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1. Introduction

The moduli space Mg,k of Riemann surfaces of genus g with k punctures
plays an important role in many area of mathematics and theoretical physics.
In this article we first survey some of our recent works on the geometry of
this moduli space. In the following we assume g ≥ 2 and k = 0 to simplify
notations. All the results in this paper work for the general case when 3g −
3 + k > 0. We will focus on Kähler metrics on the moduli and Teichmüller
spaces, especially the Weil-Petersson metric, the Ricci, the perturbed Ricci,
and the Kähler-Einstein metrics.

We will review certain new geometric properties we found and proved
for these metrics, such as the bounded geometry, the goodness and their
naturalness under restriction to boundary divisors. The algebro-geometric
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corollaries such as the stability of the logarithmic cotangent bundles and
the infinitesimal rigidity of the moduli spaces will also be briefly discussed.
Similar to our previous survey articles [12, 11], we will briefly describe the
basic ideas of our proofs, the details of the proofs will be published soon,
see [13, 14].

After introducing the definition of Weil-Petersson metric in Section 2, we
discuss the fundamental curvature formula of Wolpert for the Weil-Petersson
metric. For the reader’s convenience we also describe a proof of the negativity
of the Riemannian sectional curvature of the Weil-Petersson metric.

In Section 3 we discuss the Ricci and the perturbed Ricci metrics and
their curvature formulas. In Section 4 we describe the asymptotics of these
metrics and their curvatures which are important for our understanding of
their bounded geometry. In Section 5 we briefly discuss the equivalence of all
of the complete metrics on Teichmüller spaces to the Ricci and the perturbed
Ricci metrics, which is a simple corollary of our understanding of these two
new metrics.

In Section 6 we discuss the goodness of the Weil-Petersson metric, the
Ricci, the perturbed Ricci metric and the Kähler-Einstein metric. To prove
the goodness we need much more subtle estimates on the connection and
the curvatures of these metrics. Section 7 contains discussions of the dual
Nakano negativity of the logarithmic tangent bundle of the moduli space
and the naturalness of the Ricci and the perturbed Ricci metrics.

In Section 8 we discuss the Kähler-Ricci flow and the Kähler-Einstein
metric on the moduli space. There are many interesting corollaries from our
understanding of the geometry of the moduli spaces. In Section 9 we discuss
the stability of the logarithmic cotangent bundle, the L2 cohomology and
the infinitesimal rigidity of the moduli spaces as well as the Gauss-Bonnet
theorem on the moduli space.

Finally in Section 10 we describe a canonical way to locally deform
holomorphic sections the pluricanonical bundles of fibers.

2. The Weil-Petersson metric and its curvature

Let Mg be the moduli space of Riemann surfaces of genus g where
g ≥ 2. It is well known that the Mg is a complex orbifold. The Teichmüller
space Tg, as the space parameterizing marked Riemann surfaces, is a smooth
contractible pseudo-convex domain and can be embedded into the Euclidean
space of the same dimension.

Remark 2.1. Since Mg is only an orbifold, in the following when we
work near a point p ∈ Mg which is an orbifold point, we always work on a
local manifold cover of Mg around p.

An alternative way is to add a level structure on the moduli space so that
it becomes smooth [24]. All the following results are still valid. In particular,
when we use the universal curve over the moduli space, we always mean the
universal curve over the local manifold cover.
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When we deal with global properties of the moduli space, we can use
the moduli space with a level structure such that it becomes smooth. We take
quotients after we derive the estimates. We can also work on the Teichmüller
space which is smooth.

Finally, when we use the universal family over a chart of the moduli
space Mg, we do not specify any special gauge. All the computations are
gauge invariant.

For any point p ∈ Mg we let Xp be the corresponding Riemann surface.
By the Kodaira-Spencer theory we have the identification

T 1,0
p Mg

∼= Ȟ1
(
Xp, T

1,0
Xp

)
.

It follows from Serre duality that

Ω1,0
p Mg

∼= H0
(
Xp, K

2
Xp

)
.

By the Riemann-Roch theorem we know that the dimension of the moduli
space is

dimC Mg = n = 3g − 3.

The Weil-Petersson (WP) metric is the first known Kähler metric on
Mg. Ahlfors showed that the WP metric is Kähler and its holomorphic
sectional curvature is bounded from above by a negative constant which
only depends on the genus g. Royden conjectured that the Ricci curvature
of the WP metric is also bounded from above by a negative constant. This
conjecture was proved by Wolpert [26].

Now we briefly describe the WP metric and its curvature formula. Please
see the works [32], [30] of Wolpert for detailed description and various
aspects of the WP metric.

Let π : X → Mg be the universal family over the moduli space. For any
point s∈ Mg we let Xs = π−1(s) be the corresponding smooth Riemann sur-
face. Since the Euler characteristic χ (Xs) = 2 − 2g < 0, by the uniformiza-
tion theorem we know that each fiber Xs is equipped with a unique Kähler-
Einstein metric λ. In the following we will always use the Kähler-Einstein
metric λ on Xs. Let z be any holomorphic coordinate on Xs. We have

∂z∂z log λ = λ.

Now we fix a point s∈ Mg and let (U, s1, · · · , sn) be any holomorphic
coordinate chart on Mg around s. In the following we will denote by ∂i and
∂z the local vector fields ∂

∂si
and ∂

∂z respectively. By the Kodaira-Spencer
theory and the Hodge theory we have the identification

T 1,0
s Mg

∼= Ȟ1
(
Xs, T

1,0
Xs

)
∼= H

0,1
(
Xs, T

1,0
Xs

)
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where the right side of the above formula is the space of harmonic Beltrami
differentials. In fact we can explicitly construct the above identification. We
let

ai = ai(z, s) = − λ−1∂i∂z log λ

and let

vi =
∂

∂si
+ ai

∂

∂z
.

The vector field vi is a smooth vector field on π−1(U) and is called the har-
monic lift of ∂

∂si
. If we let Bi = ∂F vi ∈A0,1

(
Xs, T

1,0
Xs

)
, then Bi is harmonic

and the map ∂
∂si

�→ Bi is precisely the Kodaira-Spencer map. Here ∂F is the
operator in the fiber direction. In local coordinates if we let Bi = Aidz ⊗ ∂z

then Ai = ∂zai. Furthermore, it was proved by Schumacher that if η is any
relative (1, 1)-form on X then

∂

∂si

∫
Xs

η =
∫

Xs

Lviη.(2.1)

We note that although Ai is a local smooth function on Xs, the product

AiAj = Bi · Bj ∈C∞(Xs)

is globally defined. We let

fij = AiAj ∈C∞(Xs).

The Weil-Petersson metric on Mg is given by

hij(s) =
∫

Xs

Bi · Bj dv =
∫

Xs

fij dv

where dv =
√

−1
2 λdz∧dz is the volume form on Xs with respect to the Kähler-

Einstein metric.
Now we describe the curvature formula of the WP metric. We let

� = −λ−1∂z∂z

be the Hodge-Laplace operator acting on C∞(Xs). It is clear that the oper-
ator � + 1 has no kernel and thus is invertible. We let

eij = (� + 1)−1
(
fij

)
∈C∞(Xs).

The following curvature formula is due to Wolpert. See [9] for the detailed
proof.

Proposition 2.1. Let Rijkl be the curvature of the WP metric. Then

Rijkl = −
∫

Xs

(
eijfkl + eilfkj

)
dv.(2.2)
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The curvature of the WP metric has very strong negativity property. In
fact we shall see in Section 7 that the WP metric is dual Nakano negative. We
collect the negativity property of the WP metric in the following proposition.

Proposition 2.2. The bisectional curvature of the WP metric on the
moduli space Mg is negative. The holomorphic sectional and Ricci cur-
vatures of the WP metric are bounded from above by negative constants.
Furthermore, the Riemannian sectional curvature of the WP metric is also
negative.

Proof. These results are well known, see [26]. Here we give a short
proof of the negativity of the Riemannian sectional curvature of the WP
metric for the reader’s convenience. The proof follows from expressing the
Riemannian sectional curvature in term of complex curvature tensors and
using the curvature formula (2.2).

In general, let (Xn, g, J) be a Kähler manifold. For any point p ∈X and
two orthonormal real tangent vectors u, v ∈T R

p X, we let X = 1
2 (u − iJu)

and Y = 1
2 (v − iJv) and we know that X, Y ∈T 1,0

p X. We can choose holo-
morphic local coordinate s = (s1, . . . , sn) around p such that X = ∂

∂s1
. If

v = spanR{u, Ju}, since v is orthogonal to u and its length is 1, we know
v = ± Ju. In this case we have

R(u, v, u, v) = R(u, Ju, u, Ju) = 4R1111.

Thus the Riemannian sectional curvature and the holomorphic sectional
curvature have the same sign.

If v is not contained in the real plane spanned by u and Ju we can
choose the coordinate s such that X = ∂

∂s1
and Y = ∂

∂s2
. In this case a direct

computation shows that

R(u, v, u, v) = 2 (R1122 − Re (R1212)) .(2.3)

Now we fix a point p ∈ Mg and let u, v ∈T R
p Mg. Let X, Y be the corre-

sponding (1, 0)-vectors. Since we know that the holomorphic sectional curva-
ture of the WP metric is strictly negative, we may assume v /∈ spanR{u, Ju}
and thus we can choose holomorphic local coordinates s = (s1, . . . , sn) around
p such that X = ∂

∂s1
(p) and Y = ∂

∂s2
(p). By formulas (2.3) and (2.2) we have

R(u, v, u, v) = −2

(∫
Xp

(e11f22 + e12f21 − 2Re(e12f12)) dv

)

= −2

(∫
Xp

(e11f22 + e12f21 − e12f12 − e21f21) dv

)
.

(2.4)

To prove the proposition we only need to show that∫
Xp

e12f21 dv ≥
∫

Xp

Re (e12f12) dv(2.5)
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and ∫
Xp

e11f22 dv ≥
∫

Xp

e12f21 dv(2.6)

and both equalities cannot hold simultaneously.
To prove inequality (2.5) we let α = Re(e12) and β = Im(e12). Then we

know ∫
Xp

e12f21 dv =
∫

Xp

(α(� + 1)α + β(� + 1)β) dv

and ∫
Xp

Re (e12f12) dv =
∫

Xp

(α(� + 1)α − β(� + 1)β) dv.

