists β ∈ PSL2(R) such that
h1 = β ◦ h2.

Let M be a hyperbolic surface and let G be a Fuchsian group such that
M = H/G. Then the Teichmüller space T (M) embeds into the space of qua-
sisymmetric maps of R̂ up to the above equivalence and the quasisymmetric
maps h : R̂ → R̂ in the image satisfy the invariance property

(11) h ◦ γ ◦ h−1 ∈ PSL2(R)

for all γ ∈ G. To show that every quasisymmetric map which satisfies (11) is
in the image of T (M), it was needed to find a quasiconformal extension of
quasisymmetric maps which satisfy the invariance property (11) in H. This
was achieved by Douady and Earle [11] and their extension enjoys many
other important properties. We denote by Homeo(R̂) and Homeo(H) the
space of orientation preserving homeomorphisms of the extended real line
R̂ and the space of orientation preserving homeomorphisms of the upper
half-plane H, respectively.

Theorem 2.8. There exists a map ex : Homeo(R̂) → Homeo(H) with
the following properties:

(1) ex(id) = id,
(2) ex(h)|

̂R = h for h ∈ Homeo(R̂),
(3) ex(h) and ex(h)−1 are real analytic,
(4) if α, β ∈ PSL2(R) then ex(α ◦h ◦β) = α ◦ ex(h) ◦β (the conformal

naturality),
(5) if h is quasisymmetric then ex(h) is quasiconformal.
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Remark. One can construct the barycentric extension by using certain
dynamical systems on the unit disc (see [1]). For the barycentric extensions
of monotone maps see [2].

The barycentric map b : U(H) → U(H) is defined as follows. For μ ∈
U(H) we denote by fμ a quasiconformal map of H onto itself whose Bel-
trami coefficient is μ. Then b(μ) is the Beltrami coefficient of ex(fμ|

̂R). The
following theorem states further properties of the barycentric extension.

Theorem 2.9. The barycentric map b : U(H) → U(H) satisfies the fol-
lowing properties:

(1) The Beltrami coefficient b(μ) is a real analytic function on H,
(2) b(μ) = b(ν) if and only if μ and ν are Teichmüller equivalent,
(3) f b(μ)|

̂R = β ◦ fμ|
̂R for some β ∈ PSL2(R),

(4) b(b(μ)) = b(μ).

The above theorem has an immediate corollary for the topology of gen-
eral Teichmüller spaces.

Corollary 2.1. The Teichmüller space T (M) of a hyperbolic surface
M is contractible.

Remark. The contractibility for Teichmüller spaces of finite Riemann
surfaces M is a corollary of the Teichmüller Theorem 3.2. Namely, the
Teichmüller space T (M) of a finite Riemann surface M is homeomorphic
to the open unit ball in A(G) (for example see [26]). However, for geomet-
rically infinite Riemann surfaces such identification is not valid. See Section
5 and [56] for another approach to contractibility.

3. The geometry of general Teichmüller spaces

We consider metric properties of the Teichmüller metric on general
Teichmüller spaces. Note that the Teichmüller distance between the base-
point [id] and [f ] is given by

d([f ], [id]) =
1
2

inf
f1∈[f ]

log K(f1)

for [f ], [id] ∈ T (M). Since the family of normalized K-quasiconformal maps
is compact for the uniform convergence on compact sets, it follows that the
infimum in the definition of the Teichmüller metric is achieved for some
map f∗ ∈ [f ]. We call the map f∗ an extremal map. An extremal map has
the smallest quasiconformal dilatation among all maps homotopic to f , and
it is not necessarily a unique map with this property.
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3.1. Extremal maps and geodesics. By the above remarks, the
Teichmüller distance between the basepoint [id] and any other point [f ] ∈
T (M) is given by 1/2 log K(f∗), where f∗ is an extremal map. Let μ∗ be the
Beltrami coefficient of the extremal map f∗. Then K(f∗) = 1+‖μ∗‖∞

1−‖μ∗‖∞
and μ∗

has the smallest essential supremum norm (i.e., ‖μ∗‖∞ is smallest) among all
Beltrami coefficients in the Teihmüller class [μ] of μ. The Beltrami coefficient
μ∗ is called extremal Beltrami coefficient.

For |t| < 1/‖μ∗‖∞, t ∈ R, we have that tμ∗ ∈ U(G), namely ‖tμ∗‖∞ < 1.
Using the chain rule and the fact that the Teichmüller distance resembles
the hyperbolic distance in the upper half-plane, it easily follows that tμ∗ is
extremal for |t| < 1/‖μ∗‖∞, t ∈ R (see [38]). Moreover, the path t 	→ [tμ∗]
for |t| < 1/‖μ∗‖∞, t ∈ R, is a geodesic for the Teichmüller metric (see [38]).
An important question is to determine which maps in a given Teichmüller
class are extremal.

3.2. The Teichmüller theorem and the Reich-Strebel inequal-
ity. Let ϕ ∈ A(G). The Beltrami coefficient k |ϕ|

ϕ , for −1 < k < 1, is said to
be of Teichmüller type. A quasiconformal map whose Beltrami coefficient
is of Teichmüller type is said to be Teichmüller map. A celebrated result
of Teichmüller states that any homotopy class of a quasiconformal map
from one closed Riemann surface onto another closed Riemann surface con-
tains a unique extremal map which is a Teichmüller map. A corollary of the
Teichmüller theorem is that any two points in the Teichmüller space of a
closed surface are connected by a unique geodesic and that the Teichmüller
space is homeomorphic to a unit ball in the Euclidean space. The same
results hold for Teichmüller space of finite Riemann surfaces. The methods
of proof that Teichmüller used do not easily extend to geometrically infinite
Riemann surfaces. The modern proof of the Teichmüller’s theorem and its
extension to geometrically infinite Riemann surfaces rests on the work of
Reich and Strebel [49] (see also [26], [31]).

Theorem 3.1 (Reich-Strebel inequality). Let M be a hyperbolic surface
and let G be a Fuchsian group such that M = H/G. Let ω ⊂ H be a fun-
damental polygon for G. Let μ ∈ L∞(G) be a Beltrami coefficient which is
Teichmüller equivalent to the trivial Beltrami coefficient 0, namely the qua-
siconformal map fμ : H → H whose Beltrami coefficient is μ is equal to a
Möbius map on R̂. Then

(12)
∫∫

ω
|ϕ(z)|dxdy ≤

∫∫
ω

∣∣∣1 + μ(z) ϕ(z)
|ϕ(z)|

∣∣∣2
1 − |μ(z)|2 |ϕ(z)|dxdy,

for ϕ ∈ A(G).

The Reich-Strebel inequality applies to a Beltrami coefficient which is
Teichmüller trivial, namely the normalized quasiconformal map of H with
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this Beltrami coefficient is the identity on R̂. Let f and g be two Teichmüller
equivalent quasiconformal maps. The Beltrami coefficient μ(f◦g−1) of f◦g−1

is Teichmüller equivalent to the trivial Beltrami coefficient 0 and the Reich-
Strebel inequality applies to μ(f ◦ g−1). If the Beltrami coefficient μ(f) is
of Teichmüller type, then the Reich-Strebel inequality combined with the
chain rule gives the uniqueness part of the Teichmüller theorem.

Theorem 3.2. Let M be a hyperbolic Riemann surface and let G be
a Fuchsian group such that M = H/G. Let f : H → H be a quasiconformal
map which satisfies (1). If f is a Teichmüller map then f is a uniquely
extremal map in its Teichmüller class. Moreover, if M is either closed or
finite Riemann surface then every homotopy class contains a unique
Teichmüller map.

3.3. The Finsler metric. The Reich-Strebel inequality is used to
describe the Finsler structure of the Teichmüller metric. If μ ∈ L∞(G) rep-
resents a tangent vector at the basepoint of T (M), then the infinitesimal
form for Teichmüller metric is given by

|μ|T∗(T (M)) = sup
ϕ

|Re

∫∫
ω

μ(z)ϕ(z)dxdy|

where the supremum is over all ϕ in the unit sphere in A(G) and ω is a
fundamental polygon for the action of G.

3.4. The embedding of a general Teichmüller space into the
universal Teichmüller space. The universal Teichmüller space T (H) is
the Teichmüller space of the upper half-plane H. In this case the group
G = {id} is trivial. By the Definition 2.1, T (H) consists of equivalence classes
of quasiconformal maps f : H → H, where two maps f1 and f2 are equivalent
if there exists β ∈ PSL2(R) such that f1|̂R = β ◦ f2|̂R.

