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Arakelov inequalities

Eckart Viehweg

Introduction

The proof of the Shafarevich Conjecture for curves of genus g ≥ 2 over
complex function fields K = C(Y ), given by Arakelov in [AR71], consists
of two parts, the verification of “boundedness” and of “rigidity”. In order
to obtain the boundedness, Arakelov first constructs a height function for
K-valued points of the moduli stack Mg of stable curves of genus g. In down
to earth terms, he chooses a natural ample sheaf λ on the coarse moduli
scheme Mg. Then, extending the morphism Spec(K) → Mg to Y → Mg

he chooses as height deg(ϕ∗λ). Secondly, still assuming that ϕ is induced
by a genuine family f : X → Y of stable curves, he gives an upper bound
for this height in terms of the curve Y and the discriminant S = Y \ Y0 for
Y0 = ϕ−1(Mg). Finally the rigidity, saying that X0 = f−1(Y0) → Y0 does
not extend to a family f : X0 → Y0 × T in a non-trivial way, easily follows
from the deformation theory for families of curves.

The boundedness part of Arakelov’s proof was extended by Faltings
[Fa83] to families of abelian varieties, using Deligne’s description of abelian
varieties via Hodge structures of weight one. He chooses a suitable toroidal
compactification Ag of the coarse moduli scheme of polarized abelian vari-
eties and λ ∈ Pic(Ag) ⊗ Q to be the determinant of the direct image of
relative one forms, hence the determinant of the Hodge bundle of bidegree
(1, 0) in the corresponding variation of Hodge structures. Then λ is semi-
ample and ample with respect to the open set Ag (as defined in Definition
1.2), which is sufficient to define a height function. He proves an upper bound
for the height, hence the finiteness of deformation types, and gives a criterion
for infinitesimal rigidity. A family of 8-dimensional abelian varieties gives an
example that contrary to the case of curves the rigidity fails in general.

Deligne [De87] takes up Faltings approach. He obtains more precise
inequalities and his arguments extend to C-variations of Hodge structures
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of weight one. Peters proved similar inequalities for variation of Hodge struc-
tures of higher weight. Unfortunately his results (improved by Deligne in an
unpublished letter) were only available years later (see [Pe00]), shortly after
the subject was taken up by Jost and Zuo in [JZ02].

Since then the results for families of curves or abelian varieties over
curves have been extended in several ways. Firstly the definition and the
bounds for height functions have been extended to moduli schemes of canon-
ically polarized manifolds or of polarized minimal models (see [BV00],
[VZ01], [VZ04a], [Vi05], and [KL06], for example). We sketch some of
the results in Section 1. However we will not say anything about rigidity
and strong boundedness properties, discussed in [VZ02] and [KL06].

Secondly generalizations of the Arakelov inequalities are known for vari-
ations of Hodge structures of higher weight over curves, and for weight one
over a higher dimensional bases. In both cases the inequalities are optimal,
i.e. there are families where one gets equality. As we recall in Section 1 such
an equality should be rare for families of varieties of positive Kodaira dimen-
sion. Except for abelian varieties and for K3-surfaces the geometric inter-
pretation of such an equality is still not understood (see [Li96], [STZ03],
[VZ02], [LTYZ], [VZ03], [VZ04a], and [VZ05] for some results pointing
in this direction).

Finally the Arakelov inequalities have a topological counterpart, the
Milnor-Wood inequalities for the Toledo invariant, for certain local systems
on projective curves and on higher dimensional projective manifolds (see
[BGG06], [KM08a], and [KM08b], for example). Again the equality has
consequences for the structure of the local system (or its Higgs bundle). We
will state this (in)equalities in very special cases in Section 5 and in Section
8 and compare it with the Arakelov inequality.

The main theme of this survey is the interplay between stability of Higgs
bundles and the stability of the Hodge bundles for variations of Hodge struc-
tures of weight k (see Section 2 for the basic definitions). As we try to explain
in Section 3 for all k in the curve case, and in Section 6 for k = 1 over cer-
tain higher dimensional varieties, the Arakelov inequalities are translations
of slope conditions for polystable Higgs bundles, whereas the Arakelov equal-
ities encode stability conditions for the Hodge bundles. In Sections 4 and 7
we indicate some geometric consequences of Arakelov equalities for k = 1 or
for families of abelian varieties.

Acknowledgments. This survey is based on a series of articles coauthored
by Kang Zuo, by Martin Möller or by both of them. Compared with those
articles there are only minor improvements in some arguments and no new
results.

Martin Möller pointed out some ambiguities in the first version of this
article, and the idea for the simplified proof of Claim 6.7, needed for
Theorem 6.4, is taken from his letter explaining the “r = 2”-case. I am grate-
full to Oscar Garćia-Prada, Vincent Koziarz and Julien Maubon for their
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explanations concerning “Milnor-Wood” inequalities over a one or higher
dimensional base.

1. Families of manifolds of positive Kodaira dimension

Let f : X → Y be a semistable family of n-folds over a complex pro-
jective curve Y , smooth over Y0 = Y \ S and with X projective. We call
f semistable if X is non-singular and if all fibres f−1(y) of f are reduced
normal crossing divisors. We write X0 = f−1(Y0) and f0 = f |X0 .

Theorem 1.1 ([VZ01], [VZ06], and [MVZ06]). Assume that f :X → Y
is semistable. Then for all ν ≥ 1 with f∗ων

X/Y �= 0

(1.1)
deg(f∗ων

X/Y )

rk(f∗ων
X/Y )

≤ n · ν

2
· deg(Ω1

Y (log S)).

The morphism f is called isotrivial if there is a finite covering Y ′ → Y
and a birational Y ′ morphism

X × Y Y ′ ��� F × Y ′.

For projective manifolds F with ωF semiample and polarized by an invert-
ible sheaf with Hilbert polynomial h, there exists a coarse quasiprojective
moduli scheme Mh. Hence if ωX0/Y0 is f0-semiample f0 induces a morphism
ϕ0 : Y0 → Mh.

If ωX0/Y0 is f0-ample, or if ων
X0/Y0

is for some ν > 0 the pullback of an
invertible sheaf on Y0, then the birational non-isotriviality of f is equivalent
to the quasi-finiteness of ϕ0. In this situation the left hand side of (1.1) can
be seen as a height function on the moduli scheme. In fact, choosing ν > 1
with h(ν) �= 0 in the first case, and or ν ≥ 1 with ων

F = OF in the second
one, by [Vi05] there exists a projective compactification Mh of the moduli
scheme Mh and some

λ ∈ Pic(Mh) ⊗ Q

with:
• λ is nef and ample with respect to Mh.
• Let ϕ : Y → Mh be the morphism induced by f . Then det (f∗ων

X/Y )
= ϕ∗λ.

For moduli of abelian varieties one can choose the Baily-Borel compact-
ification and there λ is ample. By [Mu77] on a suitable toroidal compacti-
fication of Ag the sheaf λ is still semi-ample, but for other moduli functors
we only get weaker properties, as defined below.

Definition 1.2. Let Z be a projective variety and let Z0 ⊂ Z be open
and dense.
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i. A locally free sheaf F on Z is numerically effective (nef) if for all
morphisms ρ : C → Z, with C an irreducible curve, and for all
invertible quotients N of ρ∗F one has deg(N ) ≥ 0.

ii. An invertible sheaf L on Z is ample with respect to Z0 if for some
ν ≥ 1 the sections in H0(Z,Lν) generate the sheaf Lν over Z0 and
if the induced morphism Z0 → P(H0(Z,Lν)) is an embedding.

For non-constant morphisms ρ : C → Z from irreducible projective
curves one finds in Definition 1.2, ii) that deg(ρ∗(L)) > 0, provided ρ(C) ∩
Z0 �= ∅. Moreover, fixing an upper bound c for this degree, there are only
finitely many deformation types of curves with deg(ρ∗(L)) < c.

Applying this to birationally non-isotrivial families f : X → Y whose
general fibre F is either canonically polarized or a minimal model of Kodaira
dimension zero, one finds the left hand side of (1.1) to be positive, hence
Ω1

Y (log S) = ωY (S) must be ample. The finiteness of the number of defor-
mation types is more difficult and it has been worked out in [KL06] just
for families of canonically polarized manifolds. Roughly speaking, one has
to show that morphisms from a curve to the moduli stack are parame-
terized by a scheme. This being done, one finds that for a given Hilbert
polynomial h and for a given constant c there are only finitely many defor-
mation types of families f : X → Y of canonically polarized manifolds with
deg(Ω1

Y (log S)) ≤ c.
For smooth projective families f0 : X0 → Y0 over a higher dimensional

quasi-projective manifold Y0 with ωX0/Y0 semiample, some generalizations
of the inequality (1.1) have been studied in [VZ02] (see also [VZ04a]).
There we assumed that S = Y \Y0 is a normal crossing divisor and that the
induced map ϕ0 : Y0 → Mh is generically finite. Then for some μ � 0 there
exists a non-trivial ample subsheaf of Sμ(Ω1

Y (log S)). However neither μ nor
the degree of the ample subsheaf have been calculated and the statement is
less precise than the inequality (1.1).

In this survey we are mainly interested in a geometric interpretation
of equality in (1.1), in particular for ν = 1. As explained in [VZ06] and
[MVZ06] such equalities should not occur for families with pg(F ) > 1 for
the general fibre F . Even the Arakelov inequalities for non-unitary subvari-
ations of Hodge structures, discussed in Section 3 should be strict for most
families with F of general type. As recalled in Example 4.6, for curves “most”
implies that the genus g of F has to be 3 and that the “counter-example” in
genus 3 is essentially unique. So what Arakelov equalities are concerned it
seems reasonable to concentrate on families of minimal models of Kodaira
dimension zero.

