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Milnor K2 and field homomorphisms

Fedor Bogomolov and Yuri Tschinkel

Abstract. We prove that the function field of an algebraic variety
of dimension ≥2 over an algebraically closed field is completely
determined by its first and second Milnor K-groups.
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1. Introduction

In this paper we study the problem of reconstruction of field homomor-
phisms from group-theoretic data. A prototypical example is the reconstruc-
tion of function fields of algebraic varieties from their absolute Galois group,
a central problem in “anabelian geometry” (see [9], [6], [5], [7]). Within this
theory, an important question is the “section conjecture”, i.e., the prob-
lem of detecting homomorphisms of fields on the level of homomorphisms
of their Galois groups. In the language of algebraic geometry, one is inter-
ested in obstructions to the existence of points of algebraic varieties over
higher-dimensional function fields, or equivalently, rational sections of fibra-
tions. Here we study group theoretic objects which are dual, in some sense,
to small pieces of the Galois group, obtained from the abelianization of the
absolute Galois group and its canonical central extension. This connection
will be explained in Section 2.
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We now formulate the main results. In this paper, we work in charac-
teristic zero. An element of an abelian group is called primitive, if it cannot
be written as a nontrivial multiple in this group.

Definition 1. Let k be an infinite field. A field K will be called geo-
metric over k if

(1) k ⊂ K;
(2) for each f ∈ K∗ \ k∗, the set {f + κ}κ∈k has at most finitely many

elements whose image in K∗/k∗ is nonprimitive.

If X is an algebraic variety over an algebraically closed field k of char-
acteristic zero then its function field K = k(X) is geometric over k. There
exist other examples, e.g., some infinite algebraic extensions of k(X) are also
geometric over k.

Theorem 2. Let K, resp. L, be a geometric field of transcendence degree
≥ 2 over an algebraically closed field k, resp. l, of characteristic zero. Assume
that there exists an injective homomorphism of abelian groups

ψ1 : K∗/k∗ → L∗/l∗

such that
(1) the image of ψ1 contains one primitive element in L∗/l∗ and two

elements whose lifts to L∗ are algebraically independent over l;
(2) for each f ∈ K∗ \ k∗ there exists a g ∈ L such that

ψ1

(
k(f)

∗
/k∗ ∩ K∗/k∗

)
⊆ l(g)

∗
/l∗ ∩ L∗/l∗.

Then there exists a field embedding

ψ : K → L

which induces either ψ1 or ψ−1
1 .

Remark 3. An analogous statement holds in positive characteristic. The
final steps of the proof in Section 4 are more technical due to the presence
of pn-powers of “projective lines”.

Let K be a field. Denote by KM
i (K) the i-th Milnor K-group of K. Recall

that
KM

1 (K) = K∗

and that there is a canonical surjective homomorphism

σK : KM
1 (K) ⊗ KM

1 (K) → KM
2 (K)

whose kernel is generated by x ⊗ (1 − x), for x ∈ K∗ \ 1 (see [4] for more
background on K-theory). Put

K̄M
i (K) := KM

i (K)/infinitely divisible elements, i = 1, 2.
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The homomorphism σK is compatible with reduction modulo infinitely
divisible elements. As an application of Theorem 2 we prove the following
result.

Theorem 4. Let K and L be function fields of algebraic varieties of
dimension ≥ 2 over an algebraically closed field k, resp. l. Let

(1.1) ψ1 : K̄M
1 (K) → K̄M

1 (L)

be an injective homomorphism of abelian groups such that the following
diagram of abelian group homomorphisms is commutative

K̄M
1 (K) ⊗ K̄M

1 (K)
ψ1⊗ψ1 ��

σK

��

K̄M
1 (L) ⊗ K̄M

1 (L)

σL

��
K̄M

2 (K)
ψ2

�� K̄M
2 (L).

Assume further that ψ1(K∗/k∗) is not contained in E∗/k∗ for any
1-dimensional subfield E ⊂ L. Then there exist a homomorphism of fields

ψ : K → L,

and an r ∈ Q such that the induced map on K∗/k∗ coincides with the r-th
power of ψ1.

In particular, the assumptions are satisfied when ψ1 is an isomorphism
of abelian groups. In this case, Theorem 4 states that a function field of
transcendence degree ≥ 2 over an algebraically closed ground field of
characteristic zero is determined by its first and second Milnor
K-groups.
Acknowledgments: The first author was partially supported by NSF grant
DMS-0701578. He would like to thank the Clay Mathematics Institute for
financial support and Centro Ennio De Giorgi in Pisa for hospitality during
the completion of the manuscript. The second author was partially sup-
ported by NSF grant DMS-0602333.

We are grateful to B. Hassett, M. Rovinsky and Yu. Zarhin for their
interest and useful suggestions.

2. Background

The problem considered in this paper has the appearance of an abstract
algebraic question. However, it is intrinsically related to our program to
develop a skew-symmetric version of the theory of fields, and especially,
function fields of algebraic varieties.

Let K be a field and GK its absolute Galois group, i.e., the Galois group
of a maximal separable extension of K. It is a compact profinite group. We



226 F. BOGOMOLOV AND Y. TSCHINKEL

are interested in the quotient

Gc
K = GK/[GK , [GK ,GK ]]

and its maximal topological pro-�-completion

Gc
K,�, � 	= char(K).

