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1. Introduction

Harmonic maps constitute a powerful tool for the analysis of moduli
and Teichmüller spaces of compact Riemann surfaces. These moduli and
Teichmüller spaces parametrize the different conformal structures a given
compact differentiable surface F of some genus p can carry, together with
a topological marking in the Teichmüller case. That is, each point in the
moduli space Mp or the Teichmüller space Tp corresponds to some (marked)
Riemann surface of genus p, that is, to some conformal structure on F .
Mp then is a quotient of Tp by the mapping class group Γp, the group of
homotopy classes of oriented diffeomorphisms of F . Since some nontrivial
elements of Γp have fixed points, Mp acquires some quotient singularities.
However, a suitable finite covering of Mp is free from singularities, that
is, a manifold. Therefore, for many aspects, the singularities of Mp can be
ignored, and this will sometimes simplify our discussion. – In this review, we
shall confine ourselves mostly to the case p ≥ 2 which is the most difficult
and most interesting case.

Harmonic maps come from Riemannian geometry. They are defined as
maps h : M → N between Riemannian manifolds that minimize a certain
variational integral, called the energy. Thus, they depend on the Riemannian
metrics of M and N . The theory works best when the metric of N has
nonpositive sectional curvature.

Harmonic maps can then be applied to moduli or Teichmüller spaces in
two different ways. On one hand, one can look at harmonic maps to, from, or
between Riemann surfaces and study how the harmonic maps or quantities
associated to them, like their energy, depend on the underlying conformal
structures. This is facilitated by the fact that the harmonic maps in question
are unique in their homotopy classes, as we are looking at the case of genus
p ≥ 2 which implies that the Riemann surfaces can be equipped with a hyper-
bolic metric, that is, one with constant negative curvature. In that manner,
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we can then produce functions on Mp or Tp, like the energy of the harmonic
map as a function of the Riemann surface on which it is defined. We can
then derive properties of these functions that lead to conclusions about the
topology or geometry of Mp or Tp. This scheme provides an alternative to
schemes that depend on other types of mappings, like quasiconformal ones.

On the other hand, when we study families of Riemann surfaces, we
obtain induced mappings into Mp or Tp. These mappings then are naturally
holomorphic, and thus in particular harmonic. So, one can apply general
theorems about harmonic mappings to obtain restrictions on families of
Riemann surfaces, like finiteness results. Conversely, when we have some
mapping into Mp or Tp, not necessarily holomorphic, we can appeal to gen-
eral existence theorems about harmonic maps to deform it into a harmonic
map. Here, again, we need to use some negative curvature. This time, it is
provided by the Weil-Petersson on Tp and on its quotients, which is a Kähler
metric of negative sectional curvature. In fact, the curvature properties of
the Weil-Petersson metric are such that general results apply to show that
harmonic maps into Tp or Mp of sufficiently high rank have to be even holo-
morphic (or antiholomorphic, but that case is usually of less interest). That
is, from topological conditions alone one can produce holomorphic maps
into Mp. These holomorphic maps then correspond to families of Riemann
surfaces.

Also, while a harmonic map to a Riemann surface in general is not
holomorphic – which simply reflects the fact that we can deform the under-
lying conformal structure –, nevertheless, a harmonic map from a higher
dimensional compact Kähler manifold M to a hyperbolic Riemann surface
S induces some holomorphic foliation on M . This was our original discovery
many years ago which was a starting point for our subsequent research and,
in fact, for the entire field of non-abelian Hodge theory. In particular, one
can take the quotient of M by this holomorphic foliation. That quotient then
also is a compact Riemann surface S′ that is a covering of the original target
S. Thus, while the original harmonic map to S need not be holomorphic,
he quotient map from M to S′ then is holomorphic by construction (the
induced map from S′ to S is harmonic, but need not be holomorphic).

After summarizing background material about harmonic maps and mod-
uli spaces of Riemann surfaces, this review will then explore these two prin-
ciples, that is, harmonic maps of Riemann surfaces, and harmonic maps into
moduli or Teichmüller spaces.

For a more extensive review with a somewhat different emphasis, we refer
to [13]. In particular, that review contains a more extended bibliography
than ours. We also thank Michael Wolf and the referees for useful comments
and references.

2. Background

2.1. Harmonic maps.
2.1.1. Equivariant harmonic maps. Since the theory of harmonic map-

pings is systematically presented in [44, 46], we can be brief here. Since we
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shall have to cope with spaces that possess certain singularities, we shall
need existence results for harmonic mappings that are formulated on uni-
versal covering spaces in an equivariant manner. Therefore, we shall present
here the existence theorem of Jost-Yau [36] and Labourie [49] for equivari-
ant harmonic maps. The setting of this result is the following. Let X, Y be
simply connected Riemannian manifolds with isometry groups I(X), I(Y ).
Y will always be assumed to be complete. Let Γ be a discrete subgroup
of I(X). The quotient X/Γ then may have singularities, arising from fixed
points of nontrivial elements of Γ. Nevertheless, it inherits a metric and a
volume form dμ from X, and we shall identify it with a fundamental region
for the action of Γ. When Γ acts without fixed points and properly discon-
tinuously, then the quotient M := X/Γ is a Riemannian manifold itself. We
now assume that we have a homomorphism

(2.1) ρ : Γ → I(Y ),

and we are interested in ρ-equivariant maps, that is, maps f : X → Y
satisfying

(2.2) f(γx) = ρ(γ)f(x) for all γ ∈ Γ and x ∈ X.

In particular, when Γ operates without fixed points and properly discon-
tinuously, Γ then can be identified with the fundamental group π1(M). In
other words, we have constructed a setting where we can investigate repre-
sentations of fundamental groups π1(M) in isometry groups I(Y ) of simply
connected Riemannian manifolds. An important example is the case where
Y = G/K is a symmetric space of noncompact type, in which case G is a
linear algebraic group with maximal compact subgroup K. In this case, G
is the identity component of I(Y ), and so, we look at representations of Γ
in linear algebraic groups.

When ρ(Γ) acts fixed point free and properly discontinuously, then I(Y )/
ρ(Γ) is a Riemannian manifold. Thus, when both Γ and ρ(Γ) share this
property, then the representation ρ corresponds to a homotopy class of maps
between the Riemannian manifolds M := X/Γ and N := Y/ρ(Γ). We can
also look at subgroups Λ ∈ I(Y ) with ρ(Γ) ∈ Λ and then look at maps
from M to I(Y )/Λ. In particular, in the above situation, we may consider
quotients of N .

We now want to optimize the map, and it is at this point that we need
the Riemannian structures of X and Y . The distance function of Y induced
by the Riemannian metric will be written as d(., .). We also recall some geo-
metric notation (see [46]). Let m := dimX, n := dimY . In local coordinates,
the metric tensor of X is written as

(γαβ)α,β=1,...,m,

and the one of Y as

(gij)i,j=1,...,n.
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Some further notation, with the standard summation convention:

(γαβ)α,β=1,...,m = (γαβ)−1
α,β (inverse metric tensor)

γ := det(γαβ)

Γi
jk :=

1
2
gi�(gj�,k + gk�,j − gjk,�) (Christoffel symbols of Y ).