If M = H/G then T (M) consists of all quasiconformal maps of H which
satisfy the invariance property (1) modulo the equivalence relation. Since
the equivalence relation for T (H) restricts to the equivalence relation for
T (M), it follows immediately that T (M) embeds as a proper closed subset
of T (H).

Let [f ], [g] ∈ T (M) ⊂ T (H). The Teichmüller distance dT (M)([f ], [g])
between [f ] and [g] in T (M) is inf log K(g1 ◦ f−1

1 ) where the infimum is
taken with respect all f1 and g1 such that f1|̂R = f |

̂R and g1|̂R = g|
̂R, and

both f1 and g1 satisfy the invariance property (1). The Teichmüller distance
in T (H) is inf log K(g1 ◦ f−1

1 ) where the infimum is over all quasiconformal
maps f1, g1 satisfying f1|̂R = f |

̂R and g1|̂R = g|
̂R with no requirement on

the invariance. We immediately obtain that

dT (H)([f ], [g]) ≤ dT (M)([f ], [g])

for all [f ], [g] ∈ T (M).
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Recall that the Teichmüller metric is a Finsler metric given as follows.
The norm of any Beltrami differential μ ∈ L∞(G) (representing a tangent
vector) is defined by

‖μ‖T∗(T (M)) = sup
‖ϕ‖L1(ω)=1

|Re

∫∫
ω

μ(z)ϕ(z)dxdy|

where ω is a fundamental polygon for G and ϕ ∈ A(G). For the universal
Teichmüller space we take the supremum over all holomorphic functions ϕ
which are integrable on H and of unit norm. Denote by A the space of
integrable holomorphic functions on H.

There is a mapping Θ : A → A(G) given by the Poincaré theta series

(13) Θ(ϕ) =
∑
γ∈G

(ϕ ◦ γ)(γ′)2

for ϕ ∈ A.

Theorem 3.3. Let G be a Fuchsian group acting on H. The Poincaré
theta series defines a continuous surjective linear operator from A onto A(G)
whose norm is at most one. Moreover, the image of the unit ball in A con-
tains a ball of radius 1/3 in A(G).

For ϕ ∈ A and μ ∈ L∞(G), we have that
∫∫

H μ(z)ϕ(z)dxdy =
∫∫

ω μ(z)Θ
(ϕ)(z)dxdy. The above theorem implies the inequality

dT (M)([f ], [g]) ≤ 3dT (H)([f ], [g])

for all [f ], [g] ∈ T (M) ⊂ T (H).
It was a conjecture of Kra [35] that the norm ‖Θ‖ of the Poincaré theta

series is strictly less that 1 if M is a finite Riemann surface. A more general
statement was proved by McMullen [45] (see also [5] and [46]).

Theorem 3.4. Let π : Y → X be a covering of a hyperbolic surface X
and let Θ : A(Y ) → A(X) be the Poincaré theta series. Then either:

(1) The covering is amenable, and the image under Θ of the unit ball
in A(Y ) is the unit ball in A(X), or

(2) The covering is nonamenable, and the closure of the image of the
unit ball in A(Y ) is contained in the interior of the unit ball of
A(X)

If X is a finite Riemann surface then either:
(1) The covering is amenable, ‖Θ‖ = 1 and the inclusion T (X) ⊂ T (Y )

is isometry for the Teichmüller metrics, or
(2) The covering is nonamenable, ‖Θ‖ < 1 and the inclusion T (X) ⊂

T (Y ) is a contraction.

Remark. It follows that when X is a finite Riemann surface and Y = H
the inclusion T (X) ↪→ T (H) is a contraction. More precisely, dT (H)([f ], [g]) <

dT (X)([f ], [g]) if and only if f ◦ g−1|
̂R is not in PSL2(R).
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3.5. Conditions for extremality. If M is a geometrically infinite Rie-
mann surface then not every homotopy class contains a Teichmüller map.
The first example of a homotopy class of a quasiconformal map of H which
does not contain a Teichmüller map is given by Strebel [58] (see also [38]).
However, Strebel [59] gave a sufficient condition for a homotopy class to
contain a Teichmüller map. Let C be a compact subset M and let C̃ be the
lift of C to H. Let f : H → H be a quasiconformal map. Denote by Kz(f) the
quasiconformal dilatation of f at point z ∈ H. (Note that Kz(f) is defined
for almost all z ∈ H for a fixed f .) Define HC̃(f) = ‖Kz(f)|H\C̃‖∞.

Theorem 3.5 (The Frame Mapping Condition). Let M be a geomet-
rically infinite Riemann surface and let [f ] ∈ T (M). Let K0 be the dilata-
tion of an extremal map f0 ∈ [f ]. If there exists a compact set C ⊂ M and
f1 ∈ [f ] such that HC̃(f1) < K0 then the homotopy class [f ] of f contains a
Teichmüller map, where C̃ is the lift of C to H.

Remark. The mapping f1 ∈ [f ] such that HC̃(f1) < K0 is called the
frame mapping.

A point [f ] in the Teichmüller space T (M) is called a Strebel point if it
contains a frame mapping. The set of Strebel points in T (M) is dense and
open (see [18], [36]).

Observe that each μ ∈ L∞(G) acts as a bounded linear functional on
A(G). In fact, the dual A∗(G) of A(G) is identified with L∞(G)/N(G) [3],
[26]. Recall that [μ]tan is the coset μ+N(G) and call it the tangent class of μ.

A Beltrami differential μ0 ∈ [μ]tan is said to be infinitesimally extremal
if ‖μ0‖∞ = sup |

∫∫
ω μ(z)ϕ(z)dxdy| where the supremum is over all ϕ in

the unit sphere in A(G). Another important consequence of the Reich-
Strebel inequality is a necessary and sufficient condition for the Teichmüller
extremality.

Theorem 3.6 (Hamilton-Krushkal-Reich-Strebel). Let M be a hyper-
bolic surface and let G be a Fuchsian group such that M = H/G. Let μ ∈
U(G). Then μ is extremal in its Teichmüller class [μ] if and only if it is
infinitesimally extremal in [μ]tan.

The Reich-Strebel inequality is also used in proving the principle of
Teichmüller contraction (see Gardiner [28] and Earle [12]). Let μ ∈ U(G).
Assume that μ0 ∈ [μ] is a Teichmüller extremal Beltrami coefficient and that
μ1 ∈ [μ]tan is an infinitesimally extremal Beltrami differential. The
Teichmüller efficiency of μ is the difference ‖μ‖∞ − ‖μ0‖∞ and the infin-
itesimal efficiency is ‖μ‖∞ − sup‖ϕ‖L1(ω)=1 Re

∫∫
ω μ(z)ϕ(z)dxdy, where ω is

a fundamental polygon in H for G. The Teichmüller contraction princi-
ple states that the Teichmüller efficiency is biLipschitz equivalent to the
infinitesimal efficiency on any ball in U(G) with radius r < 1, where the
biLipschitz constant depends on r.
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3.6. The unique extremality.

Definition 3.1. A Beltrami coefficient μ ∈ U(G) is uniquely extremal
if it is the only element in the Teichmüller class [μ] which satisfies ‖μ‖∞ =
infμ1∈[μ] ‖μ1‖∞. A Beltrami differential ν ∈ L∞(G) is uniquely extremal in
the tangent class if it is the only differential in the tangent class [ν]tan that
satisfies ‖ν‖∞ = infν1∈[ν]tan

‖ν1‖∞.

The Teichmüller theorem states that the Teichmüller map is uniquely
extremal. Strebel [58] gave a first example of an extremal map which is not
a Teichmüller map (the example is not uniquely extremal). Further, Strebel
[60] showed that the horizontal stretching in an infinite strip is uniquely
extremal. The Beltrami differential of this map is of the form k |ϕ|

ϕ but the
holomorphic differential ϕ(z)dz2 = dz2 is not integrable. According to our
definition this implies that k |ϕ|

ϕ is not a Teichmüller Beltrami coefficient.
We call it a generalized Teichmüller Beltrami coefficient. Therefore, Strebel
showed that some generalized Teichmüller Beltrami coefficients are uniquely
extremal. The following characterization of uniquely extremal maps was
proved by Božin-Lakic-Markovic-Mateljević in [9].

Theorem 3.7. A Beltrami coefficient μ ∈ U(G) is uniquely extremal in
its Teichmüller class [μ] if and only if it is uniquely extremal in its tangent
class [μ]tan.

