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1. Introduction

Calabi-Yau manifolds are compact, complex Kähler manifolds that have
trivial first Chern classes (over R). In most cases, we assume that they have
finite fundamental groups. By the conjecture of Calabi [45] proved by Yau
[293, 295], there exists on every Calabi-Yau manifold a Kähler metric with
vanishing Ricci curvature.

Currently, research on Calabi-Yau manifolds is a central focus in both
mathematics and mathematical physics. It is partially propelled by the
prominent role the Calabi-Yau threefolds play in superstring theories. While
many beautiful properties of Calabi-Yau manifolds have been discovered,
more questions have been raised and probed. The landscape of various con-
structions, theories, conjectures, and above all the fast pace progress in this
subject, have made the research of Calabi-Yau manifolds an extremely active
research field both in mathematics and in mathematical physics.

Note: In writing an overview of such a broad subject area, the need to
be inclusive was recognized and many experts were consulted. But unfortu-
nately, in the citing of original references and the topics covered, omissions
inevitably always occur, and for this, sincere apology is offered.

2. General constructions of complete Ricci-flat metrics in
Kähler geometry

2.1. The Ricci tensor of Calabi-Yau manifolds. A complex mani-
fold is a topological space covered by complex coordinate charts such that the
transition between overlapping charts are holomorphic; a Hermitian metric
on a complex manifold is a smooth assignment of Hermitian inner product
structures on the holomorphic tangent spaces of the manifold; a Hermitian
metric is called a Kähler metric if near every point the Hermitian metric is
approximated by a flat metric up to second order. In a holomorphic coordi-
nate chart with coordinate variables (z1, . . . , zn), a Hermitian metric has its
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associated Hermitian form

ω =
√

−1
2

∑
gij̄dzi ∧ dz̄j .

A Hermitian metric is Kähler if its Hermitian form is closed. In such a case,
we call the Hermitian form the Kähler form of the Kähler metric.

Given any Kähler metric, one defines its full curvature tensor by certain
expressions of covariant derivatives of the metric; the Ricci curvature is a
partial contraction of the full curvature tensor. The indices of the Ricci
curvature is identical to that of the Kähler form. In local coordinates,

Ric =
√

−1
∑

Rij̄dzi ∧ dz̄j .

We call a Kähler metric Ricci-flat if its Ricci tensor vanishes identically.

2.2. The Calabi conjecture. According to a well-known theorem of
Chern, the Ricci form divided by 2π is a (1, 1)-form that represents the
first Chern class of a compact complex manifold. Rooted in his attempt to
find canonical Kähler metrics for a Kähler manifold, in 1954, E. Calabi [45]
proposed his celebrated conjecture.
Conjecture. To every closed (1, 1)-form 1

2πC1(X) representing the first
Chern class c1(X) of a Kähler manifold X, there is a unique Kähler metric
in the same Kähler class whose Ricci tensor (form) is the closed (1, 1)-
form C1(X).

In case the complex manifold has vanishing first Chern class, the zero
form represents the first Chern class of the manifold. The Calabi conjec-
ture implies the existence of a unique Ricci-flat Kähler metric in every
Kähler class.

Early on, Calabi realized that his conjecture can be reduced to a complex
Monge-Ampère equation.

2.3. Yau’s theorem. By the late 1960s, many were doubtful of the
Calabi conjecture. Some attempted to use a reduction theorem of Cheeger-
Gromoll [64] (in 1971) to construct counterexamples to the Conjecture.
Using the reduction theorem and assuming the conjecture, Yau announced
the following splitting theorem in his 1973 lecture at the Stanford geometry
conference: Every compact Kähler manifold with non-negative Ricci curva-
ture can be covered by a metric product of a torus and a simply connected
manifold with a Ricci-flat Kähler metric. He then used this theorem to
produce a “counterexample” to the conjecture. The “counterexample” was
soon discovered to be flawed; Yau withdrew his Stanford lecture. (The flaw
was due to the mistaken assumption that manifolds with numerically non-
negative anti-canonical divisor admits a first Chern form which is pointwise
non-negative.)
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In 1976, Yau [293, 295] proved the Calabi conjecture by solving the
complex Monge-Ampère equation for a real valued function φ

det
(

gij̄ +
∂2φ

∂zi∂z̄j

)
= ef det

(
gij̄

)
,

where ef is any average 1 smooth function and gij̄ + ∂i∂j̄φ is required to be
positive definite. The solution φ of the above equation ensures that the new
Kähler metric

ω +
√

−1∂∂̄φ

can attain Ricci (curvature) form in any form referred to in the Calabi
conjecture.

2.4. Calabi-Yau manifolds and Calabi-Yau metrics. The first
application to Yau’s proof of Calabi conjecture is the existence of Ricci-
flat Kähler metric on every compact complex Kähler manifold with trivial
canonical class. (Trivial canonical class is equivalent to the existence of a
nowhere vanishing holomorphic volume form, which is equivalent to that
the top wedge power of the holomorphic cotangent bundle is the trivial line
bundle.) The converse is also true: any Ricci-flat simply connected Kähler
manifold has trivial canonical line class. This proves the existence and pro-
vides a criterion for Kähler Calabi-Yau manifolds.

By convention, Calabi-Yau manifolds exclude those with infinite funda-
mental groups. The Ricci-flat metrics on Calabi-Yau manifolds are called
Calabi-Yau metrics.

The existence of Calabi-Yau metrics has other important consequences.
In his paper [293, 295], Yau demonstrated that for a Calabi-Yau mani-
folds (X, ω), using the Chern-Weil form representing the second Chern form
C2(X) in terms of the curvature tensor Rm of a Calabi-Yau Kähler metric
of X, one gets ∫

X
C2(X) ∧ ωn−2 = C

∫
X

|Rm|2 vol ≥ 0

for some positive constant C. Thus the Chern number c2(C)∩ [ω]n−2 is non-
negative. Moreover, when it is zero, we have Rm = 0, and therefore X is
covered by the Euclidean space Cn.

Another application is the reduction of holonomy groups of Calabi-Yau
manifolds. One important consequence of a Calabi-Yau metric is that the
parallel transports along contractible closed loops preserve the metric and
the holomorphic volume form. This implies that the restricted holonomy
group of a Calabi-Yau manifold is a subgroup of SU(n), the group of special
unitary transformations.

Sometimes, this group can be strictly smaller than SU(n). Following the
Bochner technique on Calabi-Yau manifolds, every holomorphic (p, 0)-form
is parallel. Such a form then reduces the holonomy group from SU(n) to a
smaller subgroup. Thus if the holonomy group of X is the full SU(n), then
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the Dolbeault cohomology group Hp,0(X) = 0 for 1 ≤ p ≤ n−1 and Hn,0(X)
is one dimensional, spanned by the holomorphic volume form Ω of X.

The statement of the structure theorem was known to many people,
including the announcement made by Yau in 1973. It was also announced
by Kobayashi, by Michelsohn [218], and appeared in a subsequent survey
paper of Beauville [19]. It states that any compact, complex Kähler manifold
with trivial canonical class has a cover that is a metric product of a complex
Euclidean space with copies of manifolds with holonomy groups SU(m)
and copies of manifolds with holonomy groups Sp(m/2); here m’s are the
dimensions of the corresponding manifolds.

The proof is based on the above-mentioned splitting theorem of Cheeger-
Gromoll and also an argument of Calabi who drew some consequences on
the first Betti number; this construction of Calabi is referred to as the Calabi
construction in the sixties.

2.5. Examples of compact Calabi-Yau manifolds. By Yau’s solu-
tion to the Calabi conjecture, finding (non-hyperkähler) Calabi-Yau mani-
folds is equivalent to finding smooth projective varieties of trivial canonical
class.

The first example of a Calabi-Yau threefold is the smooth quintic in
the complex projective space P4. Due to a condition imposed by super-
strings theories, Calabi-Yau threefolds having Euler characteristic χ = ±6
and non-trivial fundamental group play a special role. Such examples were
first discovered and announced by Yau in a lecture given at the 1985 Argonne
conference [296] as the Z3 quotient of an intersection of two cubics and a
hypersurface of bi-degree (1, 1) in the product P3 × P3. More examples were
found later by Tian and Yau; due to an observation of Greene and Kirklin
[115], these examples are deformation-equivalent to the one found by Yau.
A systematic search for Calabi-Yau threefolds with χ = ±6 turned up no
essentially new example among complete intersections in toric varieties [59].

After Yau’s examples of complete intersection Calabi-Yau threefolds in
product of projective spaces, various groups, notably the group in Univer-
sity of Texas, employed computer algorithm to search for new examples
[147, 117, 48]. Soon after, about 8000 constructions, with 256 distinct
Hodge diamonds [120] were found. This pool grew by about 3 orders of
magnitude by embedding in products of weighted complex projective spaces
[60]. Such threefolds typically have finite quotient singularities inherited
from the weighted projective spaces, and a minimal blow-up following Roan
and Yau’s 1987 construction [245] is understood to provide smooth models.
Roan and Yau also proposed to use toric method to construct more exam-
ples. This was carried out by Batyrev and Borisov for complete intersections
in toric varieties [14].

Yau conjectured that there are finitely many topological types of Calabi-
Yau manifolds in each dimension. This conjecture is still open. By a rough
count, by 2002, over 473 million toric embeddings of Calabi-Yau threefolds
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were constructed, with over 30,000 distinct Hodge diamonds [169, 170].
Based on Wall’s theorem [281] one sees that complete intersections of hyper-
surfaces in products of projective spaces produce at least 2590 distinct dif-
feomorphism classes [57]. It is worth noticing that so far all Calabi-Yau
threefolds can be constructed as deformations or small resolutions of com-
plete intersections of toric varieties. The non-trivial check of this for Calabi-
Yau complete intersections in Grassmannians and flag varieties was done by
Batyrev, Ciocan-Fontanine, Kim and van Straten [15, 16].