2. Stability

Definition 2.1. Let Y be a projective manifold, let S ∈ Y be a normal
crossing divisor and let F be a torsion-free coherent sheaf on Y .
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i. The degree and slope of F are defined as

deg(F) = c1(F).c1(ωY (S))dim(Y )−1 and μ(F) = μωY (S)(F) =
deg(F)
rk(F)

.

ii. The sheaf F is μ-stable if for all subsheaves G ⊂ F with rk(G) <
rk(F) one has μ(G) < μ(F).

iii. The sheaf F is μ-semistable if for all non-trivial subsheaves G ⊂ F
one has μ(G) ≤ μ(F).

iv. F is μ-polystable if it is the direct sum of μ-stable sheaves of the
same slope.

This definition is only reasonable if dim(Y ) = 1 or if ωY (S) is nef
and big.

Recall that a logarithmic Higgs bundle is a locally free sheaf E on Y
together with an OY linear morphism θ : E → E ⊗Ω1

Y (log S) with θ∧θ = 0.
The definition of stability (poly- and semistability) for locally free sheaves
extends to Higgs bundles, by requiring that

μ(F ) =
deg(F )
rk(F )

< μ(E) =
deg(E)
rk(E)

(or μ(F ) ≤ μ(E)) for all subsheaves F with θ(F ) ⊂ F ⊗ Ω1
Y (log S).

If dim(Y ) > 1, for the Simpson correspondence in [Si92] and for the
polystability of Higgs bundles, one takes the slopes with respect to a polar-
ization of Y , i.e replacing ωY (S) in Definition 2.1, i) by an ample invertible
sheaf. However, as we will recall in Proposition 6.4, the Simpson correspon-
dence remains true for the slopes μ(F) in 2.1, i), provided ωY (S) is nef and
big.

Our main example of a Higgs bundle will be the one attached to a
polarized C variation of Hodge structures V on Y0 of weight k, as defined
in [De87], and with unipotent local monodromy operators. The F-filtration
of F0 = V ⊗C OY0 extends to a locally splitting filtration of the Deligne
extension F of F0 to Y , denoted here by

Fk+1 ⊂ Fk ⊂ · · · ⊂ F0.

We will usually assume that Fk+1 = 0 and F0 = F , hence that all non-
zero parts of the Hodge decomposition of a fibre Vy of V are in bidegrees
(k − m, m) for m = 0, . . . , k. The Griffiths transversality condition for the
Gauß-Manin connection ∇ says that

∇(Fp) ⊂ Fp−1 ⊗ Ω1
Y (log S).

Then ∇ induces a OY linear map

θp,k−p : Ep,k−p = Fp/Fp+1 −→ Ep−1,k−p+1 = Fp−1/Fp ⊗ Ω1
Y (log S).
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We will call (
E =

⊕
p

Ep,k−p, θ =
⊕

θp,k−p

)

the (logarithmic) Higgs bundle of V, whereas the sheaves Ep,q are called the
Hodge bundles of bidegree (p, q).

Definition 2.2. For the Higgs bundle (E, θ) introduced above we define:

i. The support supp(E, θ) is the set of all m with Ek−m,m �= 0.
ii. (E, θ) has a connected support, if there exists some m0 ≤ m1 ∈ Z

with

supp(E, θ) = {m; m0 ≤ m ≤ m1} and if
θk−m,m �= 0 for m0 ≤ m ≤ m1 − 1.

iii. (E, θ) (or V) satisfies the Arakelov condition if (E, θ) has a con-
nected support and if for all m with m, m + 1 ∈ supp(E, θ) the
sheaves Ek−m,m and Ek−m−1,m+1 are μ-semistable and

μ(Ek−m,m) = μ(Ek−m−1,m+1) + μ(Ω1
Y (log S)).

3. Variations of Hodge structures over curves

Let us return to a projective curve Y , so S = Y \Y0 is a finite set of points.
The starting point of our considerations is the Simpson correspondence:

Theorem 3.1 ([Si90]). There exists a natural equivalence between the
category of direct sums of stable filtered regular Higgs bundles of degree zero,
and of direct sums of stable filtered local systems of degree zero.

We will not recall the definition of a “filtered regular” Higgs bundle
[Si90, page 717], and just remark that for a Higgs bundle corresponding
to a local system V with unipotent monodromy around the points in S the
filtration is trivial, and automatically deg(V) = 0.

By [De71] the local systems underlying a Z-variation of Hodge struc-
tures are semisimple, and by [De87] the same holds with Z replaced by C.
So one obtains:

Corollary 3.2. The logarithmic Higgs bundle of a polarized C-
variation of Hodge structures with unipotent monodromy in s ∈ S is
polystable of degree 0.

In [VZ03] and [VZ06] we discussed several versions of Arakelov inequal-
ities. Here we will only need the one for Ek,0, and we sketch a simplified
version of the proof:
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Lemma 3.3. Let V be an irreducible complex polarized variation of Hodge
structures over Y of weight k and with unipotent local monodromies in s ∈ S.
Write (E, θ) for the logarithmic Higgs bundle of V and assume that Ep,k−p =
0 for p < 0 and for p > k. Then one has:

a. μ(Ek,0) ≤ k

2
· deg(Ω1

Y (log S)).

b. 0 ≤ μ(Ek,0)
and the equality implies that V is unitary or equivalently that θ = 0.

c. The equality μ(Ek,0) =
k

2
· deg(Ω1

Y (log S)).

implies that the sheaves Ek−m,m are stable and that

θk−m,m : Ek−m,m −→ Ek−m−1,m+1 ⊗ Ω1
Y (log S)

is an isomorphism for m = 0, . . . , k − 1.

Proof. Let Gk,0 be a subsheaf of Ek,0, and let Gk−m,m be the (k −
m, m) component of the Higgs subbundle G = 〈Gk,0〉, generated by Gk,0.
By definition one has a surjection

Gk−m+1,m−1 −→ Gk−m,m ⊗ Ω1
Y (log S).

Its kernel Km−1, together with the 0-map is a Higgs subbundle of (E, θ),
hence of non-positive degree. Remark that

rk(Gk,0) ≥ rk(Gk−1,1) ≥ · · · ≥ rk(Gk−m,m).

So one finds

deg(Gk−m+1,m−1) ≤ deg(Gk−m,m) + rk(Gk−m,m) · deg(Ω1
Y (log S))(3.1)

≤ deg(Gk−m,m) + rk(Gk−1,1) · deg(Ω1
Y (log S)).

Iterating this inequality gives for m ≥ 1

deg(Gk,0) ≤ deg(Gk,0) − deg(K0)(3.2)

= deg(Gk−1,1) + rk(Gk−1,1) · deg(Ω1
Y (log S))

≤ deg(Gk−m,m) + m · rk(Gk−1,1) · deg(Ω1
Y (log S))

and adding up

(k + 1) deg(Gk,0) ≤ (k + 1) deg(Gk,0) − k · deg(K0)

≤
k∑

m=0

deg(Gk−m,m) +
k∑

m=1

m · rk(Gk−1,1) · deg(Ω1
Y (log S))

= deg(G) +
k · (k + 1)

2
· rk(Gk−1,1) · deg(Ω1

Y (log S)).
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Since G is a Higgs subbundle, deg(G) ≤ 0, and

(3.3) μ(Gk,0) ≤ deg(Gk,0)
rk(Gk−1,1)

≤ k

2
· deg(Ω1

Y (log S)).

Taking Gk,0 = Ek,0 one obtains the inequality in a).
If this is an equality, as assumed in c), then the right hand side of (3.3)

is an equality. Firstly, since the difference of the two sides is larger than a
positive multiple of deg(G) = 0, the latter is zero and the irreducibility of
V implies that G = E. Secondly the two inequalities in (3.2) have to be
equalities. The one on the right hand side gives rk(Ek−m,m) = rk(Ek−1,1)
for m = 2, . . . , k. The one on the left implies that deg(K0) = 0 and the
irreducibility of V shows that this is only possible for K0 = 0 hence if
rk(Ek,0) = rk(Ek−1,1). All together one finds that the surjections

Ek,0 −→ Ek−m,m ⊗ Ω1
Y (log S)m

are isomorphisms, for 1 ≤ m ≤ k. On the other hand the equality in c) and
the inequality (3.3) imply that for all subsheaves Gk,0

μ(Gk,0) ≤ k

2
· deg(Ω1

Y (log S)) = μ(Ek,0),

If this is an equality, then deg(G) = 0 and (G, θ|G) ⊂ (E, θ) splits. The
irreducibility implies again that (G, θ|G) = (E, θ), hence Ek,0 as well as all
the Ek−m,m are stable.

The sheaf Ek,0 with the 0-Higgs field is a Higgs quotientbundle of (E, θ),
hence of non-negative degree. If deg(Ek,0) = 0, then the surjection of Higgs
bundles (E, θ) → (Ek,0, 0) splits. The irreducibility of V together with
Theorem 3.1 implies that both Higgs bundles are the same, hence that θ = 0
and V unitary. So b) follows from a). �

Corollary 3.4. In Lemma 3.3 one has the inequality

(3.4) μ(Ek,0) − μ(E0,k) ≤ k · deg(Ω1
Y (log S)).

The equality in Lemma 3.3, c) is equivalent to the equality

(3.5) μ(Ek,0) − μ(E0,k) = k · deg(Ω1
Y (log S)).