Thus formula (2.5) reduces to∫
Xp

β(� + 1)β dv ≥ 0.

However, we know∫
Xp

β(� + 1)β dv =
∫

Xp

(
‖∇′β‖2 + β2) dv ≥ 0

and the equality holds if and only if β = 0. If this is the case then we know
that e12 is a real value function and f12 is real valued too. Since f11 = A1A1

and f12 = A1A2 and f11 is real-valued we know that there is a function
f ∈C∞(Xp\S, R) such that A2 = f(z)A1 on Xp\S. Here S is the set of zeros
of A1. Since both A1 and A2 are harmonic, we know that ∂

∗
A1 = ∂

∗
A2 = 0.

These reduce to ∂z(λA1) = ∂z(λA2) = 0 locally. It follows that ∂zf |Xp\S = 0.
Since f is real-valued we know that f must be a constant. But A1 and A2
are linearly independent which is a contradiction. So the strict inequality
(2.5) always holds.

Now we prove formula (2.6). Let G(z, w) be the Green’s function of the
operator � + 1 and let T = (� + 1)−1. By the maximum principle we know
that T maps positive functions to positive functions. This implies that the
Green’s function G is nonnegative. Since G(z, w) = G(w, z) is symmetric we
know that

∫
Xp

e11f22 dv =
∫

Xp×Xp

G(z, w)f11(w)f22(z) dv(w)dv(z)

=
1
2

∫
Xp×Xp

G(z, w) (f11(w)f22(z) + f11(z)f22(w)) dv(w)dv(z).

(2.7)
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Similarly we have

∫
Xp

e12f21 dv =
∫

Xp×Xp

G(z, w)f12(w)f21(z) dv(w)dv(z)

=
1
2

∫
Xp×Xp

G(z, w) (f12(w)f21(z) + f12(z)f21(w)) dv(w)dv(z).

(2.8)

Formula (2.6) follows from the fact that

f11(w)f22(z) + f11(z)f22(w) − f12(w)f21(z) − f12(z)f21(w)

= |A1(z)A2(w) − A1(w)A2(z)|2 ≥ 0.

�

Although the WP metric has very strong negativity properties, as we
shall see in Section 4, the WP metric is not complete and its curvatures
have no lower bound.

3. The Ricci and perturbed Ricci metrics

In [9] and [10] we studied two new Kähler metrics: the Ricci metric ωτ

and the perturbed Ricci metric ωτ̃ on the moduli space Mg. These new
Kähler metrics are complete and have bounded geometry and thus have
many important applications. We now describe these new metrics.

Since the Ricci curvature of the WP metric has negative upper bound,
we define the Ricci metric

ωτ = − Ric (ωWP ) .

We also define the perturbed Ricci metric to be a linear combination of the
Ricci metric and the WP metric

ωτ̃ = ωτ + CωWP

where C is a positive constant. In local coordinates we have τij = −hklRijkl

and τ̃ij = τij + Chij where Rijkl is the curvature of the WP metric.
Similar to curvature formula (2.2) of the WP metric we can establish

integral formulae for the curvature of the Ricci and perturbed Ricci met-
rics. These curvature formulae are crucial in estimating the asymptotics of
these metrics and their curvature. To establish these formulae, we need to
introduce some operators. We let

P : C∞(Xs) → A1,0
(
T 0,1

Xs

)
be the operator defined by

f �→ ∂
(
ω−1

KE
�∂f

)
.
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In local coordinate we have P (f) = ∂z

(
λ−1∂zf

)
dz ⊗ ∂z. For each 1≤ k ≤n

we let
ξk : C∞(Xs) → C∞(Xs)

be the operator defined by

f �→ ∂
∗ (Bk�∂f) = − Bk · P (f).

In the local coordinate we have ξk(f) = − λ−1∂z (Ak∂zf). Finally for any
1 ≤ k, l ≤n we define the operator

Qkl : C∞(Xs) → C∞(Xs)

by
Qkl(f) = P

(
ekl

)
P (f) − 2fkl�f + λ−1∂zfkl∂zf.

These operators are commutators of various classical operators on Xs. See
[9] for details. Now we recall the curvature formulae of the Ricci and per-
turbed Ricci metrics established in [9]. For convenience, we introduce the
symmetrization operator.

Definition 3.1. Let U be any quantity which depends on indices i, k, α,
j, l, β. The symmetrization operator σ1 is defined by taking the summation
of all orders of the triple (i, k, α). That is

σ1(U(i, k, α, j, l, β)) = U(i, k, α, j, l, β) + U(i, α, k, j, l, β) + U(k, i, α, j, l, β)

+ U(k, α, i, j, l, β) + U(α, i, k, j, l, β) + U(α, k, i, j, l, β).

Similarly, σ2 is the symmetrization operator of j and β and σ̃1 is the sym-
metrization operator of j, l and β.

Now we can state the curvature formulae. We let T = (� + 1)−1 be the
operator in the fiber direction.

Theorem 3.1. Let s1, . . . , sn be local holomorphic coordinates at s∈ Mg

and let R̃ijkl be the curvature of the Ricci metric. Then at s, we have

R̃ijkl = −hαβ

{
σ1σ2

∫
Xs

{
T (ξk(eij))ξl(eαβ) + T (ξk(eij))ξβ(eαl)

}
dv

}
− hαβ

{
σ1

∫
Xs

Qkl(eij)eαβ dv

}
+ τpqhαβhγδ

{
σ1

∫
Xs

ξk(eiq)eαβ dv

} {
σ̃1

∫
Xs

ξl(epj)eγδ) dv

}
+ τpjh

pqRiqkl.

(3.1)

The curvature formula of the perturbed Ricci metric is similar.
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Theorem 3.2. Let τ̃ij = τij +Chij where τ and h are the Ricci and WP
metrics respectively where C > 0 is a constant. Let Pijkl be the curvature of
the perturbed Ricci metric. Then we have

Pijkl = −hαβ

{
σ1σ2

∫
Xs

{
T (ξk(eij))ξl(eαβ) + T (ξk(eij))ξβ(eαl)

}
dv

}
− hαβ

{
σ1

∫
Xs

Qkl(eij)eαβ dv

}
+ τ̃pqhαβhγδ

{
σ1

∫
Xs

ξk(eiq)eαβ dv

} {
σ̃1

∫
Xs

ξl(epj)eγδ) dv

}
+ τpjh

pqRiqkl + CRijkl.

(3.2)

In [9] and [10] we proved various properties of these new metrics. Here
we collect the important ones.

Theorem 3.3. The Ricci and perturbed Ricci metrics are complete Kähler
metrics on Mg. Furthermore we have

• These two metrics have bounded curvature.
• The injectivity radius of the Teichmüller space Tg equipped with any

of these two metrics is bounded from below.
• These metrics have Poincaré growth and thus the moduli space has

finite volume when equipped with any of these metrics.
• The perturbed Ricci metric has negatively pinched holomorphic sec-

tional and Ricci curvatures when we choose the constant C to be
large enough.

The Ricci metric is also cohomologous to the Kähler-Einstein metric on
Mg in the sense of currents and hence can be used as the background metric
to estimate the Kähler-Einstein metric. We will discuss this in Section 5.

4. Asymptotics

Since the moduli space Mg is noncompact, it is important to under-
stand the asymptotic behavior of the canonical metrics in order to study
their global properties. We first describe the local pinching coordinates near
the boundary of the moduli space by using the plumbing construction of
Wolpert.

Let Mg be the moduli space of Riemann surfaces of genus g ≥ 2 and let
Mg be its Deligne-Mumford compactification [3]. Each point y ∈Mg \ Mg

corresponds to a stable nodal surface Xy. A point p ∈Xy is a node if there
is a neighborhood of p which is isometric to the germ

{(u, v) | uv = 0, |u|, |v| < 1} ⊂ C
2.
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We first recall the rotationally symmetric coordinate (rs-coordinate) on
a Riemann surface defined by Wolpert in [28]. There are two cases: the
puncture case and the short geodesic case. For the puncture case, we have
a nodal surface X and a node p ∈X. Let a, b be two punctures which are
glued together to form p.

Definition 4.1. A local coordinate chart (U, u) near a is called rs-
coordinate if u(a) = 0 where u maps U to the punctured disc 0 < |u|< c with
c > 0, and the restriction to U of the Kähler-Einstein metric λ on X can be
written as

λ =
1

2|u|2(log |u|)2 |du|2.

The rs-coordinate (V, v) near b is defined in a similar way.

For the short geodesic case, we have a closed surface X, a closed geodesic
γ ⊂X with length l < c∗ where c∗ is the collar constant.

Definition 4.2. A local coordinate chart (U, z) is called rs-coordinate
at γ if γ ⊂U where z maps U to the annulus c−1|t| 1

2 < |z|< c|t| 1
2 , and the

Kähler-Einstein metric λ on X can be written as

λ =
1
2

(
π

log |t|
1
|z| csc

π log |z|
log |t|

)2

|dz|2.

By Keen’s collar theorem [7], we have the following lemma:

Lemma 4.1. Let X be a closed surface and let γ be a closed geodesic on
X such that the length l of γ satisfies l < c∗. Then there is a collar Ω on X
with holomorphic coordinate z defined on Ω such that

(1) z maps Ω to the annulus 1
ce

− 2π2
l < |z|< c for c > 0;

(2) the Kähler-Einstein metric on X restricted to Ω is given by(
1
2
u2r−2 csc2 τ

)
|dz|2(4.1)

where u = l
2π , r = |z| and τ = u log r;

(3) the geodesic γ is given by the equation |z| = e− π2
l .

We call such a collar Ω a genuine collar.

We notice that the constant c in the above lemma has a lower bound
such that the area of Ω is bounded from below. Also, the coordinate z in the
above lemma is an rs-coordinate. In the following, we will keep the notations
u, r and τ .

Now we describe the local manifold cover of Mg near the boundary. We
take the construction of Wolpert [28]. Let X0,0 be a stable nodal surface
corresponding to a codimension m boundary point and let p1, . . . , pm be
the nodes of X0.0. The smooth part X0 = X0,0 \ {p1, . . . , pm} is a union of
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punctured Riemann surfaces. We fix rs-coordinate charts (Ui, ηi) and (Vi, ζi)
at pi for i= 1, . . . , m such that all the Ui and Vi are mutually disjoint.