2.6. Noncompact Calabi-Yau manifolds. Immediately after his
proof of the Calabi conjecture, Yau generalized the construction of Calabi-
Yau manifolds to non-compact Kähler manifolds. He presented this result
in his plenary lecture in the 1978 Helsinki International Congress of
Mathematics.

The construction is that in the complement M \ S of a compact Kähler
manifold M with an effective anticanonical divisor S removed, suppose the
first Chern class of M is either positive or trivial in a neighborhood of S,
then there is a complete Ricci-flat metric on M \ S if S is connected and
geometrically stable.

In case S is nonsingular and connected and assuming S admits a Kähler
Einstein metric with either positive or zero scalar curvature, the detail of
the generalization was presented in a joint paper of Tian-Yau [271, 272].
Around the same time, Bando-Kobayashi [11, 12] worked out some more
restrictive cases. The condition that S should be geometrically stable was
added on after the Helsinki Congress. When S is singular, the definition
need to be clarified.

If the complement M \ S admits a complete Ricci-flat metric, S has to
be connected unless the complement is a product of the complex line with
other manifolds. Based on his result on the volume growth of complete man-
ifolds with non-negative Ricci curvature and compactification of complete
Kähler manifolds, Yau conjectured that his construction gives all examples
of noncompact complete Kähler Ricci-flat metrics with connected end. There
are counterexample to this conjecture, Taub-NUT metric is one such exam-
ple was pointed out by Anderson-Kronheimer-LeBrun [3]. The conjecture
remains open assuming the manifolds are of finite topological type.

Explicit Calabi-Yau metrics have been constructed in many cases when
symmetries are present. First there is the explicit Eguchi-Hanson metric
[89] on the cotangent bundle T ∗S2 of the two sphere. Viewing this as the
canonical line bundle over P1, Calabi [46] constructed a complete Calabi-Yau
metric on the total space X = KB of (a fraction of) the canonical line bundle
of a positive Kähler-Einstein manifold B. Later, Futaki [104] generalized to
that B is any toric Fano manifold.

Candelas and de la Ossa [49] constructed a one-parameter family of
explicit Calabi-Yau metrics on the cotangent bundle T ∗S3 of the three
sphere, by reducing the Ricci-flat equation to an ODE. The parameter of this
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family corresponds to the size of S3. This was generalized to all dimensions
by Stenzel [263].

Candelas and de la Ossa [49] also constructed a one-parameter family
of explicit Calabi-Yau metrics on the total space of the vector bundle X =
O(−1)⊕O(−1) over P1. As the size of P1 shrinks to zero, the total space X
degenerates to a cone threefold X0 with rational double point singularity

X0 =
{
z2
0 + z2

1 + z2
2 + z2

3 = 0
}

⊂ C4.

This singular space has two different small resolutions X+ and X−, both
have total space O(−1) ⊕ O(−1). The pair (X+, X−) is a local model of a
simple flop, a birational change of threefolds.

If one varies the quadratic equation z2
0+z2

1+z2
2+z2

3 = t by adding a small
nonzero t, then it defines a smooth hypersurface Xt in C4 that is diffeomor-
phic to T ∗S3. The change from X± to Xt is called an extremal transition; it
is the basic building block for topological changes of Calabi-Yau threefolds.

2.7. Calabi-Yau cones: Sasaki-Einstein manifolds. An important
class of non-compact and possibly incomplete Calabi-Yau manifolds are
Calabi-Yau cones. The metric cone over a compact Riemannian manifold
(S, g) is defined to be (C(S) = R+ × S, ḡ = dr2 + r2g), where r > 0 is a
coordinate on R+. If the dimension of this cone is 2n and the (restricted)
holonomy group of (C(S), ḡ) is contained in SU(n), then the manifold (S, g)
is called Sasaki-Einstein. In particular, since the cone is Ricci-flat it follows
that (S, g) is a (2n−1)-dimensional Einstein manifold of positive Ricci curva-
ture, Ricg = 2(n − 1)g. In fact, many of the complete non-compact Calabi-
Yau manifolds referred to above are asymptotic to such a cone, meaning
that they are modelled at infinity by the large r (complete) end of the cone.
Sasaki-Einstein manifolds in low dimensions are also important in string
theory, and in particular in the AdS/CFT correspondence. For example, the
latter conjectures that to every Sasaki-Einstein 5-manifold there is an asso-
ciated superconformal field theory on R4. Much work has gone into under-
standing this correspondence, and the relationship between Sasaki-Einstein
geometry and superconformal field theory.

The definition above is easily generalized: if the metric cone has
(restricted) holonomy contained in U(n), so that the cone is Kähler, the man-
ifold (S, g) is said to be a Sasakian manifold [252]. These manifolds should
be viewed as odd-dimensional analogs of Kähler manifolds. A Sasakian man-
ifold inherits a strictly pseudo-convex hypersurface-type CR structure from
the complex structure of the cone. Sasakian manifolds are also equipped with
a unit norm Killing vector field ξ, called the Reeb vector field, defined as
the restriction of J(r∂/∂r) to {r = 1} ∼= S ⊂ C(S), where J is the complex
structure tensor of the Kähler cone. The dual one-form η(X) = g(ξ, X) is a
contact form on S. The flow of ξ defines a one-dimensional foliation of S, and
it turns out that the transverse leaf space is Kähler. Indeed, (S, g) is Sasaki-
Einstein if and only if this transverse Kähler structure, with transverse
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metric gT , is Kähler-Einstein with positive Ricci curvature, RicgT = 2ngT .
Sasakian manifolds may be classified according to the global properties of
this foliation. If the orbits of ξ all close, thus defining a locally free circle
action on S, the Sasakian manifold is said to be quasi-regular, and the leaf
space is naturally a Kähler orbifold. In the special case that the circle action
is free, the Sasakian manifold is said to be regular, and the leaf space is a
Kähler manifold. If there is a non-closed orbit of ξ the Sasakian manifold is
said to be irregular.

The simplest example of a Sasaki-Einstein manifold is the round sphere,
viewed as the unit sphere in Cn equipped with its flat Kähler metric. This
is regular, with the Kähler-Einstein leaf space being CPn−1 equipped with
its Fubini-Study metric. The study of regular Sasaki-Einstein manifolds is
in fact essentially equivalent to the study of positive (Fano) Kähler-Einstein
manifolds. Boyer-Galicki [33, 34] and their collaborators have constructed
large classes of quasi-regular Sasaki-Einstein manifolds by constructing
appropriate Kähler-Einstein orbifold leaf spaces. These are typically real-
ized as weighted projective varieties, and the continuity method is used to
prove existence, see [283, 83] for the existence of Kähler-Einstein metrics
on toric varieties. Boyer-Galicki-Kollár [35] have also shown the existence
of numerous Sasaki-Einstein metrics on standard and exotic spheres using
the Kähler-Einstein metrics on certain types of Fano orbifolds constructed
by Demailly-Kollár [72].

The first examples of irregular Sasaki-Einstein manifolds were construc-
ted by Gauntlett-Martelli-Sparks-Waldram [108]; these authors constructed
infinitely many explicit quasi-regular and irregular Sasaki-Einstein metrics
on S2 × S3. Recently, Futaki-Ono-Wang [105] have proven the existence of
toric Sasaki-Einstein metrics, following earlier work of Martelli-Sparks-Yau
[214]. In this case the Kähler cone is the smooth part of an affine toric
variety. Finally, Gauntlett-Martelli-Sparks-Yau [108] have described some
simple obstructions to the existence of Sasaki-Einstein metrics, which also
give new obstructions to the existence of Kähler-Einstein metrics on Fano
orbifolds.

2.8. The balanced condition on Calabi-Yau metrics. After obs-
erving that the tangent bundles of Calabi-Yau manifolds are stable with
respect to any polarization, Yau conjectured that the Calabi-Yau manifolds
are also stable in the sense of geometric invariant theory. This was first
openly discussed in the problem session in the UCLA geometry conference
in 1990, where he proposed to approximate the Ricci-flat metric of a Calabi-
Yau manifold X by the induced metric from embedding X into complex
projective space by powers of an ample line bundle, and suggested that
the action of the projective linear group on the embedding would link the
stability of the manifold with the existence of the Ricci-flat metric.

Yau [297] initiated the program of approximating Calabi-Yau metrics
(and more generally KE-metrics) by embeddings. Under his guidance, Tian
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[270] wrote his thesis on the C2 convergence of the pullback Fubini-Study
metric via projective embeddings. (The C∞ convergence was proved in
Ruan’s Harvard thesis [246]. See also [70].) The refined structure of this
embedding was investigated by Catlin [61], Zelditch [300] and Lu [208]. For
the problem of finding a canonical position in embedding a Calabi-Yau man-
ifold in projective space, the balanced condition introduced by Bourguignon-
Li-Yau in [32] played a crucial role. (The idea of Bourguignon-Li-Yau was
based on the concept of the conformal area introduced by Li-Yau [191] in
1982.) Following their idea, Luo [210] in his MIT thesis (under the guid-
ance of Yau) generalized the notion of balanced embeddings to all projective
manifolds and related the concept to questions of geometric stability. The
relation between geometric stability and the balanced condition was also
studied by Zhang [301].