In particular (3.5) implies that the sheaves Ek−m,m are stable and that

θk−m,m : Ek−m,m −→ Ek−m−1,m+1 ⊗ Ω1
Y (log S)

is an isomorphism for m = 0, . . . , k − 1.

Proof. For (3.4) one applies part a) of Lemma 3.3 to (E, θ) and to the
dual Higgs bundle (E∨, θ∨). The equality (3.5) implies that both, (E, θ) and
(E∨, θ∨) satisfy the Arakelov equality c) in Lemma 3.3.



ARAKELOV INEQUALITIES 253

Finally assume that the equation c) in Lemma 3.3 holds for (E, θ). Then

Ek,0 ∼= E0,k ⊗ Ω1
Y (log S)k and

μ(E∨k,0) = −μ(E0,k) = k · deg(Ω1
Y (log S)) − μ(Ek,0) =

k

2
· deg(Ω1

Y (log S)).

Adding this equality to the one in c) one gets (3.5). �

The inequality in part a) of Lemma 3.3 is not optimal. One can use the
degrees of the kernels Km to get correction terms. We will only work this
out for m = 0. What equalities are concerned, one does not seem to get
anything new.

Variant 3.5. In Lemma 3.6 one has the inequalities

(3.6)
deg(Ek,0)
rk(θk,0)

≤ k

2
· deg(Ω1

Y (log S)).

The equality in Lemma 3.3, c) is equivalent to the equality

(3.7)
deg(Ek,0)
rk(θk,0)

=
k

2
· deg(Ω1

Y (log S)).

Proof. The inequality is a repetition of the left hand side of (3.3) for
Gk,0 = Ek,0.

If θk,0 is an isomorphisms, hence if rk(Ek,0) = rk(θk,0), the two equali-
ties (3.7) and c) in Lemma 3.3 are the same. As stated in Lemma 3.3, the
equality c) implies that θk,0 is an isomorphisms, hence (3.7).

In the proof of Lemma 3.3 we have seen that the equality of the right
hand side of (3.3) implies that G = E, hence that the morphisms

θk−m,m : Ek−m,m −→ Ek−m−1,m+1 ⊗ Ω1
Y (log S)

are surjective for m = 0, . . . , m − 1. Using the left hand side of (3.2), one
finds that K0 = 0 hence that θk,0 is an isomorphisms. So (3.7) implies the
equality c). �

Replacing Y0 by an étale covering, if necessary, one may assume that
#S is even, hence that there exists a logarithmic theta characteristic L. By
definition L2 ∼= Ω1

Y (log S) and one has an isomorphism

τ : L −→ L ⊗ Ω1
Y (log S).

Since (L ⊕ L−1, τ) is an indecomposable Higgs bundle of degree zero,
Theorem 3.1 tell us that it comes from a local system L, which is easily
seen to be a variation of Hodge structures of weight 1. We will say that L
is induced by a logarithmic theta characteristic. Remark that L is unique
up to the tensor product with local systems, corresponding to two division
points in Pic0(Y ). By [VZ03, Proposition 3.4] one has:
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Addendum 3.6. Assume in Lemma 3.3 that #S is even and that L is
induced by a theta characteristic.

d. Then the equality μ(Ek,0) =
k

2
· deg(Ω1

Y (log S)) implies that there
exists an irreducible unitary local system T0 on Y0 with

V ∼= T0 ⊗ Sk(L).

Remark 3.7. In Addendum 3.6 the local monodromies of T0 are unipo-
tent and unitary, hence finite. So there exists a finite covering τ : Y ′ → Y ,
étale over Y0 such that τ∗T0 extends to a unitary local system T′ on Y ′.

The property d) in Addendum 3.6 is equivalent to the condition c) in
Lemma 3.3. In particular it implies that each Ek−m,m is the tensor product
of an invertible sheaf with the polystable sheaf T0 ⊗C OY . The Arakelov
equality implies that the Higgs fields are direct sums of morphisms between
semistable sheaves of the same slope. Then the irreducibility of V can be
used to show that T0 ⊗C OY and hence the Ek−m,m are stable.

Remark 3.8. Let us collect what we learned in the proof of Lemma 3.3.
• Simpson’s polystability of the Higgs bundles (E, θ) implies the

Arakelov inequality a) in Lemma 3.3 or inequality (3.4).
• The equality in part c) of Lemma 3.3 implies that the Hodge bun-

dles Ek−m,m are semistable and that the Higgs field is a morphism
of sheaves of the same slope.

• If one assumes in addition that V is irreducible, then the Ek−m,m

are stable sheaves.
As we will see in Section 6 the first two statements extend to families over a
higher dimensional base (satisfying the positivity condition (	) in 6.2), but
we doubt that the third one remains true without some additional numeri-
cally conditions.

Assume that W is the variation of Hodge structures given by a smooth
family f0 : X0 → Y0 of polarized manifolds with semistable reduction at
infinity, hence W = Rkf0∗CX0 . Let W = V1 ⊕ · · ·⊕ V� be the decomposition
of W as direct sum of irreducible local subsystems, hence of C irreducible
variations of Hodge structures of weight k. Replacing Vι by a suitable Tate
twist Vι(νι), and perhaps by its dual, one obtains a variation of Hodge
structures of weight kι = k − 2 · νι, whose Hodge bundles are concentrated
in bidegrees (kι − m, m) for m = 0, . . . , kι and non-zero in bidegree (kι, 0).
Applying Lemma 3.3 to Vι(νι) one gets Arakelov inequalities for all the Vι.
If all those are equalities, each of the Vι will satisfy the Arakelov condition
in Definition 2.2, iii, and for some unitary bundle Tι one finds Vι = Tι ⊗
Sk−2·νι(L)(−νι). We say that the Higgs field of W is strictly maximal in this
case (see [VZ03] for a motivation and for a slightly different presentation
of those results).
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Let us list two results known for families of Calabi-Yau manifolds, sat-
isfying the Arakelov equality.

Assumptions 3.9. Consider smooth morphisms f0 : X0 → Y0 over a
non-singular curve Y0, whose fibres are k-dimensional Calabi-Yau manifolds.
Assume that f0 extends to a semistable family f : X → Y on the compact-
ification Y of Y0. Let V be the irreducible direct factor of Rkf0∗CX0 with
Higgs bundle (E, θ), such that Ek,0 �= 0.

Theorem 3.10 ([Bo97], [Vo93], and [STZ03], see also [VZ03]).
For all k ≥ 1 there exist families f0 : X0 → Y0 satisfying the Assumptions
3.9, such that the Arakelov equality (3.5) holds for V. For families of K3-
surfaces, i.e. for k = 2, there exist examples with Y0 = Y projective.

For k = 1 those families are the universal families over elliptic modular
curves, hence Y0 is affine in this case. A similar result holds whenever the
dimension of the fibres is odd.

Theorem 3.11 ([VZ03]). Under the assumptions made in 3.9 assume
that k is odd and that V satisfies the Arakelov equality. Then S = Y \Y0 �= 0,
i.e. Y0 is affine.

It does not seem to be known whether for even k ≥ 4 there are families of
Calabi-Yau manifolds over a compact curve with V satisfying the Arakelov
equality.

The geometric implications of the Arakelov equality for V in 3.9 or of the
strict maximality of the Higgs field, are not really understood. The structure
Theorem 3.6 can be used to obtain some properties of the Mumford Tate
group, but we have no idea about the structure of the family or about the
map to the moduli scheme Mh. The situation is better for families of abelian
varieties. So starting from the next section we will concentrate on polarized
variations of Hodge structures of weight one.

4. Arakelov equality and geodecity of curves in Ag

Assumptions 4.1. Keeping the assumptions from the last section, we
restrict ourselves to variations of Hodge structures of weight one, coming
from families f0 : X0 → Y0 of abelian varieties. Replacing Y0 by an étale
covering allows to assume that f0 : X0 → Y0 is induced by a morphism ϕ0 :
Y0 → Ag where Ag is some fine moduli scheme of polarized abelian varieties
with a suitable level structure, and that the local monodromy in s ∈ S of
WQ = R1f0∗QX0 is unipotent. Let us fix a toroidal compactification Ag,
as considered by Mumford in [Mu77]. In particular Ag is non-singular, the
boundary divisor SAg

has non-singular components, and normal crossings,
Ω1

Ag
(log SAg

) is nef and ωAg
(SAg

) is ample with respect to Ag.
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In [MV08] we give a differential geometric characterization of mor-
phisms ϕ0 : Y0 → Ag for which the induced C-variation of Hodge struc-
tures W contains a non-unitary C-subvariation V with Higgs bundle (E, θ),
satisfying the Arakelov equality

(4.1) μ(E1,0) =
1
2

· deg(Ω1
Y (log S)).

To this aim we need:

Definition 4.2. Let M be a complex domain and W be a subdomain.
W is a totally geodesic submanifold for the Kobayashi metric if the restriction
of the Kobayashi metric on M to W coincides with the Kobayashi metric
on W . If W = Δ we call Δ a (complex) Kobayashi geodesic.

A map ϕ0 : Y0 → Ag is a Kobayashi geodesic, if its universal covering
map

ϕ̃0 : Ỹ0 ∼= Δ −→ Hg

is a Kobayashi geodesic. In particular here a Kobayashi geodesic will always
be one-dimensional.