The group Gc
K,� is a central pro-�-extension of the pro-�-completion of the

abelianization Ga
K of GK .

We now assume that K is the function field of an algebraic variety over
an algebraically closed ground field k. In this case, Ga

K,� is a torsion-free topo-
logical pro-�-group which is dual to the torsion-free abelian group K∗/k∗,
i.e., there is a canonical identification

Ga
K,� = Hom(K∗/k∗, Z�(1)),

via Kummer theory. The group Gc
K,� admits a simple description in terms of

one-dimensional subfields of K, i.e., subfields of transcendence degree 1 over
k. For each such subfield E ⊂ K, which is normally closed in K, we have
a surjective homomorphism Gc

K,� → Gc
E,�, where the image is a free central

pro-�-extension of the group Ga
E,�.

Our main goal is to establish a functorial correspondence between func-
tion fields of algebraic varieties K and L, over algebraically closed ground
fields k and l, respectively, and corresponding topological groups Gc

K , resp.
Gc

K,�. We are aiming at a (conjectural) equivalence between homomorphisms
of function fields

Ψ̄ : K → L

and homomorphisms of topological groups

Ψc
� : Gc

K,� → Gc
L,�.

It is clear that Ψ̄ induces (but not uniquely) a homomorphism Ψc
� as above.

The problem is to find conditions on Ψc
� such that it corresponds to some

Ψ̄. In particular, Ψc
� would give rise to homomorphisms of the full Galois

groups GK → GL.

Remark 5. By a theorem of Stallings [8], a group homomorphism that
induces an isomorphism on H1(−, Z) and an epimorphism on H2(−, Z)
induces an isomorphism on the lower central series.

Thus we expect that GK,� is in some sense the maximal pro-�-group with
given H1 and H2.
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Consider the diagram
Gc

K,�
��

��

Gc
L,�

��
Ga

K,�
�� Ga

L,�

The group Gc
K,� can be identified with a closed subgroup in the direct product

of free central pro-�-extensions ∏
E

Gc
E,�,

where the product runs over all normally closed one-dimensional subfields E
of K. The homomorphisms Gc

K,� → Gc
E,� are induced from certain homomor-

phisms of abelian quotients Ga
K,� → Ga

L,�, namely those which commute with
surjective maps of Ga

K,� and Ga
L,� to the abelian groups of one-dimensional

subfields of K and L, respectively.
It is shown in [2] that in the case of functional fields of transcendence

degree 2 over k = F̄p and � 	= p, any isomorphism Ψc
� defines an isomorphism

between K and some finite purely inseparable extension of L. In this paper
we treat the first problem which arises when we try to extend the result to
general homomorphisms. By the description above, it suffices to treat the
corresponding homomorphisms of abelian groups

Ψa
� : Ga

K,� → Ga
L,�.

By Kummer theory, these can be identified with homomorphisms

Ψ∗
� : Hom(K∗/k∗, Z�) → Hom(L∗/l∗, Z�).

The condition that Ψc
� commutes with projections onto Galois groups of

one-dimensional fields is the same as commuting with projections

Hom(K∗/k∗, Z�(1)) → Hom(E∗, Z�(1)).

If it were possible to dualize the picture we would have a homomorphism

Ψ∗ : L∗/l∗ → K∗/k∗,

mapping multiplicative groups of one-dimensional subfields in L to multi-
plicative groups of one-dimensional subfields of K. This is the problem that
we consider in the paper.

In order to solve the problem for Galois groups we need to consider the
maps

Ψ̂∗
� : L̂∗ → K̂∗,

between �-completions of the dual spaces (as in [2]) and to find conditions
which would allow to reconstruct Ψ∗ from Ψ̂∗

� . This problem will be addressed
in a future publication.
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3. Functional equations

Lemma 6. Let x, y ∈ K be algebraically independent elements and z ∈
k(x, y) a nonconstant rational function. Let f, g ∈ k(t)∗ be nonconstant
functions such that f(x)/g(y) ∈ k(z). Then there exist f̃ , g̃ ∈ k(t)∗ such that

k(z) = k(f̃(x)/g̃(y)).

Proof. Write z = p(x, y)/q(x, y), with coprime p, q ∈ k[x, y]. Then

f(x)/g(y) =
∏

i

(p/q − ci)ni = q−
∑

i ni
∏

i

(p − ciq)ni ,

modulo k∗, for pairwise distinct ci ∈ k and some ni ∈ Z. The factors on the
right are pairwise coprime, i.e., their divisors have no common components.
Thus the divisors of q(x, y) and p(x, y) − ciq(x, y) are either “vertical” or
“horizontal”, i.e.,

q(x, y) = t(x)u(y) and p(x, y) − ciq(x, y) = vi(x)wi(y),

for some t, u, vi, wi ∈ k(t). It follows that

z(x, y) − ci = vi(x)wi(y)/t(x)u(y)

and we can put g̃ = vi(x)/t(x) and f̃ = z(y)/wi(y). �

A rational function f ∈ k(x, y)∗ is called homogeneous of degree r if

(3.1) λrf(x, y) = f(λx, λy), for all λ ∈ k∗.

A function f is homogeneous of degree 0 iff f ∈ k(x/y)∗.