The following characterization of uniquely extremal generalized
Teichmüller coefficients was also obtained in [9].

Theorem 3.8. Let ϕ ∈ BH(G) and ϕ �= 0. Let f be a quasiconformal
map of H onto itself whose Beltrami coefficient is k |ϕ|

ϕ , for 0 < k < 1. Then
f is uniquely extremal in its Teichmüller class if and only if there exists
ϕn ∈ A(G) which satisfies

(1) ϕn(z) converges to ϕ(z) uniformly on compact subsets of H,
(2) k‖ϕn‖L1(ω) − Re

∫∫
ω ϕn(z)μ(z)dxdy → 0 as n → ∞.

Another important fact proved in [9] is that not every uniquely extremal
map is a generalized Teichmüller map and moreover has not constant abso-
lute value Beltrami coefficient.

Theorem 3.9. Let M be a hyperbolic surface that is a subset of another
Riemann surface W such that W \M has a cluster point. Let G be a Fuchsian
group such that M = H/G and let ϕ ∈ A(G) with ‖ϕ‖L1(ω) = 1. Then for
every ε > 0 and for every Beltrami coefficient μ ∈ U(G) there exists ν ∈ U(G)
such that ∫∫

{z∈ω:ν(z) �=μ(z)}
|ϕ(z)|dxdy < ε

and ν is uniquely extremal in its Teichmüller class.
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Remark. This theorem shows that there are many uniquely extremal
maps which do not have Beltrami coefficient whose absolute value is almost
everywhere constant.

3.7. The uniqueness of geodesics in the general Teichmüller
space. Given [μ] ∈ T (M), with [μ] �= [0], we noted that there exists at least
one geodesic connecting the basepoint [0] with [μ]. This geodesic is given
by t 	→ [tμ1], 0 ≤ t ≤ 1, where μ1 ∈ [μ] is an extremal Beltrami coefficient in
the Teichmüller class [μ]. We also note that t 	→ [tμ1], for −1/‖μ1‖∞ < t <
1/‖μ1‖∞, is a maximal geodesic extension of the above geodesic connecting
[0] with [μ].

The following theorem is a complete characterization of points [μ] ∈
T (M) which are connected to the basepoint [0] ∈ T (M) by a unique geo-
desic. This characterization is a consequence of the equivariant extensions
of holomorphic motions and it was obtained by Earle-Kra-Krushkal in [17].

Theorem 3.10. Let M be a hyperbolic Riemann surface and let G be a
Fuchsian group such that M = H/G. Let μ ∈ U(G) be an extremal Beltrami
coefficient on M such that [0] �= [μ]. Then the following are equivalent:

(1) The Beltrami coefficient is uniquely extremal and |μ| = ‖μ‖∞ almost
everywhere,

(2) There is exactly one geodesic segment connecting [id] and [μ],
(3) There is exactly one holomorphic isometry Ψ : D → T (M) such that

Ψ(0) = [0] and Ψ(‖μ‖∞) = [μ],
(4) There is exactly one holomorphic isometry Ψ̂ : D → U(G) such that

Ψ̂(0) = 0 and Ψ̂(‖μ‖∞) = μ.

Remark. Recall that Bozin-Lakic-Markovic-Mateljevic (see [9]) con-
structed examples of uniquely extremal map whose Beltrami coefficients
have non-constant absolute values.

The implication (1)=⇒(2) is proved by Z. Li [39]. To illustrate the main
idea in the proof of this part of the theorem, we consider the Banach space
l∞ of all bounded sequences of complex numbers with the supremum norm
‖s‖∞ = supi∈N |s(i)|. A length of a differentiable path p : [a, b] → l∞ is given
by l[a,b](p) =

∫ b
a ‖p′(t)‖∞dt. A geodesic in l∞ is a distance minimizing path p :

[a, b] → l∞, namely a path p : [a, b] → l∞ such that l[t,t′](p) = ‖p(t) − p(t′)‖∞
for all t, t′ ∈ [a, b]. Let 1 ∈ l∞ be a constant sequence whose each entry is 1.
We show that there exists a unique geodesic in l∞ which connects the base-
point 0 ∈ l∞ with 1. The geodesic p : [0, 1] → l∞ is given by p(t) = t · 1. Let
q : [0, 1] → l∞ be another geodesic such that q(0) = 0 and q(1) = 1. Let t0 ∈
(0, 1) such that q(t0) /∈ p([0, 1]). After reparametrization if necessary, we have
that l[0,t](q) = t and l[t,1](q) = 1 − t for each t ∈ [0, 1]. Since q(t0) /∈ p([0, 1])
and ‖q(t0)‖∞ = t0, it follows that there exists i0 ∈ N such that q(t0)(i0) < t0.
Then |q(1)(i0)−q(t0)(i0)| > 1− t0 which gives ‖q(1)−q(t0)‖∞ > 1− t0. This
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is a contradiction with the parametrization of the geodesic q. Thus there is
exactly one geodesic connecting 0 and 1.

The above theorem characterizes points in T (M) which are connected
to the basepoint by a unique geodesic. A related question was to charac-
terize points in T (M) which lie on a unique maximal geodesic through the
basepoint. Recall that a point [μ] ∈ T (M) is said to be a Strebel point if it
satisfies the conditions of the Strebel’s Frame Mapping Condition (see The-
orem 3.5). In particular, by Theorem 3.5 a Strebel point has a Teichmüller
Beltrami coefficient representative. However, not every every point [μ] which
has Teichmüller representative is a Strebel point. The following theorem of
Earle and Li completely characterizes points which are connected to the
basepoint by a unique maximal geodesic and it describes the situation when
there is more than one maximal geodesic connecting the point to the base-
point.

Theorem 3.11. Let [μ] ∈ T (M) be a point different from the basepoint
[0]. Then [μ] is a Strebel point if and only if there is a unique maximal
geodesic through [μ] and the basepoint [0] ∈ T (M). Moreover, if [μ] is not a
Strebel point then there exists a holomorphic isometry Ψ of the unit ball D∞
in l∞ into T (M) such that Ψ(k0([μ]) · 1) = [μ] and Ψ(0) = [0]. (The isom-
etry is with respect to the Kobayashi metrics on D∞ and T (M). k0([μ]) =
infμ1∈[μ] ‖μ1‖∞ is the minimal dilatation of the Teichmüller class [μ].)

Remark. The geometry of D∞ determines the geometry of its image
Ψ(D∞) ⊂ T (M). In particular, there are infinitely many geodesics through
[μ] and [0] (in this case). If μ is uniquely extremal and |μ| is constant, then
Earle-Kra-Krushkal theorem (Theorem 2.6) guaranties that there is only one
geodesic between [μ] and [0]. Earle-Li theorem says that there are infinitely
many maximal extensions. Another corollary of Earle-Li theorem is that
there exists a simple closed geodesic through [μ] and [0] whose length is four
times the distance from [μ] to [0].

3.8. The bi-Lipschitz structure of Teichmüller spaces. If M is
a finite type Riemann surface then the Teichmüller space T (M) is locally
bi-Lipschitz equivalent (as a metric space with respect to the Teichüller
metric) to the Euclidean space of the corresponding dimension. This means
that every metric ball in T (M) of finite radius can be mapped by a bi-
Lipschitz homeomorphism onto a Euclidean ball. This follows from the Bers
embedding theorem 2.1. Assume that M is an infinite type surface. The
following theorem was proved by Fletcher [25] and it shows that all infinite
dimensional Teichmüller spaces are locally bi-Lipschitz equivalent.

Theorem 3.12. Let M be an infinite type Riemann surface and let l∞

denote the Banach space of all bounded sequences. Then T (M) is locally
bi-Lipschitz equivalent to l∞.
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This of course does not mean that every two infinite dimensional
Teichmüller spaces are globally bi-Lipschitz equivalent. We have the following
conjecture.

Conjecture 3.1. Let M and N be two infinite type Riemann surafaces.
Suppose that there exists a bi-Lipschitz map f : T (M) → T (N). Then there
exists a quasiconformal map between M and N and T (M) and T (N) are
isometric to each other.

4. Biholomorphic maps between Teichmüller spaces

The Bers embedding (see Theorem 2.1) introduces a natural complex
structure on the Teichmüller space T (M) of a hyperbolic Riemann surface
M . An important problem was to classify all biholomorphic maps between
any two Teichmüller spaces T (M) and T (N), where N is also a hyperbolic
Riemann surface. A particular case of this problem was to understand all
biholomorphic self-maps of a Teichmüller space T (M).