Theorem 4.3. Under the assumptions made in 4.1 the following condi-
tions are equivalent:

a. ϕ0 : Y0 → Ag is Kobayashi geodesic.
b. The natural map ϕ∗Ω1

Ag
(log SAg

) → Ω1
Y (log S) splits.

c. W contains a non-unitary irreducible subvariation of Hodge struc-
tures V which satisfies the Arakelov equality (4.1).

The numerical condition in Theorem 4.3 indicates that Kobayashi
geodesic in Ag are “algebraic objects”. In fact, as shown in [MV08] one
obtains:

Corollary 4.4. Let ϕ0 : Y0 → Ag be an affine Kobayashi geodesic,
such that the induced variation of Hodge structures WQ is Q-irreducible.
Then ϕ0 : Y0 → Ag can be defined over a number field.

Geodesics for the Kobayashi metric have been considered in [Mö06]
under the additional assumption that f0 : X0 → Y0 is a family of Jacobians of
a smooth family of curves. In this case ϕ0(Y0) is a geodesic for the Kobayashi
metric if and only if the image of Y0 in the moduli scheme Mg of curves
of genus g with the right level structure is a geodesic for the Teichmüller
metric, hence if and only if Y0 is a Teichmüller curve. In particular Y0 will
be affine and the irreducible subvariation V in Theorem 4.3 will be of rank
two. By Addendum 3.6 it is given by a logarithmic theta characteristic on Y .
Using the theory of Teichmüller curves (see [McM03]), one can deduce that
there is at most one irreducible direct factor V which satisfies the Arakelov
equality.
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The Theorem 4.3 should be compared with the results of [VZ04b].
Starting from Lemma 3.3 and the addendum 3.6 it is shown that under the
assumptions 4.1 Y0 (or to be more precise, an étale finite cover of Y0) is a rigid
Shimura curve with universal family f0 : X0 → Y0 if the Arakelov equality
holds for all irreducible C-subvariations of Hodge structures of R1f0∗CX0 .
Recall that “rigid” means that there are no non-trivial extensions of f0 to
a smooth family f : X0 → T × Y0 with dimT > 0. If one allows unitary
direct factors, and requires the Arakelov equality just for all non-unitary
subvariations V, then Y0 ⊂ Ag is a deformation of a Shimura curve or, using
the notation from [Mu69], the family f0 : X0 → Y0 is a Kuga fibre space.

In [Mö05] it is shown (see also [MVZ07, Section 1]), that for all Kuga
fibre spaces and all non-unitary irreducible V ⊂ R1f0∗CX0 the Arakelov
equality holds. In [MVZ07] this was translated to geodecity for the Hodge
(or Bergman-Siegel) metric, and we can restate the main result of [VZ04b]
in the following form:

Theorem 4.5. Keeping the notations and assumptions introduced in 4.1,
the following conditions are equivalent:

a. ϕ0 : Y0 → Ag is a geodesic for the Hodge metric on Ag.
b. The natural map ϕ∗Ω1

Ag
(log SAg

) → Ω1
Y (log S) splits orthogonal for

the Hodge metric.
c. All non-unitary irreducible C-subvariations of Hodge structures

V ⊂ W satisfy the Arakelov equality.
d. f0 : X0 → Y0 is a Kuga fibre space over the curve Y0.

Example 4.6. One can ask, whether a geodesic for the Hodge metric
on Ag can lie completely in Mg, or in different terms, whether there exists a
family of smooth curves over Y0, such that the induced family of Jacobians
is a Kuga fibre space. This is of course true for modular families of elliptic
curves.

In [VZ06] it was shown that for a Hodge geodesic in Mg the rang of the
maximal non-unitary part of the corresponding variation of Hodge structures
has to be 2. So by [Mö06] Y0 is a Teichmüller curve and Y0 is affine. By
[Mö05] the only “Shimura-Teichmüller curve”, i.e. the only Hodge geodesics
in Mg, exists for g = 3. Up to étale coverings, there is only one example.

5. Milnor-Wood inequalities

Before we discuss families of abelian varieties over a higher dimensional
base, let us mention a numerical condition, which applies to a different class
of Higgs bundles over curves Y , the Milnor-Wood inequality for the Toledo
invariant. We refere to [BGG06] for an introduction and for a guide to the
literature.

Let T be a local system, induced by a representation of π1(Y, ∗) in a
connected non-compact semi-simple real Lie group G. Since the representa-
tions of the fundamental group of Y are not semi-simple we can not apply
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Simpson’s correspondence stated in Theorem 3.1. As in [BGG06, Section
2] one has to add on the representation side the condition “reductive” and
on the Higgs bundle side the condition “polystable”.

As explained in [BGG06, Section 3.2], for G = SU(p, q) (or for G =
Sp(2n, R)) the corresponding Higgs bundle (F, ψ) is given by two locally
free sheaves V and W on Y of rank p and q, respectively, and the Higgs field
ψ is the direct sum of two morphisms

β : W −→ V ⊗ Ω1
Y and γ : V −→ W ⊗ Ω1

Y .

For G = Sp(2n, R) one has p = q = n and W = V∨. Moreover β and γ are
dual to each other.

The Toledo invariant of T or of (F, τ) is

τ(T) = τ((F, ψ)) = deg(V) = − deg(W),

and the classical Milnor-Wood inequality says that

|τ(T)| ≤ Min{p, q} · (g − 1).

In fact, on page 194 of [BGG06] one finds a more precise inequality, and
again equality has strong implications on the structure of the Higgs field:

Proposition 5.1. Let T be a local system on Y0 induced by a repre-
sentation of π1(Y, ∗) in SU(p, q) (or in Sp(2n, R)). Assume that the Higgs
bundle

(F = V ⊕ W, ψ = γ + β)
is stable, where

γ : V −→ W ⊗ Ω1
Y (log S) and β : W −→ V ⊗ Ω1

Y (log S).

Then

(5.1) −rk(β) · deg(Ω1
Y ) ≤ −2 · deg(W) = 2 · deg(V) ≤ rk(γ) · deg(Ω1

Y ).

The inequality 2 · deg(V) ≤ rk(γ) · deg(Ω1
Y ) is strict, except if γ is an iso-

morphism (and hence rk(V) = rk(W)).

Proof. It is sufficient to prove the inequality on the right hand side.
The other one follows by interchanging the role of p and q, hence of V
and W. Since this inequality is compatible with exact sequences of Higgs
bundles, the Jordan-Hölder filtration for Higgs bundles allows to assume
that (F = V ⊕ W, ψ = γ + β) is stable.

The subbundle G = V ⊕ γ(V) ⊗ (Ω1
Y )−1 of (F, θ) and the kernel K of

V → γ(V) are compatible with the Higgs field, hence

2 · deg(V) − rk(γ(V)) · deg(Ω1
Y )

≤ deg(V) + deg(γ(V)) − rk(γ(V)) · deg(Ω1
Y ) ≤ 0.

If equality holds, the stability implies that K is zero and that G = F . In
particular γ is an isomorphism. �
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Example 5.2. Let (E, θ) be the Higgs bundle of a polarized variation
of Hodge structures of weight one. Then one could choose V = E1,0 and
W = E0,1. Since β = 0 and θ = γ the inequality (5.1) says that

0 ≤ 2 · deg(V) ≤ rk(γ) · deg(Ω1
Y ),

hence it coincides with the inequality (3.6) in Variant 3.5.

Example 5.3 (Kang Zuo). Let (E, θ) be the Higgs field of a variation
of Hodge structures of weight k, with k odd. Choose

V =

k−1
2⊕

m=0

Ek−2m,2m and W =

k−1
2⊕

m=0

Ek−2m−1,2m+1,

and for γ and β the restriction of the Higgs field. The Milnor-Wood inequal-
ity says that

(5.2) −
k−1
2∑

m=0

deg(Ek−2m−1,2m+1) =

k−1
2∑

m=0

deg(Ek−2m,2m) ≤ 1
2

· deg(Ω1
Y ).

The Arakelov equality in Lemma 3.3, c) implies that (5.2) is an equality. On
the other hand, having equality in (5.2) just implies that the morphisms

θk−m,m : Ek−m,m −→ Ek−m−1,m+1 ⊗ Ω1
Y

are isomorphisms for m even, but it says nothing about the other components
of the Higgs field. So the two equalities are not equivalent. To get an explicit
example, consider Y = P1 and S = {0, 1,∞}. Choose

E3,0 = OP1(1), E2,1 = OP1 E1,2 = OP1 E0,3 = OP1(−1).

So θ3,0 and θ1,2 are isomorphisms, whereas θ2,1 : OP1 → Ω1
P1(log(0+1+∞))

is injective and has a zero in some point, say 2. The degree of E is zero,
and obviously the Higgs bundle is stable. Hence by Theorem 3.1 (E, θ) is
the Higgs bundle of a local system, and by construction the local system
underlies a polarized variation of Hodge structures.

This is one example for which (5.1) is an equality, without V or W
being stable, a quite common effect which will be studied in a follow-up of
[BGG06] in more details.

6. Arakelov inequalities for variations of Hodge structures of
weight one over a higher dimensional base

From now on Y denotes a projective manifold and S a normal crossing
divisor in Y with Y0 = Y \S. We will need some positivity properties of the
sheaf of differential forms on the compactification Y of Y0.

Assumptions 6.1. We suppose that
(	) Ω1

Y (log S) is nef and ωY (S) is ample with respect to Y0.
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As a motivation, assume for the moment that Y0 ⊂ Ag is a Shimura
variety, or that there is a Kuga fibre space f0 : X0 → Y0. In both cases
Y0 is the quotient of a bounded symmetric domain and replacing Y0 by an
étale finite cover, we may choose for Y a Mumford compactification, i.e.
a toroidal compactification, as studied in [Mu77]. There it is shown that
Ω1

Y (log S) is nef, and that Y maps to the Baily-Borel compactification. Then
the finiteness of Y0 → Ag implies that ωY (S) is ample with respect to Y0.