Lemma 7. Let p1, p2 ∈ k(x, y)∗ be rational functions with disjoint divi-
sors. Assume that p1(x, y) · p2(x, y) is homogeneous of degree r. Then p1 is
homogeneous of degree r1, p2 is homogeneous of degree r2 and r1 + r2 = r.

Corollary 8. Let f, g ∈ k[t] be nonzero polynomials. Assume that
p(x, y) := g(x)f(y) is homogeneous of degree d ∈ N. Then

g(x) = axn

f(y) = byd−n,

for some n ∈ N and a, b ∈ k∗.

Lemma 9. Let f, g ∈ k[t] be polynomials such that

(3.2) p(x, y) = axrf(y) − cyrg(x) ∈ k[x, y]
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is homogeneous of degree r ∈ N. Then

g(x) = adx
r + a0,

f(y) = cdy
r + c0,

and acd − cad = 0.

Proof. Write g(x) =
∑

i aix
i and f(y) =

∑
j cjy

j , substitute into the
equation (3.2), and use homogeneity. �

Lemma 10. Let f1, f2, g1, g2 ∈ k[t] be polynomials such that

gcd(g1, g2) = gcd(f1, f2) = 1 ∈ k[t]/k∗.

Let
p(x, y) = g1(x)f2(y) − g2(x)f1(y) ∈ k[x, y]

be a polynomial, homogeneous of degree r ∈ N. Then

gi(x) = aix
r + bi,

fi(y) = ciy
r + di,

for some ai, bi, ci, di ∈ k, for i = 1, 2, with

b1d2 − b2d1 = 0,

a1c2 − a2c1 = 0.,

Proof. By homogeneity, p(0, 0) = 0, i.e.,

g1(0)f2(0) − g2(0)f1(0) = 0.

Rescaling, using the symmetry and coprimality of f1, f2, resp. g1, g2, we may
assume that (

f1(0) f2(0)
g1(0) g2(0)

)
=

(
1 1
1 1

)
or

(
1 0
1 0

)
.

In the first case, restricting to x = 0, resp. y = 0, we find

g1(x) − g2(x) = axr,

f1(y) − f2(y) = cyr,

for some constants a, c ∈ k∗. Solving for f2, g2 and substituting we obtain

p(x, y) = axrf1(y) − cyrg1(x).

In the second case, we have directly

g1(x) = axr,

f1(y) = cyr,
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for some a, c ∈ k∗, and

p(x, y) = axrf2(y) − cyrg2(x).

It suffices to apply Lemma 9. �

Proposition 11. Let x, y ∈ K∗ be algebraically independent elements.
Fix nonzero integers r and s and consider the equation

(3.3) Ryr = Sqs,

with
R ∈ k(x/y), p ∈ k(x), q ∈ k(y), S ∈ k(p/q),

where p ∈ k(x) and q ∈ k(y) are nonconstant rational functions. Assume
that

(i) x, y, p, q are multiplicatively independent;
(ii) R, S are nonconstant.

Then
p(x) =

xr1

p2,1xr1 + p2(0)
, q(y) =

yr1

q2,1yr1 + q1(0)
,

or
p(x) =

p1,1x
r1 + p1(0)
xr1

, q(y) =
q1,1y

r1 + q2(0)
yr1

,

with
r1 ∈ N, p1,1, p2,1, p1(0), p2(0), q1,1, q2,1, q1(0), q2(0) ∈ k∗.

We have
Sqs =

(
xr1yr1

q1(0)xr1 − d1p2(0)yr1

)s

with d1 = q2,1/p2,1 and r = r1s in the first case and

Sqs =
(

p1(0)yr1 − d1q2(0)xr1

xr1yr1

)s

,

with d1 = p1,1/q1,1 and r = −r1s in the second case.
Conversely, every pair (p, q) as above leads to a solution of (3.3).

Proof. Equation (3.3) gives, modulo constants,

(3.4) yr
I∏

i=0

(x/y − ci)ni = qs
J∏

j=0

(p/q − dj)mj ,

for pairwise distinct constants ci, dj ∈ k, and some ni, mj ∈ Z. We assume
that c0 = d0 = 0 and that ci, dj ∈ k∗, for i, j ≥ 1. Expanding, we obtain

xn0yr−
∑

i≥0 ni
∏
i>0

(x − ciy)ni

= pm0
1 p

−
∑

j≥0 mj

2 qm0−s
2 q

s−
∑

j≥0 mj

1

∏
j>0

(p1q2 − djp2q1)mj ,
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where p = p1/p2 and q = q1/q2, with p1, p2 and q1, q2 coprime polynomials
in x, resp. y. It follows that:

(A1) xn0 = pm0
1 (x)p

−m0−
∑

j>0 mj

2 (x),

(A2) yr−n0−
∑

i>0 ni = q2(y)m0−sq1(y)s−m0−
∑

j>0 mj ,

(A3)
∏I

i=1(x − ciy)ni =
∏J

j=1(p1(x)q2(y) − djp2(x)q1(y))mj .

Lemma 12. If n1 	= 0 then the exponents ni, mj have the same sign, for
all i, j ≥ 1.