The volume form of X,
√

γdx1 · · · dxm in local coordinates, is abbreviated
as dvol(x) or dX.
The Laplace-Beltrami operator of X is

(2.3) ΔX = − 1
√

γ

∂

∂xj

(√
γγαβ ∂

∂xi

)
.

Sometimes, it will be more convenient to use the abstract intrinsic for-
malism of Riemannian geometry. The metric of a vector bundle E over X
will be denoted as 〈·, ·〉E . If f : X → Y is a ρ-equivariant map of class C1, we
define its energy density in local coordinates (x1, . . . , xm) on X, (f1, . . . , fn)
on Y as

(2.4) e(f)(x) :=
1
2
γαβ(x)gij(f(x))

∂f i(x)
∂xα

∂f j(x)
∂xβ

.

e(f)(x) is an intrinsic quantity, independent of the choices of local coordi-
nates. With ∂f

∂xα = ∂f i

∂xα
∂

∂f i and df = ∂f i

∂xα dxα ⊗ ∂
∂f i , considered as a section

of the bundle T ∗X ⊗ f−1TY , we have

e(f) =
1
2
γαβ

〈
∂f

∂xα
,

∂f

∂xβ

〉
f−1TY

=
1
2
〈df, df〉T ∗X⊗f−1TY(2.5)

=
1
2
‖df‖2,

where the norm ‖ · ‖ involves the metrics on T ∗X and f−1TY .

Definition 1. The energy of a ρ-equivariant C1-map f : X → Y is

(2.6) E(f) :=
∫

X/Γ
e(f)dX

where we integrate over a fundamental region for the action of Γ, as
explained.

A (smooth) map h that minimizes the energy E among all ρ-equivariant
maps is called harmonic.

We remark here that in general all critical points of the energy functional,
and not only the minimizers, are called harmonic. In the context of the
present survey, however, only minimizing harmonic maps will occur.
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A harmonic map h has to satisfy the nonlinear elliptic system

1
√

γ

∂

∂xα

(
√

γγαβ ∂

∂xβ
hi

)
+ γαβ(x)Γi

jk(h(x))
∂

∂xα
hj ∂

∂xβ
hk = 0(2.7)

for i = 1, . . . , n,

or in more condensed notation

(2.8) ΔXh − Γ(dh, dh) = 0.

When the domain is one-dimensional, harmonic maps are nothing but
geodesics in Y , or in the quotient case, closed geodesics considered as maps
S1 → N . Of course, it is well known that every homotopy class of maps
from S1 into a compact Riemannian manifold N contains a closed geodesic.

It turns out that in higher dimensions, one needs to assume that Y has
nonpositive sectional curvature to get a good regularity theory that ensures
the smoothness of weak solution of (2.8). For the existence, one then can try
to minimize the energy among all ρ-equivariant maps. In order to obtain the
convergence of a minimizing sequence, one needs in addition a topological
condition that we are now going describe.

A representation ρ : Γ → I(Y ) is called reductive if there exists a totally
geodesic subspace Y ′ of Y stabilized by ρ(Γ) with the property that for every
totally geodesic subspace Y ′′ of Y ′ without Euclidean factors, ρ(Γ) stabilizes
no points in Y ′′(∞), the sphere at infinity of Y ′′, i.e., is not contained in a
parabolic subgroup of I(Y ′′). When Y is a symmetric space of noncompact
type so that I(Y ) is a linear algebraic group G, this reduces to the usual defi-
nition of reductivity, that is, that the unipotent radical of the Zariski closure
of ρ(Γ) is trivial. In geometric terms, reductivity excludes the possibility that
there exists an unbounded sequence (yn) ⊂ Y ′′ with d(yn, ρ(γ)yn) ≤ c(γ)
for all γ ∈ Γ, with some constant c(γ) that may depend on γ, but not on n.
This in turn prevents a minimizing sequence for the energy to disappear at
infinity. A simple example where reductivity does not hold and the limit of
a minimizing sequence does not exist is provided by a hyperbolic Riemann
surface N with a cusp and a homotopy class of maps S1 → N represented by
a short noncontractible loop around the cusp. Such a homotopy class then
is nontrivial, but does not contain a closed geodesic, that is, no harmonic
map. The corresponding homomorphism ρ : π1(S1) = Z → I(Y ) (where
Y now is the Poincaré upper half plane H, and I(Y ) = PSL(2, R)) has a
parabolic image and is therefore not reductive. This shows that the reduc-
tivity condition is necessary for the existence of a harmonic map. We have
([36, 49])

Theorem 1. Let ρ : Γ → I(Y ) be a reductive homomorphism into the
isometry group of a simply connected, complete Riemannian manifold of
nonpositive sectional curvature. Assume that there exists some ρ-equivariant
map f : X → Y with E(f) < ∞ (see (2.6)). Then there also exists a smooth
ρ-equivariant harmonic map h : X → Y of finite energy.
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Moreover, when Y has strictly negative curvature, this map is unique,
unless it is of rank ≤ 1 in which case the image is a point or a geodesic in
Y .

When the fundamental domain for Γ in X is not bounded, or in a dif-
ferent formulation, when X/Γ is not compact, then the existence of a finite
energy map f as needed for the theorem can become a difficult issue. For
some conditions where such a finite energy map on noncompact domains
can be constructed, see [34, 35]. Alternatively, one may try to produce har-
monic maps of infinite energy. For maps between Riemann surfaces, this
was achieved by Lohkamp [54] and Wolf [83]. For the higher dimensional
case, see [38]. Applications of infinite energy harmonic maps to Teichmüller
theory, however, will be presented elsewhere.

2.1.2. Harmonic and conformal maps from Riemann surfaces. The
energy integral, and therefore harmonic maps, have some special property
when the dimension of the domain is 2, because of conformal invariance,
as we are now going to explain. For this discussion, we assume that the
quotients considered in the previous section are manifolds, that is, without
singularities. In order to emphasize that two-dimensional domains are spe-
cial, we denote the domain by S and let it be an oriented two-dimensional
Riemannian manifold with metric γαβ . By the uniformization theorem of
Gauss, S then obtains the structure of a Riemann surface, that is, we can
locally find holomorphic coordinates z = x + iy on S such that the metric
tensor becomes

(2.9) λ2(z) dz ⊗ dz

where λ(z) is a real valued positive function. Conversely, given a compact
Riemann surface Σ, by the Poincaré uniformization theorem, we can find
a conformal metric as in (2.9) with constant curvature; we shall be mainly
interested in the case of genus ≥ 2, the hyperbolic case, where this curvature
is negative, −1. This metric is unique (up to diffeomorphism, see below).
As such a surface S is of the form H/Γ, where H is the upper half plane
H := {x + iy ∈ C : y > 0} and Γ is a discrete subgroup of the isometry
group of H, PSL(2, R), this metric on S descends from the hyperbolic metric
1
y2 dz ⊗ dz on H.