The main reason why we need an extra condition is Yau’s Uniformization
Theorem ([Ya93], discussed in [VZ07, Theorem 1.4]), saying that (	) forces
the sheaf Ω1

Y (log S) to be μ-polystable. Here, as in Definition 2.1, we will
consider for coherent sheaves F the slope μ(F) with respect to ωY (S).

Usually to define stability and semistability on higher dimensional pro-
jective schemes, one considers slopes with respect to polarizations. Replacing
“ample” by “nef and big”, hence considering semi-polarizations there might
exist effective boundary divisors D not recognized by the slope. So one has
to identify μ-equivalent subsheaves.

Definition 6.2.
1. A subsheaf G of F is μ-equivalent to F , if F/G is a torsion sheaf

and if c1(F) − c1(G) is the class of an effective divisor D with
μ(OY (D)) = 0.

2. G ⊂ F is saturated, if F/G is torsion free.
3. F is weakly μ-polystable, if it is μ-equivalent to a μ-polystable

subsheaf.

The way it is stated, Theorem 3.1 only generalizes to a higher dimen-
sional base Y0 if Y0 = Y is compact. For variations of Hodge structures
however the polystability of the induced Higgs bundle remains true and, as
recalled in [VZ07, Proposition 2.4], there is no harm in working with the
“semi-polarization” ωY (S).

Proposition 6.3. Let E be the logarithmic Higgs bundle of a C-variation
of Hodge structures W on Y0 with unipotent local monodromy around the
components of S. If G ⊂ E is a sub-Higgs sheaf then for all dim(Y ) − 1 ≥
ν ≥ 0 and for all ample invertible sheaves H on Y one has

(6.1) c1(G).c1(ωY (S))dim(Y )−ν−1.c1(H)ν ≤ 0.

Moreover, if G ⊂ E is saturated the following conditions are equivalent:
(1) For some ν ≥ 0 and for all ample invertible sheaves H the equality

holds in (6.1).
(2) For all ν and for all ample invertible sheaves H the equality holds

in (6.1).
(3) G is induced by a local sub-system of W.

Most of the standard properties of stable and semistable sheaves carry
over to the case of a semi-polarization, hence to the slope with respect to
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the nef and big sheaf ωY (S). In particular one can show the existence of
maximal μ-semistable destabilizing subsheaves, hence the existence of the
Harder-Narasimhan filtration. In addition the tensor product of μ-semistable
sheaves is again μ-semistable.

The starting point of [VZ07] was a generalization of the Arakelov
inequality (3.5) for k = 1 to a higher dimensional base. It is a direct conse-
quence of the Simpson correspondence, as stated in Proposition 6.3, using
quite annoying calculations of slopes and degrees. Following a suggestion of
Martin Möller we present below a simplified version of those calculations.

Theorem 6.4. Under the Assumption (	) consider a polarized C-varia-
tion of Hodge structures V on Y0 with logarithmic Higgs bundle (E, θ).
Assume that V is non-unitary, irreducible and that the local monodromy
in s ∈ S is unipotent. Then

(6.2) μ(V) := μ(E1,0) − μ(E0,1) ≤ μ(Ω1
Y (log S)).

The equality μ(V) = μ(Ω1
Y (log S)) implies that E1,0 and E0,1 are both

μ-semistable.

Proof. Consider the Harder-Narasimhan filtrations

0 = G0 � G1 � · · · � G� = E1,0 and 0 = G′
0 � G′

1 � · · · � G′
�′ = E0,1.

Next choose two sequences of maximal length

0 = j0 < j1 < · · · < jr = � and 0 = j′
0 < j′

1 < · · · < j′
r = �′, with

θ(Gjι) ⊂ G′
j′
ι
⊗ Ω1

Y (log S), θ(Gjι−1+1) �⊂ G′
j′
ι−1 ⊗ Ω1

Y (log S)(6.3)

and hence θ(Gjι) �⊂ G′
j′
ι−1 ⊗ Ω1

Y (log S).

Starting with j0 = j′
0 = 0 this can be done in the following way. Assume one

has defined jι−1 and j′
ι−1. Then j′

ι is the minimal number with

θ(Gjι−1+1) ⊂ G′
j′
ι
⊗ Ω1

Y (log S),

and jι is the maximum of all j with

θ(Gj) ⊂ G′
j′
ι
⊗ Ω1

Y (log S).

Writing E1,0
ι = Gjι and E0,1

ι = G′
j′
ι

we obtained two filtrations

0 = E1,0
0 � E1,0

1 � · · · � E1,0
r = E1,0 and

0 = E0,1
0 � E0,1

1 � · · · � E0,1
r = E0,1.

Let us define F p,q
ι = Ep,q

ι /Ep,q
ι−1. Remark that F p,q

ι is not necessarily μ-
semistable. For (p, q) = (1, 0) for example, the Harder Narasimhan filtration
is given by

0 = Gjι−1/Gjι−1 � Gjι−1+1/Gjι−1 � · · · � Gjι/Gjι−1 = F 1,0
ι .
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So

(6.4) μ(Gjι−1+1/Gjι−1) ≥ μ(F 1,0
ι ) ≥ μ(Gjι/Gjι−1)

and, replacing G by G′ and j by j′,

(6.5) μ(G′
j′
ι−1+1/G′

j′
ι−1

) ≥ μ(F 0,1
ι ) ≥ μ(G′

j′
ι
/G′

j′
ι−1).

Claim 6.5.
A. (c1(E

1,0
ι )+c1(E

0,1
ι )) ·c1(ωY (S))dim(Y )−1 ≤ 0 for all ι ∈ {1, . . . , r}.

B. μ(E1,0
1 ) > μ(F 1,0

2 ) > · · · > μ(F 1,0
r ) > 0

0 > μ(E0,1
1 ) > μ(F 0,1

2 ) > · · · > μ(F 0,1
r ).

Proof. By (6.3) (Eι = E1,0
ι ⊕E0,1

ι , θ|Eι) is a Higgs subbundle of (E, θ).
So A) follows from Proposition 6.3. Since (E0,1

1 , 0) is a Higgs subbundle
of (E, θ) and since (F 1,0

r , 0) is a quotient Higgs bundle, one also obtains
μ(F 1,0

r ) > 0 > μ(E0,1
1 ).

The slope inequalities

μ(Gjι/Gjι−1) > μ(Gjι+1/Gjι) and μ(G′
j′
ι
/G′

j′
ι−1) > μ(G′

j′
ι+1/G′

j′
ι
),

together with (6.4) and (6.5), imply the remaining inequalities in B). �

Claim 6.6. μ(E1,0)−μ(E0,1) ≤ Max{μ(F 1,0
κ )−μ(F 0,1

κ ); κ = 1, . . . , r}
and the equality is strict except if r = 1.

Before proving Claim 6.6 let us finish the proof of Theorem 6.4. By (6.3)
the Higgs field θ induces a non-zero map

(6.6) Gjι−1+1/Gjι−1 −→
(
G′

j′
ι
/G′

j′
ι−1

)
⊗ Ω1

Y (log S).

The semistability of both sides of (6.6) implies that

μ(Gjι−1+1/Gjι−1) ≤ μ(G′
j′
ι
/G′

j′
ι−1) + μ(Ω1

Y (log S)).

By (6.4) and (6.5) one has

(6.7) μ(Gjι−1+1/Gjι−1) ≥ μ(F 1,0
ι ) and μ(F 0,1

ι ) ≥ μ(G′
j′
ι
/G′

j′
ι−1).

and altogether

(6.8)
μ(F 1,0

ι ) − μ(F 0,1
ι ) ≤ μ(Gjι−1+1/Gjι−1) − μ(G′

j′
ι
/G′

j′
ι−1) ≤ μ(Ω1

Y (log S)).

For j = r the first part of Claim 6.6 implies that μ(E1,0) − μ(E0,1) ≤
μ(Ω1

Y (log S)) as claimed in (6.2). This can only be an equality if r = 1,
hence j1 = � and j′

1 = �′.
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In addition, the equality in (6.2) can only hold if (6.8) is an equality.
Then the two inequalities in (6.7) have to be equalities as well. By the
definition of the Harder-Narasimhan filtration the equalities

μ(G1) = μ(E1,0) and μ(E0,1) = μ(G′
�′/G′

�′−1)

imply that � = �′ = 1, hence that E1,0 and E0,1 are both μ-semistable. �

Proof of Claim 6.6. We will try to argue by induction on the length
of the filtration, starting with the trivial case r = 1. Unfortunately this forces
us to replace the rank of the F 0,1

i by some virtual rank. We define:

(1) γi = c1(Fi).c1(ωY (S))dim(Y )−1.

(2) μp,q
i = μ(F p,q

i ) and Δi = μ1,0
i − μ0,1

i .

(3) ρ1,0
i = rk(F 1,0

i ) and ρ0,1
i = rk(F 0,1

i ) − γi

μ0,1
i

.

(4) For 0 < κ ≤ �

sp,q
κ =

κ∑
i=1

ρp,q
i , Υ 1,0

κ =
∑κ

i=1 μ1,0
i · ρ1,0

i

s1,0
κ

, Υ 0,1
κ =

∑κ
i=1 μ0,1

i · ρ0,1
i

s0,1
κ

,

and δκ = Υ 1,0
κ − Υ 0,1

κ .
Remark that Υ 1,0

κ is the slope of the sheaf E1,0
κ , whereas Υ 0,1

κ is just a virtual
slope without any geometric meaning.