Proof. Assume otherwise. Collecting terms in (A3) with exponent of
the same sign we obtain:∏

i>0,ni>0

(x − ciy)ni =
∏

j>0,mj>0

(p1q2 − djp2q1)mj ,

∏
i>0,ni<0

(x − ciy)ni =
∏

j>0,mj<0

(p1q2 − djp2q1)mj

Thus there are a, b ∈ N such that⎛
⎝ ∏

i>0,ni>0

(x − ciy)ni

⎞
⎠

a ⎛
⎝ ∏

i>0,ni<0

(x − ciy)ni

⎞
⎠

b

is a nontrivial rational function of x/y with trivial divisor at infinity in
P1 × P1, with standard coordinates x, y. The same holds for⎛

⎝ ∏
j>0,mj>0

(p1q2 − djp2q1)mj

⎞
⎠

a ⎛
⎝ ∏

j>0,mj<0

(p1q2 − djp2q1)mj

⎞
⎠

b

,

a nontrivial rational function of p/q. Thus k(p/q) ∩ k(x/y) 	= k, which con-
tradicts the assumption that p/q and x/y are multiplicatively independent.
Indeed, the functions p/q and x/y generate a subgroup of rank 2 in K∗/k∗

and hence belong to fields intersecting by constants only. �
By Lemma 12, if

∑
i>0 ni = 0 or

∑
j>0 mj = 0 then ni = mj = 0 for all

i, j ≥ 1. By (A1),
xn0 = pm0

1 p−m0
2 .

By assumption (ii), R is nonconstant. Hence n0 	= 0. It follows that p is a
power of x, contradicting (i).

We can now assume

(3.5)
∑
i>0

ni 	= 0, and
∑
i>0

mj 	= 0.
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It follows that⎛
⎝m0,−m0 −

∑
j>0

mj

⎞
⎠ 	= (0, 0) and

⎛
⎝m0 − s, s − m0 −

∑
j>0

mj

⎞
⎠ 	= (0, 0).

On the other hand, by (i), combined with (A1) and (A2), one of the terms
in each pair is zero. We have the following cases:

(1) m0 	= 0, m0 = −
∑

j>0 mj , m0 = s and xn0 = pm0
1 , qs

1 = yr−n0−
∑

i>0 ni ;

(2) m0=0, s=
∑

j>0 mj and xn0 =p
−

∑
j>0 mj

2 =p−s
2 , q−s

2 =yr−n0−
∑

i>0 ni .

We turn to (A3), with J ≥ 1 and ni, mj replaced by |ni|, |mj |. From
(A1) we know that p1(x) = xa or p2(x) = xa, for some a ∈ N. Similarly,
from (A2) we have q1(y) = yb or q2(y) = yb, for some b ∈ N. All irreducible
components of the divisor of

fj := p1(x)q2(y) − djp2(x)q1(y)

are of the form x = ciy, i.e., these divisors are homogeneous with respect to

(x, y) 
→ (λx, λy), λ ∈ k∗.

It follows that fj is homogeneous, of some degree rj ∈ N. If

p1(x)q2(y) = xayb, or p2(x)q1(y) = xayb,

then fj has a nonzero constant term, contradiction. Lemma 10 implies
that either

(3.6) p1(x) = xrj and q1(y) = yrj ,

or

(3.7) p2(x) = xrj and q2(y) = yrj .

It follows that all rj are equal, for j ≥ 1.
The cases are symmetric, and we first consider (3.6). Note that equa-

tion (3.6) is incompatible with Case m0 = 0 and equation (3.7) with the
Case m 	= 0. By Lemma 10,

p2(x) = p2,jx
rj + p2(0)

q2(y) = q2,jy
rj + q2(0),

with

(3.8) p2(0), q2(0) 	= 0, and q2,j − djp2,j = 0.

By assumptions (i), q2,j and p2,j are nonzero. The coefficients dj were dis-
tinct, thus there can be at most one one such equation, i.e., J = 1.
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To summarize, we have the following cases:
(1) m0 	= 0, m0 = −m1 = s and

p(x) =
xr1

p2,1xr1 + p2(0)
, q(y) =

yr1

q2,1yr1 + q1(0)
,

with coefficients satisfying q2,1 − d1p2,1 = 0,

xn0 = xr1s, yr1s = yr−n0−
∑

i ni ,∏
i≥1

(x − ciy)ni = (q1(0)xr1 − d1p2(0)yr1)−s.

It follows that I = r1 and that ni = m1 = −s, for i ≥ 1. We have

ci = ζi
r1

d1/r1 ,

with d = −d1/p2(0)/q1(0).
This yields r = n0 = r1s. We can rewrite equation (3.4) as

yr1

(
x

y

)r1 r1∏
i=1

(
x

y
− ci

)−1

=
p

q

(
p

q
− d1

)−1

q,

which is the same as (3.3) with s = 1 and r = r1. We have

Sqs = (q−1 − d1p
−1)−s

=
(

xr1yr1

q1(0)xr1 − d1p2(0)yr1

)s

.

(2) m0 = 0, m1 = s, and

p(x) =
p1,1x

r1 + p1(0)
xr1

, q(y) =
q1,1y

r1 + q2(0)
yr1

,

with p1,1 − d1q1,1 = 0,

xn0 = x−r1s, y−r1s = yr−n0−
∑

i>0 ni∏
i≥1

(x − ciy)ni = (p1(0)yr1 − d1q2(0)xr1)s.