This program of Yau was carried out by Donaldson [80, 81] in more
precise manner. Donaldson showed that for the sequence of balanced embed-
dings of a Calabi-Yau manifold into projective spaces via increasing pow-
ers of an ample line bundle, the sequence of normalized induced metrics
converges to the Ricci-flat metric of X [80]. (See [202] for some clarifica-
tions.) Based on the balanced embeddings, he then developed an algorithm
to numerically approximate the Ricci-flat metrics of K3 surfaces [81]. This
algorithm was generalized by Douglas-Karp-Lukic-Reinbacher [87], and sub-
sequently Braun-Brelidze-Douglas-Ovrut [37, 38] to approximate the Ricci-
flat metrics on various projective Calabi-Yau threefolds.

The work of Donaldson also showed that every Calabi-Yau manifold
is asymptotically Chow stable, proving partially Yau’s conjecture on the
stability of Kähler Einstein manifolds [80].

3. Moduli and arithmetic of Calabi-Yau manifolds

3.1. Moduli of K3 surfaces. Two dimensional Calabi-Yau manifolds
are K3 surfaces. Moduli of K3 surfaces are classically known to be smooth. It
has a modular description based on the Hodge structures on the K3 surfaces.

On any K3 surface X, the middle cohomology group H2(X, Z) is a free
Abelian group of rank 22 and coupled with the (intersection) quadratic form
〈·, ·〉 the lattice (H2(X, Z) 〈·, ·〉) is isometric to the lattice

L := (Z⊕22,−E8 ⊕ −E8 ⊕ U ⊕ U ⊕ U),

where E8 is the Cartan matrix of the corresponding root system and U is
the rank two hyperbolic matrix.

The holomorphic 2-form Ω on X, which is unique up to scalars, spans a
ray in H2(X, Z)⊗Z C and satisfies the well-known Riemann bilinear relation

〈Ω, Ω〉 = 0, and
〈
Ω, Ω

〉
> 0.
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Thus after fixing a marking of X that is an isomorphism (H2(X, Z) 〈·, ·〉) ∼=
L, the period [Ω] lies in

D = {v ∈ PLC | 〈v, v〉 = 0, 〈v, v̄〉 > 0}.

This is the period domain for K3 surfaces, and the assignment X �→ [Ω] for
marked Kähler K3 surface X is called the period map.

The Torelli problem is on how the element [Ω] ∈ D determines the com-
plex structure of a marked Kähler K3 surface. The global Torelli theorem for
algebraic surfaces was proved by Pjateckii-Šapiro and Šafarevič [241]; the
Torelli theorem for Kähler K3 surfaces, proved by Burns-Rapoport [43] and
Looijenga-Peters [207], states that the loci of the holomorphic two-form [Ω]
in D uniquely determines the marked K3 surface X up to an isomorphism
of L generated by Picard-Lefschetz transformation.

The surjectivity of the period map was proved Kulikov [171] followed
by Persson-Pinkham [238]. The approach based on the Calabi-Yau metric
was pioneered by Todorov [273] and completed by Siu [257] and Looijenga
[206]. The proof relies heavily on Yau’s solution of the Calabi conjecture.
Later, based on Yau’s solution of the Calabi conjecture, the main lemma of
Burns-Rapoport [43], and with the surjectivity of the period map of Kähler
K3 surfaces, Todorov and Siu [258] proved that every K3 surface is Kähler.

3.2. Moduli of high dimensional Calabi-Yau manifolds. The
existence of the moduli of polarized Calabi-Yau manifolds was settled by the
work of Viehweg [279]. The next question is the regularity of the moduli
space. The first theorem was due to Bogomolov [30] who proved that the
universal deformation space of a compact Kähler-Hamiltonian manifold is
unobstructed. In one of his unpublished manuscript, he also claimed that
the same is true for any projective manifold with trivial first Chern class.

Todorov [274] and Tian [269] each confirmed this claim by proving that
every Calabi-Yau manifold has unobstructed deformations. Both proofs used
essentially the Calabi-Yau metric of the manifold to derive a differential-
geometric computational equality that allows them to solve the Kuranishi
equation in analytic deformation theory. This theorem is now referred to as
the Bogomolov-Tian-Todorov unobstructedness theorem.

Ran [243] and Kawamata [156, 157] gave new proofs of this unobstruct-
edness result, based on the notion of T 1-lifting property. Their method was
later applied to non-Kählerian Calabi-Yau manifolds and to some singular
projective Calabi-Yau varieties.

On the moduli space, there is a natural Kähler metric obtained from
the variation of the Ricci-flat metric called the Weil-Petersson metric. The
volume of the moduli space of polarized Calabi-Yau manifolds with respect
to this metric was proved by Lu-Sun [209] and Todorov[275] to be finite.
This follows from finding a suitable metric that bounds the Weil-Petersson
metric from above and satisfies the conditions of the Scwharz lemma [294],
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which implies generally that for any Hermitian metric defined on a quasi-
projective manifold whose Ricci curvature has a strongly negative upper
bound, the total volume is finite.

The study of the moduli space of complex structures on a Calabi-Yau
threefold led Hitchin to study invariant functionals on differential forms
[134]. This approach is also useful when studying the associated flow equa-
tions that describes the geometry in terms of an evolving hypersurface. This
approach has also led Hitchin [135] to develop the geometry based on open
orbits of GL (n, R) on k-forms, especially when k = 3 [134].

As observed later, many examples of pairs of topologically distinct
Calabi-Yau threefolds can be connected by flops or by small contractions
followed by smoothing. For instance, Kawamata [158] has recently proved
that any two birational smooth Calabi-Yau manifolds can be connected by
a sequence of flops. (Kawamata’s general result is valid in any complex
dimension. The proof for threefolds was given earlier by Kollár [162] and
fourfolds by Burns-Hu-Luo [42].) One might speculate that the collection of
all Calabi-Yau threefolds can be connected by such process. Reid raised this
as his fantasy [244].

For high dimensional Calabi-Yau manifolds, a major question is the
Torelli problem. For hyperkähler manifolds, Huybrechts [149] proved that
the period map from the moduli space of marked hyperkähler manifolds to
the period domain is surjective. The case of general Calabi-Yau manifolds
has been recently studied by Liu-Sun-Todorov-Yau.

3.3. The modularity of Calabi–Yau threefolds over Q. In search
of Calabi-Yau manifolds that distinguish themselves from the rest, their
modularity become the focus of some researchers. This is interesting from
the perspective of arithmetic geometry.

For a d-dimensional projective Calabi–Yau manifolds X defined over
Q, it is said to be modular if the L-function of the Galois representation
on the middle 	-adic étale cohomology group Hd

et(XQ̄, Q�) is equal to the
product of L-functions of modular forms up to factors associated to bad
primes. Part of Langlands philosophy is the conjecture that all motives,
in particular our X, are modular. When d is even, Hd

et(XQ̄, Q�) contains
d/2-dimensional algebraic cycles, and the interesting part is the modularity
of the sub-representation on the orthogonal complement of the images of
algebraic cycles.

Calabi–Yau varieties of dimension 1 are elliptic curves. The modularity
of elliptic curves over Q has been established by Wiles [284], and Taylor-
Wiles [266]. They proved that the two-dimensional Galois representation
associated to an elliptic curve over Q does come from a weight 2 = d + 1
modular form.

Dimension 2 Calabi–Yau varieties are K3 surfaces. For a K3 surface X
defined over Q, H2

et(XQ̄, Q�), which has dimension 22, factors into a direct
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sum (NS(X) ⊕ T (X)) ⊗ Q� of the Néron-Severi group of algebraic cycles
NS(X) and the group of transcendental cycles T (X).

There are partial result for small rank T (X). The lattice NS(X) has
rank at most 20; when it is 20, X is called a singular K3 surface. (The term
“attractive” K3 is sometimes also used in physics [223].) In this case, T (X)
has rank 2 and defines a two-dimensional Galois sub-representation and the
associated L-function L(T (X), s). The modularity of L(T (X), s) has been
established by Livné [204] that L(T (X), s) does come from a weight 3 = d+1
modular form of CM type. When T (X) has rank 3, its modularity follows
from the modularity of elliptic curves, because T (X) is endowed with an
orthogonal pairing, so that it is essentially the symmetric square of a GL(2)
representation.

For Calabi-Yau threefolds defined over Q, much is known for the rigid
case, where there is no complex structure deformation. More specifically, we
say that a Calabi-Yau threefold X is rigid if the H3

et(XQ̄, Q�) has dimension
2. In this case, there is a two-dimensional Galois representation associated
to X; the modularity has been established, under some mild conditions, that
L(X, s) is determined by some weight 4 = d + 1 modular forms.

It is worth noticing that currently more than 50 modular rigid Calabi-
Yau threefolds over Q have been constructed, and expanding.

The modularity question for a non-rigid Calabi-Yau threefold X over Q

poses more serious challenge as the dimension of H3
et(XQ̄, Q�) gets larger.

Much less is known.
An attractor flow equation on the complex structure moduli space of

Calabi-Yau threefolds was found by Ferrara-Kallosh-Strominger [93] in their
study of BPS black holes solutions in string theory. Moore [223] has shown
that Calabi-Yau manifolds with complex structure located at an attractor
fixed point on the moduli space exhibit interesting arithmetic properties.

4. Calabi-Yau manifolds in physics

Calabi-Yau manifolds admit Kähler metrics with vanishing Ricci curva-
tures. They are solutions of the Einstein field equation with no matter. The
theory of motions of circles inside of a Calabi-Yau manifold provide a model
of a conformal field theory. (It is called a σ-model in physics.) Because of
this, Calabi-Yau manifolds are pivotal in superstring theory.

