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Abstract. In this paper, we present an existence theory for abso-

lute minimizers of the Faddeev knot energies in the general Hopf

dimensions. These minimizers are topologically classified by the

Hopf-Whitehead invariant, Q, represented as an integral of the

Chern-Simons type. Our method involves an energy decomposition

relation and a fractionally powered universal topological growth

law. We prove that there is an infinite subset S of the set of all

integers such that for each N ∈ S there exists an energy minimizer

in the topological sector Q = N . In the compact setting, we show

that there exists an absolute energy minimizer in the topological

sector Q = N for any given integer N that may be realized as a

Hopf-Whitehead number. We also obtain a precise energy-splitting

relation and an existence result for the Skyrme model.

1. Introduction

In knot theory, an interesting problem concerns the existence of “ideal
knots”, which promises to provide a natural link between the geometric
and topological contents of knotted structures. This problem has its origin
in theoretical physics in which one wants to ask the existence and predict
the properties of knots “based on a first principle approach” [N]. In other
words, one is interested in determining the detailed physical characteristics
of a knot such as its energy (mass), geometric conformation, and topological
identification, via conditions expressed in terms of temperature, viscosity,
electromagnetic, nuclear, and possibly gravitational, interactions, which is
also known as an Hamiltonian approach to realizing knots as field-theoretical
stable solitons. Based on high-power computer simulations, Faddeev and
Niemi [FN1] carried out such a study on the existence of knots in the
Faddeev quantum field theory model [F1]. Later, Faddeev addressed the
existence problem and noted the mathematical challenges it gives rise to
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[F2]. The purpose of the present work is to develop a systematic existence
theory of these Faddeev knots in their most general settings.

Recall that for the classical Faddeev model [BS1, BS2, F1, F2, FN1,

FN2, Su] formulated over the standard (3+1)-dimensional Minkowski space
of signature (+ − −−), the Lagrangian action density in normalized form
reads

(1.1) L = ∂μu · ∂μu− 1

2
Fμν (u)F

μν(u),

where the field u = (u1, u2, u3) assumes its values in the unit 2-sphere and

(1.2) Fμν(u) = u · (∂μu ∧ ∂νu)

is the induced “electromagnetic” field. Since u is parallel to ∂μu∧ ∂νu, it is
seen that Fμν(u)F

μν(u) = (∂μu∧∂νu) · (∂μu∧∂νu), which may be identified
with the well-known Skyrme term [E1, E2, MRS, S1, S2, S3, S4, ZB]
when one embeds S2 into S3 ≈ SU(2). Hence, the Faddeev model may
be viewed as a refined Skyrme model governing the interaction of baryons
and mesons and the solution configurations of the former are the solution
configurations of the latter with a restrained range [C].

We will be interested in the static field limit of the Faddeev model for
which the total energy is given by

(1.3) E(u) =

∫
R3

{ 3∑
j=1

|∂ju|2 + 1

2

3∑
j,k=1

|Fjk(u)|2
}
dx.

Finite-energy condition implies that u approaches a constant vector u∞ at
spatial infinity (of R

3). Hence we may compactify R
3 into S3 and view the

fields as maps from S3 to S2. As a consequence, we see that each finite-energy
field configuration u is associated with an integer, Q(u), in π3(S

2) = Z (the
set of all integers). In fact, such an integer Q(u) is known as the Hopf
invariant which has the following integral characterization: The differential
form F = Fjk(u)dx

j ∧ dxk (j, k = 1, 2, 3) is closed in R3. Thus, there is a

one form, A = Ajdx
j so that F = dA. Then the Hopf charge Q(u) of the

map u may be evaluated by the integral

(1.4) Q(u) =
1

16π2

∫
R3

A ∧ F,

due to J. H. C. Whitehead [Wh]. The integral (1.4) is in fact a special
form of the Chern–Simons invariant [CS1, CS2] whose extended form
in (4n− 1) dimensions (cf. (2.2) below) is also referred to as the Hopf–
Whitehead invariant.

The Faddeev knots, or rather, knotted soliton configurations represent-
ing concentrated energy along knotted or linked curves, are realized as the
solutions to the minimization problem [F2], also known as the Faddeev knot
problem, given as

(1.5) EN ≡ inf{E(u) |E(u)< ∞, Q(u) = N}, N ∈ Z.
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In [LY1, LY4], it is shown that EN is attainable at N = ±1 and
that there is an infinite subset of Z, say S, such that EN is attainable
for any N ∈ S. The purpose of the present work is to extend this exis-
tence theory for the Faddeev knot problem to arbitrary settings beyond 3
dimensions.

Our motivation of engaging in a study of the Faddeev knot problem
beyond 3 dimensions comes from several considerations: (i) Theoretical
physics, especially quantum field theory, not only thrives in higher dimen-
sions but although requires higher dimensions [GSW, P, Z]. (ii) The 3-
dimensional Faddeev model may be viewed naturally as a special case of
an elegant class of knot energies stratified by the Hopf invariant in general
dimensions (see our formulation below). (iii) Progress in general dimen-
sions helps us achieve an elevated level of understanding [LY3, LY5] of the
intriguing relations between knot energy and knot topology and the mathe-
matical mechanism for the formation of knotted structures. (iv) Knot theory
in higher dimensions [H, K, R] is an actively pursued subject, and hence,
it will be important to carry out a study of “ideal” knots for the Faddeev
model in higher dimensions.

Note that minimization of knot energies subject to knot invariants based
on diagrammatic considerations has been studied considerably in literature.
For example, knot energies designed for measuring knotted/tangled space
curves include the Gromov distortion energy [G1, G2], the Möbius energy
[BFHW, FHW, O1, O2], and the ropelength energy [B, CKS1, CKS2,

GM, Na]. See [JvR] for a rather comprehensive survey of these and other
knot energies and related interesting works. See also [KBMSDS, Kf, M,

S, SKK].
Although there are various available formulations when one tries to gen-

eralize the Faddeev energy (1.3), the core consideration is still to maintain
an appropriate conformal structure for the energy functional which works
to prevent the energy to collapse to zero. The simplest energy is the con-
formally invariant n-harmonic map energy, where n is the dimension of the
domain space, which is also known as the Nicole model [Ni] when special-
ized to govern maps from R

3 into S2. Another type of energy functionals
is of the Skyrme type [MRS, S1, S2, S3, S4, ZB] whose energy den-
sities contain terms with opposite scaling properties and jointly prevent
energy collapse. In fact, these terms interact to reach a suitable balance
to ensure solitons of minimum energy to exist. The Faddeev model (1.3)
belongs to this latter category for which the solitons of minimum energy
are realized as knotted energy concentration configurations [BS1, BS2,

FN1, FN2, Su]. In this paper, our main interest is to develop an exis-
tence theory for the energy minimizers of these two types of knotted soliton
energies.

Specifically, we will study both the Nicole–Faddeev–Skyrme (NFS) type
and Faddeev type knot energy (see (2.4), (2.5) and (2.6) for definitions).
The two energy functionals have very different analytical properties. In
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particular, the conformally invariant term

(1.6)

∫
R4n−1

|∇u|4n−1 dx

in the NFS model enables us to carry out a straightforward argument which
shows that the Hopf–Whitehead invariant Q (u) (see (2.3)) must be an inte-
ger for any map u with finite NFS energy. More importantly, it allows us to
get an annulus lemma (Lemma 3.1) which permits us to freely cut and paste
maps under appropriate energy control. In this way, as in [LY2], the mini-
mization problem fits well in the classical framework of the concentration-
compactness principle [E1, E2, L1, L2]. Along this line, we shall arrive at
the main result, Theorem 7.1, which guarantees the existence of extremal
maps for an infinite set of integer values of the Hopf–Whitehead invariant.
The situation is different for the Faddeev energy (see (2.6)). In this case, it
seems difficult to know whether a map with finite energy can be approxi-
mated by smooth maps with similar energy control. In particular, it is not
clear anymore why the Hopf–Whitehead invariant (see (2.3)), which is given
by an integral expression, should always be an integer. Based on some recent
observations of Hardt–Riviere [HR] in the study of the behavior of weak
limits of smooth maps between manifolds in the Sobolev spaces, and some
earlier approach of Esteban–Muller–Sverak [Sv, EM], we are able to show
that the Hopf–Whitehead invariant of a map with finite Faddeev energy
must be an integer (see Theorem 10.1). Such a statement is not only useful
for a reasonable formulation of the Faddeev model but also plays a crucial
role in understanding the behavior of minimizing sequence and the existence
of extremal maps. One of the main difficulties in understanding the Faddeev
model is that it is still not known whether an annulus lemma similar to
Lemma 3.1 exists or not. In particular, we are not able to freely cut and paste
maps with finite energy and it is not clear whether the minimizing problem
would break into a finite region one and another at the infinity. That is, in
this situation, the minimizing problem does not fit in the framework of the
classical concentration-compactness principle anymore. This difficulty will
be bypassed by a decomposition lemma (Lemma 12.1) for an arbitrary map
with finite Faddeev energy (in the same spirit as in [LY1] for maps from
R

3 to S2). Roughly speaking, the lemma says we may break the domain
spaces into infinitely many blocks, each of which can be designated with
some “degree”. By collecting those nonzero “degree” blocks suitably we may
have a reasonable understanding of the minimizing sequence of maps for the
Faddeev energy (Theorem 13.1). Based on this and the sublinear growth law
for the Faddeev energy, we will obtain several existence results of extremal
maps for the Faddeev energy (see Section 13.1). We point out that the
method to bypass the breakdown of the concentration-compactness prin-
ciple is along the same line as [LY1]. However, due to the fact that we
do not have the tool of lifting through the classical Hopf map S3 → S2 in
higher dimensions, we have to resort to different approaches to deal with the
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nonlocally defined Hopf–Whitehead invariant.When reduced to the Faddeev
model from R

3 to S2, this method gives a different route towards the main
results in [LY1]. Moreover, by establishing the subaddivity of the Faddeev
energy spectrum (see Corollary 13.3), we are able to strengthen the Sub-
stantial Inequality in [LY1] to an equality. That is, we are actually able to
establish an additivity property for the Faddeev knot energy spectrum. We
will also use the same approach to improve the Substantial Inequality for
the Skyrme model to an equality (see Theorem 14.3).

Here is a sketch of the plan for the rest of the paper.
The first part, consisting of Sections 2–7, is about the NFS model. In

Section 2, we introduce the generalized knot energies of the Nicole type [AS,

ASVW, Ni, We], the NFS type extending the two-dimensional Skyrme
model [Co, dW, GP, KPZ, LY2, PMTZ, PSZ1, PSZ2, PZ, SB, Wei],
and the Faddeev type [F1, F2], all in light of the integral representation
of the Hopf invariant in the general (4n − 1) dimensions (referred to as
the Hopf dimensions). We will also obtain some growth estimates of the
knot energies with respect to the Hopf number in view of the earlier work
[LY3, LY5]. In Section 3, we establish a technical (annulus) lemma for the
NFS model which allows truncation of a finite-energy map and plays a crucial
role in proving the integer-valuedness of the Hopf–Whitehead integral and
the validity of an energy-splitting relation called the “Substantial Inequality”
[LY4]. We shall see that the conformal structure of the leading term in the
energy density is essential. In Section 4, we show that the Hopf–Whitehead
integral takes integer value for a finite-energy map in the NFS model. In
Section 5, we consider the minimization process in view of the concentration-
compactness principle of Lions [L1, L2] and we rule out the “vanishing”
alternative for the nontrivial situation.We also show that the “compactness”
alternative is needed for the solvability of the Faddeev knot problem stated
in Section 2 for the NFS energy. In Section 6, we show that the “dichotomy”
alternative implies the energy splitting relation or the Substantial Inequality.
These results, combined with the energy growth law stated in Section 2,
lead to the existence of the NFS energy minimizers stratified by infinitely
many Hopf charges, as recognized in [LY1]. We state these results as the
first existence theorem in Section 7. We then establish a simple but general
existence theorem for both the generalized NFS model and the generalized
Faddeev model in the compact case. For the Nicole model over R

3 or S3, we
prove the existence of a finite-energy critical point among the topological
class whose Hopf number is arbitrarily given.

The second part, consisting of Sections 8–13, is about the Faddeev model.
In Section 8, we briefly describe the formulation of Faddeev model. In Sec-
tion 9, various basic tools necessary for the study of Faddeev model are dis-
cussed. Section 10 is devoted to showing that for a map with finite Faddeev
energy, the Hopf–Whitehead invariant is well defined and takes only integer
values. We also derive a similar result for maps with mixed differentiability
(see Section 10.1). Such kind of results are needed in proving the crucial
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decomposition lemma (Lemma 12.1). In Section 11, we describe some basic
rules concerning the Hopf-Whitehead invariant for maps with finite Faddeev
energy and the sublinear energy growth rate. Note that such kind of sub-
linear growth is a special case of results derived in [LY5]. The arguments
are presented here to facilitate the discussions in Section 11, Section 12 and
Section 13. In Section 12, we prove a crucial technical fact: the validity of
a certain decomposition lemma for a map with finite Faddeev energy. The
proof of this lemma shares the same spirit as that in [LY1] but is techni-
cally different due to the lack of lifting arguments. In Section 13, we prove
the main result of the second part, namely, Theorem 13.1, which describes
the behavior of a minimizing sequence of maps. Based on this description
and the sublinear growth law, we discuss some facts about the existence of
minimizers in Section 13.1.

In Section 14, we apply our approach in the second part to the standard
Skyrme model to derive the subadditivity of the Skyrme energy spectrum
and strengthen the substantial inequality to an equality.

Finally, we conclude with Section 15.