The mapping class group MC(M) of a Riemann surface M is the group
of all quasiconformal maps g : M → M up to homotopy. The mapping class
group MC(M) acts on T (M) by [f ] 	→ [f ◦ g−1] for [g] ∈ MC(M) and [f ] ∈
T (M). It is clear that any [g] ∈ MC(G) induces a biholomorphic map of
T (M) onto itself. Such biholomorphic map is said to be geometric. More
generally, a biholomorphic map from T (M) onto T (N) which is induced by
a quasiconformal map from N onto M is said to be geometric.

A finite Riemann surface of genus g with n punctures is said to be excep-
tional if 2g + n ≤ 4, otherwise it is said to be non-exceptional. Royden [50]
showed that for any non exceptional closed surface S each biholomorphic
map of T (S) is geometric. Earle and Kra [15], [16] showed that each biholo-
morphic map of the Teichmüller space of a non exceptional finite Riemann
surface is geometric and that a biholomorphic from the Teichmüller space
of a finite Riemann surface onto an open subset of the Teichmüller space of
another finite Riemann surface is also necessarily geometric. (In particular,
the two finite Riemann surfaces are quasiconformal.)

We give an outline of Royden’s proof that a biholomorphic map Ψ of
the Teichmüller space T (S) of a closed Riemann surface S is geometric. The
map Ψ : T (S) → T (S) is an isometry for the Kobayashi metric because it is
biholomorphic. Since the Kobayashi metric equals the Teichmüller metric on
T (S), it follows that Ψ is also an isometry for the Teichmüller metric. The
derivative map Ψ′ : T[id](T (S)) → TΨ([id])(T (S)) of the biholomorphic map
Ψ gives an isometry between tangent spaces at the basepoint [id] ∈ T (S)
and at the image point Ψ([id]) ∈ T (S). The tangent space T[id](T (S)) at the
basepoint [id] ∈ T (S) is isometric to the dual of the space of all integrable
holomorphic quadratic differentials on the Riemann surface S. Since the
tangent space is finite-dimensional, it follows that an isometry between two
tangent spaces gives an isometry between their pre-duals. Namely, there is an
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induced isometry between the space of holomorphic quadratic differentials on
the Riemann surface S and the space of holomorphic quadratic differentials
on the Riemann surface Ψ([id])(S).

Let G be a Fuchsian group such that H/G is isomorphic to S. Let Gf =
fGf−1 be the conjugate Fuchsian group which uniformizes the Riemann
surface Ψ([f ])(S). We concluded above that there exists an induced linear
isometry L : A(G) → A(Gf ).

Definition 4.1. Let G and G1 be two Fuchsian groups acting on H. An
isometry L : A(G) → A(G1) is said to be geometric if it is given by

L(ϕ) = θ(ϕ ◦ α)(α′)2

for some θ ∈ C, |θ| = 1 and for all ϕ ∈ A(G), where α ∈ PSL2(R) induces
a conformal map α : H/G1 → H/G.

The key ingredient in Royden’s proof is that a linear isometry between
H/G and H/Gf is necessarily geometric whenever H/G is a non excep-
tional closed Riemann surface. This implies that there is a conformal map
between H/G and H/Gf which in turn implies that the basepoint [id] ∈
T (S) is mapped by an element ρ[f ] ∈ MC(S) onto [f ] ∈ T (S). The element
ρ[f ] ∈ MC(S) such that ρ[f ]([id]) = [f ] might depend on [f ]. However, since
MC(S) acts properly discontinuously on T (S) it follows that ρ[f ] = ρ does
not depend on [f ] and that Ψ = ρ.

Earle and Kra [15] extended Royden’s argument to non exceptional finite
Riemann surfaces. Earle and Gardiner [13] extended all steps in the Roy-
den’s argument to arbitrary non exceptional Riemann surfaces except the
fact that an arbitrary linear isometry of the spaces of integrable holomor-
phic quadratic differentials is necessarily geometric. They [13] also extended
Royden’s original argument to show that if a Riemann surface is open
with finitely generated fundamental group then each isometry of the space
of integrable holomorphic quadratic differentials is necessarily geometric.
Lakic [37] extended this argument further to all geometrically infinite Rie-
mann surfaces which can be holomorphically embedded into closed Riemann
surfaces.

To show that biholomorphic maps of the Teichmüller spaces of all non
exceptional Riemann surfaces are necessarily geometric, it remained to show
that an isometry between the spaces of integrable holomorphic quadratic
differentials of two Riemann surfaces (at least one of which is non excep-
tional) is necessarily geometric. Markovic [42] proved that each isometry
of the space of integrable holomorphic quadratic differentials is geometric
by using a new method independent of Royden’s argument. Combining all
these results together we have the following theorem.

Theorem 4.1. Let M be a hyperbolic surface of non exceptional type.
Then the space of biholomorphic automorphisms Aut(T (M)) coincides with
the mapping class group MC(M) of M .
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Proof. We sketch proof in the case of a finite Riemann surface as given
in the work of Earle and Markovic [19] which applied the techniques from
[42] to the finite surface case.

Let Ŝ, Ŝ1 be two closed Riemann surfaces and let E ⊂ Ŝ and E1 ⊂ Ŝ1 be
two finite (and possibly empty) sets. Then S = Ŝ \ E and S1 = Ŝ1 \ E are
two finite Riemann surfaces. Let L : A(S) → A(S1) be a C-linear isometry
between spaces of integrable holomorphic quadratic differentials on S and S1.

Let ϕ0, . . . , ϕk be a basis of A(S). Let ψi = L(ϕi) for i = 0, . . . , k. Let
fi = ϕi/ϕ0 and gi = ψi/ψ0 be functions from S and S1 into Ĉ for i = 1, . . . , k.
Note that the functions fi and gi can have poles at the zeroes of ϕi and ψi.
Let S0 = Ŝ\{p ∈ Ŝ : ∃fi with pole at p}. Let S0

1 = Ŝ1\{p ∈ Ŝ1 : ∃gi with pole
at p}. Then the holomorphic functions F = (f1, . . . , fk) and G = (g1, . . . gk)
map S0 and S0

1 into Ck. Moreover, it follows from the Riemann-Roch theorem
that if Ŝ, Ŝ1 are not of exceptional type then F and G extend to holomorphic
embeddings of Ŝ and Ŝ1 into CPk.

Define measures μ and ν on Ŝ and Ŝ1 by

μ(A) =
∫∫

A
|ϕ0| and ν(B) =

∫∫
B

|ψ0|

for A ⊂ Ŝ and B ⊂ Ŝ1. Since L is an isometry, we get that

∫∫
S

∣∣∣1 +
k∑

i=1

λifi

∣∣∣dμ =
∫∫

S1

∣∣∣1 +
k∑

i=1

λigi

∣∣∣dν

for all (λ1, . . . , λk) ∈ Ck. The above implies that

∫∫
S0

∣∣∣1 +
k∑

i=1

λifi

∣∣∣dμ =
∫∫

S0
1

∣∣∣1 +
k∑

i=1

λigi

∣∣∣dν

because Ŝ \ S0 and Ŝ1 \ S0
1 are both finite sets.

Rudin [51] showed that the above condition implies

μ(F−1(Q)) = ν(G−1(Q))

for all Borel subsets Q ⊂ Ck. Let Q = F (S0) in the above equation. Then
we obtain∫∫

S0
|ϕ0| = μ(S0) = ν(G−1(F (S0))) =

∫∫
G−1(F (S0))

|ψ0| ≤
∫∫

S0
1

|ψ0|

because G−1(F (S0)) ⊂ S0
1 . Since L is an isometry, we conclude that the

above inequality is equality. Therefore G−1(F (S0)) is a subset of S0
1 of full

measure. It is not hard to see that G−1(F (S0)) is closed in Ck. Thus F (S0) =
G(S0

1). The functions F and G extend to embeddings Φ : Ŝ → CPk and
Ψ : Ŝ1 → CPk such that Φ(Ŝ) = Ψ(Ŝ1).
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Define a holomorphic map h : Ŝ1 → Ŝ by h = Φ−1 ◦Ψ. The restriction of
h to S0

1 satisfies F ◦ h = G and h(S0
1) = S0. Then

L(ϕi)
L(ϕ0)

=
ψi

ψ0
= gi = fi ◦ h =

h∗(ϕi)
h∗(ϕ0)

.