Let N be a Riemannian manifold with metric tensor (gij). The energy
of a map f : Σ → N then becomes

E(f) =
1
2

∫
Σ

4
λ2(z)

gij
∂f i

∂z

∂f j

∂z

i

2
λ2(z) dz ∧ dz

=
∫

Σ
gij

∂f i

∂z

∂f j

∂z
i dz ∧ dz .

(2.10)

The last equation implies that the energy of a map from a Riemann surface Σ
into a Riemannian manifold is conformally invariant in the sense that it does
not depend on the choice of a metric on Σ, but only on the Riemann surface
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structure. Also, if k : Σ1 → Σ2 is a bijective holomorphic or antiholomorphic
map between Riemann surfaces then for any f : Σ2 → N (of class C1)

(2.11) E(f ◦ k) = E(f),

and if f is harmonic, then so is f ◦ k.
Likewise, the harmonic map equation is independent of the choice of

conformal metric on the domain. This means that the map h : S1 → N of
class C2 is harmonic iff

(2.12)
∂2hi

∂z∂z
+ Γi

jk(h(z))
∂hj

∂z

∂hk

∂z
= 0 for i = 1, . . . ,dim N.

When the target is also a Riemann surface S2 with metric

(2.13) ρ2(h)dh ⊗ dh,

then the harmonic map equation becomes

(2.14) hzz +
2ρh

ρ
hzhz = 0.

Thus, holomorphic or antiholomorphic maps between Riemann surfaces
are harmonic as they obviously satisfy (2.14). In the sequel, we shall write
± holomorphic to mean holomorphic or antiholomorphic. The converse does
not necessarily hold. Harmonic maps exist in any homotopy class of maps
between compact Riemann surfaces, but ± holomorphic maps h : S1 → S2
have to satisfy the Riemann-Hurwitz formula

(2.15) 2 − 2p1 = |m|(2 − 2p2) − vh,

where p1, p2 are the genera of S1, S2, m is the degree of h, and vh ≥ 0 is its
total ramification index. In particular, as a necessary topological condition
for a harmonic map to be ± holomorphic, we have the inequality

(2.16) χ(S1) ≤ |m|χ(S2),

χ denoting the Euler characteristic. In fact, even if (2.16) holds, in general
there will not exist a holomorphic map between S1 and S2, as this requires
that the conformal structure of S1 be a conformal cover of the one of S2.
Thus, in general, harmonic maps between Riemann surfaces S1, S2 cannot
be ± holomorphic. Also, as we see from (2.12), whether a map is harmonic
depends on the metric of the target S2 whereas the property of being ±
holomorphic only depends on the conformal structure of S2, but not on its
metric. Nevertheless, harmonic maps into Riemann surfaces enjoy special
properties, as demonstrated by the following result of Schoen-Yau [68] and
Sampson [66].

Theorem 2. Let h : S1 → S2 be a harmonic map with p1 = p2, | deg h| =
1. If the curvature of S2 satisfies K2 ≤ 0, then h is a diffeomorphism.
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(In fact, harmonic diffeomorphism exist even without the curvature
restriction, see [12, 32, 41].) A key ingredient in the proof are the follow-
ing identities. We put, for a harmonic map h : S1 → S2 between Riemann
surfaces with curvatures K1, K2,

(2.17) H := |∂h|2 :=
ρ2

λ2 hzhz and L := |∂h|2 :=
ρ2

λ2 hzhz.

Then, at points where H resp. L is nonzero,

−Δ log H = 2K1 − 2K2(H − L)(2.18)
−Δ log L = 2K1 + 2K2(H − L).(2.19)

Actually, the Riemann-Hurwitz formula (2.15) can also be deduced from
such identities, noting that for instance when h is holomorphic, L ≡ 0.

The relationship between harmonic and ± holomorphic maps (or con-
formal maps, when the target is of higher dimension) is clarified by the
following:

Lemma 1. Let Σ be a Riemann surface, N a Riemannian manifold. If
h : Σ → N is harmonic, then

(2.20) ϕ(z) dz2 =
〈∂h

∂z
,
∂h

∂z

〉
N

dz2

is a holomorphic quadratic differential. Furthermore, ϕ(z) dz2 ≡ 0 iff h is
conformal.

This is proved by an easy computation.
Returning to the case where the target is also a Riemann surface S, that is,
where we have a map h : Σ → S, we obtain, with the above notation λ2dzdz
and ρ2dhdh for the metrics on Σ and S,

(2.21) ρ2dhdh = ϕ(z) dz2 + λ2(H + L)dzdz + ϕ(z) dz2.

(Of course, when we recall the definition (2.17) of H and L, the domain met-
ric λ2dzdz drops out. Also, in our local coordinates, ϕ(z)dz2 = ρ2hzhzdz2.)
Thus, the quadratic differential ϕ(z)dz2 is the (2, 0)-part of the pullback of
the image metric.

In intrinsic terms, a (holomorphic) quadratic differential is a (holomor-
phic) section of T ∗

C
Σ ⊗ T ∗

C
Σ. Since every holomorphic quadratic differential

on the 2-sphere S2 vanishes identically, Lemma 1 implies

Corollary 1. For any Riemannian manifold N , every harmonic map

h : S2 → N

is conformal.
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2.2. Moduli spaces of Riemann surfaces.
2.2.1. The algebro-geometric structure. In the realm of algebraic geom-

etry, one naturally employs a terminology that refers to the complex dimen-
sion; thus, a smooth holomorphic curve is a Riemann surface, and a smooth
algebraic surface is a complex manifold of complex dimension 2 that can be
embedded into some complex projective space. Of course, there are some
fundamental theorems behind this identification of algebraic objects – alge-
braic curves – and complex analytic – Riemann surfaces – and differential
geometric ones – differentiable surfaces with certain metrics. We shall now
briefly recall those results to prepare the stage for our discussion of moduli
spaces from the various different perspectives.