Now we pick an open set U0 ⊂X0 such that the intersection of each
connected component of X0 and U0 is a nonempty relatively compact set
and the intersection U0 ∩ (Ui ∪ Vi) is empty for all i. We pick Beltrami dif-
ferentials νm+1, . . . , νn which are supported in U0 and span the tangent
space at X0 of the deformation space of X0. For s = (sm+1, . . . , sn), we
let ν(s) =

∑n
i = m+1 siνi. We assume |s| = (

∑
|si|2)

1
2 small enough such that

|ν(s)|< 1. The nodal surface X0,s is obtained by solving the Beltrami equa-
tion ∂w = ν(s)∂w. Since ν(s) is supported in U0, (Ui, ηi) and (Vi, ζi) are
still holomorphic coordinates for X0,s. We note that these coordinates are
no longer rs-coordinates with respect to the complex structure on X0,s. By
the theory of Ahlfors and Bers [1] and Wolpert [28] we can assume that
there are constants δ, c > 0 such that when |s|< δ, ηi and ζi are holomorphic
coordinates on X0,s with 0< |ηi|< c and 0< |ζi|< c.

Now we assume t = (t1, . . . , tm) has small norm. We do the plumbing con-
struction on X0,s to obtain Xt,s in the following way. We remove from X0,s

the discs 0 < |ηi| ≤ |ti|
c and 0< |ζi| ≤ |ti|

c for each i= 1, . . . , m, and identify
|ti|
c < |ηi|< c with |ti|

c < |ζi|< c by the rule ηiζi = ti. This defines the surface
Xt,s. The tuple (t1, . . . , tm, sm+1, . . . , sn) are the local pinching coordinates
for the manifold cover of Mg. We call the coordinates ηi (or ζi) the plumb-
ing coordinates on Xt,s and the collar defined by |ti|

c < |ηi|< c the plumbing
collar.

Remark 4.1. From the estimate of Wolpert [27], [28] on the length of
short geodesic, we have ui = li

2π ∼ − π
log |ti| .

Let (t, s) = (t1, . . . , tm, sm+1, . . . , sn) be the pinching coordinates near
X0,0. For |(t, s)|< δ, let Ωj

c be the j-th genuine collar on Xt,s which contains
a short geodesic γj with length lj .

In the rest of this section we will use the following notations:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
uj =

lj
2π

u0 =
∑m

j = 1 uj +
∑n

j = m+1 |sj |
rj = |zj |
τj = uj log rj

where zj is the properly normalized rs-coordinate on Ωj
c such that

Ωj
c = {zj | c−1e

− 2π2
lj < |zj |< c}.
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From the above argument, we know that the Kähler-Einstein metric λ on
Xt,s, restrict to the collar Ωj

c, is given by

λ =
1
2
u2

jr
−2
j csc2 τj .(4.2)

For convenience, we let Ωc = ∪m
j = 1 Ωj

c and Rc = Xt,s \ Ωc. In the following,
we may change the constant c finitely many times. It is clear that this will
not affect the estimates.

To estimate the WP, Ricci and perturbed Ricci metrics and their cur-
vatures, we first need to to find all the harmonic Beltrami differentials
B1, . . . , Bn corresponding to the tangent vectors ∂

∂t1
, . . . , ∂

∂sn
. In [17], Masur

constructed 3g −3 regular holomorphic quadratic differentials ψ1, . . . , ψn on
the plumbing collars by using the plumbing coordinate ηj . These quadratic
differentials correspond to the cotangent vectors dt1, . . . , dsn.

However, it is more convenient to estimate the curvature if we use the rs-
coordinate on Xt,s since we have the accurate form of the Kähler-Einstein
metric λ in this coordinate. In [25], Trapani used the graft metric con-
structed by Wolpert [28] to estimate the difference between the plumbing
coordinate and rs-coordinate. He also described the holomorphic quadratic
differentials constructed by Masur in the rs-coordinate. We collect Trapani’s
results (Lemma 6.2–6.5, [25]) in the following theorem:

Theorem 4.1. Let (t, s) be the pinching coordinates on Mg near X0,0

which corresponds to a codimension m boundary point of Mg. Then there
exist constants M, δ > 0 and 1 > c > 0 such that if |(t, s)|< δ, then the j-th
plumbing collar on Xt,s contains the genuine collar Ωj

c. Furthermore, one can
choose rs-coordinate zj on the collar Ωj

c such that the holomorphic quadratic
differentials ψ1, . . . , ψn corresponding to the cotangent vectors dt1, . . . , dsn

have the form ψi = ϕi(zj)dz2
j on the genuine collar Ωj

c for 1 ≤ j ≤m, where

(1) ϕi(zj) = 1
z2
j
(qj

i (zj) + βj
i ) if i≥m + 1;

(2) ϕi(zj) = (− tj
π ) 1

z2
j
(qj(zj) + βj) if i= j;

(3) ϕi(zj) = (− ti
π ) 1

z2
j
(qj

i (zj) + βj
i ) if 1 ≤ i≤m and i �= j.

Here βj
i and βj are functions of (t, s), qj

i and qj are functions of (t, s, zj)
given by

qj
i (zj) =

∑
k<0

αj
ik(t, s)t

−k
j zk

j +
∑
k>0

αj
ik(t, s)z

k
j

and
qj(zj) =

∑
k<0

αjk(t, s)t−k
j zk

j +
∑
k>0

αjk(t, s)zk
j

such that
(1)

∑
k<0 |αj

ik|c−k ≤M and
∑

k>0 |αj
ik|ck ≤M if i �= j;

(2)
∑

k<0 |αjk|c−k ≤M and
∑

k>0 |αjk|ck ≤M ;
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(3) |βj
i | = O(|tj |

1
2−ε) with ε < 1

2 if i �= j;
(4) |βj | = (1 + O(u0)).

An immediate consequence is the precise asymptotics of the WP metric
which was computed in [9]. These asymptotic estimates were also given by
Wolpert in [29].

Theorem 4.2. Let (t, s) be the pinching coordinates and let h be the WP
metric. Then

(1) hii = 2u−3
i |ti|2(1 + O(u0)) and hii = 1

2
u3

i
|ti|2 (1 + O(u0)) for 1 ≤ i≤m;

(2) hij = O(|titj |) and hij = O

(
u3

i u3
j

|titj |

)
, if 1 ≤ i, j ≤m and i �= j;

(3) hij = O(1) and hij = O(1), if m + 1 ≤ i, j ≤n;

(4) hij = O(|ti|) and hij = O
(

u3
i

|ti|

)
if i≤m < j;

(5) hij = O(|tj |) and hij = O

(
u3

j

|tj |

)
if j ≤m < i.

By using the asymptotics of the WP metric and the fact that

Bi = λ−1
n∑

j = 1

hijψj

we can derive the expansion of the harmonic Beltrami differentials corre-
sponding to ∂

∂ti
and ∂

∂sj
.

Theorem 4.3. For c small, on the genuine collar Ωj
c, the coefficient

functions Ai of the harmonic Beltrami differentials have the form:

(1) Ai = zj

zj
sin2 τj

(
pj

i (zj) + bj
i

)
if i �= j;

(2) Aj = zj

zj
sin2 τj

(
pj(zj) + bj

)
where

(1) pj
i (zj) =

∑
k ≤ −1 aj

ikρ
−k
j zk

j +
∑

k ≥ 1 aj
ikz

k
j if i �= j;

(2) pj(zj) =
∑

k ≤ −1 ajkρ
−k
j zk

j +
∑

k ≥ 1 ajkz
k
j .

In the above expressions, ρj = e
− 2π2

lj and the coefficients satisfy the following
conditions:

(1)
∑

k ≤ −1 |aj
ik|c−k = O

(
u−2

j

)
and

∑
k ≥ 1 |aj

ik|ck = O
(
u−2

j

)
if i≥m + 1;

(2)
∑

k ≤ −1 |aj
ik|c−k = O

(
u3

i u−2
j

|ti|

)
and

∑
k ≥ 1 |aj

ik|ck = O

(
u3

i u−2
j

|ti|

)
if i≤m and i �= j;

(3)
∑

k ≤ −1 |ajk|c−k = O
(

uj

|tj |

)
and

∑
k ≥ 1 |ajk|ck = O

(
uj

|tj |

)
;
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(4) |bj
i | = O(uj) if i≥m + 1;

(5) |bj
i | = O (uj) O

(
u3

i
|ti|

)
if i≤m and i �= j;

(6) bj = − uj

πtj
(1 + O(u0)).

By a detailed study of the curvature of the WP metric we derived the
precise asymptotics of the Ricci metric in [9].

Theorem 4.4. Let (t, s) be the pinching coordinates. Then we have

(1) τii = 3
4π2

u2
i

|ti|2 (1 + O(u0)) and τ ii = 4π2

3
|ti|2
u2

i
(1 + O(u0)), if i≤m;

(2) τij = O

(
u2

i u2
j

|titj | (ui + uj)
)

and τ ij = O(|titj |), if i, j ≤m and i �= j;

(3) τij = O
(

u2
i

|ti|

)
and τ ij = O(|ti|), if i≤m and j ≥m + 1;

(4) τij = O

(
u2

j

|tj |

)
and τ ij = O(|tj |), if j ≤m and i≥m + 1;

(5) τij = O(1), if i, j ≥m + 1.

In [9] we also derived the asymptotics of the curvature of the Ricci
metric.

Theorem 4.5. Let X0 ∈Mg \ Mg be a codimension m point and let
(t1, . . . , tm, sm+1, . . . , sn) be the pinching coordinates at X0 where t1, . . . , tm
correspond to the degeneration directions. Then the holomorphic sectional
curvature is negative in the degeneration directions and is bounded in the
non-degeneration directions. More precisely, there exists δ > 0 such that, if
|(t, s)|< δ, then

R̃iiii = − 3u4
i

8π4|ti|4
(1 + O(u0))(4.3)

if i≤m and ∣∣∣R̃iiii

∣∣∣ = O(1)(4.4)

if i≥m + 1. Here R̃ is the curvature of the Ricci metric.
Furthermore, on Mg, the holomorphic sectional curvature, the bisec-

tional curvature and the Ricci curvature of the Ricci metric are bounded
from above and below.