4.1. Calabi-Yau manifolds in string theory. Superstring theory is
a unified theory for all the forces of nature including quantum gravity. In
superstring theory, the fundamental building block is an extended object,
namely a string, whose vibrations would give rise to the particles encountered
in nature. The constraints for the consistency of such a theory are extremely
stringent. They require in particular that the theory takes place in a 10-
dimensional space-time. To make contact with our 4-dimensional world, it
is expected that the 10-dimensional space-time of string theory is locally
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the product M4 × X of a 4-dimensional Minkowski space M3,1 with a 6-
dimensional space X. The 6-dimensional space X would be tiny, which would
explain why it has not been detected so far at the existing experimental
energy levels. Each choice of the internal space X leads to a different effective
theory on the 4-dimensional Minkowski space M3,1, which should be the
theory describing our world.

It has long been argued that, in order to solve certain classic prob-
lems of unified gauge theories such as the gauge hierarchy problem, the
4-dimensional effective theory should admit an N = 1 supersymmetry. In
a fundamental paper, Candelas-Horowitz-Strominger-Witten [58] analyzed
what the constraint of that N = 1 supersymmetry would mean for the geom-
etry of the internal space X. They found that, for the most basic prod-
uct models with N = 1 supersymmetry, the space X must be a Calabi-Yau
manifold of complex dimension 3. Shortly afterwards, Strominger [264] con-
sidered slightly more general models, allowing warped products. For these
models, the N = 1 supersymmetry constraint results in a modification of the
Ricci-flat equation of the earlier model.

4.2. Calabi-Yau manifolds and mirror symmetry. Around 1987-
1988, physicists including Dixon [76], and Lerche, Vafa, and Warner [181]
observed that in mapping an abstract N = 2 superconformal field theory to a
possible geometrical realization as a Calabi-Yau sigma model, an ambiguity
arose. A superconformal field theory has two natural rings (called (c,c) and
(a,c) rings)) as does a Calabi-Yau sigma model (the Dolbeault cohomology
naturally splits into even and odd dimensional forms). The question which
came to light was which of the two possible pairings of the conformal field
theory and geometrical rings is induced by the map between the supercon-
formal theory and the Calabi-Yau sigma model. Lerche, Vafa, and Warner
conjectured that maybe both pairings are realized because, they suggested,
Calabi-Yau threefolds come in pairs in which the even and odd cohomologies
are interchanged. (To be precise, the interchange is between the Dolbeault
cohomology H(p,q) with H(3−p,q) for Calabi-Yau threefolds.) At the time,
the evidence in support of this conjecture was thin. Some suggested that a
less radical solution to the observed ambiguity might be to keep the base
Calabi-Yau manifold fixed and merely consider completing the geometrical
model in two ways: by including its tangent bundle or its co-tangent bundle.

Nevertheless, in 1989, Greene and Plesser [116] , using the methods
of conformal field theory as applied to Calabi-Yau sigma models realized
as twisted products of N = 2 minimal models, were able to establish that
certain pairs of Calabi-Yau manifolds come in pairs in which their Hodge
diamonds are mirror reflections (through a diagonal) of one another. More-
over, Greene and Plesser were able to establish that these pairs of Calabi-
Yau manifolds, even though topologically distinct, when used as the basis
for Calabi-Yau sigma models, give the same physical string theory. They
named such pairs of Calabi-Yau manifolds mirror manifolds. The existence
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of such pairs of Calabi-Yau manifolds with specified properties are known
to mathematicians as the Mirror Symmetry conjecture.

Of the few hundred mirror manifold pairs which Greene and Plesser’s
approach explicitly generated, the most famous example is the Fermat quin-
tic X in CP4 defined by the vanishing of

f (z0, z1, . . . , z4) = z5
0 + z5

1 + · · · + z5
4 + ψ (z0z1 · · · z4)

with its mirror being a crepant resolution of X/(Z5)3, known as the mirror
quintic.

Beyond constructing such pairs of mirror manifolds, Greene and Plesser
noted that one implication of having a mirror pair yielding identical physical
models is the existence of a highly nontrivial identity involving the so-called
Yukawa couplings of each–quantities determined by the (quantum deforma-
tions of the) even cohomology ring of one manifold and the odd cohomology
ring of its mirror.

A short time later, Candelas, de la Ossa, Green and Parkes (CDGP) [52],
studied the example of the mirror quintic pair by undertaking a detailed
examination of the variation of Hodge structures of the mirror quintic.
This work, interpreted mathematically by Morrison [221] and Aspinwall-
Morrison [6], produced a beautiful solution to a long-standing problem in
enumerative geometry – “counting” rational curves on a general quintic. It
is important to note that this work relied on another conjecture – the mirror
map conjecture – purporting to give the explicit map between the moduli
spaces of this pair of Calabi-Yau mirror manifolds. The foundational discov-
ery of Greene and Plesser, and of Candelas-de la Ossa-Green-Parkes, helped
set in motion one of the most spectacular developments in modern mathe-
matics.

A far-reaching generalization of the (genus zero) variation of Hodge
structure – the so-called Kodaira-Spencer theory of gravity of Bershadsky,
Cecotti, Ooguri and Vafa (BCOV) [27] – later led to conjectural counting
formulas for GW invariants of all genera for many Calabi-Yaus.

BCOV generalizes the variation of Hodge structure incorporating a nat-
ural hermitian structure which comes from the special Kähler geometry on
the moduli space of Calabi-Yau manifolds. The generalized theory of Hodge
structure is regarded as a special case of “t-t∗ geometry” of two dimen-
sional N = 2 supersymmetric QFT due to Cecotti-Vafa [62]. At genus zero,
t-t∗ geometry includes the successful associative relation, called Witten-
Dijkgraaf-Verlinde-Verlinde [286, 75] (WDVV) equation, in quantum coho-
mology of projective manifolds. In 1993, BCOV [26] conjectured that one
point function on a torus in the t-t∗ geometry of a Calabi-Yau manifold
provides a non-trivial extension of the CDGP counting formula to genus
one, called BCOV genus-one formula. Soon after, BCOV [27] introduced
a certain recursion formula for higher genus (g ≥ 2) GW invariants, which
is called the holomorphic anomaly equation. This recursion formula due to
BCOV is still under extensive study for its mathematical ground.
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A physical proof of mirror symmetry has been given by Hori-Vafa [137].
They demonstrated the equivalence at the level of two-dimensional gauged
linear sigma model [289] which in the low-energy limit leads to the confor-
mal field theory with Calabi-Yau manifold target space. (See also Morrison-
Plesser [222] for an earlier attempt along the same lines.)

4.3. Mathematics inspired by mirror symmetry. One area ins-
pired by the mirror symmetry conjecture is the construction of various enu-
merative invariants of Calabi-Yau manifolds. They appeared in the counting
formula of CDGP. This development has led to a proof of the mirror sym-
metry conjecture by independent works of Givental [110, 29, 232] and of
Lian-Liu-Yau [195].

In 1994, Kontsevich [164] expanded and formulated his version of mirror
symmetry as an equivalence between complex and symplectic geometry of
Calabi-Yau manifolds in all dimension.

The geometric approach to mirror symmetry was finally unveiled by
Strominger, Yau and Zaslow [265] in their 1997 paper in which they pro-
posed that mirror symmetry is a geometric version of the Fourier transfor-
mation along dual special Lagrangian tori fibrations on mirror Calabi-Yau
manifolds. This SYZ proposal has guided many research works.

5. Invariants of Calabi-Yau manifolds

5.1. Gromov-Witten invariants. GW invariants are enumerative
invariants that play an integral part of the Mirror Symmetry conjecture.
The GW invariants were introduced by physicists for counting the holomor-
phic curves in Calabi-Yau threefolds which are needed to calculate world-
sheet instanton corrections to the sigma model partiton function. In their
paper, CDGP proposed a formula that counts the number of rational curves
of fixed degree on a general quintic Calabi-Yau. (For Calabi-Yau manifolds,
Mori theory of rational curves does not apply and it has only be shown
by Heath-Brown and Wilson that Calabi-Yau manifolds with Picard num-
ber ρ > 13 must have rational curves. See also [285, 239].) Interpreting
the CDGP work mathematically, Aspinwall-Morrison [6] realized that the
content of the CDGP formula were related to the work of Gromov [119],
who first introduced pseudoholomorphic curves to study symplectic geom-
etry, and Witten’s work on two-dimensional topological topological field
theory [287, 288]. Since then, many mathematicians have contributed to
the mathematical foundation of this invariants.

There are two mathematical approaches to the problem – one based
on symplectic geometry via pseudo-holomorphic maps to symplectic almost
complex manifolds and the other based on algebraic geometry and the notion
of stable maps. Both are dependent on understanding the gluing formula
of WDVV [88], which has been interpreted to be the associative law of
quantum cohomology. The rigorous approach to pseudo-holomorphic maps
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which proved Gromov’s compactness theorem in full generality is due to
Parker-Wolfson [236] and R. Ye [299] based on techniques developed by
Sacks-Uhlenbeck [251] and Siu-Yau [260]. Around 1994, Ruan-Tian [250]
used pseudo-holomorphic maps to define the symplectic GW invariants for
all semipositive manifolds, which include Calabi-Yau manifolds. (The genus
zero GW definition was also given by McDuff and Salamon [211].) From the
algebro-geometric perspective, Kontsevich-Manin [165] also in 1994 gave an
axiomatic treatment of GW classes and their properties for Fano varieties.
Kontsevich, then introduced the notion of stable maps in algebraic geom-
etry [163]. Using the moduli of stable maps, Li-Tian [185] and Behrend-
Fantechi [24, 23] constructed the virtual cycles of DM-stack with perfect
obstruction theories, thus constructing the GW invariants for all smooth
projective varieties. The analytical framework for GW invariants was subse-
quently developed in full generality by Fukaya-Ono, Li-Tian, Ruan, Siebert
[103, 186, 249, 255]; some details were clarified later by Zinger [303].
The two approaches give identical invariants, confirmed by Li-Tian and
Siebert [187, 256].