A compact Riemann surface can be locally described as the common
zero set of two homogeneous polynomials in three variables, that is, each
compact Riemann surface carries the conformal structure of such a poly-
nomial zero locus. Therefore, it becomes an algebraic variety in the projec-
tive space CP3. The Riemann surface is thus represented as the zero set
of algebraic equations (and therefore called an algebraic curve). Such equa-
tions of a given degree can be characterized by their coefficients. However,
different coefficient sets need not necessarily lead to different Riemann sur-
faces. In fact, automorphisms of CP3 lead to equivalent algebraic curves.
Therefore, one needs to divide them out. For this, however, one encoun-
ters the difficulty that the automorphism group of CP3 is not compact.
Mumford [60, 61] was able to overcome this difficulty. He developed geo-
metric invariant theory to obtain the moduli space Mp of algebraic curves
of genus p. The moduli space of algebraic curves of a given genus is not
compact. Algebraic equations can degenerate, and in geometric terms, lim-
its of smooth algebraic curves can be singular. In order to obtain a compact
moduli space, one therefore has to include such limits. In order to stay with
smooth curves, one takes the singularities out. The resulting curves then are
no longer compact. A problem emerges when such limits possess a noncom-
pact automorphism group, like the once or twice punctured sphere. When
one includes such objects, the resulting moduli space will lose its Hausdorff
property. Therefore, Mumford constructed a moduli space that only consists
of stable curves, that is, curves with a compact automorphism group. From
this construction, the compactified Mumford-Deligne moduli space Mp is
obtained as the moduli space of stable curves of genus p, see [14]. As a
moduli space of algebraic varieties, it is an algebraic variety itself. Here,
stable curves can have singularities. Such singularities correspond to dou-
ble points of the algebraic curves. Therefore, on the algebraic curve, they
come in pairs. If one takes out these singular points, one obtains noncom-
pact curves with punctures. Let us look at the case of a single singularity,
that is, where two points are taken out. Such a curve can either be con-
nected of genus p − 1, or it can consist of two components whose genera
satisfy p1 +p2 = p. Here, all such components of genus 0 have to be ignored,
as they would have noncompact automorphism groups. The process can be
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iterated, that is, limits of curves with one singularity may have two or more
singularities. Consequently, we need to take out 2k points from such curves,
for some positive integer k, with the restriction again that the resulting
curve be stable, that is, excluding spheres with one or two punctures. As
boundary points in Mp, such a curve then is determined by its conformal
structure plus the positions of the punctures. The moduli space Mp itself
has complex dimension 3p − 3, and the largest compactification strata have
dimension 3p−4. For instance, for a compactification stratum corresponding
to curves of genus p − 1 with two punctures, we have 3(p − 1) − 3 dimen-
sions for the conformal structure and two dimensions for the positions of
the two punctures, which yields 3p − 4 altogether. The smallest compact-
ification stratum corresponds to a sphere with 3 punctures, and it there-
fore is of dimension 0, because all thrice punctured spheres are conformally
equivalent.

We can also interpret the different compactification strata as follows. A
surface with a singularity is conformally a compact surface minus the points
corresponding to the singularity. Here, “singularity” could mean a double
point, but we could also view it as two points at infinity. When we add
these two points, without identifying them, that is, without creating a double
point, we obtain a compact surface with two distinguished points. In general,
surfaces of genus p with k distinguished points also are parametrized by a
moduli space Mp,k whose construction is completely analogous to the one
of Mp. Thus, the Mumford-Deligne compactification of Mp contains several
compactification strata of the form Mp−1,2, Mp−2,4, . . . or Mp1,1 ∪Mp2,1 with
p1 +p2 = p, and so on. That is, Mp is naturally a stratified space, as already
explained.

There exists a different way to compactify the moduli space Mp. This
arises by associating to each algebraic curve its Jacobian variety. Since this
correspondance is injective by Torelli’s theorem, one can view Mp as a sub-
variety of the moduli space Ap of Abelian varieties of dimension p. The
latter possesses a compactification Ap, constructed by Satake and Baily-
Borel. This then induces a compactification Mp of Mp that was studied by
Baily[5]. Mp is different from Mp and, in fact, highly singular, but it can
simply be obtained from Mp by forgetting the positions of the punctures or
cusps of the limiting Riemann surfaces in Mp. Whereas the largest compact-
ification strata of Mp have codimension 1, those of Mp have codimension 3
in Mp, with the exception of one stratum, corresponding to once punctured
tori, that has codimension 2. In any case, we should note that Mp is not a
manifold as it possesses some quotient singularities, arising from algebraic
curves with nontrivial automorphism groups. A similar observation applies
to the various compactification strata of Mp. From the point of view of alge-
braic geometry, these singularities are rather mild. In contrast, the space Mp

is highly singular at the compactification locus.



HARMONIC MAPPINGS AND MODULI SPACES OF RIEMANN SURFACES 181

The moduli space Mp can also be obtained from the general theory
of variations of complex structures, as a universal space for variations of
complex structures on a 1-dimensional complex manifold of genus p. This
means that if N is a complex space fibering over some base B with the
generic (=regular) fiber being a Riemann surface of genus p, we then obtain
a holomorphic map h : B0 → Mp where B0 ⊂ B are the points with regular
fibers. In this manner, Mp, as a moduli space of complex structures, acquires
a complex structure itself that is determined by the requirement that all
these h be holomorphic. Ideally, we would also like to have a so-called fine
moduli space Mp,fine. This means that from the holomorphic map h, we
obtain a holomorphic map hfine : N0 → Mp,fine, N0 being the space of
regular fibers in N , that maps the fiber over w ∈ B0 to the fiber over h(w) in
Mp,fine. Again, the Riemann surfaces with non-trivial automorphisms cause
difficulties, and such a fine moduli space does not exist. A slight modification,
however, leads to such a fine moduli space; namely, we only need to equip our
Riemann surfaces additionally with some choice of a root of the canonical
bundle in order to prevent non-trivial automorphisms. This is called a level
structure. This gives a finite ramified cover M ′

p of Mp. That cover is free of
singularities and then yields a fine moduli space M′ whose fiber over w ∈ M ′

p

is the Riemann surface (with level structure) determined by w.
Also, the cotangent space of Mp at the point corresponding to the Rie-

mann surface Σ is naturally identified with the holomorphic quadratic dif-
ferentials on Σ, that is, with the holomorphic sections of T ∗

C
Σ ⊗ T ∗

C
Σ. We

also recall that by the Riemann-Roch theorem, the complex dimension of
that vector space is 3p − 3 (see e.g., [45]).

2.2.2. Teichmüller theory. Again, we are mainly interested in Riemann
surfaces of genus p ≥ 2. As already mentioned, such a Riemann surface
Σ is a quotient H/Γ of the Poincaré upper half plane by a discrete group
Γ ∈ PSL(2, R) of isometries with respect to the hyperbolic metric 1

y2 dz⊗dz̄,
with z = x + iy. Since Γ is isomorphic to the fundamental group π1(S),
the Riemann surface is described by a faithful representation ρ of π1(S) in
PSL(2, R). This leads to the approach of Ahlfors and Bers to Teichmüller
theory. Representations that only differ by a conjugation with an element of
PSL(2, R) yield the same conformal structure. Thus, we consider the space
of faithful representations up to conjugacy. A representation can be defined
by the images of the generators, that is, by 2p elements of G, and this induces
a natural topology on the moduli space. Also, from an easy count, we see
that the (real) dimension of the moduli space of representations of π1(Σ) in
PSL(2, R) modulo conjugations is 6p − 6. This, of course, agrees with the
dimension of the moduli space Mp above. In fact, the moduli space presently
discussed of discrete, faithful representations of π1(Σ) in PSL(2, R) modulo
conjugations yields the Teichmüller space Tp, a simply connected singularity-
free infinite cover of Mp. Mp then is obtained as the quotient of Tp by the
mapping class group Γp. Γp is the group of homotopy classes of positively
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oriented diffeomorphisms of the underlying surface S, or expresses somewhat
differently,

(2.22) Γp = Diff+(S)/Diff0(S),

where Diff+ stands for orientation preserving diffeomorphisms and Diff0 for
those that are homotopic to the identity of S.

