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Birational aspects of the geometry of Mg

Gavril Farkas

1. Introduction

The study of the moduli space Mg begins of course with Riemann, who
in 1857 was the first to consider a space whose points correspond to isomor-
phism classes of smooth curves of genus g. By viewing curves as branched
covers of P1, Riemann correctly computed the number of moduli, that is he
showed that

dim(Mg) = 3g − 3
for all g ≥ 2. Riemann is also responsible for the term moduli, meaning essen-
tial parameters for varieties of certain kind: “... es hängt also eine Klasse
von Systemen gleichverzweigter 2p+1 fach zusammenhangender Funktionen
und die zu ihr gehörende Klassen algebraischer Gleichungen von 3p−3 stetig
veränderlichen Grössen ab, welche die Moduln dieser Klasse werden sollen”.
The best modern way of reproving Riemann’s result is via Kodaira-Spencer
deformation theory. The first rigorous construction of Mg was carried out
by Mumford in 1965, in the book [GIT]. By adapting Grothendieck’s “func-
torial ideology”, Mumford, used Geometric Invariant Theory and developed
a purely algebraic approach to study Mg. He indicated that one has to
study the coarse moduli scheme that is as close as any scheme can be to the
moduli stack of smooth curves: Although the coarse moduli scheme exists
over Spec(Z), one has to pass to an algebraically closed field k to get a bijec-
tion between Hom(Spec(k),Mg) and isomorphism classes of smooth curves
of genus g defined over k.

Despite the fact that the rigorous construction of Mg was achieved so
late, various geometric properties of the space Mg, whose existence was
somehow taken for granted, have been established. Hurwitz [Hu] following
earlier work of Clebsch, proved in 1891 that Mg is irreducible by using
Riemann’s existence theorem and showing that the space parameterizing
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branched covers of P1 having fixed degree and genus is connected. In 1915,
Severi [S] used plane models of curves to prove that when g ≤ 10 the space
Mg is unirational. For g ≤ 10 (and only in this range), it is possible to realize
a general curve [C] ∈ Mg as a nodal plane curve Γ ⊂ P2 having minimal
degree d = [(2g+8)/3], such that the nodes of Γ are general points in P2. In
the same paper Severi conjectures that Mg is unirational (or even rational!)
for all g. This would correspond to being able to write down the general curve
of genus g explicitly, in a family depending on 3g−3 free parameters. Severi
himself and later B. Segre made several attempts to prove the conjecture for
g ≥ 11 using curves of minimal degree in Pr with r ≥ 3, cf. [Seg], [God].

Severi’s Conjecture seemed plausible and was widely believed until the
1980s: In [M3] Mumford declares “How rational is the moduli space of
curves” to be one of the main problems of present day mathematics. In
“Curves and their Jacobians” [M2] Mumford elaborates: “Whether more
Mg’s g ≥ 11 are unirational or not is a very interesting problem, but one
which looks very hard too, especially if g is quite large”. Probably thinking by
analogy with the well-understood case of moduli of elliptic curves (with level
structure), Oort formulates in his 1981 survey [O] a principle that naturally
defined moduli spaces should be unirational: “... generally speaking it seems
that coarse moduli spaces tend to be close to rational varieties while high
up in the tower of fine moduli spaces, these varieties possibly are of general
type”.

It came as a major surprise when in 1982 Harris and Mumford [HM]
showed that Severi’s Conjecture is maximally wrong in the sense that Mg

itself rather than a higher level cover is almost always a variety of general
type!

Theorem 1.1. For g ≥ 24, the moduli space of stable curves Mg is a
variety of general type.

An easy consequence of Theorem 1.1 is the following negative result:

Corollary 1.2. For g ≥ 24, if [C] ∈ Mg is a general curve and S is a
surface containing C on which C moves in a non-trivial linear system, then
S is birational to C × P1. A general curve of genus g ≥ 24 does not occur
in any non-trivial linear system on any non-ruled surface.

The proof of Theorem 1.1 uses in an essential way the Deligne-Mumford
compactification Mg by means of stable curves. The key idea is to reduce
the problem of producing pluricanonical forms on Mg to a divisor class
calculation on Mg. For instance, in the case g = 2k−1, Harris and Mumford
consider the Hurwitz divisor

M1
g,k := {[C] ∈ Mg : ∃ C

k:1→ P1}.

By computing the class of the closure M1
g,k of M1

g,k inside Mg, it follows that
for g = 2k − 1 ≥ 25, the canonical class KMg

lies in the cone spanned inside
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Pic(Mg)Q by [M1
g,k], the Hodge class λ ∈ Pic(Mg) and the irreducible

components of the boundary Mg − Mg. Since the class λ is big, that is,
high multiples of λ have the maximal number of sections, it follows that
high multiples of KMg

will also have the maximum number of sections, that
is, Mg is of general type. The main technical achievement of [HM] is the
calculation of the class [M1

g,k] via the theory of admissible coverings. The
case of even genus was initially settled in [H1] for g = 2k − 2 ≥ 40 and
later greatly simplified and improved by Eisenbud and Harris [EH3] via the
theory of limit linear series. In this survey, apart from reviewing the work
of Harris, Mumford and Eisenbud, we present a different proof of Theorem
1.1 by replacing the divisor M1

g,k by a Koszul divisor on Mg in the spirit
of [F3]. It turns out that modulo Voisin’s proof [V2] of the generic Green
Conjecture on syzygies of canonical curves, one obtains a very short proof
of the Harris-Mumford Theorem 1.1, which does not resort to enumerative
calculation on Hurwitz stacks of admissible coverings or to limit linear series.

After [HM] there has been a great deal of work trying to describe the
geometry of Mg in the intermediate cases 11 ≤ g ≤ 23. Extending Severi’s
result to genera g ≥ 11 requires subtle ideas and the use of powerful modern
techniques, even though the idea of the proof is simple enough. Sernesi [Se1]
was the first to go past the classical analysis of Severi by proving that M12
is unirational. A few years later, M. C. Chang and Z. Ran proved that
M11 and M13 are also unirational (cf. [CR1]). In the process, they gave
another proof for Sernesi’s theorem for M12. The case g = 14 remained
open for a long time, until Verra, using liaison techniques as well as Mukai’s
work on models of canonical curves of genus at most 9, proved that M14 is
unirational. Verra’s approach gives a much simpler proof of the unirationality
of Mg in the cases g = 11, 12, 13 as well. We shall explain his main ideas
following [Ve].

Chang and Ran showed that κ(Mg) = −∞ for g = 15, 16, cf. [CR2],
[CR3]. This was recently improved by Bruno and Verra [BV] who proved
that M15 is rationally connected. Precisely, they proved that a general curve

[C] ∈ M15 embedded via a linear series C
|L|−→ P6, where L ∈ W 6

19(C), lies
on a smooth complete intersection surface S ⊂ P6 of type (2, 2, 2, 2), in such
a way that dim |OS(C)| = 1. This last statement follows via a standard
exact sequence argument because such a surface S is canonical.

Turning to genus 16, it is proved in [CR3] that KM16
is not a pseudo-

effective class. It follows from [BDPP], that this actually implies that M16
is uniruled.1 The question whether M15 or M16 are actually unirational
remains open and seems difficult. Note that the above mentioned argument
from [BV] actually implies that through a general point of M15 there passes
a rational surface.

1More generally, it follows that Mg is uniruled whenever one can show that KMg
is

not a pseudo-effective class. I am grateful to J. McKernan for pointing this out to me.
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Question 1.3. What is the Kodaira dimension of Mg for 17 ≤ g ≤ 21?

A partial result for M23 was obtained in [F1] where the inequality
κ(M23) ≥ 2 is proved. Section 7 of this paper is devoted to the proof of
the following result:

Theorem 1.4. The moduli space M22 is of general type.

Similar questions about the birational type of other moduli spaces have
been studied. Logan [Log] has proved that for all 4 ≤ g ≤ 22 there exists an
explicitly known integer f(g) such that Mg,n is of general type for n ≥ f(g).
The bounds on the function f(g) have been significantly improved in [F3].
The moduli space Ag of principally polarized abelian varieties of dimension
g is known to be of general type for g ≥ 7 due to results of Freitag [Fr],
Mumford [M5] and Tai [T] (For a comprehensive recent review of develop-
ments on the global geometry of Ag, see [Gru]). Freitag was the first to go
beyond the classical picture and show that for g ≥ 17, g ≡ 1 mod 8, the
space Ag rather than one of its covers corresponding to “moduli with level
structure” is of general type. Freitag’s work seems to have been essential
in making Mumford realize that Severi’s Conjecture might be fundamen-
tally false, see the discussion in [HM] pg. 24. We mention that using e.g.,
the moduli space of Prym varieties, one can show that Ag is known to be
unirational for g ≤ 5, cf. [Don], [Ve2]. The remaining question is certainly
difficult and probably requires new ideas:

Question 1.5. What is the Kodaira dimension of A6?

Tai also discovered an important criterion (now called the Reid-Shepherd-
Barron-Tai criterion) for canonical forms on the smooth locus of spaces with
finite quotient singularities to extend to any resolution of singularities. He
then showed that Ag satisfies the Reid-Shepherd-Barron-Tai criterion. A
similar analysis of singularities (which is needed whenever one shows that a
coarse moduli space is of general type), in the case of Mg, has been carried
out in [HM] Theorem 1.

A very interesting moduli space (also in light of Section 6 of this paper
and the connection with the Slope Conjecture), is the moduli space Fg of
polarized K3 surfaces [S, h] of degree h2 = 2g − 2. On Fg one considers the
Pg-bundle

Pg := {
(
[S, h], C

)
: [S, h] ∈ Fg, C ∈ |h|}

together with the projections p1 : Pg → Fg and p2 : Pg − − > Mg. The
image Kg := p2(Pg) is the locus of curves that can be abstractly embedded in
a K3 surface. For g ≥ 13 the map p2 is generically finite (in fact, generically
injective cf. [CLM]), hence dim(Kg) = 19 + g. This locus appears as an
obstruction for an effective divisor on Mg to have small slope, cf. Proposition
4.7. The geometry of Fg has been studied in low genus by Mukai and in
general, using automorphic form techniques, initially by Kondo [K] and
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more recently, to great effect, by Gritsenko, Hulek and Sankaran [GHS].
Using Borcherds’s construction of automorphic forms on locally symmetric
domains of type IV, they proved that (any suitable compactification of) Fg

is of general type for g > 62 as well as for g = 47, 51, 55, 58, 59, 61. The
largest g for which Fg is known to be unirational is equal to 20, cf. [M4].

Problem 1.6. Prove purely algebro-geometrically that Fg is of general
type for g sufficiently large. Achieve this by computing the class of a geomet-
ric (Noether-Lefschetz, Koszul) divisor on Fg and comparing this calculation
against the canonical class.

More generally, it is natural to ask whether the time is ripe for a sys-
tematic study of the birational invariants of the Alexeev-Kollár-Shepherd-
Barron moduli spaces of higher dimensional varieties (see [AP], [H] for a
few beautiful, yet isolated examples when the geometry of such spaces has
been completely worked out).

We end this discussion by describing the birational geometry of the mod-
uli space Rg classifying pairs [C, η] where [C] ∈ Mg and η ∈ Pic0(C)[2] is
a point of order 2 in its Jacobian. This moduli space provides an inter-
esting correspondence between Mg and Ag−1 via the natural projection
π : Rg → Mg and the Prym map

Prg : Rg → Ag−1.

For g ≤ 6 the Prym map is dominant, thus a study of the birational invari-
ants of Rg gives detailed information about Ag−1 as well. For g ≥ 7 the Prym
map Prg is generically injective (though never injective) and we view Rg as
a desingularization of the moduli space of Prym varieties Prg(Rg) ⊂ Ag−1.
There is a good compactification Rg of Rg, by taking Rg to be the coarse
moduli space associated to the moduli stack of stable maps Mg(BZ2). Note
that the Galois covering π extends to a finite ramified covering π : Rg → Mg.
We have the following result [FL]:

Theorem 1.7. The compact moduli space of Pryms Rg is of general type
for g > 13 and g 
= 15. The Kodaira dimension of R15 is at least 1.

Thus there are genera (e.g., g = 14) for which Mg is unirational but
Rg is of general type. Note that Rg is unirational for g ≤ 7 and it appears
to be difficult to extend the range of g for which Rg is unirational much
further. An essential ingredient in the proof of Theorem 1.7 is the analysis
of the singularities of Rg. Kodaira-Spencer theory shows that singularities of
Rg correspond to automorphisms of Prym curves. A delicate local analysis
shows that, even though the Reid-Shepherd-Barron-Tai criterion does not
hold everywhere on Rg (precisely, there is a codimension 2 locus of non-
canonical singularities), for g ≥ 4 every pluricanonical form defined on the
smooth part of Rg extends to any desingularization. Equivalently, for any
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resolution of singularities ε : R̂g → Rg and l ≥ 0, there is an isomorphism
of groups

ε∗ : H0(Rg,reg, K
⊗l
Rg

)
∼=−→ H0(R̂g, K

⊗l
̂Rg

).

Since Rg = Mg(BZ2), it makes sense to raise the following more general
question:

Problem 1.8. For a finite group G, study the birational invariants
(Kodaira dimension and singularities, Picard groups, cones of ample and
effective divisors) of the moduli spaces of twisted stable maps Mg(BG).

We close by outlining the structure of the paper. In Section 2 we describe
various attempts to prove that Mg is unirational, starting with Severi’s
classical proof when g ≤ 10 and concluding with Verra’s recent work on
Mg for g ≤ 14. While our presentation follows [Ve], several arguments
have been streamlined, sometimes with the help of Macaulay 2. In Section
3 we present the structure of the Picard group of Mg while in Section 4 we
recall Harris and Mumford’s spectacular application of the Grothendieck-
Riemann-Roch theorem [HM] in order to compute the canonical class KMg

and then discuss Pandharipande’s recent lower bound on the slope of Mg. In
Section 5 we present a much shorter proof of the Harris-Mumford Theorem
1.1 using syzygies of canonical curves. Relying somewhat on Mukai’s earlier
work, we highlight the importance of the locus Kg ⊂ Mg of curves lying
on K3 surfaces in order to construct effective divisors on Mg having small
slope and produce a criterion which each divisor of small slope must satisfy
(Section 6). We then explain how to construct and compute the class of
certain effective divisors on Mg defined in terms of Koszul cohomology of
line bundles on curves (cf. [F2], [F3]). In Section 7 we prove that M22 is of
general type.

2. How rational is Mg?

As a matter of terminology, if M is a Deligne-Mumford stack, we denote
by M its coarse moduli space. This is contrary to the convention set in
[ACV] but for moduli spaces of curves it makes sense from a traditionalist
point of view. Throughout the paper we denote by Mg : Sch → Sets the
contravariant functor (stack) of stable curves of genus g, which associates
to every scheme S the set Mg(S) of isomorphism classes of relative stable
curves f : X → S of genus g.

The functor Mg is not representable, for this would imply that each
iso-trivial family of stable curves is actually trivial. This, of course, is not
the case. To remedy this problem one looks for a compromise solution by
retaining the requirement that the moduli space of curves be a scheme, but
relaxing the condition that it represent Mg. The result is the coarse moduli
space of curves Mg which is an irreducible projective variety of dimension
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3g−3 with finite quotient singularities, cf. [DM], [GIT], [M2]. For a family
of stable curves [f : X → S] ∈ Mg(S) we shall denote by mf : S → Mg the
associated moduli map.

2.1. Brill-Noether theory. We recall a few basic facts from Brill-
Noether theory, cf. [ACGH]. For a smooth curve C of genus g and for
integers d, r ≥ 0, one considers the cycle inside the Jacobian

W r
d (C) := {L ∈ Picd(C) : h0(C, L) ≥ r + 1}.

The variety of linear series of type gr
d is defined as

Gr
d(C) := {(L, V ) : L ∈ W r

d (C), V ∈ G(r + 1, H0(L))}.

There is an obvious forgetful map c : Gr
d(C) → W r

d (C) given by c(L, V ) := L.
We fix a point l = (L, V ) ∈ Gr

d(C), and describe the tangent space
Tl(Gr

d(C)). One has the standard identification TL(Picd(C)) = H1(C,OC) =
H0(C, KC)∨ and we denote by

μ0(L, V ) : V ⊗ H0(C, KC ⊗ L∨) → H0(C, KC)

the Petri map given by multiplication of sections. The deformations of [L] ∈
Picd(C) preserving the space of sections V correspond precisely to those
elements φ ∈ H0(C, KC)∨ for which φ|Im μ0(L,V ) = 0. One obtains an exact
sequence

0 −→ Hom(V, H0(C, L)/V ) −→ Tl(Gr
d(C)) −→ Ker μ∨

0 −→ 0.