2. Knot energies in general Hopf dimensions

Recall that the integral representation of the Hopf invariant by
Whitehead [Wh] of the classical fibration S3 → S2 can be extended to the
general case of the fibration S4n−1 → S2n. More precisely, let u : S4n−1 →
S2n (n ≥ 1) be a differentiable map. Then there is an integer representation
of u in the homotopy group π4n−1(S

2n), say Q(u), called the generalized
Hopf index of u, which has a similar integral representation as (1.4) as fol-
lows. Let ωS2n be a volume element of S2n so that

(2.1) |S2n| ≡
∫

S2n

ωS2n

is the total volume of S2n and u∗ the pullback map Λ(S2n) → Λ(S4n−1)
(a homomorphism between the rings of differential forms). Since u∗ com-
mutes with d, we see that du∗(ωS2n) = 0; since the de-Rham cohomol-
ogy H2n(S4n−1, R) is trivial, there is a (2n − 1)-form v on S4n−1 so that
dv = u∗(ωS2n) (sometimes we also write u∗(ωS2n) simply as u∗ωS2n when
there is no risk of confusion). Of course, the normalized volume form ω̃S2n =
|S2n|−1ωS2n gives the unit volume and ṽ = |S2n|−1v satisfies dṽ = u∗(ω̃S2n).
Since ω̃S2n can be viewed also as an orientation class, Q(u) may be repre-
sented as [GHV, Hu]

(2.2) Q(u) =

∫
S4n−1

ṽ ∧ u∗(ω̃S2n) =
1

|S2n|2
∫

S4n−1

v ∧ u∗(ωS2n).

The conformal invariance of (2.2) enables us to come up with the Hopf
invariant, or the Hopf–Whitehead invariant, Q(u), for a map u from R

4n−1
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to S2n which approaches a fixed direction at infinity, as

(2.3) Q(u) =
1

|S2n|2
∫

R4n−1

v ∧ u∗(ωS2n), dv = u∗(ωS2n).

With the above preparation, we introduce the generalized Faddeev knot
energies, subclassified as the Nicole, NFS, Faddeev energies over R4n−1,
respectively, as

ENicole(u) =

∫
R4n−1

|∇u|4n−1,(2.4)

ENFS(u) =

∫
R4n−1

{|∇u|4n−1 + |u∗(ωS2n)|2 + |n− u|2},(2.5)

EFaddeev(u) =

∫
R4n−1

{
|∇u|4n−2 +

1

2
|u∗(ωS2n)|2

}
,(2.6)

where and in the sequel, we omit the Lebesgue volume element dx in various
integrals whenever there is no risk of confusion, we use the notation |∇u|,
|du|, and |Du| interchangeably wherever appropriate, and we use n to denote
a fixed unit vector in R

2n+1 or a point on S2n. Besides, we use c0 to denote
the best constant in the Sobolev inequality

(2.7) c0‖f‖q ≤ ‖∇f‖2
over R

4n−1 with q satisfying 1/q = 1/2− 1/(4n− 1) = (4n− 3)/2(4n− 1),
given by the expression

(2.8) c0 = ([4n− 1][4n− 3])
1
2

(
ω4n−1

Γ(2n− 1
2)Γ(2n+

1
2 )

Γ(4n− 1)

) 1
(4n−1)

,

with ωm being the volume of the unit ball in Rm.

Theorem 2.1.Let E be the energy functional defined by one of the energy
functionals given by the expressions (2.4), (2.5), and (2.6). Then there is a
universal constant C = C(n) > 0 such that

(2.9) E(u) ≥ C|Q(u)| 4n−1
4n .

In the case when E is given by (2.6), the constant C has the explicit form

(2.10) C(n) = 2n(c0|S2n|2) 4n−1
4n n

2n−1
2 .

Proof. Recall the Sobolev inequality over R4n−1 of the form

(2.11) C(n, p)‖f‖q ≤ ‖∇f‖p, 1 < p < 4n− 1, q =
(4n− 1)p

4n− 1− p
.

From the pointwise bound

(2.12) |u∗(ωS2n)| ≤ C1|∇u|2n,
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and assuming dv = u∗(ωS2n) and δv = 0, where δ is the codifferential of d
which is often denoted by d∗ as well, we have

(2.13)

∫
R4n−1

|∇v| 4n−1
2n ≤ C2

∫
R4n−1

|u∗(ωS2n)| 4n−1
2n ≤ C3

∫
R4n−1

|∇u|4n−1,

where we have used an Lp-version of the Gaffney type inequality [ISS, Sc] for
differential forms (we thank Tom Otway for pointing out these references).

Choose p = (4n − 1)/2n so that q = (4n − 1)/(2n − 1) in (2.11). The
conjugate exponent q′ with respect to q is q′ = q/(q − 1) = (4n − 1)/2n.
Thus the Hölder inequality and (2.13) lead us to

|S2n|2|Q(u)| ≤ ‖v‖q‖u∗(ωS2n)‖q′

≤ C‖∇v‖(4n−1)/2n‖u∗(ωS2n)‖(4n−1)/2n

≤ C1

(∫
R4n−1

|∇u|4n−1

) 4n
4n−1

,

(2.14)

which establishes (2.9) for the energy functional given by (2.4) or (2.5).
Consider now the energy functional

(2.15) Ep(u) =

∫
R4n−1

{
|∇u|p + 1

2
|u∗(ωS2n)|2

}
.

In [LY5], we have shown that, when the exponent p in (2.15) lies in the
interval

(2.16) 1 < p <
4n(4n− 1)

4n+ 1
,

there holds the universal fractionally-powered topological lower bound

(2.17) Ep(u) ≥ C(n, p)|Q(u)| 4n−1
4n ,

where the positive constant C(n, p) may be explicitly expressed as

C(n, p) = (c0|S2n|2) 4n−1
4n (2n)

p
2(4n−p) (4n− p)

×
(

4n

(4n− 1)(8n− p)− p(4n+ 1)

) (4n−1)(8n−p)−p(4n+1)
8n(4n−p)

.
(2.18)

It is seen that our stated lower bound for the energy defined in (2.6) corre-
sponds to p = 4n− 2 so that C(n, 4n− 2) is given by (2.10) as claimed. �

For the earlier work in the classical situation, n = 1, see [KR, Sh, VK].
Note that the energy

(2.19) EAFZ(u) =

∫
R4n−1

|u∗(ωS2n)| 4n−1
2n
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is also of interest and referred to as the AFZ model [AFZ] when n = 1.
Combining (2.13) and (2.14), we have

(2.20) C|Q(u)| ≤ ‖u∗(ωS2n)‖2(4n−1)/2n,

which implies that the energy EAFZ defined in (2.19) satisfies the general
fractionally-powered topological lower bound (2.9) as well.

We next show that the lower bound (2.9) is sharp.

Theorem 2.2. Let E be defined by one of the expressions stated in
(2.4), (2.5), (2.6), and (2.19). Then for any given integer N which may
be realized as the value of the Hopf–Whitehead invariant, i.e., Q(u) = N for
some differentiable map u : R4n−1 → S2n, and for the positive number EN

defined as

(2.21) EN = inf{E(u)|E(u)< ∞, Q(u) = N},
we have the universal topological upper bound

(2.22) EN ≤ C|N | 4n−1
4n ,

where C > 0 is a constant independent of N .

Proof. In [LY5], we have proved the theorem for the general energy
functional

E(u) =

∫
R4n−1

H(∇u) dx,

where the energy density function H is assumed to be continuous with
respect to its arguments and satisfies the natural conditionH(0) = 0. Hence
the theorem is valid for the energy functionals (2.4) and (2.6). For the energy
functional (2.5), there is an extra potential term |u−n|2. However, this term
does not cause problem in our proof because the crucial step is to work on

a ball in R
4n−1 of radius |N | 1

4n and u = n outside the ball. Therefore, the
potential term upon integration contributes a quantity proportional to the

volume of the ball, which is of the form C|N | 4n−1
4n . �

In the following first few sections, we will concentrate on the energy
functional (2.5).

3. Technical lemma

Let B be a subdomain in R4n−1 and consider the knot energy (2.5)
restricted to B,

(3.1) E(u;B) =

∫
B
{|∇u|4n−1 + |u∗(ωS2n)|2 + |u− n|2}.

We use BR to denote the ball in R
4n−1 centered at the origin and of radius

R > 0. The following technical lemma plays an important part in our inves-
tigation of the first part of this paper.
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Lemma 3.1. For any small ε > 0 and R ≥ 1, let u : B2R \BR → S2n

satisfy E(u;B2R \ BR) < ε. Then there is a map ũ : B2R \BR → S2n such
that (i) ũ = u on ∂BR, (ii) ũ = n on ∂B2R, (iii) E(ũ;B2R \ BR) < Cε,
where C > 0 is an absolute constant independent of R, ε, and u. The same
statement is also valid when ũ is modified to satisfy ũ = n on ∂BR and
ũ = u on ∂B2R.

To obtain a proof, it will be convenient to work on a standard small
domain. First, for the map stated in the lemma, define

(3.2) uR(y) = u(Ry) for x = Ry ∈ B2R \BR.

Hence y ∈ B2 \B1 and

ε > E(u;B2R \BR) =

∫
B2\B1

{|∇yu
R(y)|4n−1

+ |(uR)∗(ωS2n)(y)|2R−1 +R4n−1|uR(y)− n|2} dy.

(3.3)

Consequently, we have
(3.4)

ε >

∫ 3/2

1
dr

∫
∂Br

dSr{|∇uR|4n−1 + |(uR)∗(ωS2n)|2R−1 + R4n−1|uR − n|2}.

Hence, there is an r ∈ (1, 3/2) such that

(3.5)

∫
∂Br

{|∇uR|4n−1 + |(uR)∗(ωS2n)|2R−1 +R4n−1|uR − n|2} dSr < 2ε.

In what follows, we fix such an r determined by (3.5).
Consider a map vR : R4n−1 → R2n defined by

ΔvR = 0 in B2 \Br ,(3.6)

vR = uR on ∂Br , vR = n on ∂B2.(3.7)

Then, for p = (4n − 1)2/(4n − 2), we have, in view of (3.6) and (3.7), the
bound

(3.8) ‖∇vR‖Lp(B2\Br) ≤ C‖∇uR‖L4n−1(∂Br),

which in terms of (3.5) leads to

(3.9)

∫
B2\Br

|∇vR|
(4n−1)2

(4n−2) ≤ C1ε
4n−1
4n−2 .

Since (4n−1)2 > 4n(4n−2), we have p > 4n. So the Hölder inequality with
conjugate exponents s and t gives us

(3.10)

∫
B2\Br

|∇vR|4n ≤ |B2 \Br | 1t
(∫

B2\Br

|∇vR|p
)1

s

,
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where 4ns = p = (4n− 1)2/(4n− 2) and t = s/(1− s). Therefore, we have,
in view of (3.9) and (3.10),

(3.11)

∫
B2\Br

|∇vR|4n ≤ C2ε
4n

4n−1 .

Recall that, since R ≥ 1, we also have
∫
∂Br

|uR − n|2 dSr < 2ε. Hence,

for any q > 2, we have
∫
∂Br

|uR − n|q dSr ≤ C
∫
∂Br

|uR − n|2 dSr ≤ C1ε.

Since the ball is in R4n−1, we see that for q = 4n(4n−2)/(4n−1) (of course,
q > 2), we have

(3.12) ‖vR − n‖L4n(B2\Br) ≤ C‖uR − n‖Lq(∂Br) ≤ C1ε
1
q .

Therefore, we have seen that (vR−n) has small W 1,4n(B2 \Br)-norm. Using

the embedding W 1,4n(B2 \ Br)→ C(B2 \Br) (noting that dim(B2 \Br) =

4n − 1 < 4n), we see that (vR − n) has small C(B2 \Br)-norm. As a con-
sequence, we may assume

(3.13) n · vR >
1

2
on B2 \Br.

Since vR is harmonic, |vR−n|2 is subharmonic, Δ|vR−n|2 ≥ 0, on B2 \Br .
Hence

(3.14)

∫
B2\Br

|vR − n|2 ≤ C

∫
∂Br

|vR − n|2 dSr ≤ 2εC

R4n−1
.

To get a map from B2 \ Br, we need to normalize vR, which is ensured
by (3.13). Thus, we set

(3.15) wR =
vR

|vR| on B2 \Br .

Then wR ∈ S2n. We can check that |wR−n| < 4|vR−n| and |∂jw
R| < 4|∂jv

R|
in view of (3.13). Therefore we have∫

B2\Br

R4n−1|wR − n|2 ≤ 8Cε,(3.16) ∫
B2\Br

R−1|(wR)∗(ωS2n)|2 ≤ C

∫
B2\Br

|∇vR|4n ≤ C1ε
4n

4n−1 ,(3.17) ∫
B2\Br

|∇wR|4n−1 ≤ C2

∫
B2\Br

|∇vR|4n−1

≤ C2|B2 \Br | 1t
(∫

B2\Br

|∇vR|4n

)1
s

,

(3.18)
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where t = s/(s−1) and s = 4n/(4n−1). The bounds (3.11) and (3.18) may
be combined to yield

(3.19)

∫
B2\Br

|∇wR|4n−1 ≤ C3ε.

Thus, we can summarize (3.16), (3.17), and (3.19) and write down the
estimate

(3.20)

∫
B2\Br

{|∇wR|4n−1 + R−1|(wR)∗(ωS2n)|2 + R4n−1|wR − n|2} < Cε.

On ∂B2, wR = n; on ∂Br, wR = uR/|uR| = uR.
Define

(3.21) ũ(x) = wR

(
1

R
x

)
for x ∈ B2R \BrR; ũ(x) = u(x) for x ∈ BrR.

We see that the statements of the lemma in the first case are all established.
The proof can be adapted to the case of the interchanged boundary

conditions ũ = u on B2R and ũ = n on BR. Hence, all the statements of the
lemma in the second case are also established.

4. Integer-valuedness of the Hopf–Whitehead integral

As the first application of the technical lemma established in the previous
section, we prove

Theorem 4.1. If u : R
4n−1 → S2n is of finite energy, E(u) < ∞, where

the energy E is as given in (2.5), then the Hopf–Whitehead integral (2.3)
with δv = 0 is an integer.