We obtain I = r1, ni = s, for i≥ 1, n0 = − r1s = r, and ci = ζi
r1

d1/r1 , with d = d1q2(0)/p1(0). We can rewrite Equation (3.4) as

y−r1

(
x

y

)−r1 r1∏
i=1

(
x

y
− ci

)
=

(
p

q
− d1

)
q.

We have

Sqs = (p − d1q)s

=
(

p1(0)yr1 − d1q2(0)xr1

xr1yr1

)s

.
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This concludes the proof of Proposition 11. �

Lemma 13. Let x1, x2 ∈ K∗ be algebraically independent elements and
let fi ∈ k(xi), i = 1, 2. Assume that f1f2 ∈ k(x1x2). Then there exists an
a ∈ Q such that fi(xi) = xa

i , in K∗/k∗.

Proof. Assume first that fi ∈ k(xi) and write

fi(xi) =
∏
j

(xi − cij)nij .

By assumption, ∏
i,j

(xi − cij)nij =
∏
r

(x1x2 − dr)mr .

However, the factors are coprime, unless cij = 0, dr = 0, for all i, j, r.
Now we consider the general case: fi ∈ k(xi). We have a diagram of field

extensions

k(x1x2) k(x1x2) k(x1, x2)

k(x1) k(x2) k(x1) k(x2)

k(x1, x2) k(x1) k(x2)

The Galois group Gal( k(x1, x2)/k(x1, x2)) preserves k(x1x2). We have

Γ := Gal( k(x1) k(x2)/k(x1, x2)) = Γ1 × Γ2,

with Γi acting trivially on k(xi). Put f3 := f1f2 and consider the action of
γ1 := (γ1, 1) ∈ Γ on

(f1, f2, f3) 
→ (f1, γ1(f2), γ1(f3)).

It follows that
f1γ1(f2) = γ1(f3),

and
k(x1) � f2/γ1(f2) = f3/γ1(f3) ∈ k(x3).

Hence each side is in k. The action of γ1 has finite orbit, so that γ1(f3) = ζnf3
and γ1(f2) = ζ ′

nf2 for some n-th roots of 1. Note that Γ acts on f1, f2,
and f3 through a finite quotient. It follows that for some m ∈ N, we have
fm

i ∈ k(xi), for i = 1, 2, 3, and we can apply the argument above. �
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Let x, y ∈ K∗ be algebraically independent over k. We want to determine
the set of solutions of the equation

(3.9) Ry = Sq,

where
R ∈ k(x/y), q ∈ k(y), p ∈ k(x), S ∈ k(p/q).

We assume that x, p, y, q are multiplicatively independent in K∗/k∗ and that
S and R are nonconstant. We will reduce the problem to the one solved in
Proposition 11.

Lemma 14. There exists an n(p) ∈ N such that pn(p) ∈ k(x/y) k(y).

Proof. The function S ∈ k(p/q) ∩ k(x/y) k(y) is nonconstant. The
Galois group

Γ := Gal(k(x, y)/k(x/y) k(y))
acts trivially on q ∈ k(y) and S. Thus k(p/q) = k(γ(p)/q). Assume that
γ ∈ Γ acts nontrivially on p ∈ k(x). It follows that

γ(p)/p ∈ k(p/q) ∩ k(x) = k,

by assumption on these 1-dimensional fields. Thus γ(p) = ζp, where ζ is a
root of 1. Since Γ acts on p via a finite quotient and since each γ ∈ Γ acts
by multiplication by a root of 1, pn(p) ∈ k(x/y) k(y), for some n(p) ∈ N. �

Lemma 15. There exists an N = N(p) ∈ N such that

pn(p) ∈ k(x1/N ).

Proof. The intersection k(x) ∩ k(x/y) k(y) is preserved by action of
Γ = Γx/y × Γy. Its elements are fixed by any lift of

σ : y 
→ x/y.

to the Galois group Γ. All such lifts are obtained by conjugation in Γx/y×Γy.
Hence (1, γ) acts as (σ(γ), 1). The group homomorphism

Γx/y × Γy → Γx := Gal(k(x)/k(x))

has abelian image since (γ1, 1) and (1, γ2) commute and generate Γ. Every
abelian extension of k(x) is described by the ramification divisor. It remains
to observe that the only common irreducible divisors of k(y), k(x/y) and
k(x) are x = 0 or x = ∞. �

Lemma 16. There exists an n ∈ N such that

Sn ∈ k(x1/N , y) and qn ∈ k(y).
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Proof. Let
Γ′

x ⊂ Γx = Gal(k(x)/k(x1/N ))
be the subgroup of elements acting trivially on k(x1/N ). Let

γ = (γ′
1, 1) ∈ Γx × Γx/y, γ′

1 ∈ Γ′
x.

Then
Ry = Sq = γ(S)γ(q) and S/γ(S) = γ(q)/q.

We also have
p/γ(q)

p/q
= q/γ(q)

with
S ∈ k(p/q), p/γ(q), γ(S) ∈ k(p/γ(q)), q/γ(q) ∈ k(y).

By Lemma 13, if we had k(p/q) ∩ k(p/γ(q)) = k then S = p/q. However,
equation Ry = p and Lemma 13 imply that R = x/y, contradicting the
assumption that x and p are multiplicatively independent. Thus we have
k(p/q) = k(p/γ(q)). The equality S/γ(S) = (q/γ(q))−1 implies that both
sides are constant. Hence there exists an n ∈ N such that Sn ∈ k(x1/N , y),
and qn ∈ k(y). �

Lemma 17. There exists an n(R) such that Rn(R) ∈ k( N
√

x/y).