It follows that Gr
d(C) is smooth and of dimension

ρ(g, r, d) := g − (r + 1)(g − d + r)

at the point l if and only if μ0(L, V ) is injective.
The Gieseker-Petri Theorem states that if [C] ∈ Mg is general, then the

Petri map

μ0(L) : H0(C, L) ⊗ H0(C, KC ⊗ L∨) → H0(C, KC)

is injective for every L ∈ Picd(C). In particular it implies that both W r
d (C)

and Gr
d(C) are irreducible varieties of dimension ρ(g, r, d). The variety Gr

d(C)
is smooth while Sing W r

d (C) = W r+1
d (C). Furthermore, W r

d (C) = ∅ if
ρ(g, r, d) < 0.

The first rigorous proof of Petri’s theorem is due to Gieseker. The original
proof has been greatly simplified by Eisenbud and Harris, cf. [EH2], using
degeneration to curves of compact type and the theory of limit linear series.
A very different proof, in which the degeneration argument is replaced by
Hodge theory and the geometry of curves on K3 surfaces, has been found
by Lazarsfeld [La1].
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If [C, p] ∈ Mg,1 and l = (L, V ) ∈ Gr
d(C), we define the vanishing

sequence of l at p

al(p) : 0 ≤ al
0(p) < . . . < al

r(p) ≤ d

by ordering the set {ordp(σ)}σ∈V . The ramification sequence of l and p

αl(p) : 0 ≤ αl
0(p) ≤ . . . ≤ αr(p) ≤ d − r

is obtained from the vanishing sequence by setting αl
i(p) := al

i(p) − i for
i = 0 . . . r.

The theory of degenerations of linear series (in the case of curves of com-
pact type) has been beautifully developed by Eisenbud and Harris [EH1].
The major successes of the theory include a simple proof of the Brill-Noether-
Petri theorem cf. [EH2] and especially its essential use in the work on the
Kodaira dimension of Mg cf. [EH3].

Definition 2.1. If X is a stable curve whose dual graph is a tree, a
limit linear series gr

d on X, consists of a collection of linear series

l =
{
lY =

(
LY , VY ⊂ H0(LY )

)
∈ Gr

d(Y ) : Y component of X
}

satisfying the following compatibility condition: If p ∈ Y ∩Z is a node lying
on two irreducible components Y and Z of X, then

alY
i (p) + alZ

r−i(p) ≥ d, for i = 0 . . . r.

Limit linear series behave well in families: If M∗
g ⊂ Mg denotes the open

substack of tree-like curves, then there exists a Deligne-Munford stack σ :
G̃r

d → M∗
g classifying limit linear series. Each irreducible component of G̃r

d

has dimension at least 3g−3+ρ(g, r, d). In particular if l ∈ G
r
d(C) = σ−1(C)

is a limit gr
d on a curve [C] ∈ M∗

g belonging to a component of G
r
d(C) of the

expected dimension ρ(g, r, d), then l can be smoothed to curves in an open
set of Mg (cf. [EH1]).

2.2. Severi’s proof of the unirationality of Mg when g ≤ 10.
We outline Severi’s classical argument [S] showing that Mg is unirational
for small genus (for a beautiful modern presentation see [AC1]). The idea
is very simple: One tries to represent the general curve [C] ∈ Mg as a
nodal plane curve Γ ⊂ P2 of minimal degree d such that ρ(g, 2, d) ≥ 0
and then show that the nodes are in general position. Since the varieties of
plane curves with fixed nodes are linear spaces, hence rational varieties, this
implies that Mg is unirational.

We fix d ≥ (2g + 8)/3 and set δ :=
(
d−1
2

)
− g. We consider the Severi

variety

Ud,g := {[Γ ↪→ P2] : deg(Γ) = d, Γ is a nodal irreducible plane curve,

pg(Γ) = g}.
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It is well-known that Ud,g is an irreducible variety of dimension

dim Ud,g = dim Mg + ρ(g, 2, d) + dim PGL(3) = 3d + g − 1.

Furthermore, there exists a global desingularization map νd,g : Ud,g ��� Mg

which associates to each plane curve the class of its normalization. The Brill-
Noether theorem guarantees that νd,g is surjective. (Indeed, since ρ(g, 2, d) ≥
0 one has that G2

d(C) 
= ∅ and it is straightforward to prove that a general g2
d

corresponds to a nodal model of a general curve [C] ∈ Mg, see for instance
[EH1]).

One defines the incidence correspondence between curves and their nodes

Σ := {
(
[Γ ↪→ P2], p1 + · · ·+pδ

)
∈ Ud,g ×Symδ(P2) : {p1, . . . , pδ} = Sing(Γ)},

together with the projection π2 : Σ → Symδ(P2). The fibres of π2 being
linear spaces, in order to conclude that Σ is rational (and hence Mg unira-
tional), it suffices to prove that π2 is dominant. A necessary condition for
π2 to be dominant is that

dim Σ = 3d + g − 1 ≥ 2δ.

This, together with the condition ρ(g, 2, d) ≥ 0, implies that g ≤ 10. We
have the following result [S], [AC1] Theorem 3.2:

Theorem 2.2. We fix non-negative integers g, d, δ satisfying the inequal-
ities

δ =
(

d − 1
2

)
− g, ρ(g, 2, d) ≥ 0 and 3d + g − 1 ≥ 2δ.

If p1, . . . , pδ ∈ P2 are general points and (n, δ) 
= (6, 9), then there exists an
irreducible plane curve Γ ⊂ P2 of degree d having nodes at p1, . . . , pδ and no
other singularity. It follows that Mg is unirational for g ≤ 10.

Remark 2.3. As explained Severi’s argument cannot be extended to
any Mg for g ≥ 11. In a similar direction, a classical result of B. Segre [Seg]
shows that if S is any algebraic surface and Ξ ⊂ S × V is any algebraic
system of smooth genus g curves contained in S, then whenever g > 6, the
moduli map mΞ : V − − > Mg cannot be dominant, that is, no algebraic
system of smooth curves of genus g > 6 with general moduli can lie on any
given surface.

2.3. Verra’s proof of the unirationality of Mg for 11 ≤ g ≤ 14.
We fix an integer g ≥ 11 and aim to prove the unirationality of Mg by
showing that a suitable component of a Hilbert scheme of curves

HilbC := {C ⊂ Pr : pa(C) = g, deg(C) = d},

where ρ(g, r, d) ≥ 0 is unirational. The component HilbC must have the
property that the forgetful rational map

mC : HilbC − − > Mg
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is dominant (in particular, the general point of HilbC corresponds to a
smooth curve C ⊂ Pr). To prove that HilbC is unirational we shall use
an incidence correspondence which relates HilbC to another Hilbert scheme
of curves HilbD parameterizing curves D ⊂ Pr such that

deg(D) = d′, g(D) = g′ and H1(D,OD(1)) = 0

(thus r = d′−g′). If [D ↪→ Pr] ∈ HilbD is a smooth curve with H1(D,OD(1))
= 0, then trivially H1(D, ND/Pr) = 0, which implies that HilbD is smooth
at the point [D ↪→ Pr] and of dimension

h0(D, ND/Pr) = χ(D, ND/Pr) = (r + 1)d′ − (r − 3)(g′ − 1)

(see e.g., [Se2]). Moreover, there exists an open subvariety UD ⊂ HilbD

parameterizing smooth non-special curves D ⊂ Pr such that (i) the moduli
map

mD : UD → Mg′

is dominant, and (ii) the restriction maps

μf : SymfH0(D,OD(1)) → H0(D,OD(f))

are of maximal rank for all integers f .
The correspondence between HilbC and UD is given by liaison with

respect to hypersurfaces of a fixed degree f , that is, via the variety

Σ := {(D, V ) : [D ↪→ Pr] ∈ UD, V ∈ G
(
r − 1, H0(Pr, ID/Pr(f))

)
}.

One has a projection map u : Σ → UD given by u(D, V ) := [D], and a
residuation map

res : Σ → HilbC , res(D, V ) := [C ↪→ Pr],

where C ⊂ Pr is the scheme residual to D in the base locus of the linear
system |V |. The morphism u : Σ → UD has the structure of a Grassmann
bundle corresponding to the vector bundle F over UD with fibres F(D) =
H0(Pr, ID/Pr(f)), thus clearly Σ is unirational provided that HilbD is unira-
tional. Since UD parameterizes non-special curves, proving its unirationality
is equivalent to showing that the universal Picard variety Picd′

g′ → Mg′ is
unirational.

In order to show that mC : HilbC − − > Mg is dominant (and thus,
that the general curve [C] ∈ Mg is linked to a curve [D ↪→ Pr] ∈ UD), it
suffices to exhibit a single nodal complete intersection

C ∪ D = X1 ∩ . . . ∩ Xr−1

with Xi ∈ |OPr(f)|, such that both C and D are smooth and the Petri map

μ0(C) : H0(C,OC(1)) ⊗ H0(C, KC ⊗ OC(−1)) → H0(C, KC)

is injective. Indeed, it is well-known (see e.g., [Se2]) that via Kodaira-
Spencer theory, the differential dm[C] : T[C](HilbC) → T[C](Mg) is given
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by the coboundary map H0(C, NC/Pr) → H1(C, TC) obtained by taking
cohomology in the exact sequence which defines the normal bundle of C:

(1) 0 −→ TC −→ TPr ⊗ OC −→ NC/Pr −→ 0.

On the other hand, one has the pull-back of the Euler sequence from Pr

(2) 0 −→ OC −→ H0(C,OC(1))∨ ⊗ OC(1) −→ TPr ⊗ OC −→ 0,

and after taking cohomology we identify H1(TPr ⊗OC) with the dual of the
Petri map μ0(C). Thus if μ0(C) is injective, then mC is a dominant map
around [C ↪→ Pr].

The numerical invariants of C and D are related by well-known formulas
for linked subschemes of Pr, see [Fu] Example 9.1.12: Suppose C ∪ D =
X1 ∩ . . . ∩ Xr−1 is a nodal complete intersection with Xi ∈ |OPr(f)| for
1 ≤ i ≤ r − 1. Then one has that

(3) deg(C) + deg(D) = f r−1,

(4) 2(g(C) − g(D)) =
(
(r − 1)f − r − 1

)
(deg(C) − deg(D)), and

(5) #(C ∩ D) = deg(C) ·
(
(r − 1)f − r − 1

)
+ 2 − 2g(C).

We shall prove that if we choose

(6) f =
r + 2
r − 2

∈ Z,

the condition that OD(1) be non-special is equivalent to h0(Pr, IC/Pr(f)) =
r − 1. Furthermore, under the same assumption, μ0(C) is injective if and
only if ID/Pr(f) is globally generated.

To summarize, we have reduced the problem of showing that Mg is uni-
rational to showing (1) that the universal Picard variety Picd′

g′ is unirational
and (2) that one can find a non-special curve D ⊂ Pd′−g′

whose ideal is cut
out by hypersurfaces of degree f . This program can be carried out provided
one can solve the equations (3), (4), (5) and (6) while keeping ρ(g, r, d) ≥ 0.
To prove (1) Verra relies on Mukai’s work on the geometry of Fano 3-folds
and on the existence of models of canonical curves of genus g ≤ 9 as linear
sections of certain rational homogeneous varieties. We first explain Mukai’s
work on existence of models of canonical curves of genus g ≤ 9. The standard
references for this part are [Mu1], [Mu2], [Mu3]:

Theorem 2.4. We fix integers g ≤ 9, r ≥ 3 and d ≥ g + 3. Then
the universal Picard variety Picd

g is unirational. Moreover, if Hd,g,r denotes
the unique component of the Hilbert scheme of curves whose generic point
corresponds to a smooth curve D ⊂ Pr with deg(D) = d, g(D) = d and
H1(D,OD(1)) = 0, then Hd,g,r is unirational as well.
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The theorem is easily proved for g ≤ 6 because, in this case, the general
canonical curve of genus g is a complete intersection in some projective
space: For instance, the canonical model of the general curve [C] ∈ M4
is a (2, 3) complete intersection in P4 while the canonical model of the
general curve [C] ∈ M5 is a (2, 2, 2) complete intersection in P4. In the cases
g = 7, 8, 9, Mukai has found a rational homogeneous space

Gg ⊂ Pdim(Gg)+g−2,

such that KGg = OGg(−dim(Gg) + 2), with the property that the general
canonical curve of genus g appears as a curve section of Gg.

For g = 8, we consider a vector space V ∼= C6 and we introduce the
Grassmannian of lines G8 := G(2, V ) together with the Plücker embedding

G(2, V ) ↪→ P(∧2V ).

Then KG8 = OG8(−6). If H ∈ G(8,∧2V ) is a general 7-dimensional pro-
jective subspace and CH := G8 ∩ P(H) ↪→ P(H), then by adjunction
KC = OC(1). In other words, a transversal codimension 7 linear section of
G8 is a canonical curve of genus 8. Mukai showed that any curve [C] ∈ M8
such that W 1

4 (C) = ∅, can be recovered in this way (cf. [Mu1]).
The case g = 9 is described in [Mu3]: One takes G9 := SpG(3, 6) ⊂ P13

to be the symplectic Grassmannian, that is, the Grassmannian of Lagrangian
subspaces of a 6-dimensional symplectic vector space V . Then dim(G9) = 6
and KG9 = OG9(−4). Codimension 5 linear sections G9∩H1∩ . . .∩H5 ⊂ P8

are canonical curves of genus 9. A genus 9 curve is a transversal section of
G9 if and only if W 1

5 (C) = ∅. In particular a general [C] ∈ M9 is obtained
through this construction. Finally, we mention Mukai’s construction for g =
7, cf. [Mu2]: For a vector space V ∼= C10, the subset of the Grassmannian
G(5, V ) consisting of totally isotropic quotient spaces has two connected
components, one of which is the 10-dimensional spinor variety G7 ⊂ P15.

Proof of Theorem 2.4. It is enough to deal with the cases g = 7, 8, 9.
For each integer d ≥ g + 3, we fix non-zero integers n1, . . . , ng such that

2g − 2 + n1 + · · · + ng = d

and note that for every [C] ∈ Mg, the map Cg → Picd(C) sending

(x1, . . . , xg) �→ KC ⊗ OC(n1x1 + · · · + ng xg)

is surjective. Then the rational map φ : Gg
g − − > Picd

g defined by

φ(x1, . . . , xg) :=
(
Cx = Gg∩P(〈x1, . . . , xg〉), KCx ⊗OCx(n1 x1+· · ·+ng xg)

)
,

is dominant. Thus Picd
g is unirational.

To establish the unirationality of Hd,g,r when 3 ≤ r ≤ d− g, we consider
the dominant map f : Hd,g,r → Picd

g given by f([C ⊂ Pr]) := [C,OC(1)].
The fibres of f are obviously rational varieties. It follows that Hd,g,r is
unirational too. �
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Now we explain Verra’s work cf. [Ve], focusing on the cases g = 11, 14.
Several (admittedly beautiful) arguments of classical geometric nature have
been straightened or replaced by Macaulay 2 calculations in the spirit of
[F2], Theorems 2.7, 2.10 or [ST].

Theorem 2.5. The moduli space of curves Mg is unirational for 11 ≤
g ≤ 14.

Proof for g = 11, 14. We place ourselves in the situation when

f = (r + 2)/(r − 2) ∈ Z.

The relevance of this condition is that a surface complete intersection of type
(f, . . . , f) in Pr is a canonical surface in Pr. We consider a nodal complete
intersection

C ∪ D = X1 ∩ . . . ∩ Xr−1

with Xi ∈ |OPr(f)|, with C and D being smooth curves and with g(C) = g.
Assuming that IC∪D/Pr(f) is globally generated (this will be the case in all
the situations we consider), then C∪D lies on a smooth complete intersection
of r − 2 hypersurfaces of degree f , say S := X1 ∩ . . . ∩ Xr−2. Thus S is a
surface with KS = OS(1) and moreover h0(Pr, IS/Pr(f)) = r − 2 (use the
Koszul resolution of IS/Pr). From the exact sequence

0 −→ IC/Pr −→ IS/Pr −→ OS(−C) −→ 0,

we find that

h0(Pr, IC/Pr(f)) = h0(S, OS(C)) + h0(Pr, IS/Pr(f)) = h0(OS(D)) + r − 2

(Note that C + D ∈ |OS(f)|). Moreover, from the exact sequence

0 −→ OS(1) ⊗ OS(−D) −→ OS(1) −→ OD(1) −→ 0,

using also Serre duality, we obtain that

h0(S, OS(D)) = h2(S, OS(H − D)) − h2(S, OS(H)) = 1 + h1(D,OD(1)).

Therefore OD(1) is non-special if and only if

(7) h0(Pr, IC/Pr(f)) = r − 1.