Let the pair u, v be given as in the theorem and {εj} be a sequence of
positive numbers so that εj → 0 as j → ∞ and {Rj} be a corresponding
sequence so thatRj →∞ as j →∞ andE(u;R4n−1\BRj) < εj, j = 1, 2, · · · .
Let {uj} be a sequence of modified maps from R4n−1 to S2n produced by
the technical lemma so that uj = u in BRj and uj = n on R4n−1 \ B2Rj .
Then

(4.1) Q(uj) =
1

|S2n|2
∫

R4n−1
vj ∧ u∗j (ωS2n)

is a sequence of integers. We prove that Q(uj)→ Q(u) as j →∞.

We know that {|u∗j(ωS2n)|} is bounded in L2(R4n−1) and L
4n−1
2n (R4n−1)

due to the structure of the knot energy (2.5), the definition of uj, and the
relation (2.12). By interpolation, we see that the sequence is bounded in
Lp(R4n−1) for all p ∈ [ 4n−1

2n , 2]. From the relations dvj = u∗j(ωS2n) and

δvj = 0, we see that {|∇vj|} is bounded in Lp(R4n−1) for all p ∈ [ 4n−1
2n , 2] as

well. Using the Sobolev inequality

(4.2) C(m, p)‖f‖q ≤ ‖∇f‖p
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in R
m with q = mp/(m−p) and 1 < p < m, we get the boundedness of {vj}

in Lq(R4n−1) for q = (4n− 1)p/(4n− 1− p) with 4n−1
2n ≤ p ≤ 2, which gives

the range for q,

(4.3) q(n) ≡ 4n− 1

2n− 1
≤ q ≤ 2(4n− 1)

4n− 3
.

To proceed, we consider the estimate

|S2n|2|Q(u)−Q(uj)|

=

∣∣∣∣ ∫
R4n−1

(v ∧ u∗(ωS2n)− vj ∧ u∗j(ωS2n))

∣∣∣∣
≤

∣∣∣∣ ∫
R4n−1

(v ∧ u∗(ωS2n)− v ∧ u∗j (ωS2n))

∣∣∣∣(4.4)

+

∣∣∣∣ ∫
R4n−1

(v ∧ u∗j (ωS2n)− vj ∧ u∗j (ωS2n))

∣∣∣∣
≡ I

(1)
j + I

(2)
j .

To show that I
(1)
j → 0 as j → ∞, we look at the bottom numbers (for

example) for which

(4.5) u∗j(ωS2n)→ u∗(ωS2n) weakly in Lp(R4n−1)

for p = 4n−1
2n so that the conjugate of p is p′ = p

p−1 =
4n−1
2n−1 = q(n), as defined

in (4.3). Hence the claim I
(1)
j → 0 immediately follows from (4.5).

On the other hand, since q(n) > 2, we see that {vj} is bounded in
W 1,2(B) for any bounded domainB in R

4n−1. Using the compact embedding
W 1,2(B) → L2(B) and a subsequence argument, we may assume that {vj}
is strongly convergent in L2(B) for any bounded domain B. Thus, we have

I
(2)
j ≤ ‖v − vj‖L2(B)E(uj)

1
2 +

(
‖v‖ 4n−1

2n−1

+ ‖vj‖ 4n−1
2n−1

)(∫
R4n−1\B

|u∗j(ωS2n)| 4n−1
2n

) 2n
4n−1

≤ C1‖v − vj‖L2(B) + C2E(uj;R
4n−1 \B)

2n
4n−1 .

(4.6)

It is not hard to see that the quantity E(uj;R
4n−1 \ B) may be made uni-

formly small. Indeed, for any ε > 0, we can choose B sufficiently large so
that E(u;R4n−1 \B) < ε. Let j be large enough so that BRj ⊃ B. Then

E(uj;R
4n−1 \B) ≤ E(u;R4n−1 \B) + E(uj;B2Rj \BRj )

≤ ε+ Cεj ,
(4.7)

in view of Lemma 3.1. Using (4.7) in (4.6), we see that I
(2)
j → 0 as j →∞.

Consequently, we have established Q(uj) → Q(u) as j → ∞. In partic-
ular, Q(u) must be an integer because Q(uj)’s are all integers.



162 F. HANG, F. LIN, AND Y. YANG

5. Minimization for the Nicole–Faddeev–Skyrme model

Consider the minimization problem (2.21) where the energy functional
E is defined by (2.5). Let {uj} be a minimizing sequence of (2.21) and set
(5.1) fj(x) = (|∇uj|4n−1 + |u∗j (ωS2n)|2 + |n− uj|2)(x).
Then we have

(5.2) fj ∈ L(R4n−1), ‖fj‖1 ≥ C|N | 4n−1
4n ,

and ‖fj‖1 ≤ EN + 1 (say) for all j.
Use B(y, R) to denote the ball in R

4n−1 centered at y and of radius
R > 0. According to the concentration-compactness principle of P. L. Lions
[L1, L2], one of the following three alternatives holds for the sequence {fj}:

(a) Compactness: There is a sequence {yj} in R
4n−1 such that for any

ε > 0, there is an R > 0 such that

(5.3) sup
j

∫
R4n−1\B(yj ,R)

fj(x) dx < ε.

(b) Vanishing: For any R > 0,

(5.4) lim
j→∞

(
sup

y∈R4n−1

∫
B(y,R)

fj(x) dx

)
= 0.

(c) Dichotomy: There is a sequence {yj} ⊂ R4n−1 and a positive num-
ber t ∈ (0, 1) such that for any ε > 0 there is an R > 0 and a
sequence of positive numbers {Rj} satisfying limj→∞ Rj = ∞ so
that

(5.5)

∣∣∣∣ ∫
B(yj ,R)

fj(x) dx− t‖fj‖1
∣∣∣∣ < ε,

(5.6)

∣∣∣∣ ∫
R4n−1\B(yj,Rj)

fj(x) dx− (1− t)‖fj‖1
∣∣∣∣ < ε.

We have the following.

Lemma 5.1. The alternative (b) (or vanishing) stated in (5.4) does not
happen for the minimization problem when N �= 0.

Proof. Let B be a bounded domain in R
m and recall the continuous

embedding W 1,p(B) → L
mp

m−p (B) for p < m. We need a special case of this
at p = 1:

(5.7) W 1,1(B)→ L
m

m−1 (B) (m > 1).
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Hence, for any function w, we have(∫
B
|w|k m

m−1

)m−1
m ≤ CB

(∫
B
(|w|k + |w|k−1|∇w|)

)
≤ CB

(∫
B
|w|k +

[ ∫
B
|w|(k−1) m

m−1

]m−1
m

[∫
B
|∇w|m

] 1
m
)

≤ C

(∫
B
|w|k +

∫
B
|w|(k−1) m

m−1 +

∫
B
|∇w|m

)
(5.8)

(if |w| is bounded, k ≥ 2, (k − 1) m
m−1 ≥ 2, then)

≤ C

(∫
B
|w|2 +

∫
B
|∇w|m

)
.

Now taking m = 4n − 1 so that m
m−1 =

4n−1
4n−2 > 1, k = 4, w = uj − n, and

B = B(yj , R), we have from (5.8) the inequality

(5.9)∫
B(yj ,R)

|uj − n| 2(4n−1)
2n−1 ≤ C

(∫
B(yj ,R)

|uj − n|2 +
∫

B(yj ,R)
|∇uj|4n−1

)1+ 1
4n−2

.

We now decompose R4n−1 into the union of a countable family of balls,

(5.10) R
4n−1 = ∪∞i=1B(yi, R),

so that each point in R4n−1 lies in at most m such balls. Then define the
quantity

(5.11) aj = sup
i

(∫
B(yi,R)

|uj − n|2 +
∫

B(yi,R)
|∇uj|4n−1

)
.

Thus the alternative (b) (vanishing) implies aj → 0 as j →∞. Therefore∫
R4n−1

|uj − n| 2(4n−1)
2n−1 ≤

∞∑
i=1

∫
B(yi,R)

|uj − n| 2(4n−1)
2n−1

≤ a
1

4n−2

j C

∞∑
i=1

(∫
B(yi,R)

|uj−n|2+
∫

B(yi,R)

|∇uj|4n−1

)
(5.12)

≤ ma
1

4n−1

j C

(∫
R4n−1

(|uj − n|2 + |∇uj|4n−1)

)
≤ ma

1
4n−1

j CE(uj)→ 0 as j →∞.

Define the set Aj = {x ∈ R4n−1 | |uj(x)−n| ≥ 1} (say). Then (5.12) implies
(5.13) lim

j→∞
|Aj| = 0,
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where |Aj| denotes the Lebesgue measure of Aj. SinceQ(uj) = N �= 0, we see
that uj(R

4n−1) covers S2n (except possibly skipping n). The definition of Aj

says uj(Aj) contains the half-sphere below the equator of S2n. Consequently,

(5.14)

∫
Aj

|u∗j(ωS2n)| dx ≥ |uj(Aj)| ≥ 1

2
|S2n|,

where |S2n| is the total volume of S2n. However, the Schwartz inequality
and (5.13) give us∫

Aj

|u∗j (ωS2n)| dx ≤ |Aj| 12
(∫

R4n−1

|u∗j(ωS2n)|2
)1

2

≤ |Aj|
1
2 (EN + 1)

1
2 → 0,

(5.15)

as j →∞, which is a contradiction to (5.14). �

Suppose that (a) holds. Using the notation of (a), we can translate the
minimizing sequence {uj} to
(5.16) {uj(· − yj)} = {ũj(·)}
so that {ũj} is also a minimizing sequence of the same Hopf charge. Passing
to a subsequence if necessary, we may assume without loss of generality
that {ũj} weakly converges in a well-understood sense over R

4n−1 to its
weak limit, say u. Of course,

(5.17) E(u) ≤ lim inf
j→∞

{E(uj)} = EN .

Lemma 5.2. The alternative (a) (or compactness) stated in (5.3) implies
the preservation of the Hopf charge in the limit described in (5.17). In other
words, Q(u) = N so that u gives rise to a solution of the direct minimization
problem (2.21).

Proof. Let ε and R be the pair stated in the alternative (a). Then

(5.18) sup
j

∫
R4n−1\BR

{|∇ũj|4n−1 + |ũ∗j(ωS2n)|2 + |ũj − n|2} < ε.

Besides, for the weak limit u of the sequence {ũj}, we have

(5.19)

∫
R4n−1\BR

{|∇u|4n−1 + |u∗(ωS2n)|2 + |u− n|2} ≤ ε

and

(5.20) |S2n|2|Q(u)−Q(ũj)| ≤ Ij + J +Kj,



EXISTENCE OF FADDEEV KNOTS 165

where

Ij =

∣∣∣∣ ∫
BR

v ∧ u∗(ωS2n)−
∫

BR

ṽj ∧ ũ∗j (ωS2n)

∣∣∣∣,
J =

∣∣∣∣ ∫
R4n−1\BR

v ∧ u∗(ωS2n)

∣∣∣∣,
Kj =

∣∣∣∣ ∫
R4n−1\BR

ṽj ∧ ũ∗j (ωS2n)

∣∣∣∣.
(5.21)

It is not hard to see that the quantities J and Kj are small with a magnitude
of some power of ε. In fact, (2.5) and (2.12) indicate that |ũ∗j(ωS2n)| is
uniformly bounded in Lp(R4n−1) for p ∈ [ 4n−1

2n , 2]. Then the relation dṽj =
ũ∗j (ωS2n), δṽj = 0, and the Sobolev inequality (4.2) imply that ṽj is uniformly

bounded in Lq(R4n−1) for q ∈ [ 4n−1
2n−1 ,

2(4n−1)
4n−3 ] (see (4.3)). Using (2.12) again,

we have

Kj ≤ ‖ṽj‖
L

4n−1
2n−1 (R4n−1\BR)

‖ũ∗j (ωS2n)‖
L

4n−1
2n (R4n−1\BR)

≤ CE(ũj;R
4n−1 \BR)

2n
4n−1 ≤ Cε

2n
4n−1 .

(5.22)

By the same method, we can show that the quantity J obeys a similar bound
as well.

For Ij , we observe that since ũ∗j (ωS2n) converges to u∗(ωS2n) weakly in

L2(BR) and ṽj converges to v strongly in L2(BR), we have Ij → 0 as j →∞.
Summarizing the above results, we conclude that Q(ũj) → Q(u) as

j →∞. �

In the next section, we will characterize the alternative (c) (dichotomy).

6. Dichotomy and energy splitting in minimization

Use the notation of the previous section and suppose that (c) (or
dichotomy) happens. Then, after possible translations, we may assume that
there is a number t ∈ (0, 1) such that for any ε > 0 there is an R > 0 and a
sequence of positive numbers {Rj} satisfying limj→∞Rj =∞ so that

(6.1)

∣∣∣∣ ∫
BR

fj(x) dx− tE(uj)

∣∣∣∣ < ε,

(6.2)

∣∣∣∣ ∫
R4n−1\BRj

fj(x) dx − (1− t)E(uj)

∣∣∣∣ < ε.

For convenience, we assume Rj > 2R for all j. Therefore, from the
decomposition

(6.3) E(uj) =

∫
BR

fj(x) dx+

∫
R4n−1\BRj

fj(x) dx+ E(uj;BRj \BR),
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and (6.1), (6.2), we have

E(uj;B2R \BR) ≤ E(uj;BRj \BR) < 2ε,

E(uj;BRj \BRj/2) ≤ E(uj;BRj \BR) < 2ε.
(6.4)

Using Lemma 3.1, we can find maps u
(1)
j and u

(2)
j from R

4n−1 to S2n such

that u
(1)
j = uj in BR, u

(1)
j = n in R4n−1 \B2R, and E(u

(1)
j ;B2R \BR) < Cε;

u
(2)
j = uj in R4n−1 \BRj , u

(2)
j = n in BRj/2, and E(u

(2)
j ;BRj \BRj/2) < Cε.

Here C > 0 is an irrelevant constant.
Use the notation F (u) = v ∧ u∗(ωS2n). Since F (u) depends on u nonlo-

cally, we need to exert some care when we make argument involving trun-
cation.