5.2. Counting formulas. In 1993–1995, Hosono-Klemm-Theisen-Yau
[138, 139] and Hosono-Lian-Yau [144] made an interesting observation that
was crucial to the understanding of the CDGP counting formula (g = 0 mir-
ror symmetry) and its generalizations. They observed that the Picard-Fuchs
PDEs that compute the periods of a Calabi-Yau manifold have a “motivic”
interpretation. Namely, in order for the classical Frobenius method to yield
the periods, the Frobenius parameters must satisfy the cohomological rela-
tions on the mirror manifold exactly.

Using a combinatorial recipe of Batyrev and Borisov [13, 14] for con-
structing Calabi-Yau manifolds in toric varieties, Hosono-Klemm-Theisen-
Yau [138, 139] and Hosono-Lian-Yau [144] showed that this motivic relation
holds true for all such Calabi-Yau manifolds, first for Calabi-Yau complete
intersections in weighted projective spaces, then in toric varieties, and finally
for noncompact Calabi-Yau manifolds which are sums of line bundles over
toric varieties. This motivic relation allowed them to write down the count-
ing formula for a Calabi-Yau manifold easily: it expresses the genus zero
GW invariants of a Calabi-Yau manifolds explicitly in terms of the special
geometry prepotential of the mirror manifold.

Independently, Candelas-de la Ossa-Font-Katz-Morrison [50, 51] also
generalized the CDGP work and gave detail analyses of models of Calabi-
Yau hypersurfaces in weighted projected space with two Kähler parameters.

For positive genus, the Kodaira-Spencer theory of gravity of Bershadsky-
Cecotti-Ooguri-Vafa (BCOV) [27] has led to counting formulas for GW
invariants of positive genera for many Calabi-Yau manifolds. Hosono-Lian-
Yau [144] generalized the BCOV genus-one formula to arbitrary Calabi-Yau
complete intersections in toric varieties. Inspired by F-theory and M-theory,
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Klemm-Lian-Roan-Yau [161] have also found a counting formula for GW
invariants of Calabi-Yau manifolds of dimension 4 or higher.

More recently, based on the theory of BCOV and the geometry of the
moduli of Calabi-Yau threefolds, Yamaguchi and Yau [292] have shown that
for the quintic threefold the topological partition functions of all genera can
be expressed explicitly as polynomials of five known holomorphic functions.
They conjectured that similar polynomials exist for all Calabi-Yau three-
folds. As shown by Dijkgraaf [74] in 1995, the BCOV theory applied to an
elliptic curve has a close similarity to the theory of quasi-modular forms of
Kaneko-Zagier [155]. It has also allowed Huang-Klemm-Quackenbush [146]
to calculate the partition function up to genus 51 for the quintic. The dis-
covery by Yamaguchi and Yau has led to renewed interest on quasi-modular
forms.

5.3. Proofs of counting formulas for Calabi-Yau threefolds. In
1994, Kontsevich demonstrated [163] that one can approach the GW-invari-
ants of quintics by applying the Atiyah-Bott localization formula to the top
Chern classes of vector bundles on the stable map moduli spaces of CP4.
Though his method in principle can determine the genus zero GW-invariants
of all degrees, more insights are required to settle the mirror conjecture
for quintics.

Two independent proofs of the CDGP formula used localization tech-
niques in different ways. One approach based on quantum differential equa-
tion in the case of the quintics was due to Givental [110] in 1996, and was
later expanded and clarified by others [29, 232] in 1998. An independent
approach based on functorial localization was given by Lian-Liu-Yau [195]
in 1997; they later generalized their work to complete intersections in toric
varieties in 1999. (See [194] for a comparison of the two approaches.) The
theory developed in [195, 196, 197] – which is called the mirror principle
– have been applied to many other generalizations of the CDGP formula.
By varying the possible K-classes and evaluating their Chern classes, their
approach has also led to a number of new counting formulas for noncompact
Calabi-Yau manifolds [195].

To prove the BCOV counting formula for higher genus GW invariants
of quintics, a new localization formula for virtual fundamental classes had
to be developed. This localization formula was worked out by Li and Zinger
[190] for complete intersection of projective spaces; the genus-one formula
of BCOV for quintic Calabi-Yau was subsequently proved by Zinger [304].

5.4. Integrability of mirror map and arithmetic applications.
Mirror symmetry has many interesting and often unexpected connections
and applications to mathematics. For instance, it is conjectured that near a
certain large complex structure limit, the moduli space of a Calabi-Yau man-
ifold admits certain special coordinates. Lian-Yau [198] conjectured that the
power series expansion of the mirror map in these coordinates always have
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integer coefficients. These expansions depend on some choices, but the inte-
grality seems to be independent of such choices. This integrality conjecture
has been proved for quintics and several other Calabi-Yau threefolds with
h1,1 = 1, and a number of isolated examples with h1,1 > 1.

As Lian-Yau [199] showed, mirror maps in some way can be thought
of as generalization of modular functions. The precise conditions under
which it is is a modular function were determined by Doran in [85]. It
is easy to see that the elliptic modular function j(τ) is nothing but the mir-
ror map for elliptic curves. j(τ) satisfies a Schwarzian differential equation
{j(τ), τ} = Q(j), where Q(j) is a certain rational function. And in fact, j
can be uniquely determined by the differential equation. For certain families
of K3 surfaces, Clingher-Doran-Lewis-Whitcher [68] derived the Schwarzian
differential equation directly from geometry by studying the Picard-Fuchs
equations over modular curves. Indeed, modularity of the mirror map implies
integrality, and hence results for families of elliptic curves and K3 surfaces
of generic Picard rank 19. However, only a handful of specially constructed
families of Calabi-Yau threefolds have classically modular mirror maps.

Klemm-Lian-Roan-Yau [160] have also shown that mirror maps too sat-
isfy similar, but higher order, nonlinear differential equations. These equa-
tions can be used to study divisibility property of the instanton numbers of
Calabi-Yau threefolds. For example, it was shown that the instanton num-
ber nd predicted by the CDGP formula is divisible by 125 (at least for all d
coprime to 5). If nd correctly counts the number of smooth rational curves
in a general quintic, as expected, then the divisibility property of nd above
supports a conjecture of Clemens. On another front, the mirror principle,
developed by Lian-Liu-Yau [195, 196, 197] also has important application
in birational geometry. For example, Lee-Lin-Wang [177] have used the mir-
ror principle recently to study local models of Calabi-Yau manifolds in their
study of analytic continuations of quantum cohomology rings under flops.

Arithmetic properties of algebraic Calabi-Yau manifolds defined over
finite fields and their mirrors have been studied. Focusing on the one-
parameter ψ family of Fermat quintic threefolds Xψ, Candelas, de la Ossa
and Rodriguez-Villegas [53, 54] showed that the number of Fp -rational
points can be computed in terms of the periods of the holomorphic three-
form. They also found a closed form for the congruence zeta function which
counts the number Nr(Xψ) of Fpr -rational points. The zeta function is a
rational function and the degrees of the numerator and denominator are
exchanged between the zeta functions of Xψ and their mirror Yψ. Interest-
ingly, Wan [282] has proved that Nr(Xψ) = Nr(Yψ) (mod pr) for arbitrary
dimension Fermat Calabi-Yau manifolds and has conjectured that such rela-
tions should hold for all mirror pair Calabi-Yau manifolds in general.

5.5. Donaldson-Thomas invariants. Another duality on Calabi-Yau
threefolds is based on the invariants introduced by Donaldson-Thomas [84].
Paired with the holomorphic three-forms on Calabi-Yau threefolds,
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Donaldson-Thomas introduced and studied the holomorphic Chern-Simons
functional on the space of connections on vector bundles over Calabi-Yau
threefolds. Their study leads to a collection of new invariants of Calabi-Yau
threefolds, modulo some analytical technicality. These technicality can be
by-passed in algebraic geometry using the moduli of stable sheaves and their
virtual cycles.

A special case is the moduli of rank one stable sheaves. This leads
to the virtual counting of ideal sheaves of curves, which are referred to
as Donaldson-Thomas invariants. (These invariants based on ideal sheaves
of curves can be generalized to all smooth threefolds.) In [215], based on
their explicit computation of such invariants for toric threefolds, Maulik-
Nekrasov-Okounkov-Pandharipande (MNOP) conjectured that (the rank
one version of) Donaldson-Thomas invariants is, in explicit form, equiv-
alent to the GW invariants of the same varieties. Henceforth, Donaldson-
Thomas invariants provide integers underpinning for the rational GW
invariants.

Recently, Pandharipande and Thomas [234, 235] found a third curve-
counting theory involving stable pairs. In order to define how to count these,
one must think of curves as defining elements in the derived category of
coherent sheaves, where they differ from the ideal sheaves of [215] by a
wall crossing in the space of stability conditions [39]. The more transparent
geometry has made this curve-counting easier to study, leading to progress
[235] on a mathematical definition of the remarkable BPS invariants of
Gopakumar-Vafa [112, 113], which give perhaps the best integer description
of GW theory for threefolds.