Proof. We have that
Rnyn = Snqn

with qn ∈ k(y) and Sn ∈ k(x1/N , y). Thus

Rn ∈ k(x/y) ∩ k(x1/N )k(y).

Applying a nontrivial element γ ∈ Gal(k(x1/N , y)/k(x1/N , y)) we find
that Rn/γ(Rn) ∈ k∗, and is thus a root of 1. As in the proofs above, we find
that there is a multiple n(R) of n such that Rn(R) ∈ k(N

√
x/y ). �

We change the coordinates

x̃ := x1/N , ỹ := y1/N .

Lemma 18. There exist

p̃ ∈ k(x̃), q̃ ∈ k(ỹ)

such that

(3.10) F := k(p/q) ∩ k(x̃, ỹ) = k(p̃/q̃).

Proof. Every subfield of a rational field is rational. In particular, F =
k(s̃) for some s̃ ∈ k(x̃, ỹ). Since p ∈ k(x), q ∈ k(y) they are both in k(x̃, ỹ)
so that p(x)/q(x) ∈ F = k(s̃). By Lemma 6, F = k(p̃/q̃), as claimed. �
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Corollary 19. There exists an m ∈ N such that

Sm ∈ k(p̃/q̃),

with
p̃ ∈ k(x̃) and q̃ ∈ k(ỹ).

Moreover, q̃ = qr, for some r ∈ Q.

Proof. We apply Lemma 13: since

p̃ ∈ k(x̃) ⊂ k(x) = k(p), 1/q̃ ∈ k(y) = k(1/q)

and
p̃/q̃ ∈ k(p/q),

by (3.10),
k(p̃/q̃) = k(S) = k(p/q),

we have
p/q = (p̃/q̃)a,

for some a ∈ Q. �
We have shown that if R, S satisfy equation (3.9) then for all sufficiently

divisible m ∈ N we have

(3.11) RmỹmN = Smq̃m/a,

with

S̃ := Sm ∈ k(p̃/q̃), R̃ := Rm ∈ k(x̃/ỹ) and q̃ := qm ∈ k(y) ⊂ k(ỹ).

Choose a smallest possible m such that s := m/a ∈ Z and put r = mN .
Equation 3.11 transforms to

R̃ỹr = S̃q̃s.

In the proof of Proposition 11 we have shown that s | r and that either

R̃ =
(

x̃

ỹ

)r1s r1∏
i=1

(
x̃

ỹ
− ci

)−s

, S̃ =
(

p̃

q̃

)s (
p̃

q̃
− d1

)−s

q̃s

with r1s = r or

R̃ =
(

x̃

ỹ

)−r1s r1∏
i=1

(
x̃

ỹ
− ci

)s

, S̃ =
(

p̃

q̃
− d1

)s

q̃s

with −r1s = r.
We have obtained that every nonconstant element in the intersection

(3.12) k(x/y)
∗ · y ∩ k(p/q)

∗ · q,
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is of the form

(3.13)
(

xbyb

xb − κyb

)s

, s ∈ N, or
(

xb − κ′yb

xbyb

)s

,−s ∈ N,

with b = r1/N , N ∈ N, and κ, κ′ ∈ k∗. The corresponding solutions, modulo
k∗, are

pκx,b,m(x) =
(

xb

xb + κx

)1/m

, qκy ,b,m(y) =
(

yb

yb + κy

)1/m

,

with
κ = κx/κy

respectively,

pκx,b,m(x) =
(

xb + κ′
x

xb

)1/m

, qκy ,b,m(y) =

(
yb + κ′

y

yb

)1/m

,

with
κ′ = κ′

y/κ′
x.

By equation (3.9), we have (for s ∈ Z)(
xbyb

xb − κyb

)s

· y−1 ∈ k(x/y)
∗

It follows that bs = 1.

Assumption 20. The pair (x, y) satisfies the following condition: if both
xb, yb ∈ K∗ then b ∈ Z.

This assumption holds e.g., when either x, y or xy is primitive in
K∗/k∗.

Lemma 21. Assume that the pair (x, y) satisfies Assumption 20. Fix a
solution (3.13) of Condition (3.12). Assume that the corresponding pκx,b,m

is in K∗, for infinitely many κx, resp. κ′
x. Then b = ±1 and m = ±1.

Proof. By the assumption on the pair (x, y) and K,

xb

xb + κx

is primitive in K∗/k∗, for infinitely many κx. It follows that m = ±1. To
deduce that b = ±1 it suffices to recall the definitions: on the one hand,
b = r1/N ∈ Z, with N ∈ N, r1 ∈ N, and r = ±N . Thus, b = ±r1/r ∈ Z. On
the other hand, ±r1s = r, with s ∈ N. �
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After a further substitution δ = −b, we obtain:

Theorem 22. Let x, y ∈ K∗ be algebraically independent elements sat-
isfying Assumption 20. Let p ∈ k(x)

∗
, q ∈ k(y)

∗
be rational functions such

that x, y, p, q are multiplicatively independent in K∗/k∗. Let I ∈ k(x/y)
∗ · y

be such that there exist infinitely many p, q ∈ K∗/k∗ with

I ∈ k(x/y)
∗ · y ∩ k(p/q)

∗ · q.