In view of the fact that uj and u
(1)
j coincide on BR and uj and u

(2)
j

coincide on R
4n−1 \BRj , we have

∫
R4n−1

|u∗j (ωS2n)− (u
(1)
j )∗(ωS2n)− (u

(2)
j )∗(ωS2n)| 4n−1

2n

≤ C(E(uj;BRj \BR) + E(u
(1)
j ;B2R \BR) + E(u

(2)
j ;BRj \BRj/2))

≤ Cε.

(6.5)

Consequently, using the relations dvj = u∗j (ωS2n), δvj = 0, dv
(i)
j = (u

(i)
j )∗

(ωS2n), δv
(i)
j = 0, i = 1, 2, we have in view of (6.5) and (4.2) with p =

(4n− 1)/2n and q = (4n− 1)/(2n− 1) that

‖vj − v
(1)
j − v

(2)
j ‖ 4n−1

2n−1
≤ C‖u∗j (ωS2n)− (u

(1)
j )∗(ωS2n)− (u

(2)
j )∗(ωS2n)‖ 4n−1

2n

≤ C1ε
2n

4n−1 .

(6.6)

Since the numbers p, q above are also conjugate exponents, we obtain from
(6.6) the bound∫

BR∪{R4n−1\BRj
}
|F (uj)− F (u

(1)
j )− F (u

(2)
j )|

=

∫
BR∪{R4n−1\BRj

}
|(vj − v

(1)
j − v

(2)
j ) ∧ u∗j (ωS2n)|

≤ ‖vj − v
(1)
j − v

(2)
j ‖ 4n−1

2n−1
‖u∗j (ωS2n)‖ 4n−1

2n

≤ Cε
2n

4n−1 .

(6.7)
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Applying (6.7), we have

|S2n|2|Q(uj)− (Q(u
(1)
j ) +Q(u

(2)
j ))|

≤
∫

BR∪{R4n−1\BRj
}
|F (uj)− F (u

(1)
j )− F (u

(2)
j )|

+

∫
BRj

\BR

|F (uj)|+
∫

B2R\BR

|F (u(1)
j )|+

∫
BRj

\BRj/2

|F (u(2)
j )|

≤ C1ε
2n

4n−1 + C2(E(uj;BRj \BR)
2n

4n−1 +E(u
(1)
j ;B2R \BR)

2n
4n−1

+ E(u
(2)
j ;BRj \BRj/2)

2n
4n−1 )

≤ Cε
2n

4n−1 .

(6.8)

Since ε > 0 can be arbitrarily small and Q(uj), Q(u
(1)
j ), Q(u

(2)
j ) are integers,

the uniform bound (6.8) enables us to assume that

(6.9) N ≡ Q(uj) = Q(u
(1)
j ) +Q(u

(2)
j ), ∀j.

On the other hand, since (2.9) implies that

|Q(u(1)
j )| 4n−1

4n ≤ CE(u
(1)
j ) = C(E(uj;BR) +E(u

(1)
j ;B2R \BR))

≤ CE(uj) + C1ε,
(6.10)

we see that {Q(u(1)
j )} is bounded.

We claim that Q(u
(1)
j ) �= 0 for j sufficiently large. Indeed, if Q(u

(1)
j ) = 0

for infinitely many j’s, then, by going to a subsequence when necessary, we

may assume that Q(u
(1)
j ) = 0 for all j. Thus we see that Q(u

(2)
j ) = N in

(6.9) for all j and

(6.11) E(u
(2)
j ) ≤ E(uj;R

4n−1 \BRj) + Cε =

∫
R4n−1\BRj

fj(x) dx+ Cε.

As a consequence, we have in view of (6.11) and (6.2) that

EN ≤ lim sup
j→∞

E(u
(2)
j ) ≤ (1− t) lim

j→∞
E(uj) + ε+ Cε

≤ (1− t)EN +C1ε.
(6.12)

Since 0 < t < 1 and ε is arbitrarily small, we obtain EN = 0, which con-

tradicts the topological lower bound EN ≥ C|N | 4n−1
4n (N �= 0) stated in

(2.9).

Similarly, we may assume that Q(u
(2)
j ) �= 0 for j sufficiently large. Of

course, {Q(u(2)
j )} is bounded as well.
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Hence, extracting a subsequence if necessary, we may assume that there
are integers N1 �= 0 and N2 �= 0 such that

(6.13) Q(u
(1)
j ) = N1, Q(u

(2)
j ) = N2, ∀j.

Furthermore, for the respective energy infima at the Hopf charges N1,
N2, N , we have

EN1 + EN2 ≤ E(u
(1)
j ) + E(u

(2)
j )

= E(uj;BR) +E(uj;R
4n−1 \BRj ) +E(u

(1)
j ;B2R \BR)

+ E(u
(2)
j ;BRj \BRj/2)

≤ E(uj) + 2Cε.

(6.14)

Since ε > 0 may be arbitrarily small, we can take the limit j →∞ in (6.14)
to arrive at

(6.15) EN1 + EN2 ≤ EN , N = N1 +N2.

We can now establish the following energy-splitting lemma.

Lemma 6.1. If the alternative (c) (or dichotomy) stated in (5.5) and
(5.6) happens at the Hopf charge N �= 0, then there are nonzero integers
N1, N2, · · · , Nk such that

(6.16) EN ≥ EN1 +EN2 + · · ·+Nk, N = N1 +N2 + · · ·+Nk,

and that the alternative (a) (or compactness) stated in (5.3) takes place at
each of these integers N1, N2, · · ·, Nk.

Proof. If the alternative (c) happens at N �= 0, we have the splitting
(6.15). We may repeat this procedure at all the sublevels wherever the alter-
native (c) happen. Since (2.9) and (2.10) imply that there is a universal
constant C > 0 such that E� ≥ C for any � �= 0. Hence the above splitting
procedure ends after a finitely many steps at (6.16) for which the alterna-
tive (c) cannot happen anymore at N1, N2, . . . , Nk. Since the alternative (b)
never happens because Ns �= 0 (s = 1, 2, . . . , k) in view of Lemma 5.1, we
see that (a) takes place at each of these integer levels. �

The energy splitting inequality, (6.16), is referred to as the “Substantial
Inequality” in [LY4] which is crucial for obtaining existence theorems in a
noncompact situation.

7. Existence theorems

We say that an integer N �= 0 satisfies the condition (S) if the nontrivial
splitting as described in Lemma 6.1 cannot happen at N . Define

(7.1) S = {N ∈ Z |N satisfies condition (S)}.



EXISTENCE OF FADDEEV KNOTS 169

It is clear that, for any N ∈ S, the minimization problem (2.21) has a
solution. As a consequence of our study in the previous sections, we arrive at

Theorem 7.1. Consider the minimization problem (2.21) in which the
energy functional is of the NFS type given in (2.5). Then there is an infinite
subset of Z, say S, such that, for any N ∈ S, the problem (2.21) has a
solution. In particular, the minimum-mass or minimum-energy Hopf charge
N0 defined by

(7.2) N0 is such that EN0 = min{EN |N �= 0}
is an element in S. Furthermore, for any nonzero N ∈ Z, we can find
N1, · · ·, Nk ∈ S such that the substantial inequality (6.16) is strengthened
to the equalities

(7.3) EN = EN1 + EN2 + · · ·+Nk, N = N1 +N2 + · · ·+Nk,

which simply express energy and charge conservation laws of the model in
regards of energy splitting.

Proof. Use the Technical Lemma (Lemma 3.1) as in [LY1] to get (7.3).
The rest may also follow the argument given in [LY1]. �

Next, we show that, in the compact situation, the minimization problem
(2.21) has a solution for any integer N . For this purpose, let E(u) denote
the energy functional of the NFS type or the Faddeev type given as in (2.5)
or (2.6) evaluated over S4n−1 for a map u from S4n−1 into S2n. Namely,

ENFS(u) =

∫
S4n−1

{|du|4n−1 + |u∗(ωS2n)|2 + |n− u|2} dS,(7.4)

EFaddeev(u) =

∫
S4n−1

{
|du|4n−2 +

1

2
|u∗(ωS2n)|2

}
dS.(7.5)

The Hopf invariant Q(u) of u is given in (2.2). We have

Theorem 7.2. For any nonzero integer N which may be realized as a
Hopf number, i.e., there exists a map u : S4n−1 → S2n such that Q(u) = N ,
the minimization problem EN = inf{E(u) |E(u) < ∞, Q(u) = N} over
S4n−1 has a solution when E is given either by (7.4) or (7.5).

Proof. Let {uj} be a minimizing sequence of the stated topologically
constrained minimization problem and vj be the “potential” (2n − 1)-form
satisfying

(7.6) dvj = u∗j(ωS2n), δvj = 0, j = 1, 2, . . . .

Passing to a subsequence if necessary, we may assume that there is a finite-
energy map u (say) such that uj → u, duj → u, and u∗j (ωS2n) → u∗(ωS2n)
weakly in obvious function spaces, respectively, as j → ∞, which lead us
to the correct comparison E(u) ≤ EN by the weakly lower semi-continuity



170 F. HANG, F. LIN, AND Y. YANG

of the given energy functional. To see that Q(u) = N , we recall that the
sequence {vj} may be chosen [Mo] such that it is bounded in W 1,2(S4n−1)
by the L2(S4n−1) bound of {u∗j (ωS2n)}. Hence vj → some v ∈ W 1,2(S4n−1)

weakly as j → ∞. Therefore vj → v strongly in L2(S4n−1) as j → ∞. Of
course, dv = u∗(ωS2n) and δv = 0. Consequently, we immediately obtain

(7.7)

Q(u) =
1

|S2n|2
∫

S4n−1

v ∧ u∗(ωS2n) =
1

|S2n|2 lim
j→∞

∫
S4n−1

vj ∧ u∗j (ωS2n) = N,

and the proof is complete. �

Note that the existence of global minimizers for the compact version of
the Nicole energy (2.4),

(7.8) E(u) =

∫
S4n−1

|du|4n−1 dS,

was studied by Riviere [Ri] for n = 1. See also [L] and [DK]. In particular,
he showed that there exist infinitely many homotopy classes from S3 into
S2 having energy minimizers.

We now address the general problem of the existence of critical points
of (7.8) at the bottom dimension n = 1 whose conformal structure prompts
us to simply consider it over R3. Thus we are led to the Nicole model.
Specifically, for a map u : R3 → S2, the Nicole energy [Ni] is given by

(7.9) E(u) =

∫
R3

|∇u|3.

For convenience, we may use the stereographic projection of S2 → C from
the south pole to represent u = (u1, u2, u3) by a complex-valued function
U = U1 + iU2 as follows,

(7.10) U1 =
u1

1 + u3
, U2 =

u2

1 + u3
,

where u3 = ±√1− u2
1 − u2

2 for u belonging to the upper or lower hemi-
sphere, S2

±. Following [AFZ] (see also [ASVW, HS]), we use the toroidal
coordinates (η, ξ, ϕ) to represent a point x = (x1, x2, x3) in R3 by

(7.11) x1 = q−1 sinh η cosϕ, x2 = q−1 sinh η sinϕ, x3 = q−1 sin ξ,

where q = cosh η − cos ξ and 0 < η < ∞, 0 ≤ ξ, ϕ ≤ 2π. The AFZ ansatz
[AFZ, ASVW, HS] reads

(7.12) U(η, ξ, ϕ) = f(η) eimϕ+inξ, m, n ∈ Z,

where the undetermined function f satisfies the “normalized” boundary
condition

(7.13) f(0) = lim
η→0

f(η) = 0, f(∞) = lim
η→∞

f(η) =∞,
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so that the Hopf map is given by the choice f(η) = sinhη withm = n = 1, or

(7.14) U(η, ξ, ϕ) = sinhη eiξ+iϕ.

After some calculation, it can be shown [AFZ, HS] that the Hopf invariant
of u designated by (7.10)–(7.13) is given as

(7.15) Q(u) = mn.

Besides, with the new variable

(7.16) t = sinh η,

the function f becomes a function of t, which is still denoted by f(t) for
simplicity, so that the Nicole energy (7.9) takes the form [ASVW]

(7.17)

E(f) = 32π2

∫ ∞

0

{
t(1+ t2)

(
f2
t

(1 + f2)2
+

1

1 + t2

[
m2

t2
+n2

]
f2

(1 + f2)2

)3
2
}
dt,

and the boundary condition (7.13) is reinterpreted in terms of t given in
(7.16). The Euler–Lagrange equation of (7.17) is [ASVW]

t2(1 + t2)(1 + f2)(2t2[1 + t2]f2
t + [m2 + n2t2]f2)ftt − 4t4(1 + t2)2ff4

t

(7.18)

+ t3(1 + 3t2)(1 + t2)(1 + f2)f3
t − 2t2(1 + t2)(m2 + n2t2)f3f2

t

+ t3(m2 + n2[1 + 2t2])(1 + f2)f2ft − (m2 + n2t2)2f3(1− f2) = 0.

It is important to note that the advantage of using the AFZ ansatz (7.12)
is that it is a compatible ansatz [ASVW], meaning that (7.18) gives rise
to the critical points of the original Nicole energy (7.9). More precisely, the
critical points of (7.17) subject to the boundary condition f(t)→ 0 as t→ 0,
f(t)→∞ as t→∞, give rise to the critical points of the Hopf number (7.15)
for the Nicole energy through (7.10)–(7.12) and (7.16). Although (7.18) looks
complicated, it has a nontrivial solution f(t) = t when m = n = 1, which
implies that the Hopf map is an explicit critical point [ASVW]. Our purpose
below is to show that, for any m, n, the equation (7.18) has a finite-energy
solution satisfying the stated boundary condition at t = 0 and t = ∞. In
fact, such a solution also minimizes the energy (7.17).

To proceed, we introduce another new variable

(7.19) g = arctanf.

Then the boundary condition for f becomes

(7.20) g(0) = 0, g(∞) =
π

2
,
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and the energy (7.17) is converted into the simplified form given as

(7.21) I(g) =

∫ ∞

0

{
t(1 + t2)

(
g2
t +

1

1 + t2

[
m2

t2
+ n2

]
tan2 g

(1 + tan2 g)2

)3
2
}
dt,

where we have suppressed an irrelevant constant factor. It is seen that the
Hopf map, defined by g(t) = arctan t, is of finite energy for any integersm, n.