In [13] and [14] we derived more precise estimates of the curvature of
the Ricci and perturbed Ricci metrics which we will discuss in Section 6.

5. Canonical metrics and equivalence

In addition to the WP, Ricci and perturbed Ricci metrics on the moduli
space, there are several other canonical metrics on Mg. These include the
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Teichmüller metric, the Kobayashi metric, the Carathéodory metric, the
Kähler-Einstein metric, the induced Bergman metric, the McMullen metric
and the asymptotic Poincaré metric.

Firstly, on any complex manifold there are two famous Finsler metrics:
the Carathéodory and Kobayashi metrics. Now we describe these metrics.

Let X be a complex manifold and of dimension n. let ΔR be the disk
in C with radius R. Let Δ = Δ1 and let ρ be the Poincaré metric on Δ.
Let p ∈X be a point and let v ∈TpX be a holomorphic tangent vector. Let
Hol(X, ΔR) and Hol(ΔR, X) be the spaces of holomorphic maps from X to
ΔR and from ΔR to X respectively. The Carathéodory norm of the vector
v is defined to be

‖v‖C = sup
f ∈ Hol(X,Δ)

‖f∗v‖Δ,ρ

and the Kobayashi norm of v is defined to be

‖v‖K = ∈ ff ∈ Hol(ΔR,X), f(0) = p, f ′(0) = v
2
R

.

It is well known that the Carathéodory metric is bounded from above by
the Kobayashi metric after proper normalization.

The first known metric on the Teichmüller space Tg is the Teichmüller
metric which is also an Finsler metric. Royden showed that, on Tg, the
Teichmüller metric coincides with the Kobayashi metric. Generalizations
and proofs of Royden’s theorem can be found in [16].

Now we look at the Kähler metrics. Firstly, since the Teichmüller space
Tg is a pseudo-convex domain, by the work of Cheng and Yau [2] and the
later work of Yau, there exist a unique complete Kähler-Einstein metric on
Tg whose Ricci curvature is −1.

There is also a canonical Bergman metric on Tg which we describe now.
In general, let X be any complex manifold, let KX be the canonical bundle
of X and let W be the space of L2 holomorphic sections of KX in the sense
that if σ ∈W , then

‖σ‖2
L2 =

∫
X

(
√

−1)n2
σ ∧ σ < ∞.

The inner product on W is defined to be

(σ, ρ) =
∫

X
(
√

−1)n2
σ ∧ ρ

for all σ, ρ ∈W . Let σ1, σ2, . . . be an orthonormal basis of W . The Bergman
kernel form is the non-negative (n, n)-form

BX =
∞∑

j = 1

(
√

−1)n2
σj ∧ σj .
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With a choice of local coordinates zi, . . . , zn, we have

BX = BEX(z, z)(
√

−1)n2
dz1 ∧ · · · ∧ dzn ∧ dz1 ∧ · · · ∧ dzn

where BEX(z, z) is called the Bergman kernel function. If the Bergman
kernel BX is positive, one can define the Bergman metric

Bij =
∂2 log BEX(z, z)

∂zi∂zj
.

The Bergman metric is well-defined and is nondegenerate if the elements in
W separate points and the first jet of X.

It is easy to see that both the Kähler-Einstein metric and the Bergman
metric on the Teichmüller space Tg are invariant under the action of the
mapping class group and thus descend down to the moduli space.

Remark 5.1. We note that the induced Bergman metric on Mg is dif-
ferent from the Bergman metric on Mg.

In [18] McMullen introduced another Kähler metric g1/l on Mg which
is equivalent to the Teichmüller metric. Let Log : R+ → [0,∞) be a smooth
function such that

(1) Log(x) = log x if x≥ 2;
(2) Log(x) = 0 if x≤ 1.

For suitable choices of small constants δ, ε > 0, the Kähler form of the McMullen
metric g1/l is

ω1/l = ωWP − iδ
∑

lγ(X) < ε

∂∂Log
ε

lγ

where the sum is taken over primitive short geodesics γ on X.
Finally, since Mg is quasi-projective, there exists a non-canonical asymp-

totic Poincaré metric ωP on Mg.
In general, Let M be a compact projective manifold of dimension m. Let

Y ⊂ M be a divisor of normal crossings and let M = M \ Y . We cover M
by coordinate charts U1, . . . , Up, . . . , Uq such that (Up+1 ∪ · · · ∪ U q) ∩ Y = ∅.
We also assume that, for each 1 ≤α ≤ p, there is a constant nα such that
Uα \ Y = (Δ∗)nα × Δm−nα and on Uα, Y is given by zα

1 . . . zα
nα

= 0. Here
Δ is the disk of radius 1

2 and Δ∗ is the punctured disk of radius 1
2 . Let

{ηi}1 ≤ i ≤ q be a partition of unity subordinate to the cover {Ui}1 ≤ i ≤ q. Let
ω be a Kähler metric on M and let C be a positive constant. Then for C
large, the Kähler form

ωP = Cω +
p∑

i = 1

√
−1∂∂

(
ηi log log

1∣∣zi
1 · · · zi

ni

∣∣
)

defines a complete metric on M with finite volume. This is because on each
Ui with 1≤ i≤ p, ωp is bounded from above and below by the local Poincaré
metric on Ui. We call this metric the asymptotic Poincaré metric.
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In 2004, we proved in [9] that all complete metrics on the moduli space
are equivalent. The proof is based on asymptotic analysis of these metrics
and Yau’s Schwarz Lemma. The second author showed our result to several
geometers in April of 2004. We are grateful to Professor S.K. Yeung for
showing great interest.

In July of the same year, we learnt from the abstract of a seminar
announcement in Hong Kong university that Yeung was presenting a proof
of our result using a new idea of bounded pluri-subharmonic functions.
However, by November, Yeung, in a printed paper, returned to use our argu-
ment to prove our result. It is curious to know whether the idea of bounded
pluri-subharmonic functions can be used.

We recall that two metrics on Mg are equivalent if one metric is bounded
from above and below by positive constant multiples of the other metric.

Theorem 5.1. On the moduli space Mg the Ricci metric, the perturbed
Ricci metric, the Kähler-Einstein metric, the induced Bergman metric, the
McMullen metric, the asymptotic Poincaré metric, the Carathéodory metric
and the Teichmüller-Kobayashi metric are equivalent.

The equivalence of several of these metrics hold in more general setting.
In 2004 we defined the holomorphic homogeneous regular manifolds in [9]
which generalized the idea of Morrey.

Definition 5.1. A complex manifold X of dimension n is called holo-
morphic homogeneous regular if there are positive constants r < R such that
for each point p ∈X there is a holomorphic map fp : X → C

n which satisfies

(1) fp(p) = 0;
(2) fp : X → fp(X) is a biholomorphism;
(3) Br ⊂ fp(X) ⊂BR where Br and BR are Euclidean balls with center

0 in C
n.

In 2009, Yeung [33] basically reproduced our definition, but with a differ-
ent name: domain of uniform squeezing property. In any case, the restriction
properties of canonical metrics and the Schwarz Lemma of the third author
show the following:

Theorem 5.2. Let X be a holomorphic homogeneous regular manifold.
Then the Kobayashi metric, the Bergman metric and the Carathéodory met-
ric on X are equivalent.

Remark 5.2. It follows from the Bers embedding theorem that the
Teichmüller space of genus g Riemann surfaces is a holomorphic homo-
geneous regular manifold if we choose r = 2 and R = 6 in Definition 5.1.
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6. Goodness of canonical metrics

In his work [19], Mumford defined the goodness condition to study the
currents of Chern forms defined by a singular Hermitian metric on a holo-
morphic bundle over a quasi-projective manifold where he generalized the
Hirzebruch’s proportionality theorem to noncompact case.

The goodness condition is a growth condition of the Hermitian metric
near the compactification divisor of the base manifold. The major property of
a good metric is that the currents of its Chern forms define the Chern classes
of the bundle. Namely the Chern-Weil theory works in this noncompact case.

Beyond the case of homogeneous bundles over symmetric spaces dis-
cussed by Mumford in [19], several natural bundles over moduli spaces
of Riemann surfaces give beautiful and useful examples. In [28], Wolpert
showed that the metric induced by the hyperbolic metric on the relative dual-
izing sheaf over the universal curve of moduli space of hyperbolic Riemann
surfaces is good. Later it was shown by Trapani [25] that the metric induced
by the WP metric on the determinant line bundle of the logarithmic cotan-
gent bundle of the Deligne-Mumford moduli space is good. In both cases,
the bundles involved are line bundles. It is easier to estimate the connection
and curvature in these cases. Other than these, very few examples of natural
good metrics are known.

The goodness of the WP metric has been a long standing open problem.
In this section we describe our work in [13] which gives a positive answer to
this problem.

We first recall the definition of good metrics and their basic properties
described in [19]. Let X be a projective manifold of complex dimension
dimC X = n. Let D ⊂X be a divisor of normal crossing and let X = X \ D
be a Zariski open manifold. We let Δr be the open disk in C with radius r,
let Δ = Δ1, Δ∗

r = Δr \ {0} and Δ∗ = Δ \ {0}. For each point p ∈D we can
find a coordinate chart (U, z1, . . . , zn) around p in X such that U ∼= Δn and
V = U∩X ∼= (Δ∗)m×Δn−m. We assume that U∩D is defined by the equation
z1 . . . zk = 0. We let U(r) ∼= Δn

r for 0< r < 1 and let V (r) = U(r) ∩ X.
On the chart V of X we can define a local Poincaré metric:

ωloc =
√

−1
2

k∑
i = 1

dzi ∧ dzi

2|zi|2 (log |zi|)2
+

√
−1
2

n∑
i = k+1

dzi ∧ dzi.(6.1)

Now we cover D ⊂ X by such coordinate charts U1, . . . , Uq and let Vi = Ui∩
X. We choose coordinates zi

1, . . . , z
i
n such that D∩Ui is given by zi

1 . . . zi
mi

= 0.
A Kähler metric ωg on X has Poincaré growth if for each 1≤ i≤ q there

are constants 0 ≤ ri ≤ 1 and 0≤ ci < Ci such that ωg |Vi(ri) is equivalent to
the local Poincaré metric ωi

loc:

ciω
i
loc ≤ωg |Vi(ri) ≤Ciω

i
loc.
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In [19] Mumford defined differential forms with Poincaré growth:

Definition 6.1. Let η ∈Ap(X) be a smooth p-form. Then η has Poincaré
growth if for each 1 ≤ i≤ q there exists a constant ci > 0 such that for each
point s∈Vi

(1
2

)
and tangent vectors t1, . . . , tp ∈TsX one has

|η(t1, . . . , tp)|2 ≤ ci

p∏
j = 1

ωi
loc(tj , tj).