Then, modulo k∗,

(3.14) I = Iκ,δ(x, y) := (xδ − κyδ)δ,

with κ ∈ k∗ and δ = ±1. The corresponding p and q are given by

pκx,1(x) = x + κx, qκy ,1(y) = y + κy

pκx,−1(x) = (x−1 + κx)−1, qκx,−1(y) = (y−1 + κy)−1

with
κx/κy = κ.

4. Reconstruction

In this section we prove Theorem 2. We start with an injective homo-
morphisms of abelian groups

ψ1 : K∗/k∗ → L∗/l∗.

Assume that z ∈ K∗ is primitive in K∗/k∗ and that its image under ψ1 is
also primitive. Let x ∈ K∗ be an element algebraically independent from z
and put y = z/x. By Theorem 22, the intersection

k(x/y)
∗ · y ∩ k(p/q)

∗ · q ⊂ K∗/k∗

with infinitely many corresponding pairs (p, q) ⊂ K∗ × K∗, consists of
elements Iκ,δ(x, y) given in (3.14). Note that

Iκ,δ(x, y) 	= Iκ′,δ′(x, y), for (κ, δ) 	= (κ′, δ′).

For δ = 1, each Iκ,1 determines the infinite sets

l
◦(1, x) = {1, x + κx}κx∈k∗ , l

◦(1, y) = {1, y + κy}κy∈k∗

as the corresponding solutions (p, q). The set

l(1, x) := x ∪ l
◦(1, x) ⊂ Pk(K)
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forms a projective line. On the other hand, for δ = −1, we get the set

r(1, x) =
{

1,
1

x−1 + κ

}
κ∈k

.

Note that this set becomes a projective line in Pk(K), after applying the
automorphism

K∗/k∗ → K∗/k∗

f 
→ f−1.

We can apply the same arguments to ψ1(x), ψ1(y) = ψ1(z)/ψ1(x). Our
assumption that ψ1 maps multiplicative groups of 1-dimensional subfields
of K into multiplicative groups of 1-dimensional subfields of L and Theo-
rem 22 imply that ψ1 maps the projective line l(1, x) ⊂ Pk(K) to either the
projective line l(1, ψ1(x)) ⊂ Pl(L) or to the set r(1, ψ1(x)). Put

L := {x ∈ K∗ |ψ1(l(1, x)) = l(1, ψ1(x))}
R := {x ∈ K∗ |ψ1(l(1, x)) = r(1, ψ1(x))} .

Note that these definitions are intrinsic, i.e., they don’t depend on the choice
of z.

By the assumption on K, both l(1, ψ1(x)) and r(1, ψ1(x)) contain infin-
itely many primitive elements in L∗/l∗, whose lifts to L∗ are algebraically
independent from lifts of ψ1(z). We can use these primitive elements as a
basis for our constructions to determine the type of the image of l(1, z′) for
every z′ ∈ k(z)

∗ ∩ K∗. Thus

L ∪ R = K∗/k∗, L ∩ R = 1 ∈ K∗/k∗.

Lemma 23. Both sets L and R are subgroups of K∗/k∗. In particular,
one of these is trivial and the other equal to K∗/k∗.

Proof. Assume that x, y are algebraically independent and are both in
L. We have

ψ1(Iκ,1(x, y)) = Iκ,1(ψ1(x), ψ1(y)).

Indeed, fix elements

p(x) = x + κx ∈ l(1, x) and q(y) = y + κy ∈ l(1, y)

so that x, y, p, q satisfy the assumptions of Theorem 22. Solutions of

R(x/y)y = S(p/q)q

map to solutions of a similar equation in L. These are exactly

Iκ,1(ψ1(x), ψ1(y)) = ψ1(x) − λψ1(y) ∈ L∗/l∗,
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for some λ ∈ l∗. This implies that

ψ1(x/y − κ) = ψ1(x/y) − λ ∈ L∗/l∗,

i.e., x/y ∈ L.
Now we show that if x ∈ L then every x′ ∈ k(x)

∗
/k∗ ∩ K∗/k∗ is also in

L. First of all, 1/x ∈ L. Next, elements in the ring k[x], modulo k∗, can be
written as products of linear terms x + κi. Hence

ψ1(k[x]/k∗) ⊂ l[ψ1(x)]/l∗.

Let f be integral over k[x] and let

fn + · · · + a0(x) ∈ k[x]

be the minimal polynomial for f , where a0(x) /∈ k. Replacing f by f + κ,
if necessary, we may assume that f is not a unit in the ring k[x]. Then
f /∈ R, since otherwise we would have a0(x) ∈ R, contradiction. Finally,
any element of k(x)

∗
is contained in the integral closure of some k[1/g(x)],

with g(x) ∈ k[x].
The same argument applies to R, once we composed with ψ−1

1 , to show
that both L and R are subgroups of K∗/k∗. An abelian group cannot be a
union of two subgroups intersecting only in the identity. Thus either L or R
has to be trivial. �

The set P(K) = K∗/k∗ carries two compatible structures: of an abelian
group and a projective space, with projective subspaces preserved by the
multiplication. The projective structure on the multiplicative group P(K)
encodes the field structure:

Proposition 24. [2, Section 3] Let K/k and L/l be geometric fields
over k, resp. l, of transcendence of degree ≥ 2. Assume that ψ1 : K∗/k∗ →
L∗/l∗ maps lines in P(K) into lines in P(L). Then ψ1 is a morphism of
projective structures, ψ1(P(K)) is a projective subspace in P(L), and there
exist a subfield L′ ⊂ L and an isomorphism of fields

ψ : K → L′,

which is compatible with ψ1.