For every measurable subset K of Ŝ1 we have∫∫
K

|L(ϕ0)| =
∫∫

K
|ψ0| = ν(K) = μ(h(K)) =

∫∫
K

|h∗(ϕ0)|

which implies that L(ϕ0) = θh∗(ϕ0) for some |θ| = 1. From L(ϕi)
L(ϕ0) = h∗(ϕi)

h∗(ϕ0)
and the above, we get

L(ϕi) = θh∗(ϕi)
for all i.

To show that h(S1) = S, it is enough to show that punctures are mapped
onto punctures. By the separation properties of integrable holomorphic qua-
dratic differentials, for each puncture in Ŝ1 there is an integrable holomor-
phic quadratic differential on S1 with a simple pole at the puncture. Then
S1 consists of all points in Ŝ1 at which every differential L(ϕ) for ϕ ∈ A(S)
has finite value. On the other hand, h−1(S) consists of all points in Ŝ1 at
which every differential h∗(ϕ) for ϕ ∈ A(S) has finite value. The equation
L(ϕi) = θh∗(ϕi) implies that these two sets coincide. Thus h−1(S) = S1 and
this finishes the proof. �

Remark. The proof in [42] in the case of a general Riemann surface
requires additional arguments then the above proof for finite Riemann sur-
faces because in general there is no holomorphic embedding of a geomet-
rically infinite surface into CPk, for any finite k. Thus Rudin’s theorem
cannot be immediately applied to construct the corresponding holomorphic
map.

5. Earthquakes and Thurston boundary for general
Teichmüller spaces

5.1. Earthquakes. Earthquakes, introduced by Thurston [63], are
maps of the upper half-plane H onto itself. (We define left earthquakes and
right earthquakes can be defined analogously. All properties of left earth-
quakes hold for right earthquakes as well.)

A geodesic lamination λ on H is a closed subset of H which is foliated
by pairwise disjoint geodesics of H. (Note that the foliation of the closed
subset is a necessary part of the definition because there are closed subsets
of H which can be foliated by disjoint geodesics in more than one way. For
example, H can be foliated by disjoint geodesics in many ways. However, this
requirement is not necessary for geodesic laminations on finite hyperbolic
surfaces.) A stratum of λ is either a geodesic from the given foliation of λ or
a connected component of H\λ. (Note that a connected component of H\λ
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is an open hyperbolic polygon whose boundary sides are geodesics in λ. A
complementary polygon can have infinitely many boundary sides. From now
on, a geodesic from the foliation of λ will be simply called a geodesic in λ.)

An (left) earthquake map E : H → H is a bijective map defined as follows
(see [63]). Let λ be a geodesic lamination on H. The map E when restricted
to a stratum g of λ is in PSL2(R). Moreover, for any two strata g, g1 of λ
we require that E|g ◦ (E|g1)

−1 is a hyperbolic translation whose axis weakly
separates g and g1, and which (weakly) translates stratum g to the left as
seen from g1. (In other words, the relative displacement of E(g) with respect
to E(g1) is to the left.) The geodesic lamination λ is called the support of E.

It is clear that E(λ) is a geodesic lamination on H. λ is called the
initial and E(λ) is called the terminal lamination of the earthquake map
E. The fact that all relative displacements between strata are to the left
gives us a well defined transverse measure to the geodesic lamination λ as
follows. (A transverse measure on λ is a positive Radon measure on each
finite hyperbolic arc transverse to geodesics in λ which is invariant under
homotopies preserving all geodesics in λ.) Let I be a closed hyperbolic arc
transverse to geodesics in λ. Divide arc I into n consecutive subarcs of equal
length by points {x0, x1, . . . , xn} such that x0 and xn are the endpoints of
I. Let gi be the stratum of λ which contains point xi and let ai be the
translation length of E|gi ◦ (E|gi−1)

−1. Then
∑n

i=1 ai is an approximation of
the transverse measure μ on I [63], namely

μ(I) = lim
n→∞

n∑
i=1

ai.

The quantity μ(I) is independent of the choice of the division points
xi as long as the distance between any two division points goes to 0 as
n → ∞ and this gives a homotopy invariant positive Radon measure on I
whose support is I ∩λ (see Thurston [63]). A homotopy invariant transverse
measure μ to a geodesic lamination λ arising from an earthquake map is
called an earthquake measure.

Let γ ∈ PSL2(R). If E is an earthquake map whose support is a geodesic
lamination λ then γ ◦ E is also an earthquake map whose support is also
λ. The earthquake measure for E equals the earthquake measure for γ ◦ E.
Conversely, if two earthquake maps E and E1 have the same earthquake
measure then they differ by a post-composition with some γ ∈ PSL2(R)
(see [63]).

An earthquake measure is approximated by the sum of the translation
lengths of the relative displacements between nearby strata. This process
can be reversed to obtain an earthquake map starting from an earthquake
measure. Namely, given an earthquake measure μ we fix the map E to be
the identity on one stratum g0 (the base stratum). For any other stratum
g of λ, we connect g0 to g by a closed hyperbolic arc I. Choose finitely
many points {x0, x1, . . . , xn} on I such that the distance between any two
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consecutive points goes to 0 as n → ∞ (and, for simplicity, that μ(xi) = 0
for i = 1, . . . , n − 1). For each xi, we choose a hyperbolic geodesic gi which
contains xi such that it is either a stratum of λ or it is contained in a stratum
of λ. We orient gi such that xi−1 is to the left and xi+1 is to the right of
gi. We approximate E|g with the composition T

μ([x0,x1])
g1 ◦ · · · ◦ T

μ([xn−1,xn])
gn

of hyperbolic translations, where T a
g denotes a hyperbolic translation whose

translation length is a > 0, whose repelling fixed point is the initial point
of g and whose attracting fixed point is the terminal endpoint of g. The
composition T

μ([x0,x1])
g1 ◦ · · · ◦T

μ([xn−1,xn])
gn converges to a well defined element

of PSL2(R) as n → ∞ independently of the choice of points {x0, x1, . . . , xn}
on I. Then E : H → H is an earthquake whose measure equals μ by the
construction (see [63]).

It is important to note that not every transverse measure to a geodesic
lamination gives an earthquake map in the above sense. We give an example
of such transverse measure which does not give an earthquake map. Let λ
consists of geodesics gi, i ∈ Z \ N, with one endpoint at ∞ and the other
endpoint at i. We define a transverse measure μ on λ to give weight log 2 to
each transverse intersection with any gi. We fix E to be the identity on the
stratum of λ which is the hyperbolic half-plane bounded by g0 and having the
positive real axis on its boundary at infinity. Then E|gi−1 = T log 2

gi ◦· · ·◦T log 2
g0 ,

where gi are oriented from ∞ to i. This gives that (E|gi−1)(i− 1) = −(1/2+
1/22+· · ·+1/2|i|) > −1 for all i. This implies that E is not onto because E(H)
does not contain hyperbolic half-plane whose boundary is the geodesic with
endpoints ∞ and −1, and which contains (−∞,−1) ⊂ R on its boundary at
infinity. Thus E is not an earthquake map (see [64]). Moreover, it is possible
to find an earthquake measure μ which comes from an earthquake map such
that the transverse measure 1

2μ does not give an earthquake map.
By the definition, earthquake maps displace strata relatively to the left.

The freedom comes from the choice of the support geodesic lamination λ and
of the amount of the displacement, i.e., the earthquake measure. An earth-
quake map of H onto itself extends to a homeomorphism of the extended
real axis R̂ (see [63]). A fundamental theorem of Thurston [63] is that the
converse is also true.

Theorem 5.1. Each homeomorphism of the extended real line R̂ is the
restriction of an earthquake map.

If a transverse measure is supported on only finitely many geodesics
then there exists an earthquake with this measure. Earthquakes with finite
transverse measures are called finite earthquakes. Gardiner, Hu and Lakic
[30] gave an alternative proof of Theorem 5.1 using a finite earthquake
theorem.

Theorem 5.2. Given n-tuples (x1, . . . , xn) and (y1, . . . , yn) of points on
R̂ in the counterclockwise order, there exists a unique finite earthquake E
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whose support consists of geodesics with endpoints in (x1, . . . , xn) such that
E(xi) = yi, for i = 1, 2, . . . , n.

The finite earthquake theorem is used in [30] to give an alternative proof
(to the proof of Thurston) of the general earthquake theorem (Theorem
5.1). The proof in [30] is by an approximation argument where a general
homeomorphism h : R̂ → R̂ is approximated by homeomorphisms coming
from finite earthquakes such that they agree with h on larger and larger
finite sets of points in R̂. The finite earthquake measures converge to the
earthquake measure corresponding to h.