As a moduli of representations of a discrete group, Tp also acquires nat-
ural structures, like a differentiable and a complex one. It is diffeomorphic,
but not biholomorphic to C3p−3. The complex structure of Teichmüller space
was first investigated systematically studied by Ahlfors [2]. A fundamental
contribution is due to Bers who holomorphically embedded Tp as a bounded
domain in some complex Banach space, see [6] and the detailed presentation
in [62]. Recently, higher Bers maps have been constructed by Buss[8].

2.2.3. The Riemannian approach. Since a two-dimensional Riemannian
manifold defines a conformal structure, that is, a Riemann surface, we can
naturally look at all Riemannian metrics on a given compact surface F of
genus p and then identify those that induce the same conformal structure.
We shall describe here the approach of Tromba and Fischer, see [77]. Thus,
we consider the space Rp of all smooth Riemannian metrics on F . Rp has
been studied in [11, 15, 17, 18, 20, 21], to cite some of the most significant
contributions. This space carries itself a Riemannian metric. To describe this
metric on Rp, let g = (gij)i,j=1,2 (in local real coordinates (z1, z2)) be some
Riemannian metric on F , that is, g is an element of Rp. (gij) is a positive
definite symmetric 2×2 tensor. Tangent vectors to Rp at g then are given by
symmetric 2 × 2 tensors (hij), (	ij). The metric of Rp on the tangent space
at g is then given by
(2.23)

((hij), (	ij))g :=
∫
F

trace (h, 	)dvol(g) =
∫
F

gijgkmhik	jm

√
det g dz1 dz2.

This L2-metric on the infinite dimensional space Rp is only a weak Rie-
mannian metric, that is, the tangent spaces of Rp are not complete w.r.t. this
metric. Therefore, the general theory of Riemann-Hilbert manifolds does not
apply. Nevertheless, Clarke [11] showed Rp becomes a metric space with the
distance function induced by this weak metric (2.23). Moreover, Clarke [10]
was able to identify the metric completion of this metric space. Here, one
needs to allow for semimetrics, that is, give up the requirement of strict
positive definiteness, and then identify two such semimetrics that only differ
at points where neither of them is positive definite.

Of course, we are interested in metrics only up to isometry. That is, when
two metrics g1, g2 are isometric to each other, then they are considered as the
same metric. This, however, is not yet reflected in the definition of Rp. Thus,
we need to go to a quotient of Rp that is obtained by identifying isometric
metrics. If g is a Riemannian metric on F and h : F → F is a diffeomorphism,
h�g is isometric to g via h. Conversely, when two metrics g, h are isometric to
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each other, then the isometry between them is given by some diffeomorphism
of F . Thus, we need to divide out the action of the (orientation preserving)
diffeomorphism group Dp of F . Dp acts isometrically on Rp equipped with
its Riemannian metric.

In addition to this issue, also two metrics that are not isometric might
still induce the same conformal structure, and since we are interested in the
latter, we should also identify all metrics that induce the same conformal
structure. When we multiply a given metric g by some positive function λ,
the metric λg leads to the same conformal structure as g. Conversely, when
two metrics are conformally equivalent, they are related by such a positive
function.

One then gets rid of the ambiguity of the conformal factor by finding
a suitable slice in Rp transversal to the conformal changes. By Poincaré’s
theorem, any Riemannian metric on our surface S of genus p > 1 is confor-
mally equivalent to a unique hyperbolic metric, that is, S becomes a quotient
H/Γ as above. This metric has constant curvature -1. The moduli space Mp

is then obtained as the space Rp,−1 of metrics of curvature -1 divided by
the action of Dp. In this way, the geometric structures on Rp induce corre-
sponding geometric structures on Mp as described in [77]. A tangent vector
to Rp, that is a symmetric 2× 2 tensor (hij), is orthogonal to the conformal
multiplications when it is trace-free, and it is orthogonal to the action of
Dp when it is divergence-free. Such a trace- and divergence-free symmetric
tensor then can be identified with a holomorphic quadratic differential on
the Riemann surface.

The Riemannian metric on Rp then induces a Riemannian metric on the
moduli space Mp, or more precisely, on its singularity free covers like Tp,
as developed in [19]. This metric then induces a product between holomor-
phic quadratic differentials on the Riemann surface S in question. We use
a complex notation. Let ϕ, ψ be holomorphic quadratic differentials on S,
and denote the hyperbolic metric on S by λ2dzdz. Their product w.r.t. the
metric then is given by

(2.24) (ϕ, ψ)g = 2 Re
∫

ϕψ̄
1

λ2(z)
dzdz̄.

This metric is called the Weil-Petersson metric gWP . This metric was intro-
duced by Weil inspired constructions of Petersson in number theory. Ahlfors
[1, 2] derived basic results about this metric. In particular, the Weil-
Petersson is a Kähler metric w.r.t. the natural complex structure of the
moduli space. This metric is not complete, since ∂Mp := Mp \Mp has finite
distance from the interior, as discovered by Wolpert [85]. Masur [58] then
found precise expansions of the Weil-Petersson metric near the boundary of
Mp. Masur’s estimates yield detailed information about the metric comple-
tion of Mp with the Weil-Petersson metric. The remarkable result is that
this metric completion agrees with the Mumford-Deligne compactification
of Mp discussed above.
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While the Weil-Petersson metric is not complete, it possesses strictly
convex exhaustion functions. Such functions were found by Wolpert[87] and
Tromba[78, 79]. Tromba’s function is of particular interest in the present
context because it is given by the energy functional for harmonic maps
between Riemann surfaces as a function of the conformal structure of the
domain.

Yamada [90] observed that the existence of strictly convex exhaustion
function implies that geodesics starting in the interior of Mp can hit the
boundary at most at their endpoints. In other words, a geodesic between
two points in a compactification stratum has to stay inside that stratum.
This fact has been extended to harmonic maps by Wentworth[80].

For a recent review of the geometry of the completion of the Weil-
Petersson metric, see [88].

Tromba [75] proved that gWP has negative sectional curvature, and its
holomorphic sectional curvature even has a negative upper bound k < 0.
Different proofs of these results were found in [31, 42, 70, 86]. For a recent
survey of the curvature properties of the Weil-Petersson metric, see [89].
The curvature of the Weil-Petersson metric is not bounded negatively from
above, as was first shown by Huang [27] who found that the curvature
goes to 0 in certain directions when approaching the boundary of moduli
space. This issue has been further investigated in [29, 74]. Also, in [56] it
was shown that the Weil-Petersson metric is not Gromov hyperbolic. For
further results, see [7].

The isometry group of the Weil-Petersson metric is given by the extended
mapping class group, as shown in [57], where extended means that one takes
all diffeomorphisms, and not only the orientation preserving ones in (2.22).
After going to finite covers, as explained above, but without changing our
notation for simplicity, we have a holomorphic fibering

(2.25) ψ : M′
p → M ′

p

where the fiber over q ∈ M ′
p is the holomorphic curve defined by q. M′

p also
carries a Weil-Petersson metric with the same negativity properties as the
one of M ′

p, see e.g., [42].
Similarly, at the level of Teichmüller spaces, we have the universal

Teichmüller curve Tp, the fiber bundle over Tp where the fiber over a point
in Tp is the marked Riemann surface represented by that point. Of course,
we then have a covering map Tp → M′

p. In particular, Tp also carries its
Weil-Petersson metric of negative curvature.