We now define the admissible space as

A = {g(t) | g(t) is absolutely continuous over the interval (0,∞),

satisfies the boundary condition (7.20), and I(g) < ∞},(7.22)

and consider the associated minimization problem

(7.23) I0 ≡ inf{I(g) | g ∈ A}.
Let {gj} be a minimizing sequence of (7.23).We may assume that I(gj) ≤

I0+1 (say) for all j = 1, 2, . . . . We will show that {gj} contains a subsequence
which converges in a well-defined way to an element in A, g0 (say), and
I(g0) = I0.

In fact, collectively writing

(7.24) P (g) =
tan2 g

(1 + tan2 g)2
,

we see that P (·) is a periodic even function of period π, whose singulari-
ties at odd-integer multiples of π/2 are removed if we understand P (π

2 ) =
limg→π

2
P (g) = 0, etc. In the sequel, we always observe such a convention

for P (·). Therefore, for any g ∈ A, the modified function

(7.25) g̃(t) =

{ |g(t)|, if |g(t)| < π
2 ,

π
2 , if |g(t)| ≥ π

2 ,

lies in A and satisfies 0 ≤ g̃ ≤ π
2 and I(g̃) ≤ I(g). Hence, with suitable

modifications if necessary, we may assume that our minimizing sequence
{gj} satisfies the same boundedness condition 0 ≤ gj ≤ π

2 , j = 1, 2, . . . .
On the other hand, near t = 0 and t =∞, we have, respectively,

0 ≤ gj(t) ≤
(∫ t

0
(s−

1
3 )

3
2 ds

) 2
3
(∫ t

0
s

∣∣∣∣dgj

ds

∣∣∣∣3 ds) 1
3

≤ 2
2
3 t

1
3 (I(gj))

1
3 ,

(7.26)

and ∣∣∣∣π2 − gj(t)

∣∣∣∣ ≤ (∫ ∞

t
s−

3
2 ds

) 2
3
(∫ ∞

t
s3

∣∣∣∣dgj

ds

∣∣∣∣3 ds) 1
3

≤ 2
2
3 t−

1
3 (I(gj))

1
3 ,

(7.27)

which indicates in particular that {gj} satisfies the boundary condition
(7.20) uniformly.
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The structure of the energy I given in (7.21) shows that for any numbers
0 < a < b <∞, the sequence {gj} is bounded in W 1,3(a, b). Using a diagonal
subsequence argument, we may assume without loss of generality that {gj}
is weakly convergent in W 1,3(a, b) for any 0 < a < b < ∞. We use g0 to
denote the so-obtained weak limit of {gj} over the entire interval (0,∞). We
need to prove that g0 ∈ A and I(g0) = I0.

For convenience, we set

(7.28) J(g, h; a, b) =

∫ b

a

{
t(1 + t2)

(
g2
t +

1

1 + t2

[
m2

t2
+ n2

]
P (h)

) 3
2
}
dt,

where g, h are absolultely continuous over (0,∞) and P (·) is defined by
(7.24). We note that

P ′(h) =
2 tanh(1− tan2 h)

(1 + tan2 h)2
, h �= odd-integer multiple of

π

2
;

P ′(h) = 0, h = odd-integer multiple of
π

2
.

(7.29)

Hence, P ′ is bounded. Besides, we may check that J(·, h; a, b) is convex for
fixed h, a, b. Therefore, we have

(7.30) lim
j→∞

(J(gj, gj; a, b)− J(gj; g0; a, b)) = 0,

and the weakly lower semicontinuity of J(·, g0; a, b) implies that

(7.31) J(g0, g0; a, b)≤ lim inf
j→∞

J(gj, g0; a, b).

Consequently, we get

I0 = lim
j→∞

I(gj)

≥ lim inf
j→∞

J(gj, gj; a, b)

= lim
j→∞

(J(gj, gj; a, b)− J(gj; g0; a, b))+ lim inf
j→∞

J(gj, g0; a, b)

≥ J(g0, g0; a, b).

(7.32)

Letting a → 0 and b→∞ in (7.32), we see that I(g0) = J(g0, g0; 0,∞) ≤ I0

as claimed. The fact that g0 satisfies the boundary condition (7.20) follows
from the uniform bounds (7.26) and (7.27). Thus, g0 ∈ A.

The Euler–Lagrange equation of (7.21) is{
t(1 + t2)

(
g2
t +

1

1 + t2

(
m2

t2
+ n2

)
P (g)

)1
2

gt

}
t

=
t

2

(
g2
t +

1

1 + t2

(
m2

t2
+ n2

)
P (g)

)1
2
(

m2

t2
+ n2

)
P ′(g).

(7.33)
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With the help of this equation, we may show that g0 satisfies

(7.34) 0 < g0(t) <
π

2
, 0 < t < ∞.

In fact, if there is a point t0 > 0 such that g0(t0) = 0 or g(t0) = π/2,
then the property 0 ≤ g0(t) ≤ π/2 implies that g′0(t0) = 0. In view of the
uniqueness theorem for the initial value problem of an ordinary differential
equation, we infer that g0(t) ≡ 0 or g0(t) ≡ π/2 since g = 0 and g = π/2
are two trivial solutions of (7.33). This conclusion contradicts the boundary
condition (7.20) enjoyed by the function g0 obtained earlier.

The property (7.34) ensures the invertibility of the transformation (7.19)
so that we obtain a critical point for the original energy (7.17).

We may summarize our study above in the form of the following existence
theorem.

Theorem 7.3. For any N ∈ Z, the Nicole energy (7.9) has a finite-
energy critical point u in the topological class Q = N . More precisely, for
any m, n ∈ Z, the energy functional (7.9) has a finite-energy critical point
u represented in terms of the toroidal coordinates through the expressions
(7.10)–(7.13) so that its Hopf invariant satisfies Q = mn, its associated
configuration function f defined in (7.12) is positive-valued with range equal
to the full interval (0,∞) and minimizes the reduced one-dimensional energy
(7.17) in the variable t = sinh η.

As mentioned already, since (7.9) is conformally invariant, it covers the
spherical energy (7.8) when n = 1. Therefore, Theorem 7.3 establishes the
existence of a critical point of the energy (7.8) at n = 1 among the topological
class Q = N for each N ∈ Z.

8. Generalized Faddeev knot energy

In the subsequent sections, we shall study the topologically constrained
minimization problem of the generalized Faddeev knot energy in arbitrary
(4n− 1) dimensions. The generalization we will be focused on is defined by
the energy

(8.1) E(u) =

∫
R4n−1

{|du|4n−2 + |u∗ωS2n |2},

where, for convenience, we have absorbed the unimportant coefficient 1
2 in

(2.6) to unity. One may argue that a more natural generalization of the
Faddeev knot energy should take the original “quadratic” form so that

(8.2) E(u) =

∫
R4n−1

{|du|2 + |u∗ωS2n |2}.

However, at this moment, the energy (8.2) seems to be too hard to approach.
Indeed for n ≥ 2 and a map u : R

4n−1 → S2n with
∫

R4n−1{|du|2+ |u∗ωS2n |2}
< ∞, it is not necessary that u∗ωS2n is a closed form. On the other hand,
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it is worth mentioning that (8.1) may be viewed as a “natural” extension
of the Faddeev energy as well because (i) both energy density terms are
quadratic when n = 1, and (ii) with respect to the rescaling of coordinates,
x �→ λx (λ > 0), the two energy terms respond with λ−1 and λ, respectively,
as in the classical Faddeev model.

As mentioned in the introduction, one of the main difficulties in under-
standing the Faddeev model is that it is still not known whether an annulus
lemma similar to Lemma 3.1 exists or not. In particular we are not able to
freely cut and paste maps with finite energy and it is not clear the mini-
mizing problem would break into a finite region one and a problem at the
infinity, that is, the minimizing problem does not fit in the frame of clas-
sical concentration compactness principle anymore. This difficulty will be
bypassed by a decomposition lemma (Lemma 12.1) for an arbitrary map
with finite Faddeev energy (in the same spirit as in [LY1] for maps from R3

to S2).

9. Some general facts and useful properties and relations

In this section we collect some basic facts which will be used frequently
later.

We will use the algebraic notations in [F, Chapter 1]. Assume n is an
integer and 1 ≤ k ≤ n. Then we denote

(9.1)
Λ (n, k) = {λ = (λ1, . . . , λk) | λi’s are integers and 1 ≤ λ1 < · · · < λk ≤ n}.
If λ = (λ1, . . . , λk) ∈ Λ (n, k), k < n, then λ ∈ Λ (n, n− k) is obtained from
the complement {1, . . . , n} \ {λ1, . . . , λk}. If x1, . . . , xn are the coordinates
on R

n, then we write

dxλ = dxλ1 ∧ dxλ2 ∧ · · · ∧ dxλk
.

If, for every λ ∈ Λ (n, k), ωλ is a distribution on an open subset of Rn, then
we call

ω =
∑

λ∈Λ(n,k)

ωλdxλ

a (k-form) distribution.
Occasionally, we will need to verify some weak differential identities. It

is convenient to have the following basic rule.

Lemma 9.1. Assume that 1 ≤ p1, p2, p3 ≤ ∞, Ω is an open subset of

Rn, α ∈ Lp1

loc (Ω) is a k-form, β ∈ L
p
′

1
loc (Ω) is another form such that dα ∈

Lp2

loc (Ω), β ∈ L
p′2
loc (Ω), α ∈ Lp3

loc (Ω) and dβ ∈ L
p′3
loc (Ω). Then, in sense of

distribution, we have

d (α ∧ β) = dα ∧ β + (−1)k α ∧ dβ.

Here p′1 =
p1

p1−1 is the conjugate power of p1. Similar for p′2 and p′3.
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Proof. First assume 1 ≤ p1, p2, p3 < ∞. By mollifying arguments we
may find a sequence of smooth k-forms αi ∈ C∞ (Ω) such that αi → α in
Lp1

loc (Ω) and Lp3

loc (Ω), dαi → dα in Lp2

loc (Ω). Taking a limit in the equation

d (αi ∧ β) = dαi ∧ β + (−1)k αi ∧ dβ,

the lemma follows. For the remaining cases, without loss of generality, we
assume p1 = ∞, 1 ≤ p2, p3 < ∞. Then we may find a sequence of smooth

k-forms αi ∈ C∞ (Ω) such that αi
∗
⇀ α in L∞loc (Ω), αi → α in Lp3

loc (Ω) and
dαi → dα in Lp2

loc (Ω). Then αi ∧ β → α ∧ β in sense of distribution and

dαi ∧ β → dα ∧ β, αi ∧ dβ → α ∧ dβ in L1
loc(Ω). The same limit process as

above implies the lemma. �

For a smooth map u, the exterior differential d commutes with the pull-
back operator u∗. It remains true under suitable integrability condition on
the derivatives of u when it is only weakly differentiable.

Lemma 9.2. Assume that Ω ⊂ R
n is open, α is a smooth k-form on R

l

with compact support, u ∈W 1,k+1
loc

(
Ω, Rl

)
. Then in sense of distribution

du∗α = u∗dα.

Proof. we may find ui ∈ C∞
(
Ω, Rl

)
such that ui → u inW 1,k+1

loc

(
Ω, Rl

)
and ui → u a.e. It follows that u∗i α → u∗α in L

k+1
k

loc (Ω) and u∗i dα → u∗dα

in L1
loc (Ω). Taking limit in du

∗
i α = u∗i dα, we arrive at the conclusion. �

The conclusion of the above lemma can be strengthened when we know
that the map is bi-Lipschitz.

Lemma 9.3. Assume that Ω1,Ω2 are open subsets in Rn, φ : Ω1 → Ω2 is
a bi-Lipschitz map, and α ∈ L1

loc (Ω2) is a k-form such that dα ∈ L1
loc (Ω2).

Then dφ∗α = φ∗dα.

Proof. We may find a sequence of smooth k-forms αi ∈ C∞c (Ω2) such
that αi → α in L1

loc (Ω2) and dαi → dα in L1
loc (Ω2). Hence φ∗αi → φ∗α in

L1
loc (Ω1) and φ∗dαi → φ∗dα in L1

loc (Ω1). It follows from Lemma 9.2 that
dφ∗αi = φ∗dαi. Letting i→∞, we obtain dφ∗α = φ∗dα. �

Later on we will need to verify weak differential identities for maps with
mixed differentiability on different domains. For that purpose we state the
following smoothing lemma.

Lemma 9.4.Let Ω = Bn−1
1 ×(−1, 1), f : Bn−1

1 → (−1, 1) be a continuous
function. Assume that 1 ≤ p1, q1 < ∞, 1 ≤ p2, q2 < ∞, α ∈ Lp1

loc (Ω) is a

k-form such that dα ∈ Lp2

loc (Ω). For x ∈ Ω, we write x = (x′, xn), x′ ∈ Rn−1.
Denote Ω− = {x ∈ Ω : xn < f (x′)}. If

α|Ω− ∈ Lq1

loc

({
x ∈ Ω | xn ≤ f

(
x′
)})
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and
dα|B−1 ∈ Lq2

loc

({
x ∈ Ω : xn ≤ f

(
x′
)})

,

then there exists a sequence of smooth k-forms αi on Ω such that

αi → α in Lp1
loc (Ω) ,

dαi → dα in Lp2

loc (Ω) ,

αi|Ω− → α|Ω− in L
p2

loc

({
x ∈ Ω | xn ≤ f

(
x′
)})

,

dαi|Ω− → dα|Ω− in Lq2

loc

({
x ∈ Ω | xn ≤ f

(
x′
)})

.

If any one of the p1, p2, q1, q2 is infinite, then the conclusion remains true if
we replace the strong convergence by the weak ∗ convergence in L∞loc.