The p-form η is good if and only if both η and dη have Poincaré growth.

Remark 6.1. It is easy to see that the above definition does not depend
on the choice of the cover (U1, . . . , Uq) but it does depend on the compacti-
fication X of X.

The above definition is local. We now give a global formulation.

Lemma 6.1. Let ωg be a Kähler metric on X with Poincaré growth. Then
a p-form η ∈Ap(X) has Poincaré growth if and only if ‖η‖g <∞ where ‖η‖g

is the C0 norm of η with respect to the metric g. Furthermore, the fact
that η has Poincaré growth is independent of the choice of g. It follows that
if η1 ∈Ap(X) and η2 ∈Aq(X) have Poincaré growth, then η1 ∧ η2 also has
Poincaré growth.

Now we collect the basic properties of forms with Poincaré growth as
described in [19].

Lemma 6.2. Let η ∈Ap(X) be a form with Poincaré growth. Then η
defines a p-current on X. Furthermore, if η is good then d[η] = [dη].

Now we consider a holomorphic vector bundle E of rank r over X. Let
E = E |X and let h be a Hermitian metric on E. According to [19] we have

Definition 6.2. The Hermitian metric h is good if for any point x∈D,
assume x∈Ui for some i, and any basis e1, . . . , er of E |Ui( 1

2)
, if we let

hαβ = h(eα, eβ) then there exist positive constants ci, di such that

(1)
∣∣∣hαβ

∣∣∣ , (det h)−1 ≤ ci

(∑mi
j = 1 log |zj |

)2di

;

(2) the 1-forms
(
∂h · h−1

)
αβ

are good on Vi

(1
2

)
.

Remark 6.2. A simple computation shows that the goodness of h is
independent of the choice of the cover of D. Furthermore, to check whether
a metric h is good or not by using the above definition, we only need to check
the above two conditions for one choice of the basis e1, . . . , er.

The most important features of a good metric are
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Theorem 6.1. Let h be a Hermitian metric on E. Then there is at
most one extension of E to X for which h is good. Furthermore, if h is a
good metric on E, then the Chern forms ck(E, h) are good and the current
[ck(E, h)] = ck(E) ∈H2k(X).

See [19] for details. This theorem allows us to compute the Chern classes
by using Chern forms of a singular good metric.

Now we look at a special choice of the bundle E. In the following we
let E = TX(− log D) to be the logarithmic tangent bundle and let E = E |X .
Let U be one of the charts Ui described above and assume D∩U is given by
z1 . . . zm = 0. Let V = Vi = Ui ∩ X. In this case a local frame of E restricting
to V is given by

e1 = z1
∂

∂z1
, · · · , em = zm

∂

∂zm
, em+1 =

∂

∂zm+1
, · · · , en =

∂

∂zn
.

Let g be any Kähler metric on X. It induces a Hermitian metric g̃ on E. In
local coordinate z = (z1, . . . , zn) we have

g̃ij =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
zizjgij if i, j ≤m

zigij if i≤m < j

zjgij if j ≤m < i

gij if i, j > m.

(6.2)

In the following we denote by ∂i the partial derivative ∂
∂zi

. Let

Γp
ik = gpq∂igkq

be the Christoffel symbol of the Kähler metric g and let

Rp

ikl
= gpjRijkl = gpj

(
−∂k∂lgij + gst∂kgit∂lgsj

)
be the curvature of g. We define

Dk
i =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
zi
zk

if i, k ≤m
1
zk

if k ≤m < i

zi if i≤m < k

1 if i, k > m

(6.3)

and we let

Λi =

{
−1

|zi| log |zi| if i≤m

1 if i > m
.(6.4)

Now we give an equivalent local condition of the metric g̃ on E induced by
the Kähler metric g to be good. We have
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Proposition 6.1. The metric g̃ on E induced by g is good on V
(1

2

)
if

and only if

|g̃ij |, |z1 . . . zm|−2 deg(g) ≤ c

(
m∑

i = 1

log |zi|
)2d

for some constants c, d > 0∣∣∣Dk
i Γk

ip

∣∣∣ = O(Λp) for all 1 ≤ i, k, p≤n except i= k = p∣∣∣∣ 1
ti

+ Γi
ii

∣∣∣∣ = O(Λi) if i≤m∣∣∣Dk
i Rk

ipq

∣∣∣ = O(ΛpΛq).

(6.5)

In [13] we showed the goodness of the WP, Ricci and perturbed Ricci
metrics.

Theorem 6.2. Let Mg be the moduli space of genus g Riemann surfaces.
We assume g ≥ 2. Let Mg be the Deligne-Mumford compactification of Mg

and let D = Mg \ Mg be the compactification divisor which is a normal
crossing divisor. Let E = TMg

(− log D) and let E = E |Mg . Let ĥ, τ̂ and ˆ̃τ
be the metrics on E induced by the WP, Ricci and perturbed Ricci metrics
respectively. Then ĥ, τ̂ and ˆ̃τ are good in the sense of Mumford.

This theorem is based on very accurate estimates of the connection and
curvature forms of these metrics. One of the difficulties is to get accurate
estimate of the derivatives of the fiberwise Kähler-Einstein metric in the base
direction. We use a refined version of the compound graft metric construction
of Wolpert together with the maximum principle to get the desired estimates.

7. Negativity and naturalness

In Section 2 we have seen various negative properties of the WP metric.
In fact, we showed in [13] that the WP metric is dual Nakano negative. This
means the complex curvature operator of the dual metric of the WP metric
is positive. We first recall the precise definition of dual Nakano negativity
of a Hermitian metric.

Let (E, h) be a Hermitian holomorphic vector bundle of rank m over a
complex manifold M of dimension n. Let e1, . . . , em be a local holomorphic
frame of E and let z1, . . . , zn be local holomorphic coordinates on M . The
Hermitian metric h has expression hij = h (ei, ej) locally.

The curvature of E is given by

Pijαβ = − ∂α∂βhij + hpq∂αhiq∂βhpj .

Definition 7.1. The Hermitian vector bundle (E, h) is Nakano pos-
itive if the curvature P defines a Hermitian metric on the bundle E ⊗
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T 1,0
M . Namely, PijαβCiαCjβ > 0 for all m × n nonzero matrices C. The

bundle (E, h) is Nakano semi-positive if PijαβCiαCjβ ≥ 0. The bundle is
dual Nakano (semi-)negative if the dual bundle with dual metric (E∗, h∗) is
Nakano (semi-)positive.

We have proved the following theorem in [13]

Theorem 7.1. Let Mg be the moduli space of Riemann surfaces of genus
g where g ≥ 2. Let h be the WP metric on Mg. Then the holomorphic tangent
bundle T 1,0Mg equipped with the WP metric h is dual Nakano negative.

The dual Nakano negativity is the strongest negativity property of the
WP metric. For readers’ convenience we include a proof here. The idea is
similar to the proof of Proposition 2.2 by using the Green’s function of the
operator � + 1.

Proof. By definition 7.1 we only need to show that the holomorphic
cotangent bundle of the moduli space equipped with the dual metric of the
WP metric (T ∗Mg, h

∗) is Nakano positive.
Let s1, . . . , s3g−3 be any holomorphic coordinates on Mg. The dual met-

ric h∗ is given by h∗
ij

= hij locally. If we let Rijkl be the curvature of the
WP metric on Mg and let Pijkl be the curvature of the metric h∗, a simple
computation shows that

Pmnkl = − hinhmjRijkl.

Thus if we let akj =
∑

m hmjCmk, we have

PmnklC
mkCnl = −

∑
i,j,k,l

Rijklakjali

= −
∑
i,j,k,l

Rkjilakjali = −
∑
i,j,k,l

Rijklaijalk.

We note that since the matrix
[
hij

]
is invertible, the matrix [aij ] is nonzero.

Now we fix any point p ∈ Mg and let X = Xp be the corresponding Rie-
mann surface. Let s1, . . . , s3g−3 be any holomorphic coordinates around p

and let Ai be the harmonic Beltrami differential corresponding to ∂
∂si

. By
using the curvature formula (2.2) of the WP metric, we only need to show
that ∑

i,j,k,l

∫
X

(
eijfkl + eilfkj

)
aijalk dv > 0(7.1)

for any nonzero matrix [aij ].
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We let T = (� + 1)−1 be the Green operator and we recall that

eij = T
(
fij

)
where fij = AiAj . Let Bj =

∑n
i = 1 aijAi. Then the inequality (7.1) is equiv-

alent to ∑
j,k

∫
X

(
T

(
BjAj

)
AkBk + T

(
BjBk

)
AkAj

)
dv > 0.(7.2)

To prove the inequality (7.2), we let μ=
∑

j BjAj =
∑

i,j aijfij . Then
for the first term of formula (7.2) we have∑

j,k

∫
X

T
(
BjAj

)
AkBk dv =

∫
X

T (μ)μ dv ≥ 0

where equality holds if and only if μ= 0.
To check the second term, we let G(z, w) be the Green’s function of the

operator T . Similar to the proof of Proposition 2.2 we know that the Green’s
function G ≥ 0. Furthermore,

m ({(z, w) ∈X ×X | G(z, w) = 0}) = 0

where m is the Lebesgue measure on X ×X.
We consider the smooth line bundle L= T 1,0

X ⊗ Ω0,1
X over X. Let π1, π2 :

X × X → X be the projection maps to the first and second factors respec-
tively. We let

H(z, w) =
∑

j

Aj(z)Bj(w).