Given the earthquake theorem, the question was to find which earth-
quake measures give quasisymmetric maps of R̂. Thurston [63] introduced
the notion of a bounded earthquake measure. An earthquake measure μ is
said to be bounded if supI μ(I) < ∞, where the supremum is over all hyper-
bolic arcs I of length 1 transverse to the support of μ and μ(I) is the total
mass of μ on I. Thurston [63] showed that any bounded transverse measure
to a geodesic lamination gives rise to an earthquake. The following theorem
characterizing measures which give quasisymmetric maps is first proved in
[52] (and it was already suggested in [63]).

Theorem 5.3. An earthquake E extends to a quasisymmetric map of R̂
if and only if the earthquake measure μ of E is bounded.

Remark. The equivalence of the two conditions in the above theorem
is proved by the use of a third condition (see [52]). If μ is a bounded earth-
quake measure, then tμ, for t > 0, is also a bounded earthquake measure.
Then t 	→ Etμ|R̂ is called an earthquake path for t > 0 real, where Etμ is an
earthquake whose measure is tμ. The third condition states that the earth-
quake path in the parameter t > 0 extends to a holomorphic motion of R̂
in the complex parameter τ = t + is, for s small [52]. Gardiner, Hu and
Lakic [30] gave another proof of the above theorem by analyzing tangent
vectors to earthquake paths. More recently, Epstein, Marden and Markovic
[23] proved the above theorem using a method similar to [52].

Proof. We sketch a rather short proof obtained recently in [53]. Let
E be an earthquake on H whose measure is μ and let h = E|R̂. Let λ be
the support of μ. Assume that h is quasisymmetric map and that μ is not
bounded. We obtain a contradiction as follows. Since μ is not bounded,
there exists a sequence In of hyperbolic arcs with length 1/n such that
μ(In) → ∞ as n → ∞. Give an arbitrary orientation to each In. Let gn

l and
gn
r be the leftmost and the rightmost geodesic of the support of μ which

intersect In. Orient gn
l and gn

r such that their tangent vectors at the points of
intersection with In together with the tangent vectors of In form a positive
basis of the tangent space of H. Let γn ∈ PSL2(R) be such that γn(gn

l )
is the geodesic g with endpoints 0 and ∞, and that γn(In ∩ gn

l ) = i. Let
gn = γn(gn

r ) be the image of gn
r , and let an and bn be the initial and the
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terminal points of gn, respectively. Then an → 0 and bn → ∞ as n → ∞ by
the choice of γn. Fix a quadruple (0, b,∞, d) such that b > 0, d < 0 and
cr(0, b,∞, d) = 2. Let δn ∈ PSL2(R) be such that En = δn ◦ E ◦ γ−1

n is the
identity on the geodesic with endpoints 0 and ∞. Then En fixes 0, ∞ and d,
and En(b) → ∞ as n → ∞. Thus cr(En(a, b, c, d)) → ∞ as n → ∞. However,
this is a contradiction with the fact that each En|R̂ has a quasiconformal
extension with the same quasiconformal constant as does E|R̂.

We consider the converse. Namely, assume that μ is bounded and that
h = E|R̂ is not quasisymmetric. Then there exists a sequence of quadruples
(an, bn, cn, dn) on R̂ such that cr(an, bn, cn, dn) = 2 and cr(h(an, bn, cn, dn)) →
∞ as n → ∞. There exists γn ∈ PSL2(R) such that γn(an, bn, cn, dn) =
(a, b, c, d) for a fixed quadruple (a, b, c, d) whose cross-ratio is 2. Let μn =
γn(μ). Since μ is bounded, it follows that all μn are bounded with the
same bound as μ. Then there exists a subsequence μnk

of μn which con-
verges in the weak* sense on each hyperbolic arc in H. This implies that
a subsequence of properly normalized earthquakes Enk

whose measures are
μnk

weakly converge to an earthquake E∗ of H whose measure μ∗ is the
weak* limit of μnk

(see [53]). On the other hand, cr(En(a, b, c, d)) → ∞ as
n → ∞ by our assumption. However, cr(Enk

(a, b, c, d)) → cr(E∗(a, b, c, d)) as
nk → ∞ because Enk

→ E∗. This is a contradiction because E∗ is a homeo-
morphism. �

We describe in more details the additional condition which was used
in the proof of Theorem 5.3 in [52]. Let H3 = {(z, t) : z ∈ C, t > 0} be
the upper half-space equipped with the hyperbolic metric whose density is
ρ(z, t) = 1

t . The upper half-plane H isometrically embeds into H3 by specify-
ing H = {(z, t) : z ∈ C, Im(z) = 0, t > 0}. Let μ1 and μ2 be two transverse
measures on λ. Then μ = μ1 + iμ2 is a complex valued transverse measure
with the support λ. Thurston [64], [22] defined a bending map Eμ : H → H3

as follows. Fix one stratum g of λ and define Eμ to be the identity on this
stratum. Given any other stratum g′, consider a closed hyperbolic arc I from
g to g′. Let {x0, x1, . . . , xn} be points of division of I such that the maxi-
mum of the distance between any two consecutive points xi−1 and xi goes
to 0 as n → ∞ and such that μ(xi) = 0 for i = 1, . . . , n− 1. For each interval
(xi−1, xi), let gi be a geodesic intersecting (xi−1, xi) which is either a stratum
of λ or which belongs to a stratum of λ. Orient gi such that I crosses it from
the left to the right. Denote by T

μ(xi−1,xi)
gi a Möbius map in PSL2(C) which

is a loxodromic element whose oriented axis is gi and the translation length
is μ(xi−1, xi). Then the composition T

μ(x0,x1)
g0 ◦· · ·◦T

μ(xn−1,xn)
gn approximates

Eμ|g′ (see [22]). Namely,

Eμ|g′ = lim
n→∞

Tμ(x0,x1)
g0

◦ · · · ◦ Tμ(xn−1,xn)
gn

.

The bending map is a generalization of the earthquake map. The image of
H is a bent plane in H3. The bending is along the transported support of μ
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by the earthquake Eμ1 and the angle of the bending is given by the measure
μ2 (see [22], [64]). It is important to note that the bending map is assumed
to be injective as well. Thus, not every measure μ2 will produce a bending
map (not even every bounded measure).

Let μ be a bounded earthquake measure. Let τ ∈ C be a complex param-
eter. Then τμ is a complex transverse measure and for τ ∈ R, τ > 0, we get
a bounded earthquake measure. The following theorem is proved in [52].

Theorem 5.4. Let h be a homeomorphism of R̂ and let E be an earth-
quake of H such that E|R̂ = h. Let μ be the earthquake measure of E. Then
the following are equivalent:

(1) h is a quasisymmetric map,
(2) μ is a bounded earthquake measure,
(3) there is neighborhood V ⊂ C of the real line R such that the earth-

quake path t 	→ Etμ|R̂, for t > 0, extends to a holomorphic motion
τ 	→ Eτμ|R̂ of the extended real axis R̂ for the parameter τ ∈ V .

Moreover, the parameter τ neighborhood of the real axis is V =
{

τ ∈ C :

|Im(τ)| < const
|t|·‖μ‖e|t|·‖μ‖

}
, where ‖μ‖ = supI μ(I) and I is a hyperbolic arc of

length 1.

Remark. Epstein, Marden and Markovic [23] improved the constant
to |t| · ‖μ‖e|t|·‖μ‖ from [52] where the original constant was |t| · ‖μ‖e8|t|·‖μ‖.
They [23] also showed that this is the best possible constant in general.

The following is immediate consequence of the above theorem and it
extends the result of Kerckhoff [34] for closed surfaces.

Corollary 5.1. Let μ be a bounded earthquake measure. Then the
earthquake path t 	→ Etμ|R̂ is a real analytic map from the positive real axis
into the universal Teichmüller space. If μ is invariant under a Fuchsian
group, then the earthquake path is real analytic in T (H/G).

Theorem 5.4 shows that for any bounded earthquake measure μ, it is
always possible to bend for τ ∈ C, when Im(τ) is small enough. The follow-
ing theorem of Epstein, Marden and Markovic [23] considers all τ ∈ C for
which the bending map Eτμ is defined.

Theorem 5.5. The path component containing 0 ∈ C of all parame-
ters τ ∈ C for which the bending map Eτμ is defined is a simply connected
domain in C.