Assume now that r = d′ − g′ and that g(D) = g′, deg(D) = d′ g(C) = g
and deg(C) = d, where these invariants are related by the formulas (3)–(5).
Using a simple argument involving diagram chasing, we claim that the Petri
map

μ0(C) : H0(C,OC(1)) ⊗ H0(C, KC(−1)) → H0(C, KC)

is of maximal rank if and only if the multiplication map

(8) νD(f) : H0(Pr, ID/Pr(f)) ⊗ H0(D,OD(1)) → H0(Pr, ID/Pr(f + 1))
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is of maximal rank (see [Ve], Lemma 4.4). Indeed, since KC(−1) = OC(C),
we find that

Ker
(
μ0(C)

)
= Ker{μS : H0(S, OS(C)) ⊗ H0(S, OS(C + D))

→ H0(S, OS(D + 2C))}.

Next we note that ID/S(f) = OS(C) and then the claim follows by
applying the Snake Lemma to the diagram obtained by taking cohomology
in the sequence

0 −→ H0(OPr(1)) ⊗ IS/Pr(f) −→ H0(OPr(1)) ⊗ ID/Pr(f) −→ H0(OPr(1))

⊗ OS(C) −→ 0.

Thus to prove that the moduli map mC : HilbC − − > Mg is dominant,
it suffices to exhibit a smooth curve [D] ∈ HilbD such that the map νD(f)
is injective.

Having explained this general strategy, we start with the case g = 14
and suppose that [C] ∈ M14 is a curve satisfying Petri’s theorem, hence

dim W 1
8 (C) = ρ(14, 1, 8) = 0.

For each pencil A ∈ W 1
8 we have that L := KC ⊗ A∨ ∈ W 6

18(C) and when
[C] ∈ M14 is sufficiently general, each such linear series gives rise to an

embedding C
|L|
↪→ P6. By Riemann-Roch we obtain that

dim Ker{Sym2H0(C, L) → H0(C, L⊗2)} =
(

8
2

)
−
(
2 deg(C)+1−g(C)

)
= 5,

that is C lies on precisely 5 independent quadrics Q1, . . . , Q5 ∈ |OP6(2)|.
Writing

Q1 ∩ . . . ∩ Q5 = C ∪ D,

we find that g(D) = 8 and deg(D) = 14. In particular, we also have that

H1(D,OD(1)) = 0.

Thus we have reduced the problem of showing that M14 is unirational to
two questions:
(1) Pic148 is unirational. This has already been achieved (cf. Theorem 2.4).
(2) If D ⊂ P6 is a general smooth curve with deg(D) = 14 and g(D) = 8,
then the map

νD(2) : H0(P6, ID/P6(2)) ⊗ H0(D,OD(1)) → H0(P6, ID/P6(3))

is an isomorphism. This is proved using liaison and a few classical arguments
(cf. [Ve], Propositions 5.5–5.16). We shall present a slightly more direct proof
using Macaulay2.
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When g = 11, we choose d = 14 and r = 4, hence f = 3. We find that if
[C] ∈ M11 is general then dim W 4

14(C) = ρ(11, 4, 14) = 6 and h1(C, L) = 1
for every L ∈ W 4

14(C). Moreover, for a general linear series L ∈ W 4
11(C),

dim Ker{Sym3H0(C, L) → H0(C, L⊗3)} = 3,

(in particular condition (7) is satisfied). Hence there are hypersurfaces

X1, X2, X3 ∈ |OP4(3)|

such that X1 ∩ X2 ∩ X3 = C ∪ D. Moreover, g(D) = 9 and deg(D) = 13,
and the unirationality of M11 has been reduced to showing that:
(1) Pic139 is unirational. This again follows from Theorem 2.4.
(2) If D ⊂ P4 is a general smooth curve with deg(D) = 13 and g(D) = 9,
then the map

νD(3) : H0(P4, ID/P4(3)) ⊗ H0(OD(1)) → H0(P4, ID/P4(4))

is injective. �

We complete the proof of Theorem 2.5, and we focus on the case g = 14.
A similar argument deals with the case g = 11:

Theorem 2.6. If D
|L|
↪→ P6 is the embedding corresponding to a general

curve [D, L] ∈ Pic148 , then the multiplication map

H0(P6, ID/P6(2)) ⊗ H0(P6,OP6(1)) → H0(P6, ID/P6(3))

is an isomorphism.

Proof. We consider 11 general points in P2 denoted by p1, . . . , p5 and
q1, . . . , q6 respectively, and define the linear system

H ≡ 6h − 2(Ep1 + · · · + Ep5) − (Eq1 + · · · + Eq6)

on the blow-up S = Bl11(P2). Here h denotes the pullback of the line class

from P2. Using the program Macaulay2 it is easy to check that S
|H|
↪→ P6 is

an embedding and the graded Betti diagram of S is the following:

1 − − − −
− 5 − − −
− − 15 16 15

Thus S satisfies property (N1). To carry out this calculation we chose the
11 points in P2 randomly using the Hilbert-Burch theorem so that they
satisfy the Minimal Resolution Conjecture (see [ST] for details on how to
pick random points in P2 using Macaulay). Next we consider a curve D ⊂ S
in the linear system

(9) D ≡ 10h − 3(Ep1 + Ep2) − 4
5∑

i=3

Epi − Eq1 − Eq2 − 2
6∑

j=3

Eqj .
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By using Macaulay2, we pick D randomly in its linear system and then check
that D is smooth, g(D) = 8 and deg(D) = 14. We can compute directly the
Betti diagram of D:

1 − − − −
− 7 − − −
− − 35 56 35

Hence K1,1(D,OD(1)) = 0, which shows that ν2(D) is an isomorphism. This
last part also follows directly: Since S is cut out by quadrics, to conclude
that D is also cut out by quadrics, it suffices to show that the map

νS : H0(S, OS(H)) ⊗ H0(S, OS(2H − D)) → H0(S, OS(3H − D))

is surjective (or equivalently injective). Since h0(S, OS(2H − D)) = 2, from
the base point free pencil trick we get that Ker(ν(S)) = H0(S, OS

(D − H)) = 0, because D − H is clearly not effective for a general choice of
the 11 points in P2. �

We end this section, by pointing out that already existing results in
[CR3], coupled with recent advances in higher dimensional birational geom-
etry, imply the following:

Theorem 2.7. (Chang-Ran) The moduli space M16 is a uniruled variety.

Proof. Chang and Ran proved in [CR3] that κ(M16) = −∞, by
exhibiting an explicit collection of curves {Fi}n

i=1 ⊂ M16, with the prop-
erty that each Fi lies on a divisor Di ⊂ M16 such that Fi is nef as a curve
on Di with respect to Q-Cartier divisors, and moreover

Fi ·
n∑

j=1

Dj > 0 for i = 1, . . . , n.

By explicit calculation they noted that Fi · KM16
< 0 for i = 1, . . . , n. This

clearly implies that KM16
is not pseudo-effective. Since pseudo-effectiveness

of the canonical bundle is a birational property, the canonical bundle of
any smooth model of M16 will lie outside the pseudo-effective cone as well.
One can apply the the main result of [BDPP] to conclude that M16 is
uniruled. �

3. The Picard group of the moduli stack Mg

For a stable curve [C] ∈ Mg one can consider its dual graph with vertices
corresponding to the irreducible components of C and edges corresponding
to nodes joining two components. By specifying the dual graph, one obtains
the topological stratification of Mg, where the codimension a strata corre-
spond to the irreducible components of the closure of the locus of curves
[C] having precisely a nodes. The closure of the codimension 1 strata are
precisely the boundary divisors of Mg: For 1 ≤ i ≤ [g/2] we denote by
Δi ⊂ Mg the closure of the locus of stable curves [C1 ∪ C2], where C1 and



BIRATIONAL ASPECTS OF THE GEOMETRY OF Mg 73

C2 are smooth curves of genera i and g − i respectively. Similarly, Δ0 ⊂ Mg

is the closure of the locus of irreducible 1-nodal stable curves. We have the
decomposition

Mg = Mg ∪ Δ0 ∪ . . . ∪ Δ[g/2].

Next we describe the Picard group of the moduli stack Mg. The dif-
ference between the Picard group of the stack Mg and that of the coarse
moduli space Mg, while subtle, is not tremendously important in describing
the birational geometry of Mg. Remarkably, one can define Pic(Mg) with-
out knowing exactly what a stack itself is! This approach at least respects
the historical truth: In 1965 Mumford [M1] introduced the notion of a sheaf
on the functor (stack) Mg. One had to wait until 1969 for the definition of
a Deligne-Mumford stack, cf. [DM].

Definition 3.1. A sheaf L on the stack Mg is an assignment of a sheaf
L(f) on S for every family [f : X → S] ∈ Mg(S), such that for any mor-
phism of schemes φ : T → S, if p2 : XT := X ×S T → T denotes the family
obtained by pulling-back f , then there is an isomorphism of sheaves over T
denoted by

L(φ, f) : L(p2) → φ∗(L(f)).

These isomorphisms should commute with composition of morphisms between
the bases of the families. Precisely, if χ : W → T is another morphism and

σ2 : XW := XT ×T W → W ∈ Mg(W ),

then L(φχ, f) = χ∗L(φ, f) ◦ L(χ, p2). If L and E are sheaves on Mg, we
define their tensor product by setting

(L ⊗ E)(f) := L(f) ⊗ E(f)

for each [f : X → S] ∈ Mg(S).
A sheaf L on Mg is a line bundle if L(f) ∈ Pic(S) for every [f : X →

S] ∈ Mg(S). We denote by Pic(Mg) the group of isomorphism classes of
line bundles on Mg.

Similarly, for i ≥ 0, one defines a codimension i cycle class γ ∈ Ai(Mg),
to be a collection of assignments γ(f) ∈ Ai(S) for all [f : X → S] ∈ Mg(S),
satisfying an obvious compatibility condition like in Defintion 3.1

Example 3.2. For each n ≥ 1 the Hodge classes λ
(n)
1 ∈ Pic(Mg) are

defined by taking λ
(n)
1 (f) := c1(En(f)), where the assignment

Mg(S) � [f : X → S] �→ En(f) := f∗(ω⊗n
f ),

gives rise to a vector bundle En on Mg for each n ≥ 1. Clearly rank(E1) = g
and rank(En) = (2n − 1)(g − 1) for n ≥ 2. One usually writes E := E1.
Similarly, one can define the higher Hodge classes λ

(n)
i ∈ Ai(Mg), by taking

λ
(n)
i (f) := ci(En(f)) ∈ Ai(S).
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It is customary to write that λi := λ
(1)
i and sometimes, λ := λ1.

There is an obvious group homomorphism ρ : Pic(Mg) → Pic(Mg)
defined by ρ(L)(f) := m∗

f (L) for every L ∈ Pic(Mg) and [f : X → S] ∈
Mg(S).

To get to grips with the group Pic(Mg) one can also use the GIT real-
ization of the moduli space and consider for each ν ≥ 3 the Hilbert scheme
Hilbg,ν of ν-canonical stable embedded curves C ⊂ P(2ν−1)(g−1)−1. One has
an isomorphism of varieties cf. [GIT], [M2]

Mg
∼= Hilbg,ν//PGL

(
(2ν − 1)(g − 1)

)
.

Using this we can define an isomorphism of groups

β : Pic(Mg) → Pic(Hilbg,ν)PGL
(
(2ν−1)(g−1)

)
.

If σ : Cg,ν → Hilbg,ν denotes the universal ν-canonically embedded curve,
where we have that Cg,ν ⊂ Hilbg,ν × P(2ν−1)(g−1)−1, we set β(L) := L(σ) ∈
Pic(Hilbg,ν).

To define β−1 we start with a line bundle L ∈ Pic(Hilbg,ν) together
with a fixed lifting of the PGL((2ν − 1)(g − 1))-action on Hilbg,ν to L. For
a family of stable curves f : X → S, we choose a local trivialization of the
projective bundle P

(
f∗(ω⊗ν

f )
)
, that is, we fix isomorphisms over Sα

P
(
(fα)∗

(
ω⊗ν

fα

)) ∼= P(2ν−1)(g−1)−1 × Sα,

where {Sα}α is a cover of S and fα = f|f−1(Sα) : Xα → Sα. Since the Hilbert
scheme is a fine moduli space, these trivializations induce morphisms

gα : Sα → Hilbg,ν

such that on Sα ∩ Sβ the morphisms gα and gβ differ by an element from
PGL

(
(2ν − 1)(g − 1)

)
. The choice of the L-linearization ensures that the

sheaves {g∗
α(L)}α can be glued to form a sheaf which we call β−1(L)(f) ∈

Pic(S).

Example 3.3. If OHilbg,ν (δ) = ⊗[g/2]
i=0 OHilbg,ν (δi) is the divisor of all

singular nodal curves on the universal curve σ : Cg,ν → Hilbg,ν , then

ρ([Δ0]) = β−1(δ0), ρ([Δ1]) = 2β−1(δ1), ρ([Δi]) = β−1(δi) for 2 ≤ i ≤ [g/2].

To put it briefly, we write that δi := [Δi] for i 
= 1 and δ1 := 1
2 [Δ1] in

Pic(Mg)Q.

Theorem 3.4. 1) The group homomorphism ρ : Pic(Mg) → Pic(Mg) is
injective with torsion cokernel. Thus

ρQ : Pic(Mg)Q
∼= Pic(Mg)Q.
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2) For g ≥ 3, the group Pic(Mg) is freely generated by the classes λ,
δ0, . . . , δ[g/2].

From now on we shall identify Pic(Mg)Q = Pic(Mg)Q. The first part of
Theorem 3.4 was established by Mumford in [M2] Lemma 5.8. The second
part is due to Arbarello and Cornalba [AC2] and uses in an essential way
Harer’s theorem that H2(Mg, Q) ∼= Q. Unfortunately there is no purely
algebraic proof of Harer’s result yet.

4. The canonical class of Mg

In this section we explain the calculation of the canonical class of Mg in
terms of the generators of Pic(Mg), cf. [HM]. This calculation has been one
of the spectacular successes of the Grothendieck-Riemann-Roch theorem. In
order to apply GRR one needs however a good modular interpretation of the
cotangent bundle Ω1

Mg
. This is provided by Kodaira-Spencer theory. We first

compute the canonical class of the stack Mg, then we use the branched cover
Mg → Mg to obtain the canonical class of the coarse moduli scheme Mg.

For every stable curve [C] ∈ Mg we denote by Ω1
C the sheaf of Kähler

differentials and by ωC the locally free dualizing sheaf (see [Ba] for a down-
to-earth introduction to the deformation theory of stable curves). These
sheaves sit in an exact sequence:

0 −→ Torsion(Ω1
C) −→ Ω1

C −→ ωC
res−→

⊕
p∈Sing(C)

Cp −→ 0.

Kodaira-Spencer theory coupled with Serre duality provides an identification

T[C](Mg) = Ext1(Ω1
C ,OC) = H0(C, ωC ⊗ Ω1

C)∨.

One can globalize this observation and describe the cotangent bundle of
Mg as follows. We denote by π : Mg,1 → Mg the universal curve and we
denote by ωπ the relative dualizing sheaf and by Ω1

π the sheaf of relative
Kähler differentials, respectively. Then by Kodaira-Spencer theory we have
the identification

Ω1
Mg

= π∗(Ω1
π ⊗ ωπ)

and call the class
KMg

= c1(Ω1
Mg

) ∈ Pic(Mg)

the canonical class of the moduli stack Mg. To compute the first Chern
class of this push-forward bundle we use the Grothendieck-Riemann-Roch
theorem.

Suppose that we are given a proper map f : X → Y with smooth base Y
and a sheaf F on X. Then the Grothendieck-Riemann-Roch (GRR) theorem
reads

ch
(
f!(F)

)
= f∗

(
ch(F) · td(Ω1

f )
)

∈ A∗(Y ), where
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td(Ω1
f ) := 1 −

c1(Ω1
f )

2
+

c1(Ω1
f )2 + c2(Ω1

f )
2

+ (higher order terms)

denotes the Todd class.

Remark 4.1. One uses the GRR theorem to prove Mumford’s relation

κ1 := π∗(c1(ω2
π)) = 12λ − δ ∈ Pic(Mg),

where δ := δ0 + · · · + δ[g/2] is the total boundary (cf. [M1] pg. 101–103).
Similarly, for n ≥ 2 we have the relation (to be used in Section 5), cf. [M2]
Theorem 5.10:

λ
(n)
1 = λ +

(
n

2

)
κ1 ∈ Pic(Mg).