The interaction of the MNOP duality with mirror symmetry is a little
mysterious. It relates GW invariants, which belong to the A-model of mir-
ror symmetry, to counting objects of the derived category (which describes
the B-model) on the same manifold rather than its mirror. The point is
that these latter invariants are independent of complex structures (they are
deformation invariant), but depend on the stability conditions, one would
hope that such invariants are symplectic invariants in nature, like GW invari-
ants. A purely symplectic construction of the gauge-theoretic invariants of
Donaldson-Thomas would be an important advance in our understanding.
Mirror symmetry would then relate this derived category picture to the
Fukaya category of the mirror. Counting stable sheaves gets replaced by
counting special Lagrangians, as proposed by Joyce [151]. His counts are
invariant under deformations of symplectic structures, but undergo wall
crossings as the complex structure varies.

From physical considerations, Denef and Moore [73] have independently
found formulas describing the wall crossing phenomena. They are important
for the counting of BPS D-branes bound states in string theory. Specifi-
cally, Donaldson-Thomas invariants have been identified with the counting
of bound states of a single D6-brane with D2- and D0-branes. Wall crossings
are also relevant for making precise the Ooguri-Strominger-Vafa conjecture
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[227] which relates the topological string partition function with BPS D-
branes/black holes degeneracies. At the moment, wall crossing is a subject of
much interest in both mathematics and physics, see for example [168, 106].

5.6. Stable bundles and sheaves. Stable holomorphic bundles and
sheaves are important geometric objects on Calabi-Yau manifolds and give
interesting invariants (e.g. Donaldson-Thomas invariants). Stable principal
G-bundles are also necessary data for heterotic strings on Calabi-Yau mani-
folds and for various duality relations in string theory. The stability condition
of Mumford-Takemoto and of Gieseker on sheaves ensures that the mod-
uli space is quasi-projective. By the results of Narasimhan-Seshadri [226]
for Riemann surfaces, and Donaldson [79], Uhlenbeck-Yau [277] for higher
dimensions, there exist on stable (and poly-stable) bundles connections that
solve the Hermitian-Yang-Mills equations. These equations are important
for physical applications and requires that the (2,0) and (0,2) part of the
curvature two-form vanish and the (1,1) part is traceless.

In dimension one, the classification of vector bundles on an elliptic curve
was due to Atiyah [7]. The set of isomorphism classes of indecomposable bun-
dles of a fixed rank and degree is isomorphic to the elliptic curve. For general
structure groups, Looijenga [205] and Bernstein-Shvartsman [25] showed
that the moduli space of semistable G bundles for any simply-connected
group G of rank r is a weight projective space of dimension r.

In dimension two, Mukai [224, 225] studied in depth the moduli space
MH(v) of Gieseker-semistable sheaves F on a smooth projective K3 surface
(S, H). He showed that in case the moduli space MH(v) is smooth, it is sym-
plectic. His insight also led to the powerful Fourier-Mukai transformation.

Friedman-Morgan-Witten [95, 96, 97] constructed stable principal
G-bundles on elliptic Calabi-Yau threefolds (see also Donagi [77] and
Bershadsky-Johansson-Pantev-Sadov [28].) The construction is based on
spectral covers [78] introduced on curves by Hitchin [131, 132]. The spec-
tral data consists of a hypersurface and a line bundle over it. The spectral
cover construction can be interpreted in terms of a relative Fourier-Mukai
transformation and have been used extensively in string theory (see, for
example [31, 36, 4] and references therein).

Thomas [267], Andreas, Hernández Ruipérez and Sánchez Gómez [5]
have constructed stable bundles on K3 fibration Calabi-Yau threefolds.

5.7. Yau-Zaslow formula for K3 surfaces. In 1996, Yau and Zaslow
[298] discovered a formula for the number of rational curves on K3 surfaces
in terms of a quasi-modular form. Their method was inspired by string
theory considerations.

Let X be a K3 surface. Suppose C is a holomorphic curve in X rep-
resenting a cohomology class [C]. We write its self-intersection number as
[C] · [C] = 2d − 2 and its divisibility, or index, as r. If C is a smooth curve,
then d is equal to the genus of C and also to the dimension of the linear
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system of C. If we denote the number of genus g curves in X representing
[C] as Ng (d, r). Then the Yau-Zaslow formula says that when g = 0 they are
given by the following formula,

∑
d≥0

N0 (d, r) qd =
∏
d≥1

(
1

1 − qd

)24

.

The Yau-Zaslow formula was generalized by Göttsche [114] to arbitrary
projective surface. The universality for having such a formula for all surfaces
was analyzed by Liu [200] using Seiberg-Witten theory which is related to
the curve counting problem by the work of Taubes on GW = SW .

The conjecture originated from a study by Yau and Zaslow on the BPS
states in string theory on complex two dimensional Calabi-Yau manifolds,
which are K3 surfaces. Shortly after the paper by Yau-Zaslow, Beauville [19],
and later Fantechi-Göttsche-van Straten [92], rephrased and clarified the
argument of Yau-Zaslow in algebraic geometry for primitive class. Chen [65]
in 2002 proved that rational curves of primitive classes in general polarized
K3 surfaces are nodal. Combined, these prove the Yau-Zaslow formula for
primitive classes.

The Yau-Zaslow formula is for all index r ≥ 1. Following the original
approach of Yau-Zaslow, Li-Wu [188] proved the conjecture for non-
primitive classes of index at most five under the assumption that all rational
curves are nodal.

Via a different approach, Bryan and Leung [41] proved the formula for
the primitive case by considering elliptic K3 surfaces with section by com-
puting the family GW invariants for the twistor family. These invariants are
typically difficult to compute and they used a clever matching method to
transport it to an enumerative problem for rational surfaces and then used
Cremona transformations to further simplify it. Their method is more pow-
erful than the sheaf-theoretic approach in that it works for any genus as well.

Using a degeneration for the family GW invariants, J.H. Lee-Leung set-
tled the r = 2 case of the Yau-Zaslow formula [174] and the genus one for-
mula [175].

Recently Klemm, Maulik, Pandharipande and Scheidegger [159] proved
the Yau-Zaslow formula for any classes by studying a particular Calabi-Yau
threefold M with a K3 fibration. The Yau-Zaslow number can be related
to the GW invariants on M representing fiber classes. Using localization
techniques to compute these threefold invariants they proved the Yau-Zaslow
formula.

5.8. Chern-Simons knot invariants, open strings and string
dualities. Calabi-Yau geometry is the central object in string duality to
unify different types of string theory. Mirror symmetry is just the duality
between IIA and IIB string theory as discussed above. Using string duality
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between the large N Chern-Simons theory and the topological string theory
of non-compact toric Calabi-Yau manifolds, string theorists have made many
striking conjectures about the moduli spaces of Riemann surfaces, Chern-
Simons knot invariants and GW invariants. Of note are two which have been
rigorously proven. First, the Mariño-Vafa conjecture [212] which expresses
the generating series of triple Hodge integrals on moduli spaces of Rie-
mann surfaces for all genera and any number of marked points in terms
of the Chern-Simons knot invariants was proved by C.-C. Liu-K. Liu-Zhou
in [201]. Second, the Labastilda-Mariño-Ooguri-Vafa conjecture [229, 173,
172] which predicts integral and algebraic structures of the generating series
of the SU(N) Chern-Simons quantum knot invariants was proved by
Liu-Peng [203].

GW invariants for all genera and all degrees can be explicitly computed
for non-compact toric Calabi-Yau manifolds via the theory of topological
vertex. In [2], Aganagic, Klemm, Mariño and Vafa proposed a theory to
compute GW invariants in all genera and all degrees of any smooth non-
compact toric Calabi-Yau threefold. In that paper, they first postulated
the existence of open GW invariants that count holomorphic maps from
bordered Riemann surfaces to C3 with boundaries mapped to Lagrangian
submanifolds, which they called the topological vertex; they then argued
based on a physically derived duality between Chern-Simons theory and GW
theory that the topological vertex can be expressed in terms of the explicitly
computable Chern-Simons link invariants. Then by a gluing algorithm, they
derived an algorithm computing all genera GW invariants of toric Calabi-
Yau threefolds.

In [184], J. Li, C.-C. Liu, K. Liu and J. Zhou (LLLZ) developed the
mathematical theory of the open GW invariants for toric Calabi-Yau three-
fold. (In the case compact Calabi-Yau threefolds, open GW invariants have
only been defined in the case where the Lagrangian submanifold is the fixed
point set of an antiholomorphic involution [259]. See [280, 233] for calcu-
lations of open GW invariants on the Calabi-Yau quintic.) The definition of
LLLZ relies on applying the relative GW invariants of J. Li [182, 183] to for-
mal toric Calabi-Yau threefolds. By degenerating a formal toric Calabi-Yau
to a union of simple ones, they derived an algorithm that expresses the open
GW invariants of any (formal) toric Calabi-Yau in terms of that of the simple
one. Their results express the open GW invariants in terms of explicit com-
binatorial invariants related to the Chern-Simons invariants. In many cases
their combinatorial expressions coincide with those of [2], and they conjec-
tured that the two combinatorial expressions should be equal in general.
Later, a proof of this conjecture appeared in the work of Maulik-Oblomkov-
Okounkov-Pandharipande [216]. Combined, all genera GW invariant for
toric Calabi-Yau threefolds is solved. By using the results of [184], Peng
[237] was able to prove the integrality conjecture of Gopakumar-Vafa for all
formal toric Calabi-Yau manifolds.
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When applying the mirror principle to certain toric Calabi-Yau mani-
folds, we get the local mirror formulas of Chiang-Klemm-Yau-Zaslow [66]
which are closely related to geometric engineering in string theory [153].
This is an important technique to recover gauge theory such as the Seiberg-
Witten theory at various singularities in the moduli space of string theory
[154]. Chiang-Klemm-Yau-Zaslow [66] also studied the asymptotic growth
of genus zero Gromov-Witten invariants as the degree runs to infinity. Com-
putational evidences have suggested in many cases a relationship between
these growth rates and special values of L-functions. These observations have
now been geometrically explained by Doran-Kerr [86], who showed, using
higher Abel-Jacobi maps, that they follow from the deep mathematical con-
jectures of Beilinson-Hodge and Beilinson-Bloch.