Gardiner, Hu, and Lakic [30] considered earthquake maps which give
different smoothness classes. An earthquake measure μ is said to be asymp-
totically trivial if supI⊂H\Di(n) μ(I) → 0 as n → ∞, where Di(n) is the hyper-
bolic disk with center i and radius n. For example, they [30] showed that
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an earthquake map restricts to a symmetric map of R̂ if and only if the
earthquake measure is asymptotically trivial. The proof of Theorem 5.3 can
be modified to obtain a short proof of the above statement (see [53]). Gar-
diner, Hu, and Lakic [30], and Hu [33] also obtained results about earth-
quake measures for earthquake maps which give C1+α smoothness classes
of homeomorphisms. Moreover, Gardiner and Hu showed a version of the
Jackson-Zygmund approximation of the Zygmund class of functions using
infinitesimal finite earthquakes (see [29]).

5.2. Thurston boundary for general Teichmüller spaces. A cel-
ebrated Thurston boundary for the Teichmüller space of a finite hyperbolic
Riemann surface M is the space of projective measured laminations on M
[65], [64], [24]. This boundary is obtained as follows. Let S be the set of all
homotopy classes of homotopically non-trivial and non-peripheral, simple
closed curves on M . Given [f : M → M ′] ∈ T (M), we define a function s[f ]
from S to positive real numbers by assigning to each α ∈ S the length of the
geodesic representative of the curve f(α) on M ′ = f(M). The assignment
[f ] 	→ s[f ] is an embedding of the Teichmüller space T (M) into the space of
all positive, real functions on S equipped with the weak topology.

A path t · f , for t > 0 and f : S → R+, is said to be an asymptotic ray
to s(T (M)) if there exists a path st ∈ s(T (M)) such that 1

t st → f as t →
∞ in the weak topology. Thurston showed that an asymptotic ray to the
image s(T (M)) of the Teichmüller space T (M) is a function with special
properties as follows. Namely, if t · f , for t > 0, is an asymptotic ray then
there exists a measured lamination μ on M such that f(α) = i(α, μ) for all
α ∈ S. Conversely, each measured lamination induces a function iμ on S (by
using the intersection number α 	→ iμ(α) = i(μ, α)) such that the ray t · iμ,
for t > 0, is asymptotic to s(T (M)). Thus the boundary of T (M) is identified
with the space of projective measured laminations PML(M) on M .

Thurston’s construction is putting together two different types of objects:
the marked hyperbolic metrics on M (obtained by taking pull-backs by the
quasiconformal maps f : M → M ′) and the projective measured laminations
on M . Bonahon [7] unified the discussion by realizing both objects in a
single space of geodesic currents. We describe a generalization (see [54],
[55]) of the Bonahon’s construction to general Teichmüller spaces and the
corresponding Thurston boundary. From now on we resume our standing
assumption that M is an arbitrary hyperbolic Riemann surface.

An oriented hyperbolic geodesic in H is uniquely determined by its initial
and terminal endpoint on R̂ and any pair of different points on R̂ determines
a unique oriented geodesic. Then the space of geodesics G on H is isomorphic
to (R̂ × R̂) \ diag. The distance d on G is defined by d(g, g′) = max{|a −
a′|, |b − b′|}, where g = (a, b), g′ = (a′, b′) and |a − a′| is the angle distance
between a and a′ measured from i ∈ H. A distance on G introduced by the
angle distance with respect to another point in H is biLipschitz to d. A
quasisymmetric map of R̂ is Hölder continuous in the angle metric.
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We define a unique positive Radon measure on the space of geodesics G
of H which is invariant under the action of PSL2(R) as follows. Recall that
(R̂ × R̂) \ diag is a model for G. The Liouville measure is by the definition

L(A) =
∫∫

A

dxdy

(x − y)2
,

where A ⊂ (R̂×R̂)\diag is a Borel set. If A is a box of geodesic [a, b]× [c, d]
with [a, b] ∩ [c, d] = ∅, then the Liouville measure of A is given by L([a, b] ×
[c, d]) = log cr(a, b, c, d), where cr(a, b, c, d) = (c−a)(d−b)

(d−a)(c−b) .
A positive Radon measure T on G is said to be bounded if supQ T (Q) < ∞

where Q = [a, b]× [c, d] is a box of geodesics and L(Q) = log 2. Let Mb(G) be
the space of all bounded measures on G. We define the Liouville map L intro-
duced by Bonahon in [7]. Recall that the universal Teichmüller space T (H)
is identified with the space of all quasisymmetric maps of R̂ modulo post-
composition with elements of PSL2(R) and that T (M) is identified with
the subspace of T (H) consisting of maps which conjugate G onto another
Fuchsian group, where M = H/G. Then the Liouville map

L : T (H) → Mb(G)

is defined by
L([h])(A) = h∗(L)(A) = L(h(A)),

where A ⊂ G is a Borel set and h : R̂ → R̂ is a quasisymmetric map.
In the case of a compact surface M , Bonahon and Sozen [8] introduced

a topological vector space of Hölder distributions which contains the space
of measures on the geodesics of M and showed that the Liouville map is
continuously differentiable in the sense of Frechét. We describe a proper
generalization of the space of Hölder distributions that is adopted to a gen-
eral hyperbolic Riemann surface (see [55]).

The construction and the properties of the objects related to the Liou-
ville map L of the universal Teichmüller space T (H) that we describe below
are invariant under a Fuchsian group G provided that we restrict L to the
subspace of quasisymmetric maps invariant under G (see [54], [55]). There-
fore, our results will hold for general Teichmüller spaces. The first goal is to
introduce a space containing as a subspace the space of bounded measures
Mb(G) such that the Liouville map L has good smoothness properties. One
candidate would be the dual space to the space of all differentiable real func-
tions with compact support on G. However, a conceptual problem is that
such space is not invariant under the pull backs by quasisymmetric maps of
R̂ (which corresponds to a change of basis for the Teichmüller space). To
resolve this, note that a quasisymmetric map h is Hölder continuous with the
Hölder constant depending on the quasiconformal constant of the minimal
quasiconformal extension of h. Then the space of all Hölder distributions
on Hölder continuous functions is invariant under the change of base (see
[8], [55]).
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In [55], a family of Hölder distributions in the parameter 0 < ν ≤ 1 is
introduced and the intersection of the family is the space into which the
universal Teichmüller space is mapped under the Liouville map. Let 0 <
ν ≤ 1 be fixed. For a ν-Hölder continuous function ϕ : G → R with compact
support, we define a ν-norm by

‖ϕ‖ν = max{sup
g∈G

|ϕ(g)|, sup
g,g′∈G, g �=g′

|ϕ(g) − ϕ(g′)|
d(g, g′)ν

}.

The space of ν-test functions test(ν) consists of all ν-Hölder continuous
functions ϕ : G → R with support in a box [a, b]×[c, d] with L([a, b]×[c, d]) =
log 2 such that

‖ϕ ◦ γa,b,c,d‖ν ≤ 1,

where γa,b,c,d ∈ PSL2(R) is such that γa,b,c,d : (a0, b0, c0, d0) → (a, b, c, d) and
(a0, b0, c0, d0) is a fixed quadruple in R̂ with L(a0, b0, c0, d0) = log 2.

Let Hν(G) be the space of all ν-Hölder continuous real functions ϕ :
G → R with compact support. The space Hν(G) of ν-Hölder distributions
consists of all linear functionals W : Hν(G) → R such that

‖W‖ν = sup
ϕ∈test(ν)

|W (ϕ)| < ∞.

If 0 < ν ′ < ν, then immediately Hν(G) ⊂ Hν′
(G). Let ϕ ∈ Hν(G) and let

D be the diameter of the support of ϕ. Then

‖ϕ‖ν′ ≤ Dν−ν′‖ϕ‖ν .

This implies that
test(ν) ⊂ Dν−ν′

0 test(ν ′),
where D0 is the diameter of [a0, b0] × [c0, d0] which is the support of each
ϕ ◦ γa,b,c,d. Therefore we have that

Hν′
(G) ⊂ Hν(G).

The space H(G) of Hölder distributions is given by

H(G) =
⋂

0<ν≤1

Hν(G).

Since H(G) ⊂ Hν(G) for all 0 < ν ≤ 1, it follows that ν-norm on Hν(G)
restricts to a norm on H(G). The family of ν-norms on H(G) induces the
structure of a complete metrizable topological vector space (see [55] for more
details). The space Mb(G) of bounded measures embeds as a closed subspace
in H(G) via the integration of functions in Hν(G) against the measures.