Proof. For δ > 0 small we denote iδ : x �→ (x′, xn − δ), then i∗δα is

defined on Bn−1
1 × (−1+ δ, 1). We may choose 0 < ε < δ small enough such

that for y′ ∈ Bn−1
1−2δ, we have f(x′) + δ > f(y′) + ε for all x′ ∈ Bn−1

ε (y′). For

ρ ∈ C∞(Rn, R), ρ(x) = 0 for x ∈ R
n\B1 and

∫
Rn ρ(x)dx = 1, write ρε(x) =

1
εn ρ(x

ε ). Let βδ = ρε ∗ i∗δα be defined on Bn−1
1−3δ × (−1+ 3δ, 1− 3δ). Choose a

φδ ∈ C∞c (Bn−1
1−3δ×(−1+3δ, 1−3δ)) with φδ = 1 on Bn−1

1−4δ×(−1+4δ, 1−4δ).
Then αδ = φδ · βδ satisfies all the requirements as δ → 0+. �

Based on the above smoothing lemma, we can derive another differential
identity.

Lemma 9.5. Assume that Ω is an open subset in Rn, Σ ⊂ Ω is a con-
tinuous hypersurface which separates Ω into Ω1 and Ω2 i.e. Ω\Σ = Ω1 ∪Ω2,
1 ≤ p1, p2, p3, q1, q2, q3 ≤ ∞, α ∈ Lp1

loc (Ω) is a k-form with dα ∈ Lp2

loc (Ω),
α ∈ L

p3

loc (Ω) and

α|Ω2
∈ Lq1

loc (Ω2 ∪ Σ) , dα|Ω2
∈ Lq2

loc (Ω2 ∪Σ) , α|Ω2
∈ Lq3

loc (Ω2 ∪Σ) .
Let β ∈ L1

loc (Ω) be another form with dβ ∈ L1
loc (Ω) and

β|Ω1
∈ L

p′1
loc (Ω1 ∪Σ) , β|Ω1

∈ L
p′2
loc (Ω1 ∪ Σ) , dβ|Ω1

∈ L
p′3
loc (Ω1 ∪Σ) .

β|Ω2
∈ L

q′1
loc (Ω2 ∪Σ) , β|Ω2

∈ L
q′2
loc (Ω2 ∪ Σ) , dβ|Ω2

∈ L
q′3
loc (Ω2 ∪Σ) .

Then, in sense of distribution,

d (α ∧ β) = dα ∧ β + (−1)k α ∧ dβ.

Proof. Without loss of generality, we may assume that 1 ≤ p1, p2, p3, q1,
q2, q3 < ∞. By localization and rotation, we may assume that Ω is a cylinder
and Σ is the graph of a continuous function. It follows from Lemma 9.3 that
we can find a sequence of smooth k-forms αi on Ω such that

αi → α in Lp1
loc (Ω) , dαi → dα in Lp2

loc (Ω) , αi → α in Lp3
loc (Ω) ,

αi → α in Lq1

loc (Ω2 ∪Σ) , dαi → dα in Lq2

loc (Ω2 ∪ Σ) ,
αi → α in Lq3

loc (Ω2 ∪Σ) .
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Taking limit in d (αi ∧ β) = dαi∧β+(−1)k αi∧dβ, we obtain the conclusion.
�

For later purposes, we review a little bit of the Hodge theory on domains
([T, Section 9 of Chapter 5]). Let Ω ⊂ Rn be a bounded open subset with
smooth boundary Σ = ∂Ω, ν be the outer normal direction and i : Σ → Ω
be the natural put-in map. For 1 < p < ∞,

W 1,p
R (Ω) =

{
α ∈ W 1,p (Ω) |α is a form with i∗α = 0

}
,

HR

(
Ω
)
=

{
α ∈ C∞

(
Ω
) |α is a form with dα = 0, d∗α = 0, i∗α = 0

}
.

Here the subscript R refers to the imposed relative boundary condition:
i∗α = 0. That is, the tangential part of α on the boundary Σ is zero. Then
we have

Lp (Ω) = dW 1,p
R (Ω)⊕ d∗W 1,p

R (Ω)⊕HR

(
Ω
)

and HR

(
Ω
) ∼= H∗

(
Ω, ∂Ω, R

)
, the real singular cohomology group. More

precisely, if ω ∈ Lp (Ω), then

ω = dα+ d∗β + γ,

with α, β ∈ W 1,p
R (Ω), γ ∈ HR

(
Ω
)
and ‖α‖W 1,p(Ω), ‖β‖W 1,p(Ω) ≤

c (p,Ω) ‖ω‖Lp(Ω). If we know
∫
Ω 〈ω, d∗ϕ〉dx = 0 for every smooth form ϕ on

Ω with i∗ϕ = 0, then ω = dα + γ for α ∈ W 1,p
R (Ω), γ ∈ HR

(
Ω
)
. Indeed it

follows from integration by parts formula that∫
Ω
〈ω, d∗ϕ〉dx =

∫
Ω
〈d∗β, dϕ〉dx = 0.

Hence
∫
Ω 〈d∗β, dϕ〉dx = 0 for every ϕ ∈ W 1,p′

R (Ω), p′ = p
p−1 . For every

τ ∈ Lp′ (Ω), τ = dα1 + dβ1 + γ1 for α1, β1 ∈ W 1,p′

R (Ω) and γ1 ∈ HR

(
Ω
)
,

hence ∫
Ω
〈d∗β, τ〉dx =

∫
Ω
〈d∗β, dβ1〉dx = 0.

This implies d∗β = 0.
One of the ingredients in proving the crucial decomposition lemma

(Lemma 12.1) is the construction of suitable functions on annulus which con-
nects the original map to constant maps. The next two lemmas are about the
existence of such auxiliary functions. First, we derive some basic inequalities
for the harmonic extension of a function on the boundary of a domain.

Lemma 9.6. Let Ω ⊂ Rn be a bounded open subset with smooth boundary
Σ, 1 < p < ∞, f ∈ W 1,p (Σ), and u the harmonic extension of f to Ω. Then

‖u‖
W

1,
np

n−1 (Ω)
≤ c (p,Ω)‖f‖W 1,p(Σ).
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Proof. We need the following basic fact (compare with [HWY1, Pro-
position 2.1]): Assume that ρ ∈ C∞c

(
Rn−1

)
, g is a function on Rn−1, and

(Tg) (x) =

∫
Rn−1

ρ (ξ) g
(
x′ − xnξ

)
dξ

for x ∈ Rn
+, x = (x′, xn), 1 < p < ∞. Then

‖Tg‖
L

np
n−1 (Rn

+)
≤ c (n, p, ρ)‖g‖Lp(Rn−1),

‖∇Tg‖
L

np
n−1 (Rn

+)
≤ c (n, p, ρ)‖∇g‖Lp(Rn−1).

To prove the two inequalities, we claim that

‖Tg‖
L

n
n−1
W (Rn

+)
≤ c (n, ρ)‖g‖L1(Rn−1).

If the claim is true, then the first inequality follows from the Marcinkiewicz
interpolation theorem (see [SW, p197]) and the basic fact that ‖Tg‖L∞(Rn

+)
≤ ‖ρ‖L1(Rn−1)‖g‖L∞(Rn−1). To prove the claim, assume that ‖g‖L1(Rn−1) = 1.

Then |Tg (x) | ≤ c(n,ρ)

xn−1
n

and∫
x∈Rn

+,0<xn<a
|Tg (x)| dx ≤ c (n, ρ) a

for a > 0. Hence, for t > 0,

||Tg| > t| =
∣∣∣{x ∈ R

n
+ : 0 < xn < c (n, ρ) t−

1
n−1 , |Tg (x)| > t

}∣∣∣
≤ 1

t

∫
0<xn<c(n)t

−
1

n−1 ,x′∈Rn−1

|Tg| (x) dx ≤ c (n, ρ) t−
n

n−1 .

Thus the claim follows. Next we observe that, for 1 ≤ i ≤ n− 1,

∂i (Tg) (x) =

∫
Rn−1

ρ (ξ) ∂ig
(
x′ − xnξ

)
dξ

and

∂n (Tg) (x) = −
n−1∑
j=1

∫
Rn−1

ρ (ξ) ξj∂jg
(
x′ − xnξ

)
dξ.

Hence it follows that, for 1 < p < ∞, ‖∇Tg‖
L

np
n−1 (Rn

+)
≤ c (n, p, ρ)

‖∇g ‖Lp(Rn−1).
By decomposition of unity, flattening the boundary and applying the

above fact, we may find some v ∈ W 1, np
n−1 (Ω) with |v‖

W
1,

np
n−1 (Ω)

≤ c (p,Ω)

‖f‖W 1,p(Σ) and v|Σ = f . Then Δ (u− v) = −Δv and (u− v)|∂Ω = 0. It
follows from elliptic estimate that

‖u− v‖
W

1,
np

n−1 (Ω)
≤ c (p,Ω)‖v‖

W
1,

np
n−1 (Ω)

.
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Hence

‖u‖
W

1,
np

n−1 (Ω)
≤ c (p,Ω)‖v‖

W
1,

np
n−1 (Ω)

≤ c (p,Ω)‖f‖W 1,p(Σ).

�

The next lemma gives us the existence of suitable auxiliary functions
with energy control.

Lemma 9.7. Assume that n ≥ 3, f : ∂Bn
1 → Sl−1 ⊂ Rl such that∫

∂B1
|df |n−1 dS ≤ ε (l, n) small,then there exists a u ∈ W 1,n

(
B2\B1, S

l−1
)

such that u|∂B1
= f , u|∂B2

= const and

‖∇u‖Ln(B2\B1) ≤ c (l, n)‖df‖Ln−1(∂B1).

Proof. Set f∂B1 =
1

|∂B1|

∫
∂B1

fdS. By the Poincaré inequality, we have∫
∂B1

|f − f∂B1|dS ≤ c (l, n) ‖df‖Ln−1(∂B1) ≤ c (l, n) ε
1

n−1 .

Hence ||f∂B1| − 1| ≤ c (l, n)ε
1

n−1 . We can solve the Dirichlet problem⎧⎨⎩
Δv = 0 on B2\B1,
v|∂B1

= f,
v|∂B2

= f∂B1.

Then Δ (v − f∂B1) = 0 on B2\B1, (v − f∂B1)|∂B1
= f , (v − f∂B1)|∂B2

= 0.
It follows from Lemma 9.6 that

‖v − f∂B1‖W 1,n(B2\B1) ≤ c (l, n)‖f − f∂B1‖W 1,n−1(∂B1) ≤ c (l, n)ε
1

n−1 .

It follows that, for δ > 0 small,

‖v − f∂B1‖L∞(B2\B1+δ) ≤ c (n, l, δ)ε
1

n−1 .

For x ∈ B3
2
\B1, ξ ∈ ∂B1∪∂B2, we let P (x, ξ) be the Poisson kernel. For

ξ ∈ ∂B2, define f (ξ) = f∂B1. Then v (x) =
∫
∂B1∪∂B2

P (x, ξ) f (ξ) dS (ξ). Set

ξ0 =
x
|x| , r = |x|−1. Then classical estimate for the Poisson kernel gives (see

[HWY2, lemma 2.2 and section 5])

0 ≤ P (x, ξ) ≤ c (n) r(
r2 + |ξ − ξ0|2

)n
2

.

For k ≥ 1 with kr ≤ 1
2 , we write

fkr,ξ0 =
1

|∂B1 ∩ Bkr (ξ0)|
∫

∂B1∩Bkr(ξ0)
fdS.
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Using the Poincaré inequality, we see that

1

|∂B1 ∩Bkr (ξ0)|
∫

∂B1∩Bkr(ξ0)
|f − fkr,ξ0|dS ≤ c (l, n)‖df‖Ln−1(∂B1∩Bkr(ξ0))

≤ c (l, n)ε
1

n−1 .

Hence ||fkr,ξ0| − 1| ≤ c (l, n)ε
1

n−1 . On the other hand,

|v (x)− fkr,ξ0| =
∣∣∣∣∫

∂B1∪∂B2

P (x, ξ) (f (ξ)− fkr,ξ0) dS (ξ)

∣∣∣∣
≤

∫
(∂B1\Bkr(ξ0))∪∂B2

P (x, ξ) |f (ξ)− fkr,ξ0|dS (ξ)

+

∫
∂B1∩Bkr(ξ0)

P (x, ξ) |f (ξ)− fkr,ξ0|dS (ξ)

≤ c (l, n)

(
r +

1

k

)
+

c (n)

rn−1

∫
∂B1∩Bkr(ξ0)

|f (ξ)− fkr,ξ0| dS (ξ)

≤ c (l, n)

k
+ c (l, n)kn−1 |df |Ln−1(∂B1∩Bkr(ξ0))

≤ c (l, n)

(
1

k
+ kn−1ε

1
n−1

)
.

Hence

||v (x)| − 1| ≤ c (l, n)

(
1

k
+ kn−1ε

1
n−1

)
.

By fixing k large, r small, and then ε small, we have ‖ |v|−1‖L∞(B2\B1) ≤ 1
2 .

Let u (x) =
v(x)
|v(x)| . Then u satisfies all the requirements of the lemma. �

To prove that the Hopf–Whitehead invariant Q (u) must be an integer
for any map u with finite Faddeev energy, we need to show that the invariant
of a suitable weakly differentiable map must be an integer. For this purpose,
we recall some ideas from [Sv, EM].

Proposition 9.8. ([Sv, Section 2])Assume that Mn and Nn are both

smoothly oriented Riemannian manifolds, u ∈W 1,1
loc (M

n, Nn) such that and

Ju = |det du| ∈ L1 (Mn). Then there exists a measure zero subset E of Mn

such that the function

d (u, y) =
∑

x∈u−1(y)\E

sgn (det du (x))

is integrable on Nn and for every f ∈ L∞ (Nn),∫
Mn

u∗ (fωNn) =

∫
Mn

f (u (x)) det du (x) dμMn (x)

=

∫
Nn

f (y) · d (u, y) dμNn (y) .
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Here ωNn is the volume form on Nn, μMn is the measure on Mn associated
with the Riemannian metric.