6. Homological mirror symmetry

The Homological Mirror Symmetry (HMS) conjecture was made in 1994
by Maxim Kontsevich [164]. This was a proposal to give an explanation
for the phenomena of mirror symmetry. This conjecture, very roughly, can
be explained as follows. Let X and Y be a mirror pair of Calabi-Yau man-
ifolds. We view X as a complex manifold and Y as a symplectic manifold.
The idea is that mirror symmetry provides an isomorphism between cer-
tain aspects of complex geometry on X and certain aspects of symplectic
geometry on Y.

More precisely, Kontsevich suggested that the bounded derived category
of coherent sheaves on X is isomorphic to the Fukaya category of Y. The
first object has been well-studied, and is known to capture a significant
amount of information about the complex geometry on X, while the Fukaya
category is a much less familiar object introduced by Fukaya [100] in a 1993
paper. This is not a true category, but something known as an A∞ cateogry:
the composition of morphisms is not associative, but only associative up to
homotopy. The Fukaya category captures information about the symplectic
geometry of Y. Its objects are Lagrangian submanifolds of Y and morphisms
come from intersection points of Lagrangian submanifolds. Compositions
involve counting holomorphic disks, and essentially arise from the product
in Floer homology.

The homological mirror symmetry conjecture has remained an imposing
problem. There have been a number of different threads of work devoted
to this. Work of a number of researchers, especially Polishchuk and Zaslow
[242] and Fukaya [101], dealt with the simplest cases, namely mirror sym-
metry for elliptic curves and abelian varieties, respectively. Other work has
been devoted to clarifying the conjecture: at first sight, the two categories
cannot be isomorphic since the derived category is an actual triangulated
category, while the Fukaya category is not an actual category and is not likely
to be triangulated. There are various ways around these issues, and there are
now precise rigorous statements. Most significantly, the work of Seidel [254]
has proved the conjecture for quartic surfaces in projective three-space.
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The HMS conjecture implies that complex manifolds which have equiv-
alent bounded derived categories are mirrored to the same manifold. These
manifolds, related by Fourier-Mukai transforms, are called Fourier-Mukai
partners. In complex dimension one, Orlov [230] has determined both the
group of autoequivalences and the Fourier-Mukai partners of an abelian
variety. Interesting results have also known for K3 surfaces. Mukai [224]
long ago showed that the Fourier-Mukai partners of a given K3 surface is
again a K3. The Fourier-Mukai transform induces a Hodge isometry of the
“Mukai lattice” of K3 [231]. Bridgeland and Maciocia [40] have shown that
the number of Fourier-Mukai partners of any given K3 is finite. Hosono,
Lian, Oguiso, and Yau [142] have recently, given an explicit counting for-
mula for this number. A similar formula was given for abelian surfaces
and was used to answer an old question of T. Shioda [140]. They have
also given a description for the group of autoequivalences of the bounded
derived category of a K3 surface [141]. It turns out that the Fourier-Mukai
number formula is closely related to the class numbers of imaginary qua-
dratic fields of prime discriminants [142]. There is also a nice analogue
for real quadratic fields. As shown in [143], the real case turns out to
be crucial for classifying c = 2 rational toroidal conformal field theory in
physics.

The HMS conjecture for Calabi-Yau manifolds has been generalized to
Fano varieties. For toric varieties, the work of Abouzaid [1] established part
of the conjecture and was recently settled by Fang-Liu-Treumann-Zaslow
[91]. Moreover, for surfaces, Auroux-Katzarkov-Orlov [9, 10] have proved
the HMS conjecture for some toric surfaces (i.e. weighted projective planes,
Hirzebruch surfaces, and toric blowups of P2) and also non-toric del Pezzo
surfaces.

Another thread has been addressing the question of how more traditional
aspects of mirror symmetry, such as holomorphic curve counting, would
follow from homological mirror symmetry.

7. SYZ geometric interpretation of mirror symmetry

7.1. Special Lagrangian submanifolds in Calabi-Yau manifolds.
By the Wirtinger formula for Kähler manifolds, every complex submanifold
in X is absolute volume minimizing. This is a special case of calibration, a
notion introduced by Harvey and Lawson [128] in analyzing area-minimizing
subvarieties, and later on rediscovered in physics by Becker-Becker-
Strominger [21] from supersymmetry considerations. Special Lagrangian sub-
manifolds in Calabi-Yau manifolds form another class of examples of
calibrated submanifolds. A real n-dimensional submanifold L in X is called
special Lagrangian if the restrictions of both ω and Im Ω to L are zero:

ω|L = Im Ω|L = 0.
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As calibrated submanifolds, special Lagrangian submanifolds are always
absolute volume minimizing.

7.2. The SYZ conjecture – SYZ transformation. In string theory,
each Calabi-Yau threefold X determines two twisted theories, one A-model
and another B-model. The mirror symmetry between X and its mirror Y
interchanges the two models between them. From the mathematical per-
spective, A-model is about the symplectic geometry of X and B-model is
about the complex geometry of Y .

A-model on X
(symplectic geometry)

←−−−−−−−−−−−→
mirror symmetry B-model on Y

(complex geometry)

The search for the underlying geometric root of this symmetry led
Strominger, Yau and Zaslow to their conjecture.

In 1996, Strominger, Yau and Zaslow [265] proposed that for a mirror
pair (X, Y ) that is near a large volume/complex structure limit,

(1) both admit special Lagrangian torus fibrations with sections:

T dual tori←−−−−→ T ∗

↓ ↓
X Y
↓ ↓
B B∗

(2) the two torus fibrations are dual to each other;
(3) a fiberwise Fourier-Mukai transformation along fibers interchanges

the symplectic (resp. complex) geometry on X with the complex
(resp. symplectic) geometry on Y .

This is called the SYZ mirror transformation.
On the nutshell, it says that the mysterious mirror symmetry is simply a

Fourier transform. The quantum corrections, for instance the GW invariants,
come from the higher Fourier modes. The SYZ conjecture inspired a flourish
of work to understand mirror symmetry, which include works of Gross (and
with Siebert) [122, 123, 124, 125, 126], Joyce [150, 152], Kontsevich-
Soibelman [166, 167], Vafa [278], Leung-Yau-Zaslow [180] and many oth-
ers. On the other hand, it has led to new developments of other branches of
mathematics, including the calibrated geometry of special Lagrangian sub-
manifolds and the affine geometry with singularities. The work of Auroux
has shed some lights on the phenomenon of quantum corrections [8].

7.3. Special Lagrangian geometry. Special Lagrangian submani-
folds coupled with unitary flat bundles are branes in A-model in string
theory. These geometric objects are crucial to the understanding of the
SYZ conjecture. So far, many examples were constructed using cohomo-
geneity one method by Joyce [150], using singular perturbation method by
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Butscher [44], Lee [176], Haskins-Kapouleas [129] and others. Their defor-
mations are studied by McLean [217]; their moduli spaces by Hitchin [133];
their existence by Schoen-Wolfson [253] using variational approach and by
Smoczyk and M.-T. Wang [261] using mean curvature flow. Thomas-Yau
[268] formulated a conjecture on the existence and uniqueness of special
Lagrangian submanifolds which is the mirror of the theorem of Donaldson,
Uhlenbeck and Yau [79, 277] of the existence of unique Hermitian Yang-
Mills connection on any stable holomorphic vector bundle.

7.4. Special Lagrangian fibrations. SYZ conjecture predicts that
mirror Calabi-Yau manifolds should admit dual torus fibrations whose fibers
are special Lagrangian submanifolds, possibly with singularities.

Lagrangian fibrations is an important notion in symplectic geometry as
real polarizations, as well as in dynamical system as completely integrable
systems. Their smooth fibers admit canonical integral affine structures and
therefore they must be tori in the compact situation. Toric varieties PΔ, for
instance CPn+1, are examples of Lagrangian fibrations in which the fibers are
orbits of an Hamiltonian torus action and the base is a convex polytope Δ.

A complex hypersurface X = {f = 0} in CPn+1 is a Calabi-Yau manifold
if deg f = n + 2. The most singular ones is when X is a union of coordinate
hyperplanes in CPn+1, which is an example of the large complex structure
limit. Such limiting points on the moduli space are important and an explicit
construction of them for Calabi-Yau toric hypersurfaces as T -fixed points
on the moduli space has been given by Hosono-Lian-Yau [145]. A numerical
criterion for the large complex structure limit in any one parameter family
of Calabi-Yau manifolds has also been given by Lian-Todorov-Yau [193]. At
this most singular limit, X inherits a torus fibration from the toric structure
on CPn+1. Thus one can try to perturb this to obtain Lagrangian fibration
structures on nearby smooth Calabi-Yau manifolds. This approach was car-
ried out by Gross [124], Mikhalkin [219], Ruan [247, 248] and Zharkov
[302]. This approach can be generalized to Calabi-Yau hypersurfaces X in
any Fano toric variety PΔ. Furthermore, their mirror manifolds Y are Calabi-
Yau hypersurfaces in another Fano toric variety P∇ whose defining polytope
is the polar dual to Δ.