Lemma 23 shows that either ψ1 or ψ−1
1 satisfies the conditions of Propo-

sition 24. This proves Theorem 2.

5. Milnor K-groups

Let K = k(X) be a function field of an algebraic variety X over an alge-
braically closed field k. In this section we characterize intrinsically infinitely
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divisible elements in KM
1 (K) and KM

2 (K). For f ∈ K∗ put

(5.1) Ker2(f) := { g ∈ K∗/k∗ = K̄M
1 (K) | (f, g) = 0 ∈ K̄M

2 (K) }.

Lemma 25. An element f ∈ K∗ = KM
1 (K) is infinitely divisible if and

only if f ∈ k∗. In particular,

(5.2) K̄M
1 (K) = K∗/k∗.

Proof. First of all, every element in k∗ is infinitely divisible, since k is
algebraically closed. We have an exact sequence

0 → k∗ → K∗ → Div(X).

The elements of Div(X) are not infinitely divisible. Hence every infinitely
divisible element of K∗ is in k∗. �

Lemma 26. Given a nonconstant f1 ∈ K∗/k∗, we have

Ker2(f1) = E∗/k∗,

where E = k(f1) ∩ K.

Proof. Let X be a normal projective model of K. Assume first that
f1, f2 ∈ K \ k lie in a 1-dimensional subfield E ⊂ K that contains k and is
normally closed in K. Such a field E defines a rational map π : X → C,
where C is a projective model of E.

By the Merkurjev–Suslin theorem [3], for any field F containing n-th
roots of unity one has

Br(F )[n] = KM
2 (F )/(KM

2 (F ))n,

where Br(F )[n] is the n-torsion subgroup of the Brauer group Br(F ). On
the other hand, by Tsen’s theorem, Br(E) = 0, since E = k(C), and k is
algebraically closed. Thus the symbol (f1, f2) is infinitely divisible in KM

2 (E)
and hence in KM

2 (K).
Conversely, assume that the symbol (f1, f2) is infinitely divisible in

KM
2 (K) and that the field k(f1, f2) has transcendence degree two. Choosing

an appropriate model of X, we may assume that the functions fi define
surjective morphisms πi : X → P1

i = P1, and hence a proper surjective map
π : X → P1

1 × P1
2.

For any irreducible divisor D ⊂ X the restriction of the symbol (f1, f2)
to D is well-defined, as an element of KM

1 (k(D)). It has to be infinitely
divisible in KM

1 (k(D)), for each D.
For j = 1, 2, consider the divisors div(fj) =

∑
nijDij , where Dij are

irreducible. Let D11 be a component surjecting onto P1
1 × 0. The restriction
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of f2 to D11 is nonconstant. Thus D11 is not a component in the divisor of
f2 and the residue

�(f1, f2) ∈ KM
1 (k(D11)∗) = (f2|D11)n11 /∈ k∗.

It remains to apply Lemma 25 to conclude that the residue and hence the
symbol are not divisible. This contradicts the assumption that k(f1, f2) has
transcendence degree two. �

Corollary 27. Let K and L be function fields over k. Any group homo-
morphism

ψ1 : K̄M
1 (K) → K̄M

1 (L)

satisfying the assumptions of Theorem 4 maps multiplicative subgroups of
normally closed one-dimensional subfields of K to multiplicative subgroups
of one-dimensional subfields of L.

We now prove Theorem 4.
Step 1. For each normally closed one-dimensional subfield E ⊂ K there

exists a one-dimensional subfield Ẽ ⊂ L such that

ψ1(E∗/k∗) ⊂ Ẽ∗/l∗

Indeed, Lemma 26 identifies multiplicative groups of 1-dimensional normally
closed subfields in K: For x ∈ K∗ \ k∗ the group k(x)

∗ ⊂ K∗ is the set of all
y ∈ K∗/k∗ such that the symbol (x, y) ∈ K̄M

2 (K) is zero.
Step 2. There exists an r ∈ N such that ψ

1/r
1 (K∗/k∗) contains a primitive

element of L∗/l∗. Note that L∗/l∗ is torsion-free. For f, g ∈ K∗/k∗ assume
that ψ1(f), ψ1(g) are nf , resp. ng, powers of primitive, multiplicatively inde-
pendent elements in L∗/l∗. Let M := 〈ψ1(f), ψ1(g)〉 and let Prim(M) be
its primitivization. Then Prim(M)/M = Z/n ⊕ Z/m, with n | m, i.e.,
n = gcd(nf , ng). Thus, we can take r to be is the smallest nontrivial power
of an element in ψ1(K∗/k∗) ⊂ L∗/l∗.

Step 3. By Theorem 2 either ψ
1/r
1 or ψ

−1/r
1 extends to a homomorphism

of fields.
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