Proposition 9.8 follows from the Lusin type theorems and the usual
coarea formula for Lipschitz functions. The idea of [Sv, EM] to show that
d(u, y) is independent of y is to show

∫
Mn u∗(fωNn) = 0 whenever∫

Nn fωNn = 0. To achieve that, the following basic fact is useful.

Lemma 9.9. Assume that n ≥ 2, 1 ≤ p ≤ n
n−1 , or n = 1 but 1 ≤ p < ∞,

and α ∈ Lp (Rn) is a (n − 1)-form with dα ∈ L1 (Rn). Then
∫

Rn dα = 0.

Proof. By a mollifying function argument, we may assume that α ∈
C∞ (Rn). Fix some φ ∈ C∞c (Rn) such that φ|B1/2

= 1 and φ|
Rn\B1

= 0. For

R > 0, we write φR (x) = φ
(

x
R

)
. Then

0 =

∫
Rn

d (φRα) =

∫
Rn

dφR ∧ α+

∫
Rn

φRdα.

Note that∣∣∣∣∫
Rn

dφR ∧ α

∣∣∣∣ ≤ c (n)

R

∫
BR\BR/2

|α| ≤ c (n, p)

(∫
BR\BR/2

|α|p
) 1

p

R
n−1−n

p → 0

as R → ∞. Hence, by letting R → ∞ in the first equation, we get∫
Rn dα = 0. �

In Lemma 9.9, the requirement p ≤ n
n−1 is crucial. Indeed, for n ≥ 2,

let Γ be the fundamental solution of the Laplacian, φ ∈ C∞c (Rn) with∫
Rn φ (x) dx = 1, and let

α = (−1)n+1 ∗ d (φ ∗ Γ) .
Then for any q > n

n−1 , α ∈ Lq (Rn) and dα = φdx1 ∧ · · · ∧ dxn. Hence∫
Rn dα = 1.

10. The Hopf–Whitehead invariant: integer-valuedness

In this section, we will prove that for a map with finite Faddeev energy,
the Hopf–Whitehead invariant Q (u) is always an integer. This fact is not
only needed for us to come up with a reasonable mathematical formulation
for the Faddeev model but also plays a crucial role in understanding the
minimizing sequences for the minimization problems.

Theorem 10.1. Assume that u ∈ W 1,1
loc

(
R4n−1, S2n

)
such that∫

R4n−1

|du|4n−2 + |u∗ωS2n |2 < ∞,
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where ωS2n is the volume form on S2n. Then du∗ωS2n = 0. Let

Γ (x) =
1

(4n− 3) |S4n−2| |x|4n−3 , τ = d∗ (Γ ∗ u∗ωS2n) ,

where d∗ is the L2-dual of d,
∣∣S4n−2

∣∣ is the area of S4n−2. Then τ ∈
L2

(
R4n−1

)
, dτ = u∗ωS2n , d∗τ = 0, and the Hopf–Whitehead invariant

Q (u) =
1

|S2n|2
∫

R4n−1

u∗ωS2n ∧ τ

is well defined and equal to an integer.

To prove Theorem 10.1, we first show that du∗ωS2n = 0.

Claim 10.2. For any smooth 2n-form α on S2n, we have du∗α =
u∗dα = 0.

Proof. By linearity we may assume α = f0df1 ∧ · · · ∧ df2n, where
f0, · · · , f2n ∈ C∞c (R2n+1, R). Because u ∈ W 1,4n−2(R4n−1) ⊂ W 1,2n

loc (R4n−1),
it follows from Lemma 9.2 that

du∗ (f1df2 ∧ · · · ∧ df2n) = u∗ (df1 ∧ · · · ∧ df2n) .

Hence

du∗ (df1 ∧ · · · ∧ df2n) = 0.

For any integer k, we write

Λk (du) =

k times︷ ︸︸ ︷
du ∧ · · · ∧ du.

Then |u∗ωS2n | = |Λ2n (du)|. It follows that Λ2n (du) ∈ L2
(
R4n−1

)
. Hence

u∗ (df1 ∧ · · · ∧ df2n) ∈ L2
(
R

4n−1
)
.

On the other hand, because f0 ◦ u ∈ L∞
(
R4n−1

)
, d (f0 ◦ u) ∈ L4n−2

(R4n−1) ⊂ L2
loc(R

4n−1), it follows from Lemma 9.1 that

du∗α = d (f0 ◦ u · u∗ (df1 ∧ · · · ∧ df2n))

= d (f0 ◦ u) ∧ u∗ (df1 ∧ · · · ∧ df2n)

= u∗dα = 0.
�

Note that u∗ωS2n ∈ L
2n−1

n ∩ L2 where and in the sequel, we often omit
the domain space when there is no risk of confusion. Hence, if we let η =
Γ ∗ u∗ωS2n , then

dη = 0, dd∗η = Δη = u∗ωS2n .

Here Γ is the fundamental solution of the Laplacian operator on R
4n−1, ∗

means we convolute each component of u∗ωS2n with Γ and in Δη, the Δ is
equal to dd∗ + d∗d (the Hodge Laplacian, it is the negative of the standard
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Laplacian when acting on functions). Let τ = d∗η. Then dτ = u∗ωS2n . It
follows from the usual singular integral estimate that ([St])

τ ∈ L
8n2

−6n+1
4n2−3n+1 ∩ L

2(4n−1)
4n−3 , Dτ ∈ L

2n−1
n ∩ L2 when n ≥ 2;

τ ∈ L
3
2
+ε ∩ L6, Dτ ∈ L1+ε ∩ L2 when n = 1.

Here ε is an arbitrarily small positive number. In particular, we always have
τ ∈ L2

(
R4n−1

)
and

Q (u) =
1

|S2n|2
∫

R4n−1

u∗ωS2n ∧ τ

is well defined. To show it is an integer, we will first use an idea from
[HR, Section II.4] which would imply that Q (u) is equal to the usual Hopf–
Whitehead invariant of another weakly differentiable map. Then we will
apply ideas from [Sv, EM] to show that the invariant is an integer.

Claim 10.3. Let U : R
4n−1 ×R

4n−1 → S2n× S2n × S4n−2 be given by

U (x, y) =

(
u (x) , u (y) ,

x− y

|x− y|
)

.

Then U∗ωS2n×S2n×S4n−2 ∈ L1 and

Q (u) = − 1

|S2n|2 |S4n−2|

∫
R4n−1×R4n−1

U∗ωS2n×S2n×S4n−2 .

Roughly speaking, the claim says the Hopf invariant of u is equal to the
degree of U . This is a special case of a more general formula for rational
homotopy in [HR, section II.4]. Since we will need the proof later on and
for completeness, we present the argument in this special case.

Proof. Let Ju = |u∗ωS2n | be the Jacobian of u, then

JU (x, y) ≤ c (n)
Ju (x) Ju (y)

|x− y|4n−2 .

Because Ju ∈ L
2n−1

n ∩ L2, we see Ju ∈ L
4n−1
2n

(
R

4n−1
)
. It follows from the

classical Hardy–Littlewood–Sobolev inequality ([St]) that JU ∈ L1
(
R8n−2

)
,

that is U∗ωS2n×S2n×S4n−2 ∈ L1. �

To continue, note that for x, y ∈ Rm, the map x−y
|x−y| : Rm ×Rm → Sm−1

satisfies(
x− y

|x− y|
)∗

ωSm−1 =
1

|x− y|m
m∑

k=0

∑
λ∈Λ(m,k)

k∑
i=0

(−1)m−k sgn
(
λ, λ

)
× (xλi − yλi) (dxλ)

⌊
∂xλi

∧ dyλ.



EXISTENCE OF FADDEEV KNOTS 185

Indeed, under the spherical coordinate, the metric and volume forms of R
m

and Sm−1 are given by

gRm = dr ⊗ dr + r2
∑

1≤i,j≤m−1

bij (θ) dθi ⊗ dθj ,

ωSm−1 =
√

B (θ)dθ1 ∧ · · · ∧ dθm−1,

respectively, where B (θ) = det (bij (θ)). Hence(
x

|x|
)∗

ωSm−1 =
√

B (θ)dθ1 ∧ · · · ∧ dθm−1

=
1

rm−1

(
rm−1

√
B (θ)dr ∧ dθ1 ∧ · · · ∧ dθm−1

)
�∂r

=
1

|x|m (dx1 ∧ · · · ∧ dxm)

⌊
m∑

k=1

xk∂xk
.

It follows that(
x− y

|x− y|
)∗

ωSm−1

=
1

|x− y|m
m∑

j=1

(−1)j−1 (xj − yj) (dx1 − dy1) ∧ · · · ∧ (dxj−1 − dyj−1)

∧ (dxj+1 − dyj+1) ∧ · · · ∧ (dxm − dym) .

Developing the product out we get the needed formula.

Proof continued. We may write

u∗ωS2n =
∑
λ

fλ (x) dxλ.

Here λ runs over elements in Λ (4n− 1, 2n), and the same for μ, ν we use
below. Then

U∗ωS2n×S2n×S4n−2 = −
∑

λ

fλ (x) dxλ ∧
∑

μ

fμ (y) dyμ ∧ 1

|x− y|4n−1

×
∑

ν

2n∑
i=0

sgn (ν, ν) (xνi − yνi) · (dxν)
⌊
∂xνi

∧ dy ν

= − 1

|x − y|4n−1

∑
λ

∑
μ

2n∑
i=0

fλ (x) fμ (y) dxλ ∧ dyμ

∧ sgn (μ, μ) (xμi − yμi) · (dxμ)
⌊
∂xμi

∧ dyμ
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= − 1

|x − y|4n−1

∑
λ

∑
μ

4n−1∑
j=0

fλ (x) fμ (y) dxλ ∧ (xj − yj)

× (dxμ)
⌊
∂xj ∧ dy1 ∧ · · · ∧ dyn.

Hence∫
R4n−1×R4n−1

U∗ωS2n×S2n×S4n−2

= −
∑

λ

∑
μ

4n−1∑
j=0

∫
R4n−1

(∫
R4n−1

fλ(x)fμ(y)
xj − yj

|x− y|4n−1
dy

)
dxλ ∧ (dxμ)

⌊
∂xj

=
∣∣S4n−2

∣∣ ∫
R4n−1

∑
λ

∑
μ

4n−1∑
j=0

∫
R4n−1

∂j (Γ ∗ fμ) (x) fλ (x) dxλ ∧ (dxμ)
⌊
∂xj

= − ∣∣S4n−2
∣∣ ∫

R4n−1

u∗ωS2n ∧ d∗η,

where

η =
∑

λ

(Γ ∗ fλ) dxλ.

Hence

Q (u) = − 1

|S2n|2 |S4n−2|

∫
R4n−1×R4n−1

U∗ωS2n×S2n×S4n−2 .

�

It follows from Proposition 9.8 that there exists an integer-valued
function dU ∈ L1

(
S2n × S2n× S4n−2

)
such that for every f ∈ L∞(S2n ×

S2n × S4n−2),∫
R4n−1×R4n−1

f

(
u (x) , u (y) ,

x− y

|x− y|
)
(u∗ωS2n) (x) ∧ (u∗ωS2n ) (y)

∧
(

x− y

|x− y|
)∗

ωS4n−2 =

∫
S2n×S2n×S4n−2

f (z) dU (z) dS
(
z′
)
dS

(
z′′

)
dS

(
z′′′

)
.

Here z = (z′, z′′, z′′′). Denote

C1 =
1

|S2n|2 |S4n−2|

∫
S2n×S2n×S4n−2

dU (z) dS
(
z′
)
dS

(
z′′

)
dS

(
z′′′

)
.

Once we know dU ≡ C1, by choosing f = 1 in the above equation, it follows
from Claim 10.3 that H (u) = −C1 is an integer. To show dU ≡ C1, we only
need to prove the following.
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Claim 10.4. For every f ∈ L∞
(
S2n× S2n× S4n−2

)
,∫

S2n×S2n×S4n−2

f (z) dU (z) dS
(
z′
)
dS

(
z′′

)
dS

(
z′′′

)
= C1

∫
S2n×S2n×S4n−2

f (z) dS
(
z′
)
dS

(
z′′

)
dS

(
z′′′

)
.

By approximation we only need to verify the equality for

f (z) = f1

(
z′
)
f2

(
z′′

)
f3

(
z′′′

)
,

f1, f2 ∈ C∞
(
S2n

)
, f3 ∈ C∞

(
S4n−2

)
. To achieve this we only need to prove

(a) If
∫
S4n−2 f3 (z

′′′) dS (z′′′) = 0, then∫
S2n×S2n×S4n−2

f1

(
z′
)
f2

(
z′′

)
f3

(
z′′′

)
dU (z) dS

(
z′
)
dS

(
z′′

)
dS

(
z′′′

)
= 0.

(b) If
∫
S2n f2 (z

′′) dS (z′′) = 0, then∫
S2n×S2n×S4n−2

f1

(
z′
)
f2

(
z′′

)
dU (z) dS

(
z′
)
dS

(
z′′

)
dS

(
z′′′

)
= 0.

(c) If
∫
S2n f1 (z

′) dS (z′) = 0, then∫
S2n×S2n×S4n−2

f1

(
z′
)
dU (z) dS

(
z′
)
dS

(
z′′

)
dS

(
z′′′

)
= 0.

Indeed, if (a)–(c) are true, then we have∫
S2n×S2n×S4n−2

f1

(
z′
)
f2

(
z′′

)
f3

(
z′′′

)
dU (z) dS

(
z′
)
dS

(
z′′

)
dS

(
z′′′

)
=

1

|S4n−2|
∫

S4n−2

f3

(
z′′′

)
dS

(
z′′′

)
×

∫
S2n×S2n×S4n−2

f1

(
z′
)
f2

(
z′′

)
dU (z) dS

(
z′
)
dS

(
z′′

)
dS

(
z′′′

)
=

1

|S2n|
1

|S4n−2|
∫

S2n

f2

(
z′′

)
dS

(
z′′

) ∫
S4n−2

f3

(
z′′′

)
dS

(
z′′′

) ·
×

∫
S2n×S2n×S4n−2

f1

(
z′
)
dU (z) dS

(
z′
)
dS

(
z′′

)
dS

(
z′′′

)
=

1

|S2n|2
1

|S4n−2|
∫

S2n

f1

(
z′
)
dS

(
z′
)

×
∫

S2n

f2

(
z′′

)
dS

(
z′′

) ∫
S4n−2

f3

(
z′′′

)
dS

(
z′′′

) ·
×

∫
S2n×S2n×S4n−2

dU (z) dS
(
z′
)
dS

(
z′′

)
dS

(
z′′′

)
= C1

∫
S2n×S2n×S4n−2

f1

(
z′
)
f2

(
z′′

)
f3

(
z′′′

)
dS

(
z′
)
dS

(
z′′

)
dS

(
z′′′

)
.