The Weil-Petersson metric employs the hyperbolic metric λ2dzdz̄ on the
Riemann surface S. One can then replace this hyperbolic metric by another
natural metric on S, like the Bergmann or the Arakelov metric. This was
investigated in [24, 25, 28, 30].

Besides these metrics and the Weil-Petersson metric, Teichmüller space
carries many other natural metrics, including the Teichmüller, Kobayashi
and Caratheodory metrics which are only Finsler metrics, the Bergman and
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Kähler-Einstein metrics. More recently, Liu-Sun-Yau[50, 51, 52] introduced
new metrics, the Ricci metric which is given by the negative Ricci tensor of
the Weil-Petersson metric and the perturbed Ricci metric where a multiple of
the Weil-Petersson metric is added. They study the curvature and boundary
behavior of these metrics and achieve a systematic comparison of all the
aforementioned metrics.

3. Harmonic maps to Riemann surfaces

3.1. Harmonic maps between Riemann surfaces. We consider
harmonic maps h : Σ → S between compact Riemann surfaces of hyperbolic
type, that is, of genus ≥ 2. We assume that they both have the same genus
p. S needs to carry some Riemannian metric, and unless stated otherwise,
we take the hyperbolic metric of constant curvature −1.

As explained in Section 2.1.2, the harmonic map h induces a holomorphic
quadratic differential on Σ, that is, a holomorphic section of T ∗

C
Σ ⊗ T ∗

C
Σ.

Thus, from the harmonic map h, we obtain a cotangent vector of the moduli
space Mp at the point corresponding to Σ. It is then natural to investigate
how this cotangent vector varies when we vary the conformal structure of
either Σ or S. Let us consider the effect of variations of the latter. This will
depend on the following summary of Theorems 1 and 2 and Lemma 1.

Lemma 2. Let Σ be a compact Riemann surface with local conformal
coordinate z = x + iy, S another such surface of the same genus p ≥ 2,
equipped with its unique hyperbolic metric, locally written as ρ2(h)dhdh. We
also fix some (orientation preserving) diffeomorphism k : Σ → S. Then there
exists a unique harmonic map

(3.1) h = h(Σ, S) : Σ → S

homotopic to k. This map h is a diffeomorphism,

(3.2) ϕ(z) dz2 = ρ2hzhzdz2

is a holomorphic quadratic differential, and h is conformal iff ϕ = 0.

We keep Σ fixed. S then determines the harmonic map h which in turns
yields a holomorphic quadratic differential on Σ. Denoting the space of those
holomorphic quadratic differentials by Q(Σ), we then obtain a map

(3.3) q(Σ) : Tp → Q(Σ).

The map q is defined on Teichmüller space Tp instead of on the moduli space
Mp because the harmonic map depends on the choice of a diffeomorphism
k : Σ → S. Wolf [81] (see also [43]) then showed

Theorem 3. For any Σ, q(Σ) is a bijection between Tp and Q(Σ).



186 J. JOST AND S.-T. YAU

The proof makes crucial use of the identities (2.18), (2.19).
Wolf [82] then also analyzed the asymptotic behavior of this bijec-

tion. His striking result is that this yields the Thurston compactification
of Teichmüller space that had originally been constructed in a very differ-
ent manner. Geometrically, one sees from [84] how harmonic maps between
surfaces converge to harmonic maps from a surface to an R-tree when the
target surface degenerates in the manner described above. Minsky [59] then
provided estimates about energy and extremal length which describe the
asymptotics as the source decays.

Theorem 3 says that with its natural differentiable structure, Tp is dif-
feomorphic to the vector space C3p−3 which is Teichmüller’s theorem. It is,
however, not biholomorphic to that space with respect to its natural com-
plex structure (see [43] for a detailed analysis of this issue). Also, q(Σ) is not
an isometry w.r.t. the Weil-Petersson metric on Tp. Nevertheless, there does
exist a relationship between harmonic maps and the Weil-Petersson metric
that we are now going to describe. For that purpose, we consider the energy

(3.4) E(h(Σ, S)) =
∫

Σ
ρ2(h(z))(hzhz + hzhz)dzdz =

∫
Σ
(H + L)λ2(z)dzdz

as a function of S and present some formulas obtained in [43]. When S = Σ
as an element of Tp, that is, when the conformal structure of S is such that
k is homotopic to a conformal diffeomorphism – which then is given by the
harmonic map h(Σ, S) –, then E as a function of S achieves its minimum.
This can be seen, for instance, from the fact that when h is conformal, then
L = 0, and the integral of the Jacobian,

(3.5) J(h) =
∫

Σ
(H − L)λ2(z)dzdz,

is a topological invariant that does not depend on the conformal structures of
Σ and S, but only on their genus. At the point S = Σ ∈ Tp, the infinitesimal
variations of the target surface correspond to the cotangent vectors of Tp at
Σ, that is, to the holomorphic quadratic differentials on Σ. Since E achieves
a minimum here, we have

(3.6) Eϕ = 0 for all ϕ ∈ Q(Σ),

where Eϕ = d
dtE(h(Σ, S + tϕ)) is the derivative of E for a variation of the

target in the direction of ϕ, and where we implicitly use the identification
of Tp with Q(Σ) given by Theorem 3. In fact,

Lemma 3. S = Σ is the only critical point of E as a function of S ∈ Tp.
Moreover, E(h(Σ, .)) is a proper function on Tp. Its second derivatives at
S = Σ for ϕ, ψ ∈ Q(Σ) are given by

(3.7) Eϕψ = 2
∫

Σ
ϕψ

1
λ2 dzdz.
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Consequently, E(h(Σ, .)) is a proper exhaustion function with a single
critical point at which its Hessian is positive definite.

The same result holds when we consider E(h(Σ, S)) as a function of
the domain Σ, as proved by Tromba [76], who, by appealing to elemen-
tary Morse theory, had thus found a harmonic map proof that Teichmüller
space is topologically a cell. We should also mention the detailed and use-
ful computations of Yamada [90] here. For systematic computations of the
variations of the energy as a function of both the domain and the target,
see [43].

The important interpretation of (3.7) is that the second variation of
the energy at S = Σ yields the Weil-Petersson product of the holomorphic
quadratic differentials ϕ, ψ. This can be used for systematic expansions [42].

Let us also briefly mention that harmonic maps can be used as a tool to
understand grafting, see [16, 67, 73].

3.2. Harmonic maps from Kähler manifolds to Riemann sur-
faces. Our starting point is the discovery of [33].

Theorem 4. Let M be a compact Kähler manifold, S a hyperbolic Rie-
mann surface, h : M → S harmonic. If dh(w0) �= 0 at some w0 ∈ M , then
in some neighborhood U of w0, the local level sets

(3.8) {h = z} ∩ U, (z ∈ S)

consist of complex analytic hypersurfaces, and the corresponding foliation is
holomorphic.