By the choice of ρ0,1
i one finds

ρ1,0
i · μ1,0

i + ρ0,1
i · μ0,1

i = rk(F 1,0
i ) · μ1,0

i + rk(F 0,1
i ) · μ0,1

i − γi = 0

and we can state:

(5) ρ1,0
i · μ1,0

i = −ρ0,1
i · μ0,1

i and hence ρ0,1
i > 0.

Recall that the condition B) in Claim 6.4 says that −μ1,0
κ > −μ1,0

i and
μ0,1

i > μ0,1
κ for i < κ. This implies

s1,0
κ · ρ0,1

κ · μ0,1
κ =

κ∑
i=1

ρ1,0
i · ρ0,1

κ · μ0,1
κ =

κ∑
i=1

ρ1,0
i · ρ1,0

κ · (−μ1,0
κ )

≥
κ∑

i=1

ρ1,0
i · ρ1,0

κ · (−μ1,0
i ) =

κ∑
i=1

ρ0,1
i · ρ1,0

κ · μ0,1
i

≥
κ∑

i=1

ρ0,1
i · ρ1,0

κ · μ0,1
κ = s0,1

κ · ρ1,0
κ · μ0,1

κ .

Since μ0,1
κ is negative, one gets

(6) s1,0
κ · ρ0,1

κ ≤ s0,1
κ · ρ1,0

κ or equivalently s1,0
κ−1 · ρ0,1

κ ≤ s0,1
κ−1 · ρ1,0

κ .

The induction step will use the next claim.
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Claim 6.7. For 0 < κ ≤ � one has δκ ≤ Max{δκ−1, Δκ}, with equality
if and only if δκ−1 = Δκ and ρ1,0

κ · s0,1
κ = ρ0,1

κ · s1,0
κ .

Proof. We let A = s1,0
κ−1 · s0,1

κ−1, B = ρ1,0
κ · ρ0,1

κ , C = s1,0
κ−1 · ρ0,1

κ and
D = ρ1,0

κ · s0,1
κ−1. By (6) one has D − C ≥ 0. Then

s1,0
κ · s0,1

κ · δκ =
κ∑

i=1

(
μ1,0

i · ρ1,0
i · s0,1

κ − μ0,1
i · ρ0,1

i · s1,0
κ

)
= μ1,0

κ · ρ1,0
κ · s0,1

κ

− μ0,1
κ · ρ0,1

κ · s1,0
κ +

κ−1∑
i=1

(
μ1,0

i · ρ1,0
i · s0,1

κ − μ0,1
i · ρ0,1

i · s1,0
κ

)

= B · Δκ + A · δκ−1 + C · (Υ 1,0
κ−1 − μ0,1

κ ) + D · (μ1,0
κ − Υ 0,1

κ−1)

= B · Δκ + A · δκ−1 + C · (δκ−1 + Δκ) + (D−C) · (μ1,0
κ −Υ 0,1

κ−1).

Since μ1,0
κ < μ1,0

i for i < κ one finds μ1,0
κ < Υ 1,0

κ−1 and

(A + B + C + D) · δκ ≤ B · Δκ + A · δκ−1 + C · Δκ + D · δκ−1.

This implies the inequality in Claim 6.7. If the equality holds, Δκ = δκ−1
and

0 = D − C = ρ1,0
κ · s0,1

κ−1 − s1,0
κ−1 · ρ0,1

κ = ρ1,0
κ · s0,1

κ − s1,0
κ · ρ0,1

κ . �

Claim 6.8. One has the inequality μ(E1,0)−μ(E0,1) ≤ δr and the equal-
ity can only hold for γ1 = · · · = γr = 0.

Proof. Since μ(E1,0) = Υ 1,0
r it remains to verify that μ(E0,1) ≥ Υ 0,1

r .
As a first step,

( r∑
i=1

ρ0,1
i

)
− rk(E0,1) =

r∑
i=1

(
ρ0,1

i − rk(F 0,1
i )

)
=

r∑
i=1

−γi

μ0,1
i

(6.9)

=
−γi

μ0,1
r

·
( r∑

i=1

γi

)
+

r−1∑
i=1

μ0,1
i − μ0,1

i+1

μ0,1
i · μ0,1

i+1

·
( i∑

j=1

γj

)
.

Since
∑i

j=1 γj ≤ 0 and equal to zero for i = r, and since
μ0,1

i − μ0,1
i+1

μ0,1
i · μ0,1

i+1

is

positive, one obtains
r∑

i=1

ρ0,1
i ≤ rk(E0,1).

Then

μ(E0,1) =
∑r

i=1 μ0,1
i · rk(F 0,1

i )
rk(E0,1)

=
∑r

i=1 μ0,1
i · ρ0,1

i

rk(E0,1)
+

∑r
i=1 γ0,1

i

rk(E0,1)

=
∑r

i=1 μ0,1
i · ρ0,1

i

rk(E0,1)
≥

∑r
i=1 μ0,1

i · ρ0,1
i∑r

i=1 ρ0,1
i

= Υ 0,1
r ,
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as claimed. The equality implies that the expression in (6.9) is zero, which
is only possible if γ1 = · · · = γr = 0. �

Using the Claims 6.7 and 6.8 one finds that

μ(E1,0) − μ(E0,1) ≤ δr ≤ Max{δr−1, Δr} ≤ Max{δr−2, Δr−1, Δr} ≤
· · · ≤ Max{Δ1, . . . ,Δr−1, Δr}.

The equality implies that for all κ the inequalities in Claims 6.7 and 6.8
are equalities. The second one implies that for all κ one has γκ = 0, hence
ρ0,1

κ = rk(F 0,1
κ ), and the first one that

0 = ρ1,0
κ · s0,1

κ − ρ0,1
κ · s1,0

κ = rk(F 1,0
κ ) · s0,1

κ − rk(F 0,1
κ ) · s1,0

κ . �

As for variation of Hodge structures over curves, the Arakelov inequality
(6.2) is a direct consequence of the polystability of the Higgs bundle (E, θ).
The Arakelov equality μ(V) = μ(Ω1

Y (log S)) allows to deduce the semista-
bility of the sheaves E1,0 and E0,1. However, we do not know whether one
gets the stability, as it has been the case over curves (see 3.4). Although we
were unable to construct an example, we do not expect this.

So it seems reasonable to ask, which additional conditions imply the
stability of the sheaves E1,0 and E0,1.

7. Geodecity of higher dimensional subvarieties in Ag

Let us recall the geometric interpretation of the Arakelov equality, shown
in [VZ07] and [MVZ07].

Assumptions 7.1. We keep the assumptions and notations from Sec-
tion 6. Hence Y is a projective non-singular manifold, and Y0 ⊂ Y is open
with S = Y \Y0 a normal crossing divisor. We assume the positivity condition
(	) and we consider an irreducible polarized C-variation of Hodge structures
V of weight one with unipotent monodromies around the components of S.
As usual its Higgs bundle will be denoted by (E, θ).

The first part of Yau’s Uniformization Theorem ([Ya93], discussed in
[VZ07, Theorem 1.4]) was already used in the last section. It says that the
Assumption (	) forces the sheaf Ω1

Y (log S) to be μ-polystable. The second
part gives a geometric interpretation of stability properties of the direct
factors. Writing

(7.1) Ω1
Y (log S) = Ω1 ⊕ · · · ⊕ Ωs

for its decomposition as direct sum of μ-stable sheaves and ni = rk(Ωi), we
say that Ωi is of type A, if it is invertible, and of type B, if ni > 1 and if for
all � > 0 the sheaf S�(Ωi) is μ-stable. In the remaining cases, i.e. if for some
� > 1 the sheaf S�(Ωi) is μ-unstable, we say that Ωi is of type C.
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Let π : Ỹ0 → Y0 denote the universal covering with covering group Γ.
The decomposition (7.1) of Ω1

Y (log S) gives rise to a product structure

Ỹ0 = M1 × · · · × Ms,

where ni = dim(Mi). The second part of Yau’s Uniformization Theorem
gives a criterion for each Mi to be a bounded symmetric domain. This is
automatically the case if Ωi is of type A or C. If Ωi is of type B, then Mi is
a ni-dimensional complex ball if and only if

(7.2)
[
2 · (ni + 1) · c2(Ωi) − ni · c1(Ωi)2

]
.c(ωY (S))dim(Y )−2 = 0.

Definition 7.2. The variation of Hodge structures V is called pure (of
type i) if the Higgs field factors like

E1,0 −→ E0,1 ⊗ Ωi ⊂ E0,1 ⊗ Ω1
Y (log S)

(for some i = i(V)).

If one knows that Ỹ0 is a bounded symmetric domain, hence if (7.2) holds
for all direct factors of type B, one obtains the purity of V as a consequence
of the Margulis Superrigidity Theorem:

Theorem 7.3. Suppose in 7.1 that Ỹ0 is a bounded symmetric domain.
Then V is pure.

Sketch of the proof. Assume first that Y0 = U1 × U2. By [VZ05,
Proposition 3.3] an irreducible local system on V is of the form pr∗

1V1 ⊗
pr∗

2V2, for irreducible local systems Vi on Ui with Higgs bundles (Ei, θi).
Since V is a variation of Hodge structures of weight 1, one of those, say V2
has to have weight zero, hence it must be unitary.