The situation is quite different for Calabi-Yau twofolds, namely K3 sur-
faces, or more generally for hyperkähler manifolds. In this case, the Calabi-
Yau metric on X is Kähler with respect to three complex structures I, J
and K. When X admits a J-holomorphic Lagrangian fibration, then this
fibration is a special Lagrangian fibration with respect to the Kähler metric
ωI , as well as ωK . Furthermore, SYZ also predicts that mirror symmetry is
merely a twistor rotation from I to K in this case. For K3 surfaces, there are
plenty of elliptic fibrations and they are automatically complex Lagrangian
fibrations because of their low dimension. Furthermore Gross and Wilson
[127] described the Calabi-Yau metrics for generic elliptic K3 surfaces by
using the singular perturbation method. They used model metrics which
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were constructed by Greene, Shapere, Vafa and Yau [121] away from singu-
lar fibers and by Ooguri and Vafa [228] near singular fibers.

7.5. The SYZ transformation. Recall that SYZ conjecture says that
mirror symmetry is a Fourier-Mukai transformation along dual special
Lagrangian torus fibrations. We also need to include a Legendre transforma-
tion on the base affine manifolds. This SYZ transformation was generalized
to the mirror symmetry for local Calabi-Yau manifolds by Leung-Vafa [179].

On the mathematical side, Leung-Yau-Zaslow [180] and Leung [178]
used the SYZ transformation to verify various correspondences between
symplectic geometry and complex geometry between semi-flat Calabi-Yau
manifolds when there is no quantum corrections. To include quantum correc-
tions in the SYZ transformation for Calabi-Yau manifolds is a more difficult
problem. In the Fano case, there are recent results on applying the SYZ
transformation with quantum corrections by Auroux [8], Chan-Leung [63]
and Fang [90].

7.6. The SYZ conjecture and tropical geometry. Work of Joyce
[152] forced a rethinking of the SYZ conjecture in a limiting setting. The
SYZ mirror transformation is now believed to be applicable near the large
complex structure limit points. Two groups of researchers, Gross and
Wilson [127] on the one hand and Kontsevich and Soibelman [166] on the
other, suggested that near a large complex structure limit of n-dimensional
Calabi-Yau manifolds, the Ricci-flat metric on the Calabi-Yau manifold con-
verges (in a precise sense known as Gromov-Hausdorff convergence) to an
n-dimensional sphere. For example, in the simplest case of an elliptic curve
(a real two-dimensional torus), the torus gets thinner as the large com-
plex structure limit is approached, until it converges to a circle. Therefore,
the idea is that in the large complex structure limit, the SYZ fibration is
expected to be better behaved though the fibers of the SYZ fibration will
collapse, with its volume going to zero in the limit.

In any event, once one has this picture of a collapsing fibration, one can
ask for a description of the behavior of holomorphic curves in the fibration
as the fibres collapse. The expectation is that a holomorphic curve converges
to a piecewise linear graph on the limiting sphere. This graph should satisfy
certain conditions which turn this graph into what is now known as a “trop-
ical curve.” This terminology arises from the “tropical semiring”, which is
the semiring consisting of real numbers, with addition given by maximum
and multiplication given by the usual addition. Tropical varieties are then
defined by polynomials over the tropical semiring, and the “zeroes” of a
tropical polynomial are in fact points where the piecewise linear function
defined by the tropical polynomial is not smooth. This gives rise to piece-
wise linear varieties, and tropical curves arising as limits of holomorphic
curves are examples of such.
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This picture began to emerge in the works of Fukaya [102], Kontsevich
and Soibelman [166] around 2000. In particular, Kontsevich’s suggestion
that one could count holomorphic curves by counting tropical curves was
realized in 2003 by Mikhalkin [220], when he showed that curves in toric
surfaces could be counted using tropical geometry.

For the purposes of mirror symmetry, it is then important to understand
how tropical geometry arises on the mirror side. The initial not so rigorous
work of Fukaya in 2000 gave some suggestions as to how this might happen in
two dimensions. This was followed by the work of Kontsevich and Soibelman
[167] in 2004, again in two dimensions, and the work of Gross and Siebert
[126] in 2007 in all dimensions, which demonstrate that the geometry of
Calabi-Yau manifolds near large complex structure limits can be described
in terms of data of a tropical nature. This provides the clearest link to date
between the two sides of mirror symmetry.

8. Geometries related to Calabi-Yau manifolds

8.1. Non-Kähler Calabi-Yau manifolds. Given a smooth three
dimensional complex manifold X with trivial canonical line bundle, i.e.
KX

∼= OX . When X is Kähler, Yau’s theorem [295] provides a unique
Ricci-flat Kähler metric in each Kähler class.

A large class of such threefolds which are non-Kähler are obtained by
Clemens [67] and Friedman [94] from Calabi-Yau threefolds by an oper-
ation called extremal transition or its inverse. An extremal transition is
a composition of blowing down rational curves and smoothing the result-
ing singularity. It has the effect of decreasing the dimension of H2 (X, R)
and increasing the dimension of H3 (X, R) while keeping their sum fixed.
For example, the connected sum of k copies of S3 × S3 for any k ≥ 2 can
be given a complex structure in this way. Based on this construction, Reid
[244] speculated that any two Calabi-Yau threefolds are related by deforma-
tions, extremal transitions and their inverses, even though their topologies
are different. This speculation demonstrates the potential role of non-Kähler
complex manifolds.

It is important to construct canonical metrics on such non-Kähler man-
ifolds which are counterparts of Ricci-flat Kähler metrics on Calabi-Yau
manifolds. In 1986, Strominger proposed for supersymmetric compactifica-
tion in the theory of heterotic string a system of a pair (ω, h) of a Hermitian
metric ω on a complex three-dimensional manifold X with a non-vanishing
holomorphic three form Ω and a Hermitian metric h on a vector bundle V
on X. The Strominger system is such a pair satisfying the elliptic system of
differential equations,

d(‖Ω‖ω ω2) = 0,

F ∧ ω2 = 0, F 2,0 = F 0,2 = 0,

4
√

−1∂∂̄ω = α′ (TrTX

(
R2) − TrE

(
F 2)),
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where R (resp. F ) is the curvature of ω (resp. h). The first equation is
equivalent to the existence of a balanced metric, also the same as the exis-
tence of supersymmetry. The system of equations in the second line is the
Hermitian-Yang-Mills equations.

When V is the tangent bundle TX and ω is Kähler, the system is solved
by the Calabi-Yau metric. Using perturbation method, J. Li and S.-T. Yau
[189] constructed smooth solutions to a class of Kähler Calabi-Yau with
irreducible solutions for vector bundles with gauge group SU (4) and SU (5).

The first existence result for solutions of Strominger system for a
non-Kähler Calabi-Yau was due to Fu-Yau on a class of torus bundles over
K3 surfaces [99, 20]. (The construction of the complex structure is called
the Calabi-Eckmann construction [47] and was carried out by Goldstein-
Prokushkin [111]. Based on physical arguments of superstring dualities,
the existence of such solutions was suggested in [71, 22].) Mathematical
construction of balanced metrics on manifolds constructed by Clemens-
Friedman was recently carried out rigorously by Fu-Li-Yau [98].

8.2. Symplectic Calabi-Yau manifolds. Another generalization of
Calabi-Yau manifolds are symplectic Calabi-Yau manifolds. Recall a sym-
plectic manifold (X, ω) is an even dimensional (real) manifold X with ω
a closed, non-degenerate 2-form on X. Examples of symplectic manifolds
include Kähler manifolds. Using any compatible almost complex structure on
X, we can define the first Chern class c1 (X) for any symplectic manifold X.

Symplectic Calabi-Yau manifolds are symplectic manifolds with c1 (X) =
0. In dimension four, we have the Kodaira-Thurston examples; the homolog-
ical type of such symplectic manifolds are classified, due to the work of T.-J.
Li [192], and to Bauer [17], that their Betti numbers are in the range b1 ≤ 4,
b+
2 ≤ 3 and b−

2 ≤ 19. To their smooth structures, it is conjectured that the
diffeomorphism types of such manifolds are either Kähler surfaces with zero
Kodaira dimension or oriented torus bundles over torus.

In higher dimensions, Smith-Thomas-Yau [262] has constructed many
such examples of symplectic Calabi-Yau manifolds. They contain structures
which are mirror to complex non-Kähler Calabi-Yau structures on con-
nected sums of S3 × S3. As described in [262], the symplectic mirror of
the Clemens-Friedman construction reverses the conifold transition by first
collapsing Lagrangian three-spheres and then replacing them by symplectic
two-spheres. If one can collapse all three-spheres, then such a process should
result in symplectic Calabi-Yau structures on connected sums of CP3.

As the Strominger-Fu-Yau geometry on complex non-Kähler Calabi-Yau
manifolds plays an important role in string theory, it is expected to have a
dual system on these symplectic Calabi-Yau manifolds which will also play
an important role in string theory.

One can also generalize the Ricci-flat condition in dimension four.
Donaldson conjectured in [82] that an analogue of the Calabi-Yau theorem
should hold on symplectic 4-manifolds. If it is true, there are interesting
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applications to symplectic topology in dimension four. So far relatively little
is known about this conjecture, but some progress has been made in [290]
and [276]. There it is shown that the conjecture holds when the manifold is
nonnegatively curved, so for example on CP2 with a small perturbation of
the standard Kähler structure.
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