To compute KMg
we set f = π : Mg,1 → Mg, F = Ω1

π ⊗ ωπ, hence
π∗F = Ω1

Mg
and Riπ∗F = 0 for i ≥ 1. Using Grothendieck-Riemann-Roch

we can write:

KMg
= π∗

[(
1 + c1(F) +

c2
1(F) − 2c2(F )

2
+ · · ·

)
·
(
1 − c1(Ω1

π)
2

+
c1(Ω1

π)2 + c2(Ω1
π)

12
+ · · ·

)]
1
.(10)

Next we determine the Chern classes of F . Suppose [f : X → S] ∈ Mg(S)
is a family of stable curves such that both X and S are smooth projective
varieties. Then codim(Sing(f), X) = 2 and the sheaf homomorphism Ω1

f →
ωf induces an isomorphism Ω1

f = ωf ⊗ISing(f) (in particular, Ω1
f is not locally

free). This claim follows from a local analysis around each point p ∈ Sing(f).
Since the versal deformation space of a node is 1-dimensional, there exist
affine coordinates x, y on the fibres of f and an affine coordinate t on S,
such that locally around p, the variety X is given by the equation xy = tn

for some integer n ≥ 1. By direct calculation in a neighbourhood of p,

Ω1
f =

(
f∗OC · dx + f∗OC · dy

)
/
(
xdy + ydx) · OC .

Similarly, the dualizing sheaf ωf is the free OX module generated by the
meromorphic differential η given by dx/x on the locus x 
= 0 and by −dy/y
on the locus y 
= 0, hence we find that locally Ω1

f = Ix=y=t=0 · ωf , which
proves our claim.

The sheaves ωf and Ω1
f agree in codimension 1, thus c1(Ω1

f ) = c1(ωf ). An
application of Grothendieck-Riemann-Roch for the inclusion Sing(f) ↪→ X,
shows that c2(Ω1

f ) = [Sing(f)]. Then by the Whitney formula we obtain
that c1(F) = 2c1(ωf ) and c2(F) = [Sing(f)]. Since this analysis holds for
an arbitrary family of stable curves, the same relation must hold for the
universal curve over Mg. Returning to (10), we find the following formula:

KMg
=

13
12

π∗
(
c1(ωπ)2)−11

12
π∗
[
Sing(π)

]
=

13
12

κ1−
11
12

δ = 13λ−2δ ∈ Pic(Mg).
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Theorem 4.2. For g ≥ 4, the canonical class of the coarse moduli space
Mg is given by the formula

KMg
≡ 13λ − 2δ0 − 3δ1 − 2δ2 − · · · − 2δ[g/2] ∈ Pic(Mg).

Proof. We consider the morphism ε : Mg → Mg which is simply
branched along the divisor is the divisor Δ1 ⊂ Mg, hence ε∗([Δ1]) = 2δ1 ∈
Pic(Mg). The Riemann-Hurwitz formula gives that KMg

= ε∗(KMg
) + δ1

which finishes the proof. �

Remark 4.3. A slight difference occurs in the case g = 3. The morphism
ε : M3 → M3 is simply branched along both the boundary Δ1 and the
closure of the hyperelliptic locus

M1
3,2 := {[C] ∈ M3 : W 1

2 (C) 
= ∅}.

It follows that KM3
= ε∗KM3

+ δ1 + ρ([M1
3,2]), hence KM3

= 4λ − δ0.

Using Theorem 4.2, we reformulate the problem of determining the
Kodaira dimension of Mg in terms of effective divisors: A sufficient con-
dition for Mg to be of general type is the existence of an effective divisor

D ≡ aλ − b0δ0 − · · · − b[g/2]δ[g/2] ∈ Pic(Mg),

with coefficients satisfying the following inequalities

(11)
a

b0
<

13
2

,
a

b1
≤ 13

3
and

a

bi
≤ 13

2
for 2 ≤ i ≤ [g/2].

This formulation using (11) clearly suggests the definition of the follow-
ing numerical invariant of the moduli space cf. [HMo]: If δ := δ0+ · · ·+δ[g/2]

is the class of the total boundary and Eff(Mg) ⊂ Pic(Mg)R denotes the cone
of effective divisors, then we can define the slope function s : Eff(Mg) →
R ∪ {∞} by the formula

s(D) := inf {a

b
: a, b > 0 such that aλ − bδ − D ≡

[g/2]∑
j=0

cjδj , where cj ≥ 0}.

From the definition it follows that s(D) = ∞ unless D ≡ aλ −
∑[g/2]

j=0 bjδj

with a, bj ≥ 0 for all j. It is also well-known that s(D) < ∞ for any D which
is the closure of an effective divisor on Mg. In this case, one has that

s(D) =
a

min[g/2]
j=0 bj

.

We denote by s(Mg) the slope of the moduli space Mg, defined as

s(Mg) := inf {s(D) : D ∈ Eff(Mg)}.
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Proposition 4.4. We fix a moduli space Mg with g ≥ 4. If s(Mg) <

13/2 then Mg is of general type. If s(Mg) > 13/2 then the Kodaira dimen-
sion of Mg is negative.

Proof. If there exists D ∈ Eff(Mg) with s(D) < s(KMg
), it follows

that one can write KMg
≡ α · λ + β · D +

∑[g/2]
j=1 cjδj , where α, β > 0 and

cj ≥ 0 for 1 ≤ j ≤ [g/2]. Since the class λ ∈ Eff(Mg) is big, we obtain that
KMg

∈ int Eff(Mg), hence by definition Mg is a variety of general type. �

Any explicit calculation of a divisor class on Mg provides an upper
bound for s(Mg). Estimating how small slopes of effective divisors on Mg

can be, is the subject of the Harris-Morrison Slope ”Conjecture” [HMo]:

Conjecture 4.5.

s(Mg) ≥ 6 +
12

g + 1
.

The conjecture would obviously imply that κ(Mg) = −∞ for g ≤ 22.
However Conjecture 4.5 is false and counterexamples have been found in
[FP], [F2], [F3], [Kh]-see also Section 6.1 of this paper.

There is a somewhat surprising connection between the Slope Conjecture
and curves sitting on K3 surfaces. This has been first observed in [FP]:
Given g ≥ 1 we consider a Lefschetz pencil of curves of genus g lying on a
general K3 surface of degree 2g−2 in Pg. This gives rise to a curve B in the
moduli space Mg. These pencils B fill up the entire moduli space Mg for
g ≤ 9 or g = 11 (see [Mu1]), and the divisor K10 of curves lying on a K3
surface for g = 10. When g ≥ 13, the pencils B fill up the locus Kg ⊂ Mg

of K3 sections of genus g and dim(Kg) = 19 + g.

Lemma 4.6. We have the formulas B · λ = g + 1, B · δ0 = 6g + 18 and
B · δj = 0 for j 
= 0.

It will turn out that the locus Kg becomes an obstruction for an effective
divisor on Mg to have small slope. The next result shows that in order to
construct geometric divisors on Mg having small slope, one must search for
geometric conditions which have codimension 1 in moduli, and which are a
relaxation of the condition that a curve be a section of a K3 surface. This
philosophy governs the construction of Koszul divisors on Mg carried out
in [F2], [F3].

Proposition 4.7. Let D be the closure in Mg of an effective divisor on
Mg. If the inequality s(D) < 6+12/(g +1) holds, then D contains the locus
Kg of curves lying on K3 surfaces.
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Proof. We consider as above the curve B ⊂ Mg corresponding to a
Lefschetz pencil of curves of genus g on a general K3 surface S. From Lemma
4.6 we obtain that

B · δ

B · λ
= 6 +

12
g + 1

> s(D),

which implies that B · D < 0 hence B ⊂ D. By varying both B and S
inside the moduli space of polarized K3 surfaces, we obtain the inclusion
Kg ⊂ D. �

Bounding s(Mg) from below, remains one of the main open problems
in the field. There is a straightforward (probably far from optimal) way of
obtaining a bound on s(Mg) by writing down any moving curve R ⊂ Mg,
that is, a curve which moves in an algebraic family {Rt}t∈T of curves on
Mg such that the set

⋃
t∈T Rt is dense in Mg. One instance of a moving

curve is a complete intersection curve R = H1 ∩ · · · ∩ H3g−4, where Hi are
numerically effective divisors on Mg.

If R ⊂ Mg is a moving curve, then R · D ≥ 0, for any D ∈ Eff(Mg),
hence

s(Mg) ≥ R · δ

R · λ
.

Obviously writing down and then computing the invariants of a moving
curve in Mg can be difficult. An experimental bound s(Mg) ≥ O(1/g) was
initially obtained in [HMo] using Hurwitz schemes of covers of P1. A similar
(but nevertheless different) bound is obtained by D. Chen [C] using covers
of elliptic curves.

4.1. Pandharipande’s lower bound on s(Mg). Recently, Pand-
haripande [P] has found a short way of proving the inequality

s(Mg) ≥ O
(1
g

)
,

in a way that uses only descendent integrals over Mg,n as well as some
calculations on Hodge integrals that appeared in [FaP]. We explain the
main idea of his proof.

One constructs a covering curve for Mg by pushing forward products of
nef tautological classes on moduli spaces Mg,n via the morphisms forgetting
the marked points. In the simplest incarnation of this method, one considers
the universal curve π : Mg,1 → Mg curve and the nef tautological class
ψ1 = c1(ωπ) ∈ A1(Mg). Then π∗(ψ

3g−4
1 ) ∈ A1(Mg) is a covering curve

class, in particular for every divisor

D ≡ aλ −
[g/2]∑
i=0

biδi ∈ Pic(Mg)
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which does not contain boundary components, we have that π∗(ψ
3g−4
1 ) ·D ≥

0, hence,

s(D) ≥ a

b0
≥ π∗(ψ

3g−3
1 ) · δ0

π∗(ψ
3g−3
1 ) · λ

=

∫
Mg,1

δ0 · ψ3g−3
1∫

Mg,1
λ · ψ3g−3

1

.

We outline the calculation of the numerator appearing in this fraction. For
the degree 2 natural map

ε : Mg−1,3 → Mg,1, ε([C, p, x, y]) :=

[
C

x ∼ y
, p

]
,

one has that ε∗([Mg−1,3] = 2δ0 ∈ A1(Mg,1), hence via the push-pull formula
we find, ∫

Mg,1

δ0 · ψ3g−3
1 =

1
2

∫
Mg−1,3

ψ3g−3
1 =

1
2

∫
Mg−1,1

ψ3g−5
1 .

The last equality here is an easy consequence of the string equation [W]∫
Mg,n+1

ψa1
1 · · ·ψan

n =
n∑

i=1

∫
Mg,n

ψa1
1 · · ·ψai−1

i · · ·ψan
n ,

where a1, . . . , an ≥ 0 such that
∑n

i=1 ai = 3g − 2 + n.
The following evaluation follows by putting together [M6] Section 6 and

[FaP] Section 3. For the sake of completeness we outline a proof:

Lemma 4.8. ∫
Mg,1

ψ3g−2
1 =

1
24g · g!

.

Proof. The cokernel of the sheaf morphism π∗(E) → ωπ on Mg,1 given
by multiplication of global sections, is supported on the locus

X2 ∪ . . . ∪ Xg,

where Xj ⊂ Mg,1 is the closure of the subvariety of pointed curves

[R ∪ C1 ∪ . . . ∪ Cj , p],

where R is a smooth rational curve, p ∈ R and Ci are smooth curves with
the property that #

(
R∩Ci

)
= 1, for 1 ≤ i ≤ j and

∑j
i=1 g(Ci) = g. Clearly

dim(Xj) = 3g − 2 − j, and there is a natural map

fj : Xj → M0,j+1

forgetting the tails C1, . . . , Cj , while retaining the intersection points R∩Ci

for 1 ≤ i ≤ j. One has that ψ1| Xj
= f∗

j (ψp), where ψp ∈ A1(M0,j+1) denotes
the cotangent line class on M0,j+1 corresponding to the marked point labeled
by p ∈ R. For dimension reasons it follows that ψg−1

1| X2∪...∪Xg
= 0, whereas
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ψg−2
1| X2∪...∪Xg

must be entirely supported on the locus Xg. Putting these
observations together, one finds that

(12)
(π∗c(E)

1 + ψ1

)
2g−2

= ψg−2
1 [Xg]Q.

To estimate
∫
Mg,1

ψ3g−2
1 , one uses Mumford’s relation c(E) · c(E∨) = 1, cf.

[M6]. This comes from the exact sequence which globalizes Serre duality

0 −→ E → R1π∗Ω1
π → E∨ → 0,

where the rank 2g vector bundle in the middle possesses a Gauss-Manin
connection. Accordingly, we can write that∫

Mg,1

ψ3g−2
1 =

( π∗(E)
1 + ψ1

)
2g−2

· (λg + λg−1ψ1 + · · · + ψg
1) = λgψ

g−2
1 · [Xg]Q.

This last intersection number can be evaluated via the map of degree g!,

φ : (M1,1)g × M0,g+1 → Xg,

which attaches g elliptic tails at the first g marked points of a rational
(g + 1)-pointed stable curve. Clearly φ∗(E|Xg

) = E1 � · · · � E1, where E1 is
the Hodge bundle on M1,1. Since

∫
M1,1

λ1 = 1/24, one finds that,

λgψ
g−2
1 · [Xg]Q =

1
g!

(∫
M1,1

λ1

)g

·
∫

M0,g+1

ψg−2
1 =

1
24g · g!

.

�

To evaluate the integral
∫
Mg,1

λ·ψ3g−3
1 , first one uses the GRR calculation

of ch(E) applied to the universal curve π : Mg,1 → Mg. One finds that∫
Mg,1

λ · ψ3g−3
1 =

1
12

∫
Mg,2

ψ3g−3
1 ψ2

2 − 1
12

∫
Mg,1

ψ3g−2
1 +

1
24

∫
Mg−1,3

ψ3g−3
1 .

The last integral is evaluated using again the string equation, for the middle
one we use Lemma 4.8. The first integral is evaluated using [W] and one
finally proves:

Theorem 4.9.

s(Mg) ≥
∫
Mg,1

δ0 · ψ3g−3
1∫

Mg,1
λ · ψ3g−3

1

=
60

g + 4
.

Note that the bound O(1/g) obtained in this theorem is quite similar to
the experimental bound 576

5g obtained in [HMo] using Hurwitz covers.
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Remark 4.10. Another very natural covering curve for Mg, which poten-
tially could produce a much better lower bound for s(Mg) than the one in
[P], has been recently proposed by Coskun, Harris and Starr [CHS]: If
Hilbg,1 denotes the Hilbert scheme of canonically embedded curves C ⊂
Pg−1, then dim Hilbg,1 = g2 + 3g − 4. We denote by r(g) the largest num-
ber r, such that through r general points in Pg−1 there passes a canonical
curve [C ↪→ Pg−1] ∈ Hilbg,1. It has been determined in [St] that

r(g) = g + 5 +
[

6
g − 2

]
.

This number is, the smallest solution of the necessary inequality

dim Hilbg,1 + r ≥ (g − 1)r.

In particular r(3) = 14 (as it should be!) and r(5) = 12. For g ≥ 9, one
fixes general points p1, . . . , pg+5 ∈ Pg−1 as well as a general linear space
Pg−7 ⊂ Pg−1. The family Xg ⊂ Mg consisting of canonical curves [C ↪→
Pg−1] ∈ Hilbg,1 passing through p1, . . . , pg+5, and such that C ∩ Pg−7 
= ∅
is a covering curve for Mg. It is an interesting problem to determine the
slope Xg · δ/Xg · λ.

5. The Harris-Mumford theorem revisited: An alternative proof
via syzygies

In this section we present a different proof of the main result from [HM]
by replacing the calculation of the class of the Hurwitz divisor M1

g,k of k-
gonal curves of genus g = 2k − 1 by the calculation of the class of a certain
Koszul divisor Zg,k−2, consisting of canonical curves [C] ∈ Mg with extra
syzygies at the (k − 2)-nd step in its minimal graded resolution. The advan-
tage of this approach is that the proof that Mg is of general type becomes
shorter since one can completely avoid having to develop the theory of admis-
sible covers and do without the enumerative calculations that occupy a large
part of [HM], precisely pg. 53–86, or alternatively, develop the theory of
limit linear series [EH1]. The proof becomes also more direct and logical,
since it uses solely the geometry of canonical curves of genus g and that
of the corresponding Hodge bundles on Mg , rather than the geometry of
an auxiliary Hurwitz stack. The disadvantage of this approach, is that the
statement that the locus Zg,k−2 is a divisor on Mg is highly non-trivial
and it is equivalent to Green’s Conjecture for generic curves of odd genus
(Voisin’s theorem [V1], [V2]). This situation is somewhat similar to that
encountered in the streamlined proof of Theorem 1.1 presented by Eisen-
bud and Harris in [EH3] (and which is comparable in length to our proof):
Showing that the a priori virtual Brill-Noether locus is an actual divisor in
Mg, requires the full force of the Brill-Noether theory and is arguably more
difficult than computing the class of the Brill-Noether divisor on Mg.
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We start by recalling a few basic facts on syzygies. For a smooth curve C
and a globally generated line bundle L ∈ Picd(C), we denote by Ki,j(C, L)
the Koszul cohomology group obtained from the complex

∧i+1 H0(L) ⊗ H0(L⊗(j−1))
di+1,j−1−→ ∧iH0(L) ⊗ H0(L⊗j)

di,j−→ ∧i−1H0(L)

⊗ H0(L⊗(j+1)),

where the maps di,j are the Koszul differentials defined by (cf. [La2], [PR])

di,j

(
f1 ∧ . . . ∧ fi ⊗ u

)
:=

i∑
l=0

(−1)l
(
f1 ∧ . . . ∧ f̌l . . . ∧ fi

)
⊗ (ufl),

with fl ∈ H0(C, L) and u ∈ H0(C, L⊗j). If R(C, L) := ⊕n≥0H
0(C, L⊗n)

denotes the graded module over the polynomial ring S := Sym H0(C, L),
then

Ki,j(C, L) = TorS
i

(
C, R(C, L)

)
i+j

.