Then the Higgs field on Y0 factors through E0,1 ⊗ Ω1
U1

. By induction on
the dimension we may assume that V1 is pure of type ι for some ι with Mι

a factor of Ũ1. Hence the same holds true for V.
So we may assume that all finite étale coverings of Y0 are indecom-

posable. By [Zi84] § 2.2, replacing Γ by a subgroup of finite index, hence
replacing Y0 by a finite unramified cover, there is a partition of {1, . . . , s} into
subsets Ik such that Γ =

∏
k Γk and Γk is an irreducible lattice in

∏
i∈Ik

Gi.
Here irreducible means that for any normal subgroup N ⊂

∏
i∈Ik

Gi the
image of Γk in

∏
i∈Ik

Gi/N is dense. Since the finite étale coverings of Y0 are
indecomposable, Γ is irreducible, so I1 = {1, . . . , s}.

If s = 1 or if V is unitary, the statement of the proposition is triv-
ial. Otherwise, G :=

∏s
i=1 Gi is of real rank ≥ 2 and the conditions of

Margulis’ superrigidity theorem (e.g. [Zi84, Theorem 5.1.2 ii)]) are met. As
consequence, the homomorphism Γ → Sp(V, Q), where V is a fibre of V
and where Q is the symplectic form on V , factors through a representation
ρ : G → Sp(V, Q). Since the Gi are simple, we can repeat the argument
from [VZ05, Proposition 3.3], used above in the product case: ρ is a tensor
product of representations, all of which but one have weight 0. �
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The next theorem replaces the condition that Ỹ0 is a bounded symmetric
domain by the Arakelov equality.

Theorem 7.4. Suppose in 7.1 that V satisfies the Arakelov equality

μ(V) = μ(Ω1
Y (log S)).

Then V is pure.

The two Theorems 6.4 and 7.4 imply that the Higgs field of V is given
by a morphism

E1,0 −→ E0,1 ⊗ Ωi

between μ-semistable sheaves of the same slope. If Ωi is of type A or C this
implies geodecity (for the Hodge or Bergman metric) in period domains of
variation of Hodge structures of weight one.

Theorem 7.5. Suppose in Theorem 7.4 that for i = i(V) the sheaf Ωi

is of type A or C. Let M ′ denote the period domain for V. Then the period
map factors as the projection Ỹ0 → Mi and a totally geodesic embedding
Mi → M ′.

If Ωi is of type B we need some additional numerical invariants in order
to deduce a similar property.

Let (F, τ) be any Higgs bundle, not necessarily of degree zero. For � =
rk(F 1,0) consider the Higgs bundle

�∧
(F, τ) =

( �⊕
i=0

F �−i,i,

�−1⊕
i=0

τ�−i,i

)
with

F �−m,m =
�−m∧

(F 1,0) ⊗
m∧

(F 0,1) and with(7.3)

τ�−m,m :
�−m∧

(F 1,0) ⊗
m∧

(F 0,1) −→
�−m−1∧

(F 1,0) ⊗
m+1∧

(F 0,1) ⊗ Ω1
Y (log S)

induced by τ . Then F �,0 = det(F 1,0) and 〈det(F 1,0)〉 denotes the Higgs
subbundle of

∧�(F, τ) generated by det(F 1,0). Writing

τ (m) = τ�−m+1,m−1 ◦ · · · ◦ τ�,0,

we define as a measure for the complexity of the Higgs field

ς((F, τ)) := Max{m ∈ N; τ (m)(det(F 1,0)) �= 0}
= Max{m ∈ N; 〈det(F 1,0)〉�−m,m �= 0}.

For the Higgs bundle (E, θ) of V, we write ς(V) = ς((E, θ)).
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Lemma 7.6. Suppose in 7.1 that V satisfies the Arakelov equality and,
using the notation from Theorem 7.4, that for i = i(V) the sheaf Ωi is of
type B (or of type A). Then

(7.4) ς(V) ≥ rk(E1,0) · rk(E0,1) · (ni + 1)
rk(E) · ni

.

Moreover (7.4) is an equality if and only if the kernel of the morphism

Hom(E0,1, E1,0) → Ω1
Y (log S),

induced by θ, is a direct factor of Hom(E0,1, E1,0).

Here again one uses Simpson’s polystability, applied to the variation of

Hodge structures
�∧

V with Higgs bundle
�∧

(E, θ).

Theorem 7.7. Suppose in Theorem 7.4 that for i = i(V) the sheaf Ωi is
of type A or B. Assume that one has the length equality

(7.5) ς(V) =
rk(E1,0) · rk(E0,1) · (ni + 1)

rk(E) · ni
.

Then
a. Mi is the complex ball SU(1, ni)/K, and V is the tensor product

of a unitary representation with a wedge product of the standard
representation of SU(1, ni).

b. Let M ′ denote the period domain for V. Then the period map fac-
tors as the projection Ỹ0 → Mi and a totally geodesic embedding
Mi → M ′.

In Theorem 7.7, a) the Higgs field of the standard representation of
SU(1, ni) (or of its dual) is given by

E1,0 = ω
− 1

ni+1
i ⊗ Ωi, E

0,1 = ω
− 1

ni+1
i and θ = id : ω

− 1
ni+1

i ⊗ Ωi −→ ω
− 1

ni+1
i ⊗ Ωi,

where ω
− 1

ni+1
i stands for an invertible sheaf, whose (ni + 1)-st power is

det(Ωi).

Remark 7.8. We do not know, whether the Arakelov equality implies
the condition (7.5). In [MVZ07] this implication has been verified for
rk(V) ≤ 7. Nevertheless, the necessity of the Yau-equality in the charac-
terization of complex ball quotients indicates that besides of the Arakelov
equality one needs a second condition, presumably one using second Chern
classes.

Although the second Chern class does not occur in Theorem 7.7 it seem
to be hidden in the condition on the length of the Higgs field stated there.
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As an illustration of the latter, let us consider a second numerical invariant,
the discriminant. Recall that for a torsion free coherent sheaf F on Y

δ(F) =
[
2 · rk(F) · c2(F) − (rk(F) − 1) · c1(F)2

]
· c1(ωY (S))dim(Y )−2.

For the Higgs bundle (E, θ) of V we define δ(V) = Min{δ(E1,0), δ(E0,1)}.
The Bogomolov inequality for semi-stable locally free sheaves allows to

state as a corollary of Theorem 6.4:

Corollary 7.9. Keeping the assumptions and notations from Theo-
rem 6.4 the Arakelov equality μ(V) = μ(Ω1

Y (log S)) implies that δ(V) ≥ 0.

Theorem 7.10. Suppose in Theorem 7.4 that ωY (S) is ample, that for
i = i(V) the sheaf Ωi is of type A or B and that δ(V) = 0. Then

a. Mi is the complex ball SU(1, ni)/K, and V is the tensor prod-
uct of a unitary representation with the standard representation
of SU(1, ni).

b. Let M ′ denote the period domain for V. Then the period map fac-
tors as the projection Ỹ0 → Mi and a totally geodesic embedding
Mi → M ′.

c. ς(V) =
rk(E1,0) · rk(E0,1) · (ni + 1)

rk(E) · ni
.

Note that in a) we have to exclude the wedge products of the standard
representations. For those δ(V) is larger than 0.

In [MVZ07] we are mainly interested in subvarieties of Ag. If one
assumes the conditions in 7.1 to hold for all non-unitary local C-subvariations
of Hodge structures of the induced family then one can deduce the following
numerically characterization of Kuga fibre spaces:

Theorem 7.11. Let f : A → Y0 be a family of polarized abelian varieties
such that R1f0∗CA has unipotent local monodromies at infinity, and such that
the induced morphism Y0 → Ag is generically finite. Assume that Y0 has a
projective compactification Y satisfying the Assumption (	).

Then the following two conditions are equivalent:
I. There exists an étale covering Y ′

0 → Y0 such that the pullback family
f ′ : A′ = A ×Y0 Y ′

0 → Y ′
0 is a Kuga fibre space.

II. For each irreducible subvariation of Hodge structures V of R1f∗0CA

with Higgs bundle (E, θ) one has:
1. Either V is unitary or the Arakelov equality μ(V) = μ(Ω1

Y (log S))
holds.

2. If for a μ-stable direct factor Ωj of Ω1
Y (log S) of type B the com-

position

θj : E1,0 θ−→ E0,1 ⊗ Ω1
Y (log S)

pr−→ E0,1 ⊗ Ωj
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is non-zero, then

ς((E, θj)) =
rk(E1,0) · rk(E0,1) · (nj + 1)

rk(E) · nj
.

Remark 7.12.

(1) Theorem 7.11 partly answers the question on the μ-stability of the
Hodge bundles E1,0 and E0,1, at least for subvariations of Hodge
structures in R1f0∗CX0 for a family f0 : X0 → Y0 of abelian vari-
eties. In fact, choosing in part I) a Mumford compactification Y ′

of Y ′
0 one can show that the Hodge sheaves E′1,0 and E′0,1 of the

pullback V′ of the irreducible subvariation of Hodge structures V
are μ-stable. So up to replacing Y0 by an étale cover and Y by a
suitable compactification, the μ-stability of the Hodge sheaves fol-
lows from the Arakelov equality if V is of type A or C, whereas for
type B we need an additional numerical condition.