Then H(z, w) can be viewed as a section of the line bundle π∗
1
(
L

)
⊗ π∗

2 (L)
over X × X. It has a natural L2 norm. It follows that the second term of
(7.2) is ∑

j,k

∫
X

T
(
BjBk

)
AkAj dv

=
∑
j,k

∫
X

∫
X

G(z, w)Bj(w)Bk(w)Ak(z)Aj(z) dv(w)dv(z)

=
∫

X

∫
X

G(z, w) |H(z, w)|2 dv(w)dv(z) ≥ 0.

(7.3)

Since the Green’s function G(z, w) is positive away from a set of measure
zero, the equality in the above inequality holds if and only if H(z, w) = 0.
Since A1, . . . , A3g−3 is a basis of H

0,1
(
X, T 1,0

X

)
and the matrix [aij ] is

nonzero, we know that B1, . . . , B3g−3 do not vanish simultaneously. Thus we
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can find a point w such that B1(w), . . . , B3g−3(w) is not the zero vector. Now
we fix the point w. Since H(z, w) = 0 for all z we know that A1, . . . , A3g−3
are linearly dependent which is a contradiction. Thus the equality of formula
(7.3) cannot hold. This implies that the left side of formula (7.2) is strictly
positive and thus the WP metric is dual Nakano negative.

�

Now we look at the naturalness of the canonical metrics on the moduli
space. We let Mg be the moduli space of genus g curves where g ≥ 2 and let
Mg be its Deligne-Mumford compactification. We fix a point p ∈Mg\Mg of
codimension m and let X = Xp be the corresponding stable nodal curve. The
moduli space M(X) of the nodal surface X is naturally embedded into Mg.
Furthermore, since each element Y in M(X) corresponds to a hyperbolic
Riemann surface when we remove the nodes from Y , the complement can
be uniformized by the upper half plane and thus there is a unique complete
Kähler-Einstein metric on Y whose Ricci curvature is −1. We note that
the moduli space M(X) can be viewed as an irreducible component of the
intersection of the compactification divisors.

By the discussion in Section 2 there is a natural WP metric ĥ on M(X).
The curvature formula (2.2) is still valid for this WP metric and it is easy
to see that the Ricci curvature of the WP metric ĥ is negative. We can take
τ̂ = − Ric

(
ωĥ

)
to be the Kähler form of a Kähler metric on M(X). This is

the Ricci metric τ̂ on M(X).
In [17] Masur showed that the WP metric h on Mg extends to Mg and

its restriction to M(X) via the natural embedding M(X) ↪→ Mg coincides
with the WP metric ĥ on M(X). This implies the WP metric is natural.
In [31] Wolpert showed that the WP Levi-Civita connection restricted to
directions which are almost tangential to the compactification divisors limits
to the lower dimensional WP Levi-Civita connection. In [13] we proved the
naturalness of the Ricci metric.

Theorem 7.2. The Ricci metric on Mg extends to Mg in non-
degenerating directions. Furthermore, the restriction of the extension of τ
to M(X) coincides with τ̂ , the Ricci metric on M(X).

8. The Kähler-Ricci flow and Kähler-Einstein metric on the
moduli space

The existence of the Kähler-Einstein metric on the Teichmüller space
was based on the work of Cheng-Yau since the Teichmüller space is pseudo-
convex. By the uniqueness we know that the Kähler-Einstein metric is invari-
ant under the action of the mapping class group and thus is also the Kähler-
Einstein metric on the moduli space. It follows from the later work of Yau
that the Kähler-Einstein metric is complete. However, the detailed proper-
ties of the Kähler-Einstein metric remain unknown.
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In [10] we proved the strongly bounded geometry property of the Kähler-
Einstein metric. We showed

Theorem 8.1. The Kähler-Einstein metric on the Teichmüller space
Tg has strongly bounded geometry. Namely, the curvature and its covariant
derivatives of the Kähler-Einstein metric are bounded and the injectivity
radius of the Kähler-Einstein metric is bounded from below.

This theorem was proved in two steps. Firstly, we deform the Ricci metric
via the Kähler-Ricci flow{

∂gij

∂t = − (Rij + gij)
gij(0) = τij

(8.1)

Let h = g(s) be the deformed metric at time s� 1. By the work of Shi
[23] we know that the metric h is equivalent to the initial metric τ and
is cohomologous to τ in the sense of currents. Thus h is complete and has
Poincaré growth. Furthermore, the curvature and covariant derivatives of h
are bounded.

We then use the metric h as a background metric to derive a priori esti-
mates for the Kähler-Einstein metric by using the Monge-Amperé equation

det
(
hij + uij

)
det hij

= eu+F

where F is the Ricci potential of the metric h. If we denote by g the Kähler-
Einstein metric and let

S = gijgklgpqu;iqku;jpl

and
V = gijgklgpqgmnu;iqknu;jplm + gijgklgpqgmnu;inkpu;jmlq

to be the third and fourth order quantities respectively. We have

Δ′ [(S + κ)V ] ≥ C1 [(S + κ)V ]2 − C2 [(S + κ)V ]
3
2 − C3 [(S + κ)V ]

− C4 [(S + κ)V ]
1
2

where Δ′ is the Laplace operator of the Kähler-Einstein metric g and C1 > 0.
It follows from the mean value inequality that S is bounded. Further-

more, by the above estimate and the maximum principle we know V is
bounded. In fact this method works for all higher order derivatives of u and
we deduce that the Kähler-Einstein metric has strongly bounded geometry.

The Kähler-Ricci flow and the goodness are closely tied together. Firstly,
since the most important feature of a Mumford good metric is that the
Chern-Weil theory still holds, we say metrics with this property are intrinsic
good. In [14] we showed
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Theorem 8.2. Let X be a projective manifold with dimC X = n. Let
D ⊂ X be a divisor with normal crossings, let X = X\D, let E = TX(− log D)
and let E = E |X .

Let ωg be a Kähler metric on X with bounded curvature and Poincaré
growth. Assume Ric(ωg) + ωg = ∂∂f where f is a bounded smooth function.
Then

• There exists a unique Kähler-Einstein metric ωKE on X and the
Kähler-Einstein metric has Poincaré growth.

• The curvature and covariant derivatives of curvature of the Kähler-
Einstein metric are bounded.

• If ωg is intrinsic good, then ωKE is intrinsic good. Furthermore,
all metrics along the paths of continuity and Kähler-Ricci flow are
intrinsic good.

9. Applications

In this section we briefly look at some geometric applications of the
canonical metrics. The first application of the control of the Kähler-Einstein
metric is the stability of the logarithmic cotangent bundle of the Deligne-
Mumford moduli space. In [10] we proved

Theorem 9.1. Let E = T ∗
Mg

(log D) be the logarithmic cotangent bundle.

Then c1(E) is positive and E is slope stable with respect to the polarization
c1(E).

An immediate consequence of the intrinsic goodness of the Kähler-Einstein
metric is the Chern number inequality. We have

Theorem 9.2. Let E = TMg
(− log D) be the logarithmic tangent bundle

of the moduli space. Then

c1(E)2 ≤ 6g − 4
3g − 3

c2(E).

It follows directly from the dual Nakano negativity and the Mumford
goodness of the WP metric that the Chern numbers of the local cotangent
bundle are positive. We have

Theorem 9.3. The Chern numbers of the logarithmic cotangent bundle
T ∗

Mg
(log D) of the moduli spaces of Riemann surfaces are all positive.

The dual Nakano negativity of a Hermitian metric on a bundle over a
compact manifold gives strong vanishing theorems by using Bochner tech-
niques. However, in our case the base variety Mg is only quasi-projective.
Thus we can only describe vanishing theorems of the L2 cohomology.
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In [21], Saper showed that the L2 cohomology of the moduli space
equipped with the Weil-Petersson metric can be identified with the ordi-
nary cohomology of the Deligne-Mumford moduli space. Our situation is
more subtle since the natural object to be considered in our case is the
tangent bundle valued L2 cohomology. Parallel to Saper’s work, we proved
in [14]

Theorem 9.4. We have the following natural isomorphism

H∗
(2)

(
(Mg, ωτ ) ,

(
TMg , ωWP

)) ∼= H∗
(
Mg, TMg

(− log D)
)

.

Now we combine the above result with the dual Nakano negativity of the
WP metric. In [14] we proved the following Nakano-type vanishing theorem

Theorem 9.5. The L2 cohomology groups vanish:

H0,q
(2)

(
(Mg, ωτ ) ,

(
TMg , ωWP

))
= 0

unless q = 3g − 3.

As a direct corollary we have

Corollary 9.1. The pair
(
Mg, D

)
is infinitesimally rigid.

Another important application of the properties of the Ricci, perturbed
Ricci and Kähler-Einstein metrics is the Gauss-Bonnet theorem on the non-
compact moduli space. Together with L. Ji, in [6] we showed

Theorem 9.6. The Gauss-Bonnet theorem holds on the moduli space
equipped with the Ricci, perturbed Ricci or Kähler-Einstein metrics:∫

Mg

cn(ωτ ) =
∫

Mg

cn(ωτ̃ ) =
∫

Mg

cn(ωKE ) = χ(Mg) =
B2g

4g(g − 1)
.

Here χ(Mg) is the orbifold Euler characteristic of Mg and n = 3g − 3.

The explicit topological computation of the Euler characteristic of the
moduli space is due to Harer-Zagier [5]. See also the work of Penner [20].

As an application of the Mumford goodness of the WP metric and the
Ricci metric we have

Theorem 9.7.

χ(TMg
(− log D)) =

∫
Mg

cn(ωτ ) =
∫

Mg

cn(ωWP ) =
B2g

4g(g − 1)

where n = 3g − 3.
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It is very hard to prove the Gauss-Bonnet theorem for the WP metric
directly since the WP metric is incomplete and its curvature is not bounded.
The proof is based substantially on the Mumford goodness of the WP metric.

By using the goodness of canonical metrics this theorem also gives an
explicit expression of the top log Chern number of the moduli space.

Theorem 9.8.

χ(Mg, TMg
(− log D)) =χ(Mg) =

B2g

4g(g − 1)
.