There is a standard geometric way of computing Koszul cohomology groups
using Lazarsfeld bundles. Since L is assumed to be globally generated, we
can define the vector bundle ML on C through the following exact sequence
on C:

0 → ML → H0(L) ⊗ OC → L → 0.

A diagram chasing argument using the exact sequences

0 −→ ∧aML ⊗ L⊗b → ∧aH0(L) ⊗ L⊗b −→ ∧a−1ML ⊗ L⊗(b+1) −→ 0

for various a and b, shows that there is an identification cf. [La2]

(13) Ka,b(C, L) =
H0(C,∧aML ⊗ L⊗b)

Image{∧a+1H0(C, L) ⊗ H0(C, L⊗(b−1))}
.

Example 5.1. From (13) we find that K0,2(C, L) = 0 if and only if
the multiplication map Sym2H0(C, L) → H0(C, L⊗2) is surjective. Assum-
ing L is normally generated, we have that K1,2(C, L) = 0 if and only if

C
|L|→ P

(
H0(C, L)∨) is cut out by quadrics. More generally, one says that L

satisfies the Green-Lazarsfeld property (Np) for p ≥ 0, if the vanishing

Ki,2(C, L) = 0

holds for all 0 ≤ i ≤ p. This corresponds intuitively to the situation that

the first p syzygies of the image curve C
|L|→ P

(
H0(C, L)∨) are as simple as

possible, that is, linear.

From now on we specialize to the case L = KC ∈ W g−1
2g−2(C) and we

consider the canonical map C
|KC |−→ Pg−1. If C is non-hyperreliptic, we set

IC/Pg−1 to be the ideal of the canonically embedded curve.
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Proposition 5.2. For any non-hyperrelliptic curve [C] ∈ Mg and any
integer 0 ≤ i ≤ (g − 1)/2 we have the following equivalence:

Ki,2(C, KC) 
= 0 ⇐⇒ h0(Pg−1, Ωi
Pg−1(i + 2) ⊗ IC/Pg−1

)
≥
(

g − 1
i + 2

)
(g − 2i − 3)(i + 1)

g − i − 1
+ 1.

Proof. We start with a canonically embedded curve C
|KC |
↪→ Pg−1.

Throughout the proof we use the identification MPg−1 = ΩPg−1(1) com-
ing from the Euler sequence on Pg−1. Since the vector bundle MKC

is stable
(cf. [PR] Corollary 3.5), we have the vanishing

H1(C,∧i ⊗ K⊗2
C ) = 0

because μ
(
∧iMKC

⊗K⊗2
C ) > 2g−1. It follows from (13) that Ki,2(C, KC) 
= 0

if and only if the map

H1(C,∧i+1MKC
⊗ KC) → ∧i+1H0(C, KC) ⊗ H1(C, KC)

is an isomorphism, or equivalently h1(C,∧i+1MKC
⊗KC) =

(
g

i+1

)
. We write

down the following commutative diagram, where by abusing notation, we
shall denote by the same letter a sheaf morphism and the group morphism
it induces at the level of global sections:

0 0 0
⏐
⏐
�

⏐
⏐
�

⏐
⏐
�

∧i+1MPg−1 ⊗ IC/Pg−1 (1) −→ ∧i+1H0(OPg−1 (1)) ⊗ IC/Pg−1 (1) −→ ∧iMPg−1 ⊗ IC/Pg−1 (2)
⏐
⏐
�

⏐
⏐
�

⏐
⏐
�

∧i+1MPg−1 (1) −→ ∧i+1H0(OPg−1 (1)) ⊗ OPg−1 (1) −→ ∧iMPg−1 (2)
⏐
⏐
�α

⏐
⏐
�β

⏐
⏐
�γ

∧i+1MKC
⊗ KC −→ ∧i+1H0(KC) ⊗ KC −→ ∧iMKC

⊗ K⊗2
C⏐

⏐
�

⏐
⏐
�

⏐
⏐
�

0 0 0

Applying the Snake Lemma, we find that H0(Pg−1,∧iMPg−1⊗IC/Pg−1(2)) =
Coker(α). We also note that h0

(
Pg−1,∧i+1MPg−1(1)

)
=
(

g
i+2

)
(use for

instance Bott’s vanishing theorem). Thus the condition Ki,2(C, KC) = 0
is satisfied if and only if

dim Coker(α) = h0(C,∧i+1MKC
⊗ KC) − h0(Pg−1,∧i+1MPg−1(1)

)
=
(

g − 1
i + 1

)
(g − 2i − 3) + h1(C,∧i+1MKC

⊗ KC) −
(

g

i + 2

)
≤
(

g − 1
i + 2

)
(g − 2i − 3)(i + 1)

g − i − 1
.

�
For g = 2i + 3, we find that Ki,2(C, KC) 
= 0 if and only if the map

(14) H0(Pg−1,∧iMPg−1(2))
γ−→ H0(C,∧iMKC

⊗ K⊗2
C )
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is not an isomorphism. We note that γ is a map between vector spaces of
the same dimensions:

h0(Pg−2,∧iMPg−1(2)
)

= (i + 1)
(

g + 1
i + 2

)
= χ(C,∧iMKC

⊗ K⊗2
C )

= h0(C,∧iMKC
⊗ K⊗2

C )

(for the left hand side use Bott vanishing, for the right hand-side the Riemann-
Roch theorem.) This shows that the locus

Zg,i := {[C] ∈ Mg : Ki,2(C, KC) 
= 0},

being the degeneracy locus of a morphism between two vector bundles of
the same rank over Mg, is a virtual divisor on the moduli space of curves.

Example 5.3. By specializing to the case g = 3, we find the following
interpretation

Z3,0 := {[C] ∈ M3 : Sym2H0(C, KC) → H0(C, K⊗2
C ) is not an isomrphism}.

Using M. Noether’s theorem [ACGH], it follows that Z3,0 consists precisely
of hyperelliptic curves, that is,

supp(Z3,0) = supp(M1
3,2).

In the next case g = 5, we use Petri’s theorem stating that a non-hyperelliptic
canonical curve [C] ∈ M5 is cut out by quadrics unless it has a g1

3. We obtain
that supp(Z5,1) = supp(M1

5,3).

In order to describe the closure Zg,i of Zg,i inside Mg, we shall extend
the determinantal description of Zg,i over a partial compactification of Mg.
Our methods seem well-suited for divisor class calculations but harder to
implement in the case of Koszul cycles on Mg of higher codimension.

We denote by M∗
g := Mg ∪

(
∪i+1

j=0Δ
0
j

)
the locally closed substack of Mg

defined as the union Mg and the open substacks Δ0
j ⊂ Δj for 1 ≤ j ≤ i + 1

consisting of 1-nodal genus g curves [C ∪y D], with [C, y] ∈ Mg−j,1 and
[D, y] ∈ Mj,1, that is, Δ0

j is the intersection of Δj with the codimension
1 stratum in the topological stratification of Mg. The substack Δ0

0 ⊂ Δ0
classifies 1-nodal irreducible genus g curves[

Cyq :=
C

q ∼ y

]
∈ Mg,

where [C, q, y] ∈ Mg−1,2 together with their degenerations consisting of
unions of a smooth genus g − 1 curve and a nodal rational curve. We set

M̃g := Mg ∪ Δ0
0 ∪ Δ0

1 ⊂ M∗
g.

For integers 0 ≤ a ≤ i and b ≥ 2 we define vector bundles Ga,b over M̃g

with fibre
Ga,b[C] = H0(C,∧aMKC

⊗ K⊗b
C )
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over every point [C] ∈ Mg. The question is of course how the extend this
description of Ga,b over the locus of stable curves. In this paper we shall only
describe how to construct the bundles Ga,b over M̃g, which will suffice in
order to compute the slope of Zg,i and prove Theorem 1.1 for g = 2i + 3.
For full details on how to extend the vector bundles Ga,b over M̃g (that is,
outside codimension 2 over all the boundary divisors on Mg), we refer to
[F2] p. 75–86. We start by constructing the bundles G0,b:

Proposition 5.4. For each b ≥ 2 there exists a vector bundle G0,b over
M̃g of rank (2b − 1)(g − 1) with fibres admitting the following description:

• For [C] ∈ Mg we have that G0,b[C] = H0(C, K⊗b
C ).

• For [C ∪y E]) ∈ Δ0
1, where E is an elliptic curve, if

u ∈ H0(C, KC ⊗ OC(2y)) − H0(C, KC)

denotes any meromorphic 1-form with non-zero residue at y, then

G0,b[C ∪y E] = H0(C, K⊗b
C ⊗ OC((2b − 2) · y)) + C · ub

⊂ H0(C, K⊗b
C ⊗ OC(2b · y)

)
.

• For [Cyq = C/y ∼ q] ∈ Δ0
0, where q, y ∈ C and

u ∈ H0(C, KC ⊗ OC(y + q)) − H0(C, KC)

is a meromorphic 1-form with non-zero residues at y and q, we have
that

G0,b[Cyq] = H0(C, K⊗b
C ⊗ OC((b − 1)y + (b − 1)q)

)
⊕ C · ub

⊂ H0(C, K⊗b
C ⊗ OC(by + bq)

)
.

The idea to define the vector bundles G0,b as suitable twists by boundary
divisors of powers of the relative dualizing sheaf over the universal curve,
that is,

G0,b = π∗

⎛⎝ω⊗b
π ⊗

[g/2]∑
j=1

π∗(OMg
(cb

j δj))

⎞⎠
for precisely determined constants cb

j ≥ 0, comes of course from the theory
of limit linear series. Recalling that σ : G

g−1
2g−2 → M̃g denotes the stack of

limit g
g−1
2g−2’s, then for a curve [C ∪y E] ∈ Δ0

1, the fibre σ−1[C ∪y E] consists
of a single limit linear series

(lC = (ωC(2y), H0(ωC(2y)
)

∈ Gg−1
2g−2(C),

lE =
(
OE(2gy), (g − 1)y + |(g − 1)y|

)
∈ Gg−1

2g−2(E))).

The bundle G0,1 retains the aspect of this limit g
g−1
2g−2 corresponding to the

component of genus g − 1, while dropping the information coming from



BIRATIONAL ASPECTS OF THE GEOMETRY OF Mg 87

the elliptic tail. Similarly, for b ≥ 2, it is an easy exercise in limit linear
series to show the fibre G0,b[C ∪y E] is precisely the C-aspect of the limit
g
2b(g−1)
(2b−1)(g−1)−1 induced from ω⊗b

C∪E . The situation becomes more complicated
when extending G0,b over the entire stack M∗

g. As explained in [F2] Theorem
3.13 in the case of the Hurwitz stack (and the same holds true for M∗

g itself),
the twisting coefficients cb

j are chosen in a unique way such that the resulting
bundles Ga,b fit in exact sequences of type (15).

Having defined G0,b we now define inductively all vector bundles Ga,b.
First we define G1,b as the kernel of the multiplication map G0,1 ⊗ G0,b →
G0,b+1, that is, by the exact sequence

0 −→ G1,b −→ G0,1 ⊗ G0,b −→ G0,b+1 −→ 0.

Having defined Gl,b for all l ≤ a−1, the vector bundle Ga,b is defined through
the following exact sequence over M̃g:

(15) 0 −→ Ga,b −→ ∧aG0,1 ⊗ G0,b
φa,b−→ Ga−1,b+1 −→ 0.

Proposition 5.5. The Koszul maps φa,b : ∧aG0,1 ⊗ G0,b → Ga−1,b+1
are well-defined and surjective for all integers b ≥ 2 and 0 ≤ a ≤ b. In
particular the exact sequences (15) make sense and the vector bundles Ga,b

are well-defined.

Proof. This proof is similar to [F2] Proposition 3.10. We use that
the vector bundle MKC⊗OC(y+q) is semi-stable for [C, y, q] ∈ Mg−1,2, in
particular

H1(C,∧aMKC⊗OC(y+q) ⊗ K⊗b
C ((b − 1) · (y + q))

)
= 0,

that is, the map

∧a H0(KC(y + q)
)

⊗ H0(K⊗b
C ((b − 1)(y + q))

)
→ H0(∧a−1MKC⊗OC(y+q) ⊗ K

⊗(b+1)
C (b(y + q))

)
is surjective. The rest now follows from the description of the fibres of the
bundles Ga,b provided in Proposition 5.4. �

For 0 ≤ a ≤ i and b ≥ 1 we define vector bundles Ha,b over M̃g having
fibre

Ha,b[C] = H0(Pg−1,∧aMPg−1 ⊗ OPg−1(b)
)

over each point corresponding to a smooth curve [C] ∈ Mg with the canon-

ical map C
|KC |−→ Pg−1. First we set H0,b := Symb(E ⊗ O

˜Mg
(δ1)) for b ≥ 1.

Having already defined Ha−1,b for all b ≥ 1, we define Ha,b via the exact
sequence

(16) 0 −→ Ha,b −→ ∧aH0,1 ⊗ SymbH0,1 −→ Ha−1,b+1 −→ 0.
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Note that the bundles Ha,b are defined entirely in terms of the Hodge bundle
E. There is a natural vector bundle morphism over M̃g

γa,b : Ha,b → Ga,b.

When g = 2i + 3 then rank(Hi,2) = rank(Gi,2) and the degeneracy locus
Z(γi,2) of the morphism γi,2 is a codimension 1 compactification in M̃g of
the locus Zg,i.

We shall determine the class c1(Gi,2 − Hi,2) ∈ Pic(M̃g) by computing
its intersection it with the following test curves lying in the boundary of
Mg: We fix a pointed curve [C, q] ∈ Mg−1,1 and a general elliptic curve
[E, y] ∈ M1,1. We define two 1-parameter families

C0 :=
{

C

y ∼ q
: y ∈ C

}
⊂ Δ0 ⊂ Mg and C1 := {C ∪y E : y ∈ C}

⊂ Δ1 ⊂ Mg.(17)

These families intersect the generators of Pic(Mg) as follows (cf. [HM] pg.
83–85):

C0 · λ = 0, C0 · δ0 = −2g + 2, C0 · δ1 = 1 and C0 · δa = 0 for a ≥ 2, and

C1 · λ = 0, C1 · δ0 = 0, C1 · δ1 = −2g + 4, C1 · δa = 0 for a ≥ 2.

Lemma 5.6. We fix [C, q] ∈ Mg−1 and we consider the test curves
C0, C1 ⊂ Mg. Then for all integers j ≥ 1 the following formulas:

(1) C1 · c1(G0,j) = −2g + 4.
(2) C0 · c1(G0,j) = (j − 1)

(
j(g − 1) + j − 1

)
+ j.

Proof. We denote by p1, p2 : C × C → C the two projections and
Δ ⊂ C × C is the diagonal. We give details only for the first calcula-
tion the remaining one being similar. We have the identification G0,1|C1 =
(π1)∗

(
π∗

2(KC) ⊗ O(2Δ)
)
, from which we obtain that c1(G0,1|C1) = −2g + 4.

For j ≥ 2 we use the following exact sequences of bundles on C:

0 −→ (π1)∗
(
π∗

2(K
⊗j
C ) ⊗ O((2j − 2)Δ)

)
−→ G0,j|C1

−→ (π1)∗
(
π∗

2(K
⊗j
C ) ⊗ OΔ(2jΔ)

)
−→ 0.

An immediate application of Grothendieck-Riemann-Roch for the projection
morphism p1 : C × C → C gives that

c1(π1)∗
(
π∗

2(K
⊗j
C ) ⊗ OC×C((2j − 2)Δ)

)
= 2(g − 1)(j − 1),

which finishes the proof. �
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Theorem 5.7. The class of the virtual divisor Z2i+3,i in Pic(M̃2i+3)
equals

[Z2i+3,i]virt = c1(Gi,2 −Hi,2) =
1

i + 2

(
2i

i

)(
6(i+3)λ− (i+2)δ0 −6(i+1)δ1

)
.