(2) If one knows the μ-stability of E′1,0 and E′0,1 on some compacti-
fication of an étale covering Y ′

0 of Y0, and if ωY (S) is ample, then
Hom(E0,1, E1,0) is μ-polystable and the Arakelov equality implies
that the morphism

Hom(E0,1, E1,0) → Ω1
Y (log S),

is surjective and splits. So by Lemma 7.6 the numerical condition,
saying that (7.4) is an equality, holds and by Theorem 7.7 Mi must
be a complex ball. As remarked in 7.8 we think it is unlikely to
have a characterization of a complex ball, which is only using first
Chern classes.

(3) The condition “ωY (S) ample” appears in (2) since one uses that
the tensor product of polystable sheaves is polystable. The same is
used in the proof of Theorem 7.10. There however the ampleness is
needed for a second reason. One uses the characterization of unitary
bundles as those polystable bundles with vanishing first and second
Chern class. S.T. Yau conjectures that for both statements “ωY (S)
nef and big” is sufficient. He and Sun promised to work out a proof
of those results.

8. Open ends

I. As mentioned already, under the assumptions made in 7.1 for
variations of Hodge structures V of weight one and of small rank, the
Arakelov equality implies that the length inequality 7.4 is an equality. Let
us write in 7.1 q = rk(E1,0), p = rk(E0,1) and assume that q ≤ p. Since
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deg(E1,0) + deg(E0,1) = 0 one can rewrite the Arakelov inequality
(6.2) as

(8.1) c1(E1,0) · c1(ωY (S))dim(Y )−1 ≤ p · q

(p + q) · dim(Y )
· c1(ωY (S))dim(Y ).

Lemma 8.1. Assume that V satisfies the Arakelov equality and that for
i = i(V) the sheaf Ωi is of type A or B. Then

ni · q ≥ p ≥ q, for ni = rk(Ωi),

and if p = ni · q the numerical condition (7.5) in Theorem 7.7 holds. In
particular Mi is a complex ball in this case.

Proof. This follows from the definition of ς((E, θ)) and Lemma 7.6,
implying that

(8.2) q ≥ ς((E, θ)) ≥ p · q · (ni + 1)
(p + q) · ni

. �

Assume the Arakelov equality. If q = 1 E1,0 is invertible. Moreover,
E1,0 ⊗ TY (− log S) and E0,1 have to be μ-equivalent. So p = m and (8.2)
must be an equality, as required in (7.5). Hence Mi is a complex ball of
dimension ni (see [MVZ07, Example 8.5]).

If q = 2, assuming that ωY (S) is ample, one can apply [MVZ07, Lemma
8.6 and Example 8.7], and again one finds that the Arakelov equality implies
the length equality (7.5).

Corollary 8.2. Assume in 7.1 that V satisfies the Arakelov equality,
and that for i = i(V) the sheaf Ωi is of type A or B. Assume that

Min{rk(E1,0), rk(E0,1)} ≤ 2,

Then Mi is the complex ball SU(1, ni)/K, and V is the tensor product of a
unitary representation with a wedge product of the standard representation
of SU(1, ni).

II. In [KM08a] Koziarz and Maubon define a Toledo invariant for rep-
resentations ρ of the fundamental group of a projective variety Y with values
in certain groups, in particular in SU(q, p). They assume that X is of general
type, and they use the existence of the canonical model Xcan of X, shown in
[BCHM]. Let us assume here for simplicity, that X is the canonical model,
hence that ωY is ample.

As in Section 5 the Higgs bundle corresponding to ρ is of the form V ⊕W
and the Higgs field has two components

β : W −→ V ⊗ Ω1
Y and γ : V −→ W ⊗ Ω1

Y .
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In [KM08b, Section 4.1] the Toledo invariant is identified with deg(V) =
− deg(W), and for 1 ≤ q ≤ 2 ≤ p the generalized Milnor-Wood inequalities
in [KM08a, Theorem 3.3] and [KM08b, Proposition 4.3] say that

(8.3) |c1(V) · c1(ωY )dim(Y )−1| ≤ q

dim(Y ) + 1
· c1(ωY )dim(Y ).

For q = 2 one finds in [KM08a, Proposition 1.2] a second inequality, saying

(8.4) |c1(V) · c1(ωY )dim(Y )−1| ≤ 2p

(p + 2) · dim(Y )
· c1(ωY )dim(Y ).

In [KM08b, Theorem 4.1] the authors also study the case that the Milnor-
Wood inequality (8.3) is an equality. They show that this can only happen
if p ≥ m · q, and that the universal covering Ỹ is a complex ball.

As in Example 5.2 one can apply (8.3) and (8.4) to a polarized variation
of Hodge structures of weight one over Y = Y0. So we will assume that
q = rk(E1,0) is smaller than or equal to p = rk(E0,1) and we will write
n = dim(Y ). Here the second inequality (8.4) coincides with the Arakelov
inequality (8.1). As pointed out in [KM08a, Section 3.3.1], for variations of
Hodge structures of weight one (8.3) also holds for q > 2.

Proposition 8.3. In 7.1 one has the Milnor-Wood type inequality

(8.5) (1 + n) · μ(E1,0) ≤ n · μ(Ω1
Y (log S)).

The equality implies that p = q · n and hence that (8.5) coincides with the
Arakelov (in)equality.

If Sν(Ω1
Y (log S)) is stable for all ν > 0, and if (8.5) is an equality, then

the universal covering M of U is the complex ball SU(1, n)/K, and V is the
tensor product of a unitary representation with the standard representation
of SU(1, n).

Proof. Let us repeat the argument used in [KM08a] in the special
case of a variation of Hodge structures of weight one, allowing logarithmic
poles of the Higgs bundles along the normal crossing divisor S. As in the
proof of Theorem 6.4 one starts with the maximal destabilizing μ-semistable
subsheaf G of E1,0. Let G′ be the image of G ⊗ TY (− log S) in E0,1. Then
the μ-semistability of G ⊗ TY (− log S) and the choice of G imply

μ(G′) ≥ μ(G) − μ(Ω1
Y (log S)), μ(G) ≥ μ(E1,0),(8.6)

and rk(G′) ≤ rk(G) · n.(8.7)

Since (G ⊕ G′, θ|G⊕G′) is a Higgs subbundle of (E, θ) one finds

0 ≥ deg(G) + deg(G′) = rk(G) · μ(G) + rk(G′) · μ(G′)

≥ (rk(G) + rk(G′)) · μ(G) − rk(G′) · μ(Ω1
Y (log S)),

hence μ(Ω1
Y (log S)) ≥

(
1 +

rk(G)
rk(G′)

)
· μ(G) ≥

(
1 +

1
n

)
· μ(E1,0),
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as claimed. If n·μ(Ω1
Y (log S)) = (1+n)·μ(E1,0) one finds that all the inequal-

ities in (8.6) and (8.7) are equalities. The first one and the irreducibility of
V imply that G = E1,0 and that G′ = E0,1, whereas the last one shows that
p = n · q for q = rk(E1,0) and p = rk(E0,1). Then

p · q

(p + q) · n
=

q

n + 1

and the equality is the same as the Arakelov equality.
Finally Lemma 8.1 allows to apply Theorem 7.7, in case that Ω1

Y (log S)
is μ-stable and of type A or B. �

The situation considered in [KM08a] and [KM08b] is by far more gen-
eral than the one studied in Proposition 8.3. Nevertheless the comparism of
the inequalities (8.3) and (8.4) seems to indicate that an optimal Milnor-
Wood inequality for for representations in SU(q, p) with q, p > 2 should have
a slightly different shape. As said in Remark 7.8, it is likely that an inter-
pretation of the equality will depend on a second numerical condition.

III. The proof of the Arakelov inequality (3.4) for k > 1 and the inter-
pretation of equality break down if the rank of Ω1

Y (log S) is larger than one.
In the proof of Theorem 6.4 we used in an essential way that the weight
of the variation of Hodge structures is one. For the Milnor-Wood inequal-
ity for a representation of the fundamental group of a higher dimensional
manifold of general type with values in SU(p, q) one has to assume that
Min{p, q} ≤ 2, which excludes any try to handle variations of Hodge struc-
tures of weight k > 1 using methods, similar to the ones used in Example 5.3.
So none of the known methods give any hope for a generalizations of the
Arakelov inequality to variations of Hodge structures of weight k > 1 over a
higher dimensional base. We do not even have a candidate for an Arakelov
inequality.

On the other hand, in the two known cases the inequalities are derived
from the polystability of the Higgs bundles and the Arakelov equalities are
equivalent to the Arakelov condition, defined in 2.2, iii). So for weight k > 1
over a higher dimensional base one should try to work directly in this set-up.

Even for k > 1 and dim(Y ) = 1, as discussed in Section 3, we do
not really understand the geometric implications of the Arakelov equality
(3.5), even less the possible implications of the Arakelov condition over a
higher dimensional base. Roughly speaking, the Addendum 3.6 says that
the irreducible subvariations of Hodge structures of weight k over a curve,
which satisfy the Arakelov equality, look like subvariations of the variation
of Hodge structures of weight k for a family of k-dimensional abelian
varieties. However we do not see a geometric construction relating the
two sides.

IV. Can one extend the results of [MV08], recalled in Section 4, to
higher dimensional bases? For example, assume that Ag is a Mumford com-
pactification of a fine moduli scheme Ag with a suitable level structure and
that ϕ : Y → Ag is an embedding. Writing SAg

for the boundary, assume
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that (Y, S = ϕ−1(SAg
)) satisfies the condition (	) in Assumption 6.1. So one

would like to characterize the splitting of the tangent map

TY (− log S) −→ ϕ∗TAg
(− log SAg

)

in terms of the induced variation of Hodge structures, or in terms of geodecity
of Y in Ag.
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