10. Deformation of pluricanonical forms

In this section we discuss an iteration method to deform holomorphic
sections of the pluricanonical bundle of a hyperbolic Riemann surface.

We let M = Mg be the moduli space of genus g curves and let

π : X → M

be the universal family. Here we assume g ≥ 2. For each point p ∈ Mg we let
Xp = π−1(p) be the fiber. We recall Remark 2.1 that we always work on the
local manifold cover of the moduli space when we look at local deformation
theory.

Let ωX/M be the relative dualizing sheaf. For any m ≥ 1 we consider the
holomorphic vector bundle

E = Em = R0ωm
X/M

over Mg.
When m = 1 the bundle E1 is just the Hodge bundle. The method in the

section will give a simple formula of the curvature of the L2 metric on the
Hodge bundle. When m = 2 we know that E2 ∼= Ω1,0Mg is the holomorphic
cotangent bundle of Mg.

For each point q ∈ M, if m ≥ 2, by Serre duality we know that

h1
(
Xp, K

m
Xp

)
= h0

(
Xp, K

1−m
Xp

)
= 0

since 1 − m < 0 and KXp is a positive line bundle. It follows from the
Riemann-Roch theorem that

rank(Em) = h0
(
Xp, K

m
Xp

)
=

∫
Xp

ch
(
Km

Xp

)
Td (Xp) = (2m − 1)(g − 1)

in the case m ≥ 2. When m = 1 we know that rank(E1) = g.

10.1. Kuranishi family. We first look at the local Kuranishi family of
Riemann surfaces with a particular choice of gauge. We fix a point 0∈ Mg

and let X0 be a Riemann surface representing this point. Let Σ be the
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underlying smooth surface. In this case we can write X0 = (Σ, J0). Let λ be
the Kähler-Einstein metric on X0. We always use the Kähler-Einstein metric
on Riemann surfaces in this section.

Let ϕ ∈ H
0,1

(
X0, T

1,0
X0

)
be a harmonic Beltrami differential such that

sup
X0

|ϕ|< 1.

Let z be any holomorphic local coordinate on X0. In this coordinates we
have ϕ = ϕ(z)dz ⊗ ∂

∂z . Let Xϕ = (Σ, Jϕ) be the Riemann surface such that
for each point q ∈ Σ we have

Ω1,0
q Xϕ = C{dz + ϕdz}

and
Ω0,1

q Xϕ = C{dz + ϕdz}

where Ω1,0
q X0 = C{dz} and Ω0,1

q X0 = C{dz}.
In this case a local smooth function w is holomorphic with respect to

the complex structure Jϕ if and only if

∂w

∂z
= ϕ(z)

∂w

∂z
.(10.1)

Now we let n = 3g − 3 and we fix a basis ϕ1, . . . , ϕn ∈ H
0,1

(
X0, T

1,0
X0

)
of

harmonic Beltrami differentials on X0. Let Δ ⊂ C
n be the ball of radius ε.

We consider the smooth product manifold U = Σ × Δ and let π : U → Δ be
the natural projection map.

We let t = (t1, . . . , tn) be the natural coordinates on Δ and let

ϕ(t) =
n∑

i = 1

tiϕi.

We choose ε > 0 small enough such that

sup
X0

|ϕ(t)|< 1

for each t ∈ Δ. We now put a complex structure on each fiber

π−1(t) ∼= Σ.

As described above, for each t ∈ Δ we let Jt = Jϕ(t) and denote by

Xt = (Σ, Jt)

the corresponding Riemann surface. The family π : U → Δ is a Kuranishi
family of the central fiber X0. We refer to such a family π : U → Δ the
canonical Kuranishi family of X0.
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Remark 10.1. In fact the canonical Kuranishi family was constructed
by imposing the Kuranishi gauge. In [8] Kuranishi considered the following
equations on a Kähler manifold X{

∂ϕ = 1
2 [ϕ, ϕ]

∂
∗
ϕ = 0.

Here the first equation is the integrability condition and the second equation
is the Kuranishi gauge. In our case the first equation is automatically satis-
fied since the dimension of X is 1. The Kuranishi gauge is equivalent to the
fact that ϕ is harmonic. Of course we use the Kähler-Einstein metric on X.

10.2. Deformation of holomorphic sections of pluricanonical
bundle. We now describe an iteration procedure of deform holomorphic
sections of the relative pluricanonical bundle. Namely we will construct local
holomorphic sections of the bundle Em.

We first fix a Riemann surface X0 representing a point 0∈ Mg and we
let π : U → Δ be a canonical Kuranishi family of X0. For each t ∈ Δ we let
ϕ = ϕ(t) as described above. The Beltrami differential ϕ induces a map

σ = σt : A0 (
X0, K

m
X0

)
→ A0 (

Xt, K
m
Xt

)
in the following way. If ψ ∈A0

(
X0, K

m
X0

)
with local expression

ψ = f(z)dzm(10.2)

then we define

σ(ψ) = f(z) (dz + ϕdz)m .(10.3)

Lemma 10.1. The map σ is well-defined and is a bijective linear map.

Proof. To see that σ is well-defined we only need to check that the
definition of σ is independent of the choice of local coordinate. This follows
directly from formulas (10.2) and (10.3). It is also clear that σ is linear and
is injective.

To show that σ is surjective, we pick an element ψ0 ∈A0
(
X0, K

m
X0

)
such

that ψ0 is nowhere vanishing. This can be done by using partition of unity.
By the definition of σ we know that σ(ψ0) ∈A0

(
Xt, K

m
Xt

)
is nowhere vanish-

ing. Thus for any element τ ∈ ∈A0
(
Xt, K

m
Xt

)
there exists a unique function

μ∈C∞(Σ) such that τ = μσ(ψ0). If follows that σ(μψ0) = τ and thus σ is
surjective. �

Now we describe the iteration procedure to construct local holomorphic
sections of Em. We first consider the case of one-parameter family. We fix a
Riemann surface X0 and a harmonic Beltrami differential ϕ ∈ H

0,1
(
X0, T

1,0
X0

)
.
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Consider the family of Riemann surfaces {Xt} where Xt = (Σ, Jt) where
Jt = Jtϕ for all |t|< ε.

Given a holomorphic section ψ0 ∈H0
(
X0, K

m
X0

)
we are looking for a

convergent power series

ψt = ψ0 +
∞∑

k = 1

tkψk(10.4)

where ψk ∈A0
(
X0, K

m
X0

)
such that

σt (ψt) ∈H0 (
Xt, K

m
Xt

)
(10.5)

is holomorphic with respect to the complex structure Jt for each t with
|t|< ε.

We first look at the case m = 1. We have

Lemma 10.2. Let ϕ be any harmonic Beltrami differential on X0 with
respect to the Kähler-Einstein metric. We assume supX0

|ϕ|< 1. Let Xϕ be
the Riemann surface obtained by deforming the complex structure on X0 via
ϕ. Let ψ ∈A0 (X0, KX0) be a smooth (1, 0)-form. Then

σ(ψ) ∈H0 (
Xϕ, KXϕ

)
is holomorphic with respect to the complex structure Jϕ if and only if

∂ψ + ∂(ϕ�ψ) = 0(10.6)

where ∂ and ∂ are operators on X0.

Proof. For any point p ∈X0 let z be any holomorphic local coordinate
around p with respect to the complex structure on X0 and let w be any
holomorphic local coordinate around p with respect to the complex structure
on Xϕ.

Let a(z) = ∂w
∂z . By formula (10.1) we know that ∂w

∂z = aϕ and

∂a

∂z
=

∂

∂z

∂w

∂z
= ∂zaϕ + a∂zϕ.(10.7)

Since dw = a (dz + ϕdz), if we let ψ = f(z)dz locally, then σ(ψ) =
(
fa−1

)
dw.

Thus σ(ψ) is holomorphic with respect to the complex structure Jϕ if any
only if fa−1 is a local holomorphic function with respect to the complex
structure Jϕ. By formula (10.1) we know that σ(ψ) is holomorphic with
respect to the complex structure Jϕ if any only if

∂z

(
fa−1) = ϕ∂z

(
fa−1) .(10.8)

By using formula (10.7) we see that equation (10.8) is equivalent to (10.6).
�

Now we construct the power series (10.4).
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Proposition 10.1. Given any harmonic Beltrami differential ϕ on X0
we let Xt = (Σ, Jtϕ). Then for any holomorphic 1-form ψ0 on X0 there is
a unique power series ψt = ψ0 +

∑∞
k = 1 tkψk which converges for |t|< ε such

that

(1) σt(ψt) ∈H0 (Xt, KXt) is holomorphic with respect to the complex
structure Jtϕ.

(2) For each k ≥ 1 the (1, 0)-form ψk on X0 is ∂-exact.

Proof. By Lemma 10.2 we know that ψt must satisfy the equation

∂ψt + t∂(ϕ�ψt) = 0.(10.9)

By looking at the coefficients of tk we know that the above equation is
equivalent to {

∂ψ0 = 0
∂ψk = − ∂ (ϕ�ψk−1) for each k ≥ 1.

(10.10)

We first find the formal power series ψt. Since ψ0 is holomorphic we know
that the first equation in (10.10) holds. Now we solve the second equation
by induction. For each k ≥ 1 since −∂ (ϕ�ψk−1) is a (1, 1)-form on X0 we
know that ∂ (−∂ (ϕ�ψk−1)) = 0. Furthermore, since −∂ (ϕ�ψk−1) is ∂-exact,
its projection to the space of harmonic forms is 0.

By Hodge theory we know that if we let

ψk = − ∂
∗
G∂ (ϕ�ψk−1)(10.11)

where G is the Green operator, then

∂ψk = − ∂∂
∗
G∂ (ϕ�ψk−1) = − ΔG∂ (ϕ�ψk−1)

= − (I − H) ∂ (ϕ�ψk−1) = − ∂ (ϕ�ψk−1) .