This holomorphic foliation then induces a holomorphic equivalence, that
is, by identifying the points in the level set, one concludes (see [71])

Theorem 5. Let M be a compact Kähler manifold, S a compact hyper-
bolic Riemann surface, g : M → S continuous and homologically nontrivial,
that is,

(3.9) g∗ : H2(M, R) → H2(S, R)

is nontrivial. Then there exist a compact hyperbolic Riemann surface S′, a
holomorphic map u : M → S′, and a harmonic map φ : S′ → S for which
the harmonic map h := φ ◦ u is homotopic to g.
Thus, if D is the hyperbolic unit disk, the lift

(3.10) ũ : M̃ → D

is a nonconstant bounded holomorphic function on M̃ .

In other words, the harmonic map h : M → S factors through some holo-
morphic map u : M → S′ to another Riemann surface S′ that is obtained as
the quotient of M by the holomorphic foliation of Theorem 4. In general, S′
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is not only conformally, but also topologically different from S. We consider
the example where S is a compact hyperbolic surface of genus 2, M is a
compact hyperbolic surface Σ of genus 3, and g is a map of degree 1 that
collapses one of the handles of Σ to a point. Since there does not exist a
holomorphic map of degree 1 from a surface of genus 3 to one of genus 2,
S′ must be topologically different from S. In fact, in this example, S′ = Σ,
and the holomorphic map u is simply the identity. Thus, when M is itself
a Riemann surface, the statement of Theorem 5 is trivial. It becomes quite
important, however, for higher dimensional Kähler manifolds. It implies, in
particular, that the existence of a nontrivial holomorphic map to a (compact,
singularity free) holomorphic curve of genus ≥ 2 is a topological property of
a Kähler manifold. We shall see an application in Section 4.

4. Harmonic and holomorphic maps to moduli spaces

In this section, we shall describe the second method of applying har-
monic maps to moduli and Teichmüller spaces. The first method consisted
in investigating how harmonic maps between Riemann surfaces depend on
the underlying conformal structure. For instance, by looking at the energies
of such harmonic maps, we could construct useful functions on moduli or
Teichmüller spaces. The second method consists rather in looking at har-
monic maps to moduli or Teichmüller spaces. As described in Section 2.2,
these spaces carry geometric structures, including a natural Kähler metric of
negative curvature, in their own right, and so, we can also directly consider
them as potential target spaces for harmonic mappings.
By doing so, we can then also appeal to general results about when har-
monic maps are ±-biholomorphic, as started in [69]. This method is very
useful because harmonic maps exist under rather general circumstances, as
described in Section 2.1.1, and therefore one possesses a powerful tool for
construction holomorphic maps. Conversely, holomorphic maps are special
cases of harmonic maps, and therefore also succumb to general results about
the latter.

We shall first describe how harmonic map methods apply to families
of Riemann surfaces. Here, a family of Riemann surfaces is described as a
subvariety of some Mp. We have the theorem of Parshin [64] (the case D =
∅) and Arakelov [3] (general D), the solution of the Shafarevitch problem
over function fields:

Theorem 6. Let C be a compact smooth holomorphic curve, D ⊂ S
finite, and let g ≥ 2. Then there exist at most finitely many algebraic sur-
faces B fibered over C with smooth fibres of genus g over C\D that are not
isotrivial, that is, not finitely covered by a product.

Translated into the language of mappings, this means that there exists
a holomorphic map f : B → C for which f−1(z) is a smooth holomorphic
curve of genus g for every z ∈ C\D. The setting can then be generalized.



HARMONIC MAPPINGS AND MODULI SPACES OF RIEMANN SURFACES 189

Theorem 7. Let Z be a compact manifold, D ⊂ Z a divisor with at
most simple normal crossings. Then there exist at most finitely many non-
isotrivial fiber spaces over Z for which the fibers over the points in Z\D are
smooth curves of genus g.

The next result is due to Manin [55] and Grauert [23], the solution of
the Mordell problem over function fields.

Theorem 8. Let f : B → C be a nontrivial fibering as in Theorem 6.
Then there exist at most finitely many holomorphic sections s : C → B.

Again, this result readily generalizes as in Theorem 7.
The harmonic map approach to these results that we are going to describe
was developed in [37]. As described in Section 2.2.1, Mg satisfies some uni-
versal property. This property is that fiberings f : B → C by curves of
genus g as in Theorem 6 give rise to holomorphic maps h : C → Mg by
associating to z ∈ C\D the holomorphic structure of the curve f−1(z) and
by then extending this map to all of C. In order to avoid the quotient sin-
gularities of Mp and to distinguish isotrivial families, we lift to finite covers
(as described in Section 2.2.1, h′ : C ′ → M ′

g. h′ is constant iff the fibering
is isotrivial. Equipping C ′ with a metric of constant curvature κ and M ′

g

with the Weil-Petersson metric whose holomorphic sectional curvature has
an upper bound k < 0 (see Section 2.2.3), the Schwarz Lemma of Yau [91]
and Royden [65] yields

(4.1) ‖dh′(z)‖2 ≤ κ

k
for all z ∈ C ′,

unless h′ is constant. If the genus of C is 0, 1, then κ ≥ 0, and so, in this
case,we conclude that any fibering f : B → C by curves of genus ≥ 2
is isotrivial, because then the right hand side of (4.1) is nonpositive. For
the case where the genus of C is ≥ 2, by (4.1), all holomorphic maps h′ :
C ′ → M ′

g are equicontinuous. With an additional technical argument needed
to handle the geometry of the boundary of compactified moduli space, one
then concludes that at most finitely many homotopy classes of maps from C ′

to M
′
g can contain holomorphic maps. This yields the so-called boundedness

part of the proof of Theorem 6 (for a related argument, see [22, 63]). For
the second step of the proof, called finiteness, consists in showing that any
nontrivial homotopy class of maps from C ′ to M

′
g can contain at most one

harmonic and therefore in particular at most one holomorphic map. This
again follows from the negativity of the curvature of M

′
g. For the proof of

Theorem 8, we utilize the holomorphic fibering

(4.2) ψ : M′
g → M ′

g,

and recall from Section 2.2.3 that M′
g also carries a Weil-Petersson metric

with the same negativity properties as the one of Mg. A holomorphic section
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s as in Theorem 8 then induces a holomorphic map k : C ′ → M′
g. The scheme

of proof then can be based on the same strategy as the one of Theorem 6.
Also, it is clear that this scheme also extends to higher dimensional bases
as in Theorem 7.

Moreover, this scheme can be converted into quantitative height and
Arakelov type inequalities, as opposed to mere qualitative finiteness theo-
rems, see [40, 53].