Proof. We have constructed the vector bundle morphism γi,2 : Hi,2 →
Gi,2 over the stack M̃g. For g = 2i+3 we know that rank(Hi,2) = rank(Gi,2)
and the virtual Koszul class [Zg,i]virt equals c1(Gi,2 − Hi,2). We recall that
for a rank e vector bundle E over a stack X and for i ≥ 1, we have formulas

c1(∧iE) =
(

e − 1
i − 1

)
c1(E) and c1(SymiE) =

(
e + i − 1

e

)
c1(E).

We write c1(Gi,2 − Hi,2) = aλ − b0δ0 − b1δ1. Using the exact sequences (15)
we find that

c1(Gi,2) =
i∑

l=0

(−1)lc1(∧i−lG0,1 ⊗ G0,l+2) =
i∑

l=0

(−1)l

(
g

i − l

)
c1(G0,l+2)

+
i∑

l=0

(−1)l
(
(g − 1)(2l + 3)

)( g − 1
i − l − 1

)
c1(G0,1).

Using repeatedly the exact sequence (16) we find that

c1(Hi,2) =
i∑

l=0

(−1)lc1(∧i−lH0,1 ⊗ Syml+2H0,1)

=
i∑

l=0

(−1)l

(
g

i − l

)
c1(Syml+2(H0,1))

+
i∑

l=0

(−1)l

(
g + l + 1

l + 2

)
c1(∧i−lH0,1)

=
i∑

l=0

(−1)l

((
g

i − l

)(
g + l + 1

g

)

+
(

g + l + 1
l + 2

)(
g − 1

i − l − 1

))
c1(H0,1)

= 4(2i + 1)
(

2i

i

)
c1(H0,1),

with G0,1 = H0,1 = E ⊗ O
˜Mg

(δ1). We intersect both these formulas with the
test curves C0 and C1 and write that

(2g − 2)b0 − b1 = C0 · [Zg,i]virt = (i + 1)
(

2i + 2
i

)
and
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(2g − 4)b1 = C1 · [Zg,i]virt = 6(i + 1)
(

2i + 2
i

)
.

These relations determine b0 and b1. Finally we claim that we also have the
relation a − 12b0 + b1 = 0 which finishes the proof. Indeed, we consider q
the curve R ⊂ Mg obtained by attaching to a fixed point q ∈ C of a curve
of genus g − 1 a Lefschetz pencil of plane cubics. Then R · λ = 1, R · δ0 =
12, R · δ1 = −1 and R · δj = 0 for j ≥ 2. Then

a − 12b0 + b1 = 0 = R · c1(Gi,2 − Hi,2) = 0,

and this follows because Ga,b|R are numerically trivial (It is clear that G0,b|R
are trivial for b ≥ 1 and then one uses (15) and (16)). �

Example 5.8. For i = 0 hence g = 3, Theorem 5.7 reads like

[Z3,0]virt = c1(G0,2 − Sym2G0,1) = 9λ − δ0 − 3δ1 ≡ M1
3,2 ∈ Pic(M3).

Thus our calculation yields a computation of the compactified divisor M1
3,2

on M3 of hyperelliptic curves. Thus we have the relation Z(γ0,2) = Z3,0
and the vector bundle morphism γ0,2 : H0,2 → G0,2 provides the “correct”
determinantal structure of the compactification of the hyperelliptic divisor.
A different compactification of M1

3,2 is provided by the vector bundle mor-
phism between Hodge bundles

χ3 : Sym2(E1) → E2, χ3[X] : Sym2H0(X, ωX) → H0(X, ω⊗2
X )

for [X] ∈ M3. The class of its degeneration locus is c1(E2 − Sym2E1) =
9λ − δ0 − δ1 (use Remark 4.1). It follows that there is an equality of cycles

Z(χ3) = Z(γ0,2) + 2δ1 ∈ A1(M3),

that is, χ3 is an everywhere degenerate morphism along the divisor Δ1. This
discussion in low genus, already indicates that the determinantal structure
induced by the morphism γi,2 : Hi,2 → Gi,2 provides the right compactifica-
tion of Zg,i over M̃g.

In a way analogous to [F2], one can extend the vector bundles Ga,b and
Ha,b as well as the vector bundle morphism γa,b : Ha,b → Ga,b over the larger
codimension 1 compactification M∗

g, in a way that the exact sequence (15)
and (16) extend to M∗

g. Using these sequences, we can compute the class
c1(Gi,2 − Hi,2) ∈ Pic(M∗

g) = Pic(Mg). One finds a formula

c1(Gi,2 − Hi,2) = aλ − b0δ0 − · · · − b[g/2]δ[g/2],

where bj ≥ b0 for j ≥ 1. It follows that

s([Zg,i]virt) =
a

b0
= 6 +

12
g + 1

.

This finishes the proof of Theorem 1.1 provided we can show that Zg,i is an
“honest” divisor on M2i+3, that is, γi,2 is generically nondegenerate. This
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is the subject of Voisin’s theorem [V2] which gives an affirmative answer to
Green’s Conjecture for generic curves of odd genus (see e.g., [GL] for more
background):

Theorem 5.9. For a general curve [C] ∈ M2i+3 we have the vanishing
Ki,2(C, KC) = 0. It follows that Z2i+3,i is a divisor on M2i+3.

Remark 5.10. For g = 23 Theorem 5.7 shows that s(Z23,10) = s(KM23
)

= 13/2. This implies that κ(M23) ≥ 0, in particular M23 is not uniruled.
A finer analysis using Brill-Noether divisors on M23 proves the stronger
inequality κ(M23) ≥ 2, cf. [F1].

We finish this section by briefly discussing the proof of Theorem 1.1 in
even genus. This is achieved in [EH3] and it relies on the calculation of
class of the Gieseker-Petri divisor on Mg. We fix integers r, s ≥ 1 and set
g := s(r+1) and d := r(s+1). Note that ρ(g, r, d) = 0 and every even genus
appears in this way. A general curve [C] ∈ Mg has a finite number of linear
series L ∈ W r

d (C) and for each of them, the multiplication map

μ0(L) : H0(C, L) ⊗ H0(C, KC ⊗ L∨) → H0(C, KC)

is an isomorphism. We define the Gieseker-Petri locus

GPr
g,d := {[C] ∈ Mg : ∃L ∈ W r

d (C) such that μ0(L) is not injective}.

The following result is proved in [F3] Theorem 1.6. The case s = 2,
g = 2r + 2, which is the most important and the one used in the proof
of Theorem 1.1, has been originally settled in [EH3]. The proof given in
[F3] which uses the techniques of Koszul cohomology, is however substan-
tially shorter.

Theorem 5.11. For d = rs + r and g = rs + s, the locus GPr
g,d has at

least one divisorial component. The slope of the divisorial part of its com-
pactification GPr

g,d in Mg is given by the formula:

s(GPr
g,d) = 6 +

12
g + 1

+
6(s + r + 1)(rs + s − 2)(rs + s − 1)

s(s + 1)(r + 1)(r + 2)(rs + s + 4)(rs + s + 1)
.

6. The locus of K3 sections in the moduli space

To extend Theorem 1.1 and show that Mg is of general for a genus
g ≤ 23, one needs to construct effective divisors D ∈ Eff(Mg) of slope

s(D) <
13
2

≤ 6 +
12

g + 1
.

One is lead to consider geometric conditions for curves [C] ∈ Mg, which
are divisorial in moduli but are satisfied by all curves lying on K3 surfaces.
Thus it makes sense to study more systematically the geometry of curves of
arbitrary genus on K3 surfaces.
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Let S be a K3 surface and C ⊂ S a smooth curve of genus g. We choose
a linear series A ∈ W r

d (C) with d ≤ g−1, satisfying the following properties:

• Both linear series A ∈ W r
d (C) and KC ⊗ A∨ ∈ W g−d+r−1

2g−2−d (C) are
base point free.

• Both multiplication maps

H0(C, A) ⊗ H0(C, KC) → H0(C, A ⊗ KC)

and

H0(C, A) ⊗ H0(C, K⊗2
C ⊗ A∨) → H0(C, K⊗2

C )

are surjective.

We recall that the Lazarsfeld bundle MA on C comes from the exact sequence

0 → MA → H0(A) ⊗ OC
evC→ A → 0

and we set QA := M∨
A , hence rank(QA) = r and det(QA) = KC . Following

an idea due to Mukai [Mu3], we show that C possesses many higher rank
vector bundles with unexpectedly many global sections. These bundles are
restrictions of vector bundles on S and their existence will ultimately single
out the K3 locus Kg in Mg:

Theorem 6.1. Given a smooth curve C ⊂ S and A ∈ W r
d (C) as above,

there exists a vector bundle EA ∈ SUC(r+1, KC) sitting in an exact sequence

0 −→ QA → EA −→ A −→ 0,

and satisfying the condition h0(C, EA) = h0(C, A) + h0(C, KC ⊗ A∨) =
g − d + 2r + 1.

Proof. Viewing A as a sheaf on S, we define the sheaf F̃A through the
exact sequence

0 −→ F̃A −→ H0(A) ⊗ OS
evS−→ A −→ 0.

Since A is a base point free line bundle, F̃A is a vector bundle on S. We
consider the vector bundle ẼA := F̃∨

A on S, which sits in an exact sequence

(18) 0 −→ H0(A)∨ ⊗ OS −→ ẼA −→ KC ⊗ A∨ −→ 0.
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We write down the following commutative diagram

0 0⏐⏐$ ⏐⏐$
H0(A) ⊗ OS(−C) =−→ H0(A) ⊗ OS(−C)⏐⏐$ ⏐⏐$

0 −→ F̃A −→ H0(A) ⊗ OS −→ A −→ 0⏐⏐$ ⏐⏐$ ⏐⏐$=

0 −→ MA −→ H0(A) ⊗ OC −→ A −→ 0⏐⏐$ ⏐⏐$
0 0

from which, if we set FA := F̃A ⊗ OC and EA := ẼA ⊗ OC , we obtain the
exact sequence

0 −→ MA ⊗ K∨
C −→ H0(A) ⊗ K∨

C −→ FA −→ MA −→ 0

(use that Tor1OS
(MA,OC) = MA ⊗ K∨

C). Taking duals, we find the exact
sequence

(19) 0 −→ QA −→ EA −→ KC ⊗ A∨ −→ 0.

Since S is regular, from (18) we obtain that h0(S, ẼA) = h0(C, A)+h0(C, KC⊗
A∨) while H0(S, ẼA ⊗ OS(−C)) = 0, that is,

h0(S, ẼA) ≤ h0(C, EA) ≤ h0(C, A) + h0(C, KC ⊗ A∨).

This shows that the sequence (19) is exact on global sections and completes
the proof. �

Corollary 6.2. Let C ⊂ S and A ∈ W r
d (C) be as above. Then the

multiplication map

H0(C, KC ⊗ A∨) ⊗ H0(C, KC ⊗ MA) → H0(C, K⊗2
C ⊗ A∨ ⊗ MA)

is not surjective. In particular, for every base point free pencil A ∈ W 1
d (C)

with d ≤ g − 1, the multiplication map

Sym2H0(C, KC ⊗ A∨)→ H0(C, K⊗2
C ⊗ A⊗(−2))

is not surjective.

Proof. The existence of the bundle

EA ∈ Ext1(KC ⊗ A∨, QA) = H0(C, K⊗2
C ⊗ A∨ ⊗ MA)∨

satisfying h0(C, EA) = h0(C, QA)+h0(C, KC⊗A∨) implies that the cobound-
ary map

Ext1
(
KC ⊗ A∨, QA

)
→ Hom

(
H0(C, KC ⊗ A∨), H1(C, QA)

)
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given by E �→ δE , is not injective. We finish the proof by applying Serre
duality. �

Corollary 6.3. For C ⊂ S and A ∈ W r
d (C) as above, we have that

h0(C, QA ⊗ QKC⊗A∨) ≥ h0(C, A)h0(C, KC ⊗ A∨) + 1.

Proof. We tensor the exact sequence

0 −→ MKC⊗A∨ −→ H0(KC ⊗ A∨) ⊗ OC → KC ⊗ A∨ −→ 0

by the vector bundle MA ⊗ KC , then apply Corollary 6.2. The conclusion
follows because by assumption H1(C, K⊗2

C ⊗ A∨ ⊗ MA) = 0. �
Corollary 6.2 can be simplified in the case of linear series of dimension

≥ 2. For instance we have the following characterization which will be used
in Section 6:

Proposition 6.4. Given C ⊂ S a Brill-Noether general curve and A ∈
W 2

d (C) a complete linear series as above, the multiplication map

Sym2H0(C, KC ⊗ A∨) → H0(C, K⊗2
C ⊗ A⊗(−2))

is not surjective.

Proof. We start by choosing points p, q ∈ C such that A⊗OC(−p−q) ∈
W 1

d−2(C). We can write the following exact sequence

0 −→ OC(p + q) −→ QA −→ A ⊗ OC(−p − q) −→ 0,

which we use together with Corollary 6.3 to write the inequalities

h0(C, A) h0(C, KC ⊗ A∨) + 1 ≤ h0(C, QA ⊗ QKC⊗A∨)

≤ h0(C, QKC⊗A∨ ⊗ OC(p + q)
)

+ h0(C, QKC⊗A∨ ⊗ A ⊗ OC(−p − q)
)
.

We apply the Base point free pencil trick to note that the multiplication
map

H0(C, KC(−p − q)) ⊗ H0(C, KC ⊗ A∨) → H0(C, K⊗2
C ⊗ A∨(−p − q))

is surjective, hence h0(C, QKC⊗A∨(p+q)) = h0(C, KC ⊗A∨). Then one must
have

h0(C, QKC⊗A∨ ⊗ A(−p − q)
)

> 2h0(C, KC ⊗ A∨),
which implies that the multiplication map

H0(C, KC ⊗ A∨) ⊗ H0(C, KC ⊗ A∨(p + q)) → H0(C, K⊗2
C ⊗ A⊗(−2)(p + q))

is not surjective. Since h0(C, KC ⊗ A∨(p + q)) = h0(C, KC ⊗ A∨) + 1, this
implies that the map

Sym2H0(C, KC ⊗ A∨) → H0(C, K⊗2
C ⊗ A⊗(−2))

is not surjective either. �
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Example 6.5. As an illustration, a general curve [C] ∈ M21 carries a

finite number of linear series A ∈ W 2
16(C) and C

|KC⊗A∨|
↪→ P6 is an embedding

for all A ∈ W 2
16(C). The locus

Z21 := {[C] ∈ M21 : ∃A ∈ W 2
16(C) with

Sym2H0(C, KC ⊗ A∨) � H0(C, K⊗2
C ⊗ A⊗(−2))}

contains the locus K21 of sections of K3 surfaces. Since

rank Sym2H0(C, KC ⊗ A∨) = rank H0(C, K⊗2
C ⊗ A⊗(−2)),

clearly Z21 is a virtual divisor on M21. In fact Z21 is an “honest” divisor on
M21 of slope s(Z21) < 6 + 12/22 (cf. [F3], [Kh]). Unfortunately, s(Z21) >
6.5, so one cannot conclude that M21 is of general type.

To summarize, the existence of the vector bundles EA shows that curves
C on K3 surfaces carry line bundles of the form KC ⊗A∨ having very special
geometric properties (Corollary 6.3). The vector bundles EA are produced
starting from any linear series A ∈ W r

d (C) satisfying suitable genericity
condition. This leads to the construction of Koszul divisors on Mg as being
push-forwards of degeneracy loci defined on stacks G̃r

d of limit linear series,
cf. [F2], [F3].

6.1. Koszul divisors on Mg . We can rewrite Corollary 6.2 in terms
of Koszul cohomology groups. A curve [C] ∈ Kg enjoys the property that
K0,2(C, KC ⊗ A∨) 
= 0 for every pencil A ∈ W 1

d (C) with d ≤ g − 1 such that
KC⊗A∨ is globally generated. This suggests an obvious ways of constructing
geometric divisors on Mg which contain the K3 locus Kg by looking at the
higher (rather than 0-th order) Koszul cohomology groups Ki,2(C, KC ⊗
A∨). From a technical point of view the simplest case is when one considers
syzygies of linear series residual to a pencil of minimal degree in the case
when the general curve [C] ∈ Mg has a finite number of such pencils. The
situation when the Brill-Noether number is positive will be considered in
the forthcoming paper [F4]. A special case of that new construction can be
found in Section 7 of this paper.