Thus ψk defined by (10.11) is a solution of the second equation of (10.10).
Furthermore, by the Kähler identity we know that ψk = ∂∂

∗
G (ϕ�ψk−1)

which implies that ψk is ∂-exact.
To prove the convergence we notice that

‖ϕ�ψk‖Cr,α ≤C‖ϕ‖Cr,α‖ψk‖Cr,α

and
‖ψk‖Cr,α ≤C1‖ϕ�ψk−1‖Cr,α ≤C2‖ϕ‖Cr,α‖ψk−1‖Cr,α

where we use formula (10.11). Thus the formal power series (10.4) converges
smoothly when |t| is small enough. �

A direct corollary of the above proposition is the expansion of the family
σt(ψt).
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Corollary 10.1. With the same assumption as in the above proposi-
tion the family σt(ψt) can be written as a convergent power series of t with
coefficients in A1(X0). Furthermore, we have

σt(ψt) = ψ0 + t
(
ϕ�ψ0 − ∂

∗
G∂ (ϕ�ψ0)

)
+ O

(
t2

)
.(10.12)

Proof. This corollary follows from the proof of Proposition 10.2 and
the definition of σt directly. �

On the Hodge bundle E1 there is a natural L2 metric. Let e1, . . . , eg be
a local holomorphic frame of E1. Then the L2 metric is given by

Mαβ(p) =
√

−1
2

∫
Xp

eα ∧ eβ.(10.13)

By using the expansion (10.12) we can easily derive the curvature for-
mula of the L2 metric on the Hodge bundle.

Proposition 10.2. For any point 0 ∈ Mg let X0 be a Riemann surface

representing this point and let ϕ1, . . . , ϕn ∈ H
0,1

(
X0, T

1,0
X0

)
be a basis of har-

monic Beltrami differentials on X0. Let π : U → Δ be the corresponding
canonical Kuranishi family. Let ψ1, . . . , ψg ∈H1,0(X0) be an orthonormal
basis with respect to the L2 metric. Then the curvature of the L2 metric is
given by

Rαβij =
√

−1
2

∫
X0

(
(ϕj�ψβ) ∧ (ϕi�ψα) − ∂

∗
G∂ (ϕi�ψα) ∧ ∂∗G∂(ϕj�ψβ)

)
.

Proof. This proposition follows directly from the general expansion
of type (10.12). For any given holomorphic (1, 0)-form ψ0 on X0, if we let
t = (t1, . . . , tn) then we have

σt(ψt) = ψ0 +
n∑

i = 1

ti

(
ϕi�ψ0 − ∂

∗
G∂ (ϕi�ψ0)

)
+ O

(
t2

)
.

This expansion will give us the Taylor expansion of the L2 metric Mαβ.
The proposition follows from comparing the coefficients of terms titj in the
Taylor expansion. �

Remark 10.2. We note that the iteration method we described here lead
to a complete local expansion of the period map. For geometry of the period
domain please see [22] and [4] for details.

Furthermore, we consider the Sternberg lemma on a general n-dimen-
sional manifold M . If ϕ, τ ∈A0,1

(
M, T 1,0

M

)
are two smooth Beltrami
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differentials and Ω ∈An,0(M) is a smooth (n, 0)-form, then

[ϕ, τ ]�Ω = − ∂(ϕ ∧ τ�Ω) + ϕ�∂(τ�Ω) + τ�∂(ϕ�Ω).

By using the Sternberg lemma this method can be used to construct canonical
sections of the relative canonical bundle of any smooth family of Kähler
manifolds of arbitrary dimension.

Now we look at the general case m ≥ 2. In these cases we need to use
the connection of the metric on Km

X induced by the Kähler-Einstein metric
on the Riemann surface.

We fix a Riemann surface X0 and let λ be the Kähler-Einstein metric
on X0. It is clear that λ−m is a Hermitian metric on the line bundle Km

X0
.

Let ∇ be the corresponding metric connection.
Similar to Lemma 10.2 we first give a necessary and sufficient condition

that σt(ψt) is holomorphic with respect to the complex structure Jt.

Lemma 10.3. Let ϕ be any harmonic Beltrami differential on X0 with
respect to the Kähler-Einstein metric such that supX0

|ϕ|< 1. Let Xϕ be the
Riemann surface obtained by deforming the complex structure on X0 via ϕ.

Let ψ ∈A0
(
X0, K

m
X0

)
be a smooth pluricanonical form. Then σ(ψ) ∈

H0
(
Xϕ, Km

Xϕ

)
is holomorphic with respect to the complex structure Jϕ if

and only if

∂ψ = ϕ�∇ψ(10.14)

where ∂ and ∇ are operators on X0.

Proof. The proof is similar to Lemma 10.2. Let w be any holomorphic
coordinate on Xϕ. Then

dw =
∂w

∂z
dz +

∂w

∂z
dz =

∂w

∂z
(dz + ϕdz) .

Let a= a(z, z) = ∂w
∂z and let ψ = f(z)dzm be the local expression of ψ. Then

locally we have

σ(ψ) = f(z) (dz + ϕdz)m =
f

am
dwm.

Thus σ(ψ) is holomorphic with respect to Jϕ if any only if

∂z

(
f

am

)
= ϕ∂z

(
f

am

)
.(10.15)

By using the fact that

∂a

∂z
=

∂2w

∂z∂z
= ∂z

(
∂w

∂z

)
= ∂z

(
ϕ

∂w

∂z

)
= ∂z (aϕ)
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we know that equation (10.15) is equivalent to

∂zf = mf∂zϕ + ϕ∂zf.(10.16)

Now we have

∇ψ = (∂zf − f∂z log λm) dz ⊗ dzm

which implies

ϕ�∇ψ = (∂zf − f∂z log λm) ϕdz ⊗ dzm.(10.17)

Since ϕ is harmonic we know ∂
∗
ϕ = 0 which implies ∂z (λϕ) = 0. Namely

∂zϕ = − ϕ∂z log λ.(10.18)

Now we insert formula (10.18) into formula (10.17) we get

ϕ�∇ψ = (ϕ∂zf + mf∂zϕ) dz ⊗ dzm.(10.19)

Since ∂ψ = ∂zfdz⊗dzm the lemma follows from comparing formulas (10.19)
and (10.16). �

Now we construct canonical local sections of Em. We fix a point 0∈ Mg

and a harmonic Beltrami differential ϕ ∈ H
0,1

(
X0, T

1,0
X0

)
. We define the

operator
ρ = ρϕ : A0 (

X0, K
m
X0

)
→ A0 (

X0, K
m
X0

)
by

ρϕ(ψ) = ∂
∗
G (ϕ�∇ψ)(10.20)

for any ψ ∈A0
(
X0, K

m
X0

)
. Here G is the Green operator.

Lemma 10.4. For any ψ ∈A0
(
X0, K

m
X0

)
we have

(1) ∂ (ρϕ(ψ)) =ϕ�∇ψ;
(2) H (ρϕ(ψ)) = 0 where

H : A0 (
X0, K

m
X0

)
→ H0 (

X0, K
m
X0

)
is the harmonic projection.

Proof. The second claim follows from Hodge decomposition since

ρϕ(ψ) ∈ Im
(
∂

∗)
.

To prove the first claim we notice that

∂G (ρϕ(ψ)) =G∂ (ρϕ(ψ)) = 0
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since ρϕ(ψ) ∈A0,1
(
X0, K

m
X0

)
. Furthermore, since

h1 (
X0, K

m
X0

)
= h0

(
X0, K

1−m
X0

)
= 0

as computed before, we know

H (ϕ�∇ψ) = 0.

Thus we have

∂ (ρϕ(ψ)) = ∂∂
∗
G (ϕ�∇ψ) =

(
∂∂

∗ + ∂
∗
∂
)

G (ϕ�∇ψ)

= �G (ϕ�∇ψ) = (I − H) (ϕ�∇ψ) = ϕ�∇ψ.

We finished the proof. �

Now we fix a harmonic Beltrami differential ϕ ∈ H
0,1

(
X0, T

1,0
X0

)
and let

Xt = Xtϕ. For any ψ ∈H0
(
X0, K

m
X0

)
which is holomorphic with respect to

the complex structure J0 on X0, we let ψ0 = ψ and let

ψn = (ρϕ)n (ψ) ∈A0 (
X0, K

m
X0

)
.(10.21)

For any t such that |t| is small we define

ψ(t) =
∞∑

n = 0

tnψn.(10.22)

Theorem 10.1. We have

(1) The power series
∑∞

n = 0 tnψn converges when |t| small;
(2) For each t we have

σt (ψ(t)) ∈H0 (
Xt, K

m
Xt

)
is holomorphic with respect to the complex structure Jt = Jtϕ.

Proof. The first claim follows from standard elliptic estimates which
is similar to the proof of Proposition (10.1).

To prove the second claim, by Lemma 10.3 we only need to check

∂ψ(t) = tϕ�∇ψ(t).

By looking at the coefficients of the term tk of both sides the equation, we
know that the above equation is equivalent to{

∂ψ0 = 0
∂ψk = ϕ�∇ψk−1 if k ≥ 1.
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However, the first equation is clear since ψ0 = ψ is holomorphic with respect
to J0. The second equation follows from the construction of ψ(t) and Lemma
10.4. �

Remark 10.3. We call the family σtϕ (ψ(t)) the canonical deformation
of ψ in the direction ϕ. By using its construction we can easily find its
expansion on the central fiber X0. The multi-variable case follows in the
same manner.

In order to get the expansion of σt(ψt) we consider the contraction ϕ�ψ.
Let ϕ be any Beltrami differential on X0 and let ψ ∈A0

(
X0, K

m
X0

)
be any

pluricanonical form. With respect to any local holomorphic coordinate z on
X0 we have ϕ = ϕ(z)dz ⊗ ∂

∂z and ψ = f(z)dzm. We define

ϕ�ψ = mfϕdz ⊗ dzm−1.

Similar to formula (10.12) we have the expansion of the canonical local
section of Em.

Corollary 10.2. The pluricanonical forms σt(ψ(t)) has expansion

σt(ψ(t)) =ψ0 + t
(
∂

∗
G (ϕ�∇ψ0) + ϕ�ψ0

)
+ O

(
t2

)
.

Remark 10.4. We note that both terms ∂
∗
G (ϕ�∇ψ0) and ϕ�ψ0 can be

viewed as section of the bundle Sm
(
ΩCX0

)
where ΩCX0 is the complexified

cotangent bundle and Sm stands for symmetric product.
This method of canonically deforming the pluricanonical forms can be

generalized to higher dimensional fibers with minor modifications.
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