Also, one can show the existence of fibrations and other holomorphic
families by turning the scheme around. That is, one first shows the existence
of an appropriate harmonic map into Mg or Tg and then appeals to Siu’s
theorem [69] or some variant of it to show that this harmonic map is in
fact holomorphic. There exist two variants of this strategy (see [37] for
details):

(1) Let M be a compact Kähler manifold, A ⊂ M a divisor with at
most simple normal crossings as singularities, f : M → Mg a con-
tinuous map that is locally liftable near the quotient singularities
of Mg and that is not homotopic to a map into Mg\Mg or to a
map of real rank ≤ 2 everywhere. We then produce an equivariant
harmonic map h : M̃\A → Tg by some variant of Theorem 1, equip-
ping Tg with its negatively curved Weil-Petersson metric. In fact,
there is the technical issue here that this metric is not complete, as
discussed above. However, for the existence scheme to go through
it suffices that the target possess some strictly convex exhaustion
function. As discussed in Section 2.2.3, such functions exist on Tg.
And when one has such a strictly convex exhaustion function, one
can control the escape of harmonic maps to infinity by the max-
imum principle, see [35]. The reason is that the composition of
a harmonic map with a convex function is subharmonic which is
easily shown by direct computation, see e.g. [46]. (A more precise
result about the control of images of harmonic maps in terms of the
different strata of compactified moduli space Mg has been derived
by Wentworth [80].) Thus, one can show the existence of some equi-
variant harmonic map h : M̃\A → Tg, see [35] (we do not discuss
here the technical issue of the finiteness of the energy). And since
the Weil-Petersson has strongly negative curvature in the sense of
[69], this harmonic map then has to be ± holomorphic. We can then
pull back the universal Teichmüller curve Tg over Tg to M\A via
that holomorphic map to obtain a fibration by holomorphic curves
over M\A. Under appropriate assumptions, this then extends to
all of M .
In the same spirit, one can construct holomorphic maps h : M̃\A →
Tg, in order to obtain fibrations of M\A by holomorphic curves of
genus g.
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(2) Let B be a compact Kähler surface, C a compact curve, f : B →
C a continuous map that is nontrivial on the second homology,
A a divisor with at most simple normal crossings on B, S ⊂ C
finite for which C\S carries a complete hyperbolic metric, such
that f maps B\A to C\S. By the strategy of Theorems 4, 5, one
then constructs a holomorphic map h from B\A to some curve
C ′\S′ that in turn maps harmonically to C\S. By the topological
assumptions, the fibers of h are of complex dimension 1, that is,
holomorphic curves. Thus, we can construct holomorphic fibrations
of Kähler surfaces from topological assumptions. Similar methods
apply in higher dimension, when we have an appropriate map f
from a Kähler manifold of dimension m to another of dimension
m − 1.

Most known nontrivial compact holomorphic families of stable holomor-
phic curves contain some singular elements, that is, they do not yield maps
from the base to moduli space Mg, but only to its compactification Mg.
One important example of such a family without singular fibers is given by
the Kodaira surfaces that were introduced by Kodaira [48], rediscovered by
Atiyah [4] and further investigated by Hirzebruch [26]. The construction
starts with a compact Riemann surface R0 of genus g0 ≥ 2, and then a two-
sheeted unramified covering of R0, which is a Riemann surface R of genus
g = 2g0 − 1. Let τ be the fixed point free automorphism of R corresponding
to that covering. We have a canonical homomorphism from the fundamen-
tal group π1(R) to H1(R, Zm) = (Zm)2g. We then obtain an m2g-sheeted
unramified covering surface v : S → R of genus h = m2g(g − 1) + 1 of R by
mapping π1(S) to the kernel of that homomorphism. We consider the graphs
Γv and Γτ◦v and the divisor D = Γv − Γτ◦v. The integral homology class of
D then is divisible by m. This allows us to construct an algebraic surface M
which is a covering of R × S ramified along the preimage of D. This is the
Kodaira surface. In [33] it was shown with harmonic map techniques that
every deformation of a Kodaira surface is again such a surface, and that
the deformation space is given by the moduli space of unramified double
coverings of a Riemann surface of genus g0. (The statement in [33] was not
completely correct; it has been corrected in [37].) For recent progress on
Kodaira surfaces, see [9] and the references therein.

We now return to the situation of Theorem 5. We consider a smooth
analytic local family Mt, t ∈ T of Kähler manifolds over some not necessarily
compact local base T , with M0 = M . That is, we consider deformations of
M . Since M admits a topologically nontrivial map g : M → S to some higher
genus Riemann surface, so then then do its deformations Mt. Consequently,
we get a family of holomorphic maps

(4.3) ut : Mt → S′
t

to Riemann surfaces, of some genus p ≥ 2.
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Theorem 9. The local family of holomorphic maps ut, t ∈ T is holo-
morphic. That is, we obtain an induced holomorphic map

(4.4) U : T → Mp

into the moduli space of Riemann surfaces of genus p.

Proof. First of all, the family is well defined, since the harmonic maps
ht : Mt → S and holomorphic maps ut : Mt → S′

t are unique in their
homotopy classes, because they are topologically nontrivial and the target
is hyperbolic, see Theorem 1. Also, the family is continuous, because, for
instance, the holomorphic foliation of Theorem 4 and hence also its quo-
tient S′

t depends continuously on t, as can be seen from [33]. Alternatively,
one can appeal to general functional analytic results [66] about the smooth
dependence of harmonic maps on the geometries of domain and target, again
in the presence of negative target curvature.
That the family is holomorphic then reduces to an infinitesimal argument.
We simply need to show that the corresponding infinitesimal variation of
the family is holomorphic, that is, Xt := ∂ut

∂t̄ = 0, and w.l.o.g., it suffices to
consider this at M0 = M . We can use the argument of Kalka [47] here (for a
more abstract argument, see [39]). The local family St maps into the univer-
sal Teichmüller curve Tp. This family possesses a metric of strongly negative
curvature in the sense of [69]. This follows, for instance, from the fact that Tp

can be identified with the Teichmüller space Tp,1 of once punctured marked
Riemann surfaces of genus p, and the latter carries its negatively curved
Weil-Petersson metric, as described in Section 2.2.3. Thus, we obtain a map
V : {Mt}t∈T → Tp whose restriction vt to any fiber is holomorphic. As
observed by Kalka [47], the infinitesimal version ∂vt

∂t̄ then is a holomorphic
section of a negative holomorphic bundle, hence vanishes. This means that
Xt = 0, and our family is holomorphic. �

In fact, by appealing to Spallek’s theorem [72], we only need to assume
here that T is a holomorphic space germ, not necessarily smooth.
Therefore, we can also look at the global situation where T is the moduli
space for the Kähler manifold M , assuming that such a moduli space exists.
We assume that there is no nontrivial monodromy, that is, there does not
exist a closed loop in T such that when following the target surfaces S′

t

around this loop leads to a Riemann surface that is different from the one
that the loop started with. This is a topological condition on the maps Mt →
S, that is, their homotopy class does not have a nontrivial monodromy along
a closed loop in T . Under these conditions, when there exists a topologically
nontrivial continuous map g : M → S to some compact hyperbolic surface
of genus p, we obtain a meromorphic map

(4.5) U : T → Mp.
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