We fix an integer i ≥ 0 and set

g := 6i + 10, d := 9i + 12, and r := 3i + 4

hence ρ(g, r, d) = 0. We consider the open substack M0
g ⊂ Mg consisting

of curves [C] ∈ Mg such that W r
d−1(C) = ∅ and W r+1

d (C) = ∅. Note that
for a curve [C] ∈ M0

g, each L ∈ W 3i+4
9i+12(C) is complete and base point

free. From Riemann-Roch, the residual linear series KC ⊗ L∨ ∈ W 1
3i+6(C)

is a pencil of minimal degree. We would like to study the locus of curves
[C] ∈ Mg carrying a linear series L ∈ W r

d (C) with extra syzygies of order
i. Our numerical choices for g, r and d imply that this locus is a (virtual)
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divisor on Mg. Whenever it is a divisor, it is guaranteed to contain Kg. The
next theorem comes from [F2]:

Theorem 6.6. There exists a partial compactification M0
g ⊂ M̃g ⊂ Mg

of the stack of smooth curves with codim(Mg − M̃g) ≥ 2, such that if

σ : G̃
1
3i+6 → M̃g

denotes the stack of limit linear series, then there exist vector bundles A and
B of the same rank together with a vector bundle morphism φi : A → B over
G̃1

3i+6 such that the degeneracy locus of φi over σ−1(M0
g) equals

Zg,i := {[C, A] ∈ G
1
3i+6 : Ki,2(C, KC ⊗ A∨) 
= 0}.

The slope of the virtual class of Zg,i is equal to

s
(
[Zg,i]virt

)
= s
(
σ∗c1(B − A)

)
=

3(4i + 7)(6i2 + 19i + 12)
(i + 2)(12i2 + 31i + 18)

< 6 +
12

g + 1
.

The question of generic non-degeneracy of the morphism φi is addressed
in [F2]. It is proved that φi is generically non-degenerate for i = 0, 1, 2. In
particular, the locus Z22,2 is an effective divisor on M22 of slope s(Z22,2) =
1665/256 = 6.5032.... This barely fails to make M22 of general type!

It is conjectured in [F2] that Zg,i is an actual divisor on M6i+10 for all
i ≥ 0. To show that Z22,2 is a divisor on M22 (rather than the entire space
M22), we use that (i) the Hurwitz stack G1

12 is irreducible and (ii) one can

find a smooth embedded genus 22 curve C
g1030
↪→ P10 of genus 22, such that

K2,2(C, g10
30) = 0. In other words, C ⊂ P10 is cut out by quadrics and all the

syzygies among the quadrics are linear.
Because G1

12 is irreducible, this implies that if [C] ∈ M22 is a general
curve, then K2,2(C, KC ⊗ A∨) = 0, for all A ∈ W 1

12(C). The irreducibility of
the Hurwitz stack G1

12 makes it possible to derive information about all g1
12’s

on a general curve, even though we can only see one g1
12 at a time. This trick

(which has been used again in [F3] to prove the Maximal Rank Conjecture),
only works in the case ρ(g, r, d) = 0. Proving transversality statements for
Koszul divisors in the case ρ(g, r, d) ≥ 1 requires different ideas.

7. The Kodaira dimension of M22

In this section we outline the calculation of the class [D22] of an effective
divisor on M22 of slope less than 13/2. Complete details of a more general
construction (of which Theorem 7.1 is a particular case) will appear in [F4].
Precisely, we shall present in [F4] a way of computing the class of all Koszul
divisors on Mg defined in terms of linear series gr

d in the case ρ(g, r, d) = 1.
(The case ρ(g, r, d) = 0 has been dealt with in [F3]). Specializing (g, r, d) =
(22, 6, 25) we obtain our result on the Kodaira dimension of M22.
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Theorem 7.1. The following locus of smooth curves of genus 22

D22 := {[C] ∈ M22 : ∃L ∈ W 6
25(C) with Sym2H0(C, L)

→ H0(C, L⊗2) not injective}

is a divisor on M22. The class of its compactification on M22 is given by
the formula:

D22 ≡ 132822768

(
17121
2636

λ − δ0 − 14511
2636

δ0 −
11∑

j=2

bjδj

)
,

where bj > 1 for 2 ≤ j ≤ 11. It follows that s(D22) = 17121/2636 =
6.49506 . . ., therefore M22 is of general type.

We discuss the calculation of the class of D22 viewed as a virtual degen-
eracy locus on a partial compactification of M22. The proof that D22 is
indeed a divisor on M22, that is, that for a general curve [C] ∈ M22 we
have that

Sym2H0(C, L) → H0(C, L⊗2)
is injective for all L ∈ W 6

25(C) will be presented in [F4] as part of a more
general version of the Maximal Rank Conjecture (see again [F3] Theorem
1.5 for the corresponding statement when ρ(g, r, d) = 0).

The idea is to construct two tautological vector bundles over the Severi
variety G2

17 of curves [C] ∈ M22 with a plane model g2
17 and then define the

divisor D22 as the image of the first degeneration locus of a natural map
between these bundles.

We denote by Mp
22 the open substack of M22 consisting of curves [C] ∈

M22 such that W 6
24(C) = ∅ and W 7

25(C) = ∅. Standard results in Brill-
Noether theory guarantee that codim(M22 − Mp

22,M22) ≥ 2. If Pic2522
denotes the Picard stack of degree 25 over Mp

22, then we consider the
substack G6

25 ⊂ Pic2522 parameterizing pairs [C, L] where [C] ∈ Mp
22 and

L ∈ W 6
25(C). We denote by

σ : G
6
25 → Mp

22

the forgetful morphism. For a general [C] ∈ Mp
22, the fibre σ−1([C]) =

W 6
25(C) is a smooth curve and G6

25 is an irreducible stack of dimension
dim G6

25 = dim M22 + 1.
Let π : Mp

22,1 → Mp
22 be the universal curve and then

p2 : Mp
22,1 ×Mp

22
G

6
25 → G

6
25

denotes the natural projection. If L is a Poincaré bundle over Mp
22,1×Mp

22
G6

25,
then by Grauert’s Theorem E := (p2)∗(L) and F := (p2)∗(L⊗2) are vector
bundles over G6

25 with rank(E) = 7 and rank(F) = 29. There is a natural
vector bundle morphism over G6

25

φ : Sym2(E) → F
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and we denote by U22 ⊂ G6
25 its first degeneracy locus. We set D22 := σ∗(U22)

and clearly U22 has expected codimension 2 inside G6
25 hence D22 is a virtual

divisor on Mp
22.

Using Proposition 6.4, we are guaranteed that D22 contains the K3 locus
K22, in particular it is a good candidate for a divisor on M22 of exceptionally
small slope. We shall extend the vector bundles E and F over a partial
compactification of G6

25. We denote by Δp
1 ⊂ Δ0

1 ⊂ Mg the locus of curves
[C∪yE], where E is an arbitrary elliptic curve, [C] ∈ Mg−1 is a Brill-Noether
general curve and y ∈ C is an arbitrary point. We also denote by Δp

0 ⊂
Δ0

0 ⊂ Mg the locus consisting of curves [Cyq] ∈ Δ0
0, where [C, q] ∈ Mg−1,1

is Brill-Noether general and y ∈ C is arbitrary, as well as their degenerations
[C ∪q E∞] where E∞ is a rational nodal curve (that is, j(E∞) = ∞). Once
we set

Mp
g := Mp

g ∪ Δp
0 ∪ Δp

1 ⊂ M̃g,

we can extend the map σ to a proper morphism σ : G̃6
25 → Mp

22 from the
stack G̃6

25 of limit linear series g6
25 over the partial compactification Mp

22 of
M22.

Like in to [F2], [F3] or in Section 5 of this paper, we intersect the
(virtual) divisor D22 with the test curves C0 ⊂ Δp

0 and C1 ⊂ Δp
1 obtained

from a general pointed curve [C, q] ∈ M21,1 and a general elliptic curve
[E, y] ∈ M1,1. We explicitly describe the pull-back 2-cycles under σ of the
test curves C0 and C1:

Proposition 7.2. Fix general curves [C] ∈ M21 and [E, y] ∈ M1,1

and consider the associated test curve C1 ⊂ Δ1 ⊂ M22. Then we have the
following equality of 2-cycles in G̃6

25:

σ∗(C1) = X + X1 × X2 + Γ0 × Z0 + n1 · Z1 + n2 · Z2 + n3 · Z3,

where

X := {(y, L) ∈ C × W 6
25(C) : h0(C, L ⊗ OC(−2y)) = 6},

X1 := {(y, L) ∈ C × W 6
25(C) : aL(y) = (0, 2, 3, 4, 5, 6, 8)},

X2 := {lE ∈ G6
8(E) : alE

1 (y) ≥ 2, alE
6 (y) = 8} ∼= P

(
H0(OE(8y))
H0(OE(6y))

)
Γ0 := {(y, A ⊗ OC(y)) : y ∈ C, A ∈ W 6

24(C)}, Z0 = G6
7(E) ∼= E,

Z1 := {lE ∈ G6
9(E) : alE

1 (y) ≥ 3, alE
6 (y) = 9} ∼= P

(
H0(OE(9y))
H0(OE(6y))

)
,

Z2 := {lE ∈ G6
8(E) : alE

2 (y) ≥ 3, alE
6 (y) = 8} ∼= P

(
H0(OE(8y))
H0(OE(5y))

)
,

Z3 := {lE ∈ G6
8(E) : alE (y) ≥ (0, 2, 3, 4, 5, 6, 7)} ∼=

⋃
z∈E

P

(
H0(OE(7y + z))
H0(OE(5y + z))

)
,
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where the constants n1, n2 and n3 are explicitly known positive integers.

Remark 7.3. The constants ni, 1 ≤ i ≤ 3 have the following enumera-
tive interpretation. First n1 is the number of linear series L ∈ W 6

25(C) such
that there exists an unspecified point y ∈ C with aL(y) = (0, 2, 3, 4, 5, 6, 9).
Similarly, n2 is the number of those L ∈ W 6

25(C) for which there exists y ∈ C
with aL(y) = (0, 2, 3, 4, 5, 7, 8). Finally n3 is the number of points y ∈ C such
that there exists L ∈ W 6

24(C) which is ramified at y. If n0 is the number of
g6
24’s on C, then Γ0 consists of n0 disjoint copies of the curve C.

Before describing σ∗(C0), we set some more notation. For a general
pointed curve [C, q] ∈ M21,1 we denote by Y the surface

Y := {(y, L) ∈ C × W 6
25(C) : h0(C, L ⊗ OC(−y − q)) = 6}

and by π1 : Y → C the first projection. Inside Y we consider two curves
corresponding to g6

25’s with a base point at q:

Γ1 := {(y, A ⊗ OC(y)) : y ∈ C, A ∈ W 6
24(C)} and

Γ2 := {(y, A ⊗ OC(q)) : y ∈ C, A ∈ W 6
24(C)}

intersecting transversally in n0 = #
(
W 6

24(C)
)

points. Note that since [C] ∈
M21 is Brill-Noether general, W 6

24(C) is a reduced 0-dimensional scheme
consisting of n0 very ample (in particular, base point free) g6

24’s. We denote
by Y ′ the blow-up of Y at these n0 points and at the points (q, B) ∈ Y where
B ∈ W 6

25(C) is a linear series with the property that h0(C, B ⊗OC(−8q)) ≥ 1.
We denote by EA, EB ⊂ Y ′ the exceptional divisors corresponding to (q, A⊗
OC(q)) and (q, B) respectively, by ε : Y ′ → Y the projection and by Γ̃1, Γ̃2 ⊂
Y ′ the strict transforms of Γ1 and Γ2 respectively.

Proposition 7.4. Fix a general curve [C, q] ∈ M21,1 and consider the
associated test curve C0 ⊂ Δ0 ⊂ M22. Then we have the following equality
of 2-cycles in G̃6

25:

σ∗(C0) = Y ′/Γ̃1 ∼= Γ̃2,

that is, σ∗(C0) can be naturally identified with the surface obtained from
Y ′ by identifying the disjoint curves Γ̃1 and Γ̃2 over each pair (y, A) ∈
C × W 6

24(C).

Proof. We fix a point y ∈ C −{q}, denote by [Cyq := C/y ∼ q] ∈ Δp
0 ⊂

M22 and by ν : C → Cyq the normalization map. We describe the variety

W
6
25(Cyq) ⊂ Pic25(Cyq)

of torsion-free sheaves L on the 1-nodal curve Cyq, with deg(L) = 25 and
h0(Cyq, L) ≥ 7.
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If L ∈ W 6
25(Cyq) ⊂ W

6
25(Cyq), that is, L is a locally free sheaf, then L is

completely determined by ν∗(L) ∈ W 6
25(C) which has the property that

h0(C, ν∗L ⊗ OC(−y − q)) = 6.

However, the line bundles of type A⊗OC(y) or A⊗OC(q) with A ∈ W 6
24(C),

do not appear in this association even though they have this property. In
fact, they correspond to the situation when L ∈ W

6
25(Cyq) is not locally free,

in which case necessarily one has that L = ν∗(A), for some A ∈ W 6
24(C).

Thus Y ∩π−1
1 (y) is the partial normalization of W

6
25(Cyq) at the n0 points of

the form ν∗(A) with A ∈ W 6
24(C). A special analysis is required when y = q,

that is, when C0
y degenerates to C∪qE∞, where E∞ is a rational nodal cubic.

If {lC , lE∞} ∈ σ−1([C ∪q E∞]), then an argument along the lines of Theorem
7.2 shows that ρ(lC , q) ≥ 0 and ρ(lE∞ , q) ≤ 1. Then either lC has a base
point at q and then the underlying line bundle of lC is of type A ⊗ OC(q)
while lE∞(−18q) ∈ W

6
7(E∞), or else, alC (q) = (0, 2, 3, 4, 5, 6, 8) and then

lE∞(−17q) ∈ P
(
H0(E∞(8q))/H0(E∞(6q))

) ∼= EB, where B ∈ W 6
25(C) is

the underlying line bundle of lC . �
We extend the vector bundles E and F over the stack G̃6

25 of limit linear
series. The proof of the following result proceeds along the lines of the proof
of Proposition 3.9 in [F2]:

Proposition 7.5. There exist two vector bundles E and F defined over
G̃6

25 with rank(E) = 7 and rank(F) = 29 together with a vector bundle
morphism φ : Sym2(E) → F , such that the following statements hold:

• For (C, L) ∈ G6
25, with [C] ∈ Mp

22, we have that E(L) = H0(C, L)
and F(L) = H0(C, L⊗2).

• For t = (C ∪y E, lC , lE) ∈ σ−1(Δp
1), where g(C) = 21, g(E) = 1

and lC = |LC | is such that LC ∈ W 6
25(C) has a cusp at y ∈ C, then

E(t) = H0(C, LC) and

F(t) = H0(C, L⊗2
C (−2y)) ⊕ C · u2,

where u ∈ H0(C, LC) is any section such that ordy(u) = 0. If LC

has a base point at y, then

E(t) = H0(C, LC) = H0(C, LC ⊗ OC(−y))

and the image of a natural map F(t) → H0(C, L⊗2
C ) is the subspace

H0(C, L⊗2
C ⊗ OC(−2y)).

• Fix t = (Cyq := C/y ∼ q, L) ∈ σ−1(Δp
0), with q, y ∈ C and L ∈

W
6
25(Cyq) such that h0(C, ν∗L ⊗ OC(−y − q)) = 6, where ν : C →

Cyq is the normalization map.
In the case when L is locally free we have that

E(t) = H0(C, ν∗L) and
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F(t) = H0(C, ν∗L⊗2 ⊗ OC(−y − q)) ⊕ C · u2,

where u ∈ H0(C, ν∗L) is any section not vanishing at y and q.
In the case when L is not locally free, that is, L ∈ W

6
25(Cyq) −

W 6
25(Cyq), then L = ν∗(A), where A ∈ W 6

24(C) and the image of
the natural map F(t) → H0(C, ν∗L⊗2) is the subspace

H0(C, A⊗2).

We determine the cohomology classes of the surfaces X and Y introduced
in Propositions 7.2 and 7.4 respectively. Our result are expressible in terms
of standard cohomology classes on Jacobians (cf. [ACGH], [F5]), which we
now recall. If [C] ∈ Mg is a curve satisfying the Brill-Noether theorem, we
denote by P a Poincaré bundle on C × Picd(C) and by

π1 : C × Picd(C) → C and π2 : C × Picd(C) → Picd(C)

the projections. We define the cohomology class η = π∗
1([point]) ∈ H2(C ×

Picd(C)), and if δ1, . . . , δ2g ∈ H1(C, Z) ∼= H1(Picd(C), Z) is a symplectic
basis, then we set

γ := −
g∑

α=1

(
π∗

1(δα)π∗
2(δg+α) − π∗

1(δg+α)π∗
2(δα)

)
.