We extended (see [55]) the target space of the Liouville map

L : T (H) → H(G).

The following theorem is proved in [55] (see [8] for the corresponding result
for compact surfaces).
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Theorem 5.6. The Liouville map L : T (H) → H(G) is continuously dif-
ferentiable in the sense of Fréchet. Namely, there exists a continuous linear
map

T[h0]L : T[h0]T (H) → H(G)
such that if B : A → T (H) is the inverse of the Bers embedding (with A =
Φ(T (H))) and if B(q0) = [h0], then

L ◦ B(q) = L ◦ B(q0) + T[h0]L ◦ Tq0B(q − q0) + o(q − q0)

with limq→q0 o(q − q0)/‖q − q0‖ = 0 in H(G). Moreover, the tangent map
T[h0]L varies continuously in [h0].

Remark. Let t 	→ [ht], for t ∈ (−ε, ε), be a differentiable path in T (H)
with the tangent vector v = d

dtht|t=0. Let ϕ ∈ Hν(G). The first step in the
proof of the above theorem was to show that d

dt

∫∫
ϕdh∗

t (L)|t=0 exists and it
equals to T[h0]L(v). The Hölder continuity of ϕ is essential to have the above
derivative (see [55]). Moreover, it is possible to find an explicit formula for
the derivative which involves a double integration such that the order of the
integration is not possible to change (see [55, Theorem 2]).

Otal [48] considered further smoothness properties of the Liouville map
L : T (H) → H(G). Namely, he proved

Theorem 5.7. The Liouville map L : T (H) → H(G) is real analytic.

Remark. The proof in [48] uses a holomorphic extension of the Liouville
L : T (H) → Hν(G) for each 0 < ν < 1. Define QF (H) to be the space of
equivalence classes all quasiconformal maps of the Riemann sphere Ĉ, where
f1 : Ĉ → Ĉ is equivalent to f2 : Ĉ → Ĉ if there exists γ ∈ PSL2(C) such that
f1|R̂ = γ ◦ f2|R̂. Then T (H) is a real analytic subspace of QF (H) and the
Liouville map extends to a holomorphic map of a neighborhood of T (H) in
QF (H) into the complexification Hν

C(G) of Hν(G), for 0 < ν < 1 (see [48]). It
is interesting to note that it appears that the Liouville map does not extend
from a neighborhood of T (H) in QF (H) into HC(G) =

⋂
0<ν<1 Hν

C(G) due
to the fact that the size of the neighborhood of T (H) depends on ν.

The Liouville map L : T (H) → H(G) is injective. However, it turns out
that the structure of the topological vector space on H(G) gives additional
properties to the Liouville map (see [54] and see [7] for the closed surface
case).

Theorem 5.8. The Liouville map L : T (H) → H(G) is a homeomor-
phism onto its image which is closed and unbounded. Moreover, the image
L(T (H)) consists of all bounded, positive measures T on the space of geodesics
G which satisfy

e−T ([a,b]×[c,d]) + e−T ([b,c]×[d,a]) = 1
for all a, b, c, d ∈ R̂ given in the counterclockwise order.
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An asymptotic ray to the image L(T (H)) is a path t 	→ t · W , for t > 0
and W ∈ H(G), such that there exists a path h∗

t (L) ∈ L(T (H)) with

1
t
h∗

t (L) → W,

as t → ∞ in the topology of H(G). Therefore, it is natural to consider the
set of asymptotic rays as a boundary of the Teichmüller space T (H).

We defined a bounded measured lamination μ on H to be a geodesic
lamination λ (called the support of μ) together with a transverse, homotopy
invariant measure. Since the transverse measure is homotopy invariant, it
follows that the transverse measure to λ induces a bounded measure on H(G)
whose support is λ. Conversely, a bounded measure on H(G) whose support
λ is a geodesic lamination induces a measured geodesic lamination on H. For
example, the Liouville measure and the pull back of the Liouville measure
by any homeomorphism h : R̂ → R̂ are measures of full support and they do
not induce measured geodesic laminations. On the other hand, a measure
on G which is supported on finitely many non-intersecting geodesics induces
a finite measured geodesic lamination.

The following result from [54] completely characterizes the Thurston
boundary of general Teichmüller spaces.

Theorem 5.9. Any asymptotic ray to L(G) is of the form t 	→ tμ, where
μ is a bounded measured lamination and t > 0. Conversely, the ray tμ, for
a bounded measured lamination μ and t > 0, is asymptotic to the image
L(Etμ|R̂) of an earthquake path t 	→ Etμ|R̂. Thus, the Thurston boundary of
a general Teichmüller space is identified with the space of projective, bounded
measured laminations.

Remark. The hyperbolic plane does not have simple closed geodesic.
An infinite Riemann surface has simple closed geodesics, but it is not always
possible to parametrize the Teichmüller space using the lengths of the geo-
desic representatives of simple closed curves, unlike in the finite case. Thus
the approach at hand using the Liouville map seems to be the correct one.

Remark. The most demanding part of the proof of the above theorem is
in establishing that the earthquake path has its projective measured geodesic
lamination as its unique endpoint on the Thurston boundary. Namely, that
1
t

∫∫
G ϕd(Etμ|R̂)∗(L) → μ as t → ∞, for all ϕ ∈ Hν(G). We illustrate this

convergence in the case of a simple earthquake E whose earthquake measure
consists of a single atom m > 0 at the geodesic g = (a, c). Let μ denote the
measure with support g such that μ(g) = m. Then 1

t L(Etμ|R̂([a′, b′]×[c′, d′]))
converges to m if a ∈ [a′, b′] and c ∈ (c′, d′], otherwise it converges to 0 as t →
∞ (see [54, Appendix, Lemma A.1]). This fact together with a more detailed
information about the above convergence implies that 1

t

∫∫
G ϕd(Etμ|R̂)∗(L)

→ μ(supp(ϕ)) ·ϕ(g) as t → ∞. A general case is proved by a careful analysis
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of the earthquake measure and the asymptotics of the pull backs of the
Liouville measure (see [54, Section 4, Appendix] for the details).
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[56] D. Šarić, Some remarks on bounded earthquakes, Proc. Amer. Math. Soc., 138 (2010),

871–879.
[57] Z. Slodkowski, Holomorphic motions and polynomial hulls, Proc. Amer. Math. Soc.

111 (1991), no. 2, 347–355.
[58] K. Strebel, Zur Frage der Eindeutigkeit extremaler quasikonformer Abbildungen des

Einheitskreises, (German) Comment. Math. Helv. 36 1961/1962 306–323.
[59] K. Strebel, On the existence of extremal Teichmüller mappings, J. Analyse Math. 30

(1976), 464–480.
[60] K. Strebel, Eine Abschtzung der Lnge gewisser Kurven bei quasikonformer Abbildung,

(German) Ann. Acad. Sci. Fenn. Ser. A. I. no. 243 (1957) 1–10.
[61] Takhtajan, L. A. and Teo, Lee-Peng, Weil-Petersson metric on the universal Teichm-

ller space, Mem. Amer. Math. Soc. 183 (2006), no. 861, viii+119 pp.
[62] H. Tanigawa, Holomorphic families of geodesic discs in infinite-dimensional

Teichmüller spaces, Nagoya Math. J. 127 (1992), 117–128.
[63] W. Thurston, Earthquakes in two-dimensional hyperbolic geometry, Low-dimensional

topology and Kleinian groups (Coventry/Durham, 1984), 91–112, London Math. Soc.
Lecture Note Ser., 112, Cambridge Univ. Press, Cambridge, 1986.

[64] W. Thurston, Three-dimensional geometry and topology, Vol. 1. Edited by Silvio Levy.
Princeton Mathematical Series, 35. Princeton University Press, Princeton, NJ, 1997.

[65] W. Thurston, On the geometry and dynamics of diffeomorphisms of surfaces, Bull.
Amer. Math. Soc. (N.S.) 19 (1988), no. 2, 417–431.

Department of Mathematics, University of Warwick, Coventry, CV8 4AL,

United Kingdom

E-mail address: v.markovic@warwick.ac.uk

Department of Mathematics, Queens College of CUNY, 65-30 Kissena Blvd.,

Flushing, NY 11367

E-mail address: Dragomir.Saric@qc.cuny.edu



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white final Printer PDFs)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed true
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