We have the formula c1(P) = dη + γ, corresponding to the Hodge decom-
position of c1(P). We also record that γ3 = γη = 0, η2 = 0 and γ2 =
−2ηπ∗

2(θ). On W r
d (C) we have the tautological rank r + 1 vector bundle

M := (π2)∗(P|C×W r
d (C)). The Chern numbers of M can be computed using

the Harris-Tu formula. By repeatedly applying it, we get all intersection
numbers on W r

d (C) which we need:

Lemma 7.6. If [C] ∈ M21 is Brill-Noether general and ci := ci(M∨) are
the Chern classes of the dual of the tautological bundle on W 2

17(C), we have
the following identities in H∗(W 2

17(C), Z):

[W 2
17(C)] =

θ18

73156608000
.

x1 · ξ =
θ19 · ξ

219469824000
,

x2 · ξ = x3 · ξ = 0, for any ξ ∈ H4(Pic21(C)).

x1x2 · ξ =
θ20

1755758592000
· ξ,
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x1x3 · ξ = x2x3 · ξ = 0, for any ξ ∈ H2(Pic21(C)),

x2
1 · ξ =

θ20

1097349120000
· ξ,

x2
2 · ξ = −x1x2 · ξ, x2

3 · ξ = 0, for any ξ ∈ H2(Pic21(C)),

x3
1 =

θ21

7242504192000
, x3

2 = − t21

6584094720000
,

x3
3 = x1x2x3 =

θ21

36870930432000
,

x2
1x2 = −x3

2, x1x
2
2 = x2

1x3 = x2x
2
3 = 0, x1x

2
3 = x2

2x3 = −x1x2x3.

The next calculation is a particular case of [F5] Proposition 2.7:

Proposition 7.7. Let [C] ∈ M21 be a Brill-Noether general curve and
q ∈ C a general point. If M denotes the tautological rank 3 vector bundle
over W 2

17(C) and ci := ci(M∨), then one has the following relations:
(1) [X] = π∗

2(c2) − 6ηθ + (74η + 2γ)π∗
2(c1) ∈ H4(C × W 2

17(C)).
(2) [Y ] = π∗

2(c2) − 2ηθ + (16η + γ)π∗
2(c1) ∈ H4(C × W 2

17(C)).

Proof. By Riemann-Roch, if (y, L) ∈ X, then the line bundle

M := KC ⊗ L∨ ⊗ OC(2y) ∈ W 2
17(C)

has a cusp at y. We realize X as the degeneracy locus of a vector bundle
map over C ×W 2

17(C). For each pair (y, M) ∈ C ×W 2
17(C), there is a natural

map
H0(C, M ⊗ O2y)∨ → H0(C, M)∨

which globalizes to a vector bundle morphism

ζ : J1(P)∨ → π∗
2(M)∨

over C × W 2
17(C) (Note that W 2

17(C) is a smooth 3-fold). Then we have the
identification X = Z1(ζ) and the Thom-Porteous formula gives that

[X] = c2
(
π∗

2(M) − J1(P∨)
)
.

From the usual exact sequence over C × Pic17(C)

0 −→ π∗
1(KC) ⊗ P −→ J1(P) −→ P −→ 0,

we can compute the total Chern class of the jet bundle

ct(J1(P)∨)−1 =

(∑
j≥0

(17η + γ)j

)
·
(∑

j≥0

(57η + γ)j

)
= 1 − 6ηθ + 74η + 2γ,

which quickly leads to the formula for [X]. To compute [Y ] we proceed in
a similar way. We denote by p1, p2 : C × C × Pic17(C) → C × Pic17(C) the
two projections, by Δ ⊂ C × C × Pic17(C) the diagonal and we set Γq :=
{q} × Pic17(C). We introduce the rank 2 vector bundle B := (p1)∗

(
p∗
2(P) ⊗
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OΔ+p∗
2(Γq)

)
defined over C × W 2

17(C) and we note that there is a bundle
morphism χ : B∨ → (π2)∗(M)∨ such that Y = Z1(χ). Since we also have
that

ct(B∨)−1 =
(
1 + (17η + γ) + (17η + γ)2 + · · ·

)
(1 − η),

we immediately obtained the desired expression for [Y ]. �
The next results are simple applications of Grothendieck-Riemann-Roch

for the projection morphism p2 : C × C × Pic17(C) → C × Pic17(C):

Proposition 7.8. Let [C] ∈ M21 and denote by p1, p2 : C × C ×
Pic17(C) → C × Pic17(C) the natural projections. We denote by A2 the vec-
tor bundle on C×Pic17(C) with fibre at each point A2(y, M) = H0(C, K⊗2

C ⊗
M⊗(−2) ⊗ OC(2y)). We have the following formulas:

c1(A2) = −4θ − 4γ − 28η and c2(A2) = 8θ2 + 104ηθ + 16γθ.

Proposition 7.9. Let [C, q] ∈ M21,1 be a general pointed curve an we
denote by B2 the vector bundle on C × Pic17(C) having fibre

B2(y, M) = H0(C, K⊗2
C ⊗ M⊗(−2) ⊗ OC(y + q)

)
at each point (y, M) ∈ C × Pic17(C). Then we have that:

c1(B2) = −4θ + 7η − 2γ and c2(B2) = 8θ2 − 28ηθ + 8θγ.

As a first step towards computing [D22] we determine the δ1 coefficient
in its expression:

Theorem 7.10. Let [C] ∈ M21 be Brill-Noether general and denote by
C1 ⊂ Δ1 the associated test curve. Then

σ∗(C1) · c2(F − Sym2(E)) = 4847375988.

It follows that the coefficient of δ1 in the expansion of D22 is equal to b1 =
731180268.

Proof. We intersect the degeneracy locus of the map Sym2(E) → F
with the surface σ∗(C1) and use that the vector bundles E and F were
defined by retaining the sections of the genus 21 aspect of each limit linear
series and dropping the information coming from the elliptic curve. It follows
that Zi · c2(F −Sym2(E)) = 0 for 1 ≤ i ≤ 3 (since F and Sym2(E)) are both
trivial along the surfaces Zi), and [X1 ×X2] · c2(F −Sym2(E)) = 0 (because
c2(F − Sym2(E))|X1×X2 is in fact the pull-back of a codimension 2 class
from the 1-dimensional cycle X1, therefore the intersection number is 0 for
dimensional reasons). We are left with estimating the contribution coming
from X and write that

σ∗(C1) · c2(F − Sym2(E)) = c2(F|X) − c1(F|X)c1(Sym2E|X) + c2
1(Sym2E|X)

− c2(Sym2E|X).
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We are going to compute separately each term in the right-hand-side of this
expression.

The surface X appears as the first degeneracy locus of a vector bundle
morphism ζ : J1(P)∨ → π∗

2(M)∨ which globalizes the maps

H0(C, M ⊗ O2y)∨ → H0(C, M)∨

for all (y, M) ∈ C × W 2
17(C). We denote by U := Ker(ζ). In other words, U

is a line bundle on X with fibre

U(y, M) =
H1(C, M ⊗ OC(−2y))∨

H1(C, M)∨ =
H0(C, L)

H0(C, L ⊗ OC(−2y))

over a point (y, M) ∈ X. The Chern class of U can be computed from the
Harris-Tu formula:

c1(U) · ξ|X = −c3(π∗
2(M)∨ − J1(P)∨) · ξ|X

= −(π∗
2(c3) − 6ηθπ∗

2(c1) + (74η + 2γ)π∗
2(c2)) · ξ|X ,

for any class ξ ∈ H2(C × W 2
17(C)), and

c2
1(U) = c4(π∗

2(M)∨ − J1(P)∨) = π∗
2(c3)(74η + 2γ) − 6π∗

2(c2)ηθ.

If A3 denotes the rank 30 vector bundle on X having fibres

A3(y, M) = H0(C, L⊗2) = H0(C, K⊗2
C ⊗ M⊗(−2) ⊗ OC(4y)),

then there is an injective bundle morphism U⊗2 ↪→ A3/A2 and we consider
the quotient sheaf

G :=
A3/A2

U⊗2

We note that since the morphism U⊗2 → A3/A2 vanishes along the curve Γ0
corresponding to pairs (y, M) where M has a base point, G has torsion along
Γ0. A straightforward local analysis now shows that F|X can be identified
as a subsheaf of A3 with the kernel of the map A3 → G. Therefore, there is
an exact sequence of vector bundles on X

0 −→ A2|X −→ F|X −→ U⊗2 −→ 0,

which over a generic point of X corresponds to the decomposition

F(y, M) = H0(C, L⊗2 ⊗ OC(−2y)) ⊕ C · u2,

where u ∈ H0(C, L) is such that ordy(u) = 1 (The analysis above, shows
that the sequence stays exact over Γ0 as well). Hence

c1(F|X) = c1(A2|X) + 2c1(U)

and c2(F|X) = c2(A2|X) + 2c1(A2|X)c1(U). Furthermore, we note that the
vector bundle π∗

2
(
R1π2∗(P)

)∨
|X is a subbundle of E|X and we have an exact

sequence
0 −→ π∗

2
(
R1π2∗(P)

)∨
|X −→ E|X −→ U −→ 0
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from which we find that c1(E|X) = −θ + π∗
2(c1) + c1(U). Similarly, we have

that

(20) c2(E|X) =
θ2

2
+ π∗

2(c2) − θπ∗
2(c1) − c1(U)π∗

2(c1) − θc1(U).

It is elementary to check that c1(Sym2E|X) = 8 c1(E|X) and that

c2(Sym2E|X) = 27 c2
1(E|X) + 9 c2(E|X),

therefore we obtain that

σ∗(C1) · c2(F − Sym2(E))

= c2(A2|X) + c1(A2|X)c1(U⊗2) − 8c1(A2|X)c1(E|X) − 8c1(E|X)c1(U⊗2)

+ 37c2
1(E|X) − 9c2(E|X)

=
(

−120 ηθ +
17
2

θ2 − 16 θγ − 9 π∗
2(c2) + (224 η + 32 γ − 33 θ)π∗

2(c1)

+ 37 π∗
2(c

2
1)
)

· [X] + (168 η + 24 γ − 25 θ + 49 π∗
2(c1)) · c1(U) + 21c2

1(U)

= 1754 ηθπ∗
2(c2) + 1386 ηπ∗

2(c3) − 2498 ηθπ∗
2(c

2
1) + 741 ηθ2π∗

2(c1)

− 4068 ηπ∗
2(c1)π∗

2(c2) − 51 ηθ3 + 2738 ηπ∗
2(c

3
1),

where the last expression lives inside H4(C × W 2
17(C)). Using [F5] Proposi-

tions 2.6, each term in this sum is evaluated and we find that

σ∗(C1) · c2(F − Sym2(E)) = 691 θ21/1207084032000,

which implies the stated formula for b1. �

Theorem 7.11. Let [C, q] ∈ M21,1 be a suitably general pointed curve
and L ∈ W 6

25(C) a linear series with a cusp at q. Then the multiplication
map

Sym2H0(C, L) → H0(C, L⊗2)
is injective. It follows that we have the relation a − 12b0 + b1 = 0.

Proof. We consider the pencil R ⊂ Mg obtained by attaching to C at
the point q a pencil of plane cubics. It is well-known that R·λ = 1, R·δ0 = 12
and R ·δ1 = −1, thus the relation a−12b0 +b1 = 0 would be immediate once
we show that R · c2(F − Sym2(E)) = 0. This follows because of the way the
vector bundles E and F are defined over the boundary divisor Δ0

1 of M̃22,
by retaining the aspect of the limit linear series of the component of genus
21 and dropping the aspect of the elliptic component. �

Theorem 7.12. Let [C, q] ∈ M21,1 be a Brill-Noether general pointed
curve and denote by C0 ⊂ Δ0 the associated test curve. Then

σ∗(C0) · c2(F − Sym2(E)) = 42b0 − b1 = 4847375988.

It follows that b0 = 132822768.
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Proof. This time we look at the virtual degeneracy locus of the mor-
phism Sym2(E) → F along the surface σ∗(C0). The first thing to note is
that the vector bundles E|σ∗(C0) and F|σ∗(C0) are both pull-backs of vector
bundles on Y . For convenience we denote this vector bundles also by E and
F , hence to use the notation of Proposition 7.4, E|σ∗(C0)) = ε∗(E|Y ) and
F|σ∗(C0) = ε∗(F|Y ). We find that

σ∗(C0) · c2(F − Sym2(E)) = c2(F|Y ) − c1(F|Y ) · c1(E|Y ) + c2
1(E|Y ) − c2(E|Y )

and like in the proof of Theorem 7.10, we are going to compute each term in
this expression. We denote by V := Ker(χ), where χ : B∨ → π∗

2(M)∨ is the
bundle morphism on C × W 2

17(C) whose degeneracy locus is Y and which
globalizes all the maps H0(C,Oy+q(M))∨ → H0(C, M)∨. Thus the kernel
bundle V is a line bundle on Y with fibre

V (y, M) =
H0(C, L)

H0(C, L ⊗ OC(−y − q))
,

over each point (y, M) ∈ Y , and where L := KC⊗M∨⊗OC(y+q) ∈ W 6
25(C).

By using again the Harris-Tu Theorem, we find the following formulas for
the Chern numbers of V :

c1(V ) · ξ|Y = −(c3(π∗
2(M)∨ − B∨) · ξ|Y ) = (π∗

2(c3) + π∗
2(c2)(16η + γ)

− 2π∗
2(c1)ηθ) · ξ|Y ,

for any class ξ ∈ H2(C × W 2
17(C)), and

c2
1(V ) = c4(π∗

2(M)∨ − B∨) = π∗
2(c3)(16η + γ) − 2π∗

2(c2)ηθ.

Recall that we have introduced in Proposition 7.9 the rank 28 vector bundle
B2 over C × W 2

17(C) with fibre B2(y, M) = H0(C, L⊗2 ⊗ OC(−y − q)). We
claim that one has an exact sequence of bundles over Y

(21) 0 −→ B2|Y −→ F|Y −→ V ⊗2 −→ 0.

If B3 is the rank 30 vector bundle on Y with fibres

B3(y, M) = H0(C, L⊗2) = H0(C, K⊗2
C ⊗ M⊗(−2) ⊗ OC(2y + 2q)

)
,

we have an injective morphism of sheaves V ⊗2 ↪→ B3/B2 locally given by

v⊗2 �→ v2 mod H0(C, L⊗2 ⊗ OC(−y − q)),

where v ∈ H0(C, L) is any section not vanishing at q and y. Then F|Y is
canonically identified with the kernel of the projection morphism

B3 → B3/B2

V ⊗2
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and the exact sequence (21) now becomes clear. Therefore c1(F|Y ) = c1
(B2|Y ) + 2c1(V ) and c2(F|Y ) = c2(B2|Y ) + 2c1(B2|Y )c1(V ). Reasoning along
the lines of Theorem 7.10, we also have an exact sequence

0 −→ π∗
2
(
R1π2∗(P)

)∨
|Y −→ E|Y −→ V −→ 0

and from this we obtain that

c1(E|Y ) = −θ + π∗
2(c1) + c1(V )

and

c2(E|Y ) =
θ2

2
+ π∗

2(c2) − θπ∗
2(c1) − θc1(V ) + c1(V )π∗

2(c1).

All in all, we can write the following expression for the total intersection
number:

σ∗(C0) · c2(F − Sym2(E))

= c2(B2|Y ) + c1(B2|Y )c1(V ⊗2) − 8c1(B2|Y )c1(E|Y ) − 8c1(E|Y )c1(V ⊗2)

+ 37c2
1(E|Y ) − 9c2(E|Y )

=

(
17
2

θ2 + 28ηθ − 8θγ − 9π∗
2(c2) + (16γ − 33θ − 56η)π∗

2(c1) + 37π∗
2(c

2
1)

)
· [Y ] + (49π∗

2(c1) − 25θ − 42η + 12γ)c1(V ) + 21c2
1(V )

= 428ηθπ∗
2(c2) − 536ηθπ∗

2(c
2
1) + 168ηθ2π∗

2(c1) − 984ηπ∗
2(c1)π∗

2(c2)

+ 378ηπ∗
2(c3) − 17ηθ3 + 592ηπ∗

2(c
3
1),

and using once more [F5] Proposition 2.6, we get that

42b0 − b1 =
509θ21

5364817920000
.

Since we already know the value of b1 and a − 12b0 + b1 = 0, this allows us
to calculate a and b0. �
End of the proof of Theorem 7.1. We write D22 ≡ aλ −

∑11
j=0 bjδj . Since

a

b0
=

17121
2636

≤ 71
10

,

we are in a position to apply Corollary 1.2 from [FP] which gives the inequal-
ities bj ≥ b0 for 1 ≤ j ≤ 11, hence s(D22) = a/b0 < 13/2. �
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