188 F. HANG, F. LIN, AND Y. YANG

We start with (a). Since
∫
S4n−2 f3 (z

′′′) dS (z′′′) = 0 we may find a smooth

(4n− 3)-form γ on S4n−2 such that dγ = f3ωS4n−2 . Note that∫
S2n×S2n×S4n−2

f1

(
z′
)
f2

(
z′′

)
f3

(
z′′′

)
dU (z) dS

(
z′
)
dS

(
z′′

)
dS

(
z′′′

)
=

∫
R4n−1×R4n−1

u∗ (f1ωS2n) (x) ∧ u∗ (f2ωS2n) (y) ∧
(

x− y

|x− y|
)∗

(dγ) .

Recall that Λ2n (du) ∈ L
2n−1

n ∩ L2 ⊂ L
4n−1
2n . Let θ = 8n−2

8n−3 . Note that∣∣∣∣u∗ (f1ωS2n) (x) ∧ u∗ (f2ωS2n ) (y) ∧
(

x− y

|x− y|
)∗

γ

∣∣∣∣
≤ c

|Λ2n (du) (x)| |Λ2n (du) (y)|
|x− y|4n−3 .

It follows from the fact Λ2n (du) ∈ L
4n−1
2n , the Hardy–Littlewood–Sobolev

inequality, and

2nθ

4n− 1
+

2nθ

4n− 1
= 1 +

4n− 1− (4n− 3) θ

4n − 1

that
|Λ2n (du) (x)|θ |Λ2n (du) (y)|θ

|x− y|(4n−3)θ
∈ L1

(
R

4n−1 × R
4n−1

)
.

Hence

u∗ (f1ωS2n) (x) ∧ u∗ (f2ωS2n) (y) ∧
(

x− y

|x− y|
)∗

γ ∈ Lθ
(
R

4n−1 ×R
4n−1

)
.

Claim 10.5.

d

[
u∗ (f1ωS2n) (x) ∧ u∗ (f2ωS2n) (y) ∧

(
x− y

|x− y|
)∗

γ

]
= u∗ (f1ωS2n) (x) ∧ u∗ (f2ωS2n) (y) ∧

(
x− y

|x− y|
)∗

(dγ) .

Proof. Because x−y
|x−y|

∈ W 1,4n−2
loc

(
R4n−1 ×R4n−1

)
, it follows from

Lemma 9.2 that

d

[(
x− y

|x− y|
)∗

γ

]
=

(
x− y

|x− y|
)∗

(dγ) .

On the other hand, it follows from Claim 10.2 that

d [u∗ (f1ωS2n)] = 0.

By smoothing we may find a sequence of smooth 2n-forms on R
4n−1, namely

αi, such that

αi → u∗ (f1ωS2n ) in L
4n−1
2n

(
R

4n−1
)
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and dαi = 0. Similarly we may find a sequence of smooth 2n-forms on R
4n−1,

namely βi such that

βi → u∗ (f2ωS2n) in L
4n−1
2n

(
R

4n−1
)

and dβi = 0. It follows from Hardy–Littlewood–Sobolev inequality that

αi (x) ∧ βi (y) ∧
(

x− y

|x− y|
)∗

γ → u∗ (f1ωS2n) (x) ∧ u∗ (f2ωS2n) (y)

∧
(

x− y

|x− y|
)∗

γ

in L
8n−2
8n−3

(
R

4n−1 × R
4n−1

)
as i →∞. Similarly

αi (x) ∧ βi (y) ∧
(

x− y

|x− y|
)∗

(dγ)→ u∗ (f1ωS2n) (x) ∧ u∗ (f2ωS2n ) (y)

∧
(

x− y

|x− y|
)∗

(dγ)

in L1
(
R4n−1 × R4n−1

)
as i →∞. Taking limit in the equality

d

[
αi (x) ∧ βi (y) ∧

(
x− y

|x− y|
)∗

γ

]
= αi (x) ∧ βi (y) ∧

(
x− y

|x− y|
)∗

(dγ) ,

we prove the claim. �

It follows from Claim 10.5, Lemma 9.9, and the fact 1 < 8n−2
8n−3 < 4n−1

4n−2
that∫

R4n−1×R4n−1

u∗ (f1ωS2n) (x) ∧ u∗ (f2ωS2n) (y) ∧
(

x − y

|x − y|
)∗

(dγ) = 0.

Part (a) follows.
Next we check part (b). If

∫
S2n f2 (z

′′) dS (z′′) = 0, then we may find a

smooth (2n− 1)-form γ on S2n such that dγ = f2ωS2n . We have∫
S2n×S2n×S4n−2

f1

(
z′
)
f2

(
z′′

)
dU (z) dS

(
z′
)
dS

(
z′′

)
dS

(
z′′′

)
=

∫
R4n−1×R4n−1

u∗ (f1ωS2n) (x) ∧ u∗ (f2ωS2n) (y) ∧
(

x− y

|x− y|
)∗

ωS4n−2

= − ∣∣S4n−2
∣∣ ∫

R4n−1

u∗ (f2ωS2n) ∧ τ1.

Here
τ1 = τ = d∗ (Γ ∗ u∗ (f1ωS2n )) .

We have used the calculation in the proof of Claim 10.3 in the last step.

By Claim 10.2, du∗ (f1ωS2n) = 0. This together with u∗ (f1ωS2n) ∈ L
4n−1
2n

implies

τ1 ∈ L
4n−1
2n−1 , dτ1 = u∗ (f1ωS2n) .
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Because u ∈ W 1,4n−2
(
R

4n−1
)
, it follows from Lemma 9.2 that

u∗ (f2ωS2n) = u∗ (dγ) = du∗γ.

Using u∗γ ∈ L2, τ1 ∈ L
4n−1
2n−1 , du∗γ = u∗ (f2ωS2n) ∈ L2, dτ1 = u∗ (f1ωS2n) ∈

L
4n−1
2n ∩ L2, it follows from Lemma 9.1 that

d (u∗γ ∧ τ1) = du∗γ ∧ τ1 − u∗γ ∧ dτ1

= du∗γ ∧ τ1 − u∗γ ∧ u∗ (f1ωS2n)

= du∗γ ∧ τ1

= u∗ (f2ωS2n) ∧ τ1.

Note that u∗γ ∧ τ1 ∈ L
8n−2
8n−3 and 1 < 8n−2

8n−3 < 4n−1
4n−2 . Applying Lemma 9.9,

we get ∫
R4n−1

u∗ (f2ωS2n) ∧ τ1 = 0.

Part (b) follows. Part (c) can be proved exactly in the same way as part (b).
This finishes the proof of Claim 10.4 and hence Theorem 10.1.

It is worth pointing out that there is freedom in the choice of τ in
Theorem 10.1. More precisely, we have

Proposition 10.6. Assume u ∈ W 1,1
loc

(
R

4n−1, S2n
)

such that∫
R4n−1

{|du|4n−2 + |u∗ωS2n |2} < ∞,

and that α is a smooth 2n-form on S2n. Then du∗α = 0. If 2 ≤ p <
(2n−1)(4n−1)

n(4n−3) , β ∈ Lp
(
R

4n−1
)

is a (2n− 1)-form such that dβ = u∗α, then∫
R4n−1

u∗α ∧ β = Q (u)

(∫
S2n

α

)2

.

Proof. Claim 10.2 implies that du∗α = 0. Since u∗α ∈ L
2n−1

n ∩ L2,
it follows that dd∗(Γ ∗ u∗α) = u∗α and d∗(Γ ∗ u∗α) ∈ Lp(R4n−1). Hence

we may find β ∈ Lp with dβ = u∗α. Using (2n−1)(4n−1)
n(4n−3) < 2n−1

n−1 , we get

u∗α∧ β ∈ L1(R4n−1). We claim that
∫

R4n−1 u∗α∧ β does not depend on the

choice of β. Indeed, if β̃ ∈ Lp satisfies dβ̃ = u∗α, then d(β − β̃) = 0. Hence

β − β̃ = dγ for some (2n − 1)-form γ ∈ Lp∗(R4n−1), where 1
p∗ =

1
p − 1

4n−1 .

Indeed we may choose γ = d∗(Γ∗(β− β̃)). Note that u∗α∧γ ∈ L1. It follows
from Lemma 9.1 that

d (u∗α ∧ γ) = u∗α ∧
(
β − β̃

)
.

Using Lemma 9.9 we see∫
R4n−1

u∗α ∧
(
β − β̃

)
= 0.
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The claim follows. Next we look at the case
∫
S2n α = 0. In this case we may

find a smooth (2n− 1)-form γ on S2n such that α = dγ. It follows from
Lemma 9.2 and the fact u ∈ W 1,4n−2 that u∗α = u∗dγ = du∗γ. Note that
u∗γ ∈ L2. Hence we may choose β = u∗γ. It follows that∫

R4n−1

u∗α ∧ β =

∫
R4n−1

u∗α ∧ u∗γ = 0 = Q (u)

(∫
S2n

α

)2

.

Finally, if
∫
S2n α �= 0, by rescaling we may assume

∫
S2n α =

∣∣S2n
∣∣. Then

α = ωS2n + dγ for some smooth (2n− 1)-form γ. Hence

u∗α = u∗ωS2n + du∗γ = dτ + du∗γ

with τ = d∗ (Γ ∗ u∗ωS2n). Let β = τ + u∗γ. Then β ∈ L2 and dβ = u∗α.
Hence ∫

R4n−1
u∗α ∧ β =

∫
R4n−1

u∗α ∧ τ + u∗α ∧ u∗γ

=

∫
R4n−1

u∗ωS2n ∧ τ +

∫
R4n−1

du∗γ ∧ τ.

Note that because u∗γ ∈ L2, τ ∈ L2, du∗γ = u∗dγ ∈ L2, dτ = u∗ωS2n ∈
L

4n−1
2n ∩ L2, we see that

d (u∗γ ∧ τ) = du∗γ ∧ τ − u∗γ ∧ dτ
= du∗γ ∧ τ − u∗γ ∧ u∗ωS2n

= du∗γ ∧ τ.

Hence
∫

R4n−1 du
∗γ ∧ τ =

∫
R4n−1 d (u

∗γ ∧ τ) = 0. It follows that∫
R4n−1

u∗α ∧ β =

∫
R4n−1

u∗ωS2n ∧ τ =
∣∣S2n

∣∣2 Q (u) = Q (u)

(∫
S2n

α

)2

.

�

Using Proposition 10.6 we easily derive the following expected corollary.

Corollary 10.7. For every v ∈ C∞
(
S4n−1, S2n

)
, let u = v◦π−1

n
, where

πn : S4n−1\ {n} → R
4n−1 is the stereographic projection with respect to the

north pole n. Then
∫

R4n−1 |du|4n−2 + |u∗ωS2n |2 < ∞ and

Q (u) = Q (v) .

Here Q (v) is defined as in [BT, p228] as follows: If v∗ωS2n = dη for some
smooth (2n− 1)-form η on S4n−1, then

Q (v) =
1

|S2n|2
∫

S4n−1

v∗ωS2n ∧ η.
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Proof. Indeed since |∇u (x)| ≤ c
(|x|+1)2

, we see that
∫

R4n−1 |du|4n−2 +

|u∗ωS2n |2 < ∞. On the other hand, v∗ωS2n = dη implies

u∗ωS2n =
(
π−1
n

)∗
v∗ωS2n = d

(
π−1
n

)∗
η = dτ̃ .

Here τ̃ =
(
π−1
n

)∗
η. Then |τ̃ | ≤ c

(|x|+1)4n−2 . It follows that τ̃ ∈ L2
(
R4n−1

)
.

Using Proposition 10.6, we see that

Q (v) =
1

|S2n|2
∫

S4n−1

v∗ωS2n ∧ η =
1

|S2n|2
∫

R4n−1

u∗ωS2n ∧ τ̃ = Q (u) .

�

When n �= 1, 2, 4, v ∈ C∞
(
S4n−1, S2n

)
, classical algebraic topology tells

us Q (v) can only be an even integer (see [Hu, Corollary 3.6 on p214 and
Theorem 4.3 on p215]). It is natural to make the following

Conjecture 1. Under the assumption of Theorem 10.1, Q (u) must be
an even integer when n �= 1, 2, 4.

10.1. Further discussions on the Hopf–Whitehead invariant. In
the proof of the crucial decomposition lemma (Lemma 12.1), we will see
that some maps to be constructed have finite Faddeev energy on one piece
of the domain and finite conformal dimensional energy on other piece of the
domain. It is necessary to show such kind of maps still have integer Hopf
invariant. Indeed we have the following analogue of Theorem 10.1.

Theorem 10.8. Assume that u ∈ W 1,1
loc

(
R

4n−1, S2n
)

and that Ω ⊂ R
4n−1

is a bounded open subset with continuous boundary such that∫
Ω
|du|4n−2 + |u∗ωS2n |2 +

∫
R4n−1\Ω

|du|4n−1 < ∞,

where ωS2n is the volume form on S2n. Then du∗ωS2n = 0. Let

Γ (x) =
1

(4n− 3) |S4n−2| |x|4n−3 , τ = d∗ (Γ ∗ u∗ωS2n) ,

where d∗ is the L2-dual of d,
∣∣S4n−2

∣∣ is the area of S4n−2. Then τ ∈
L

4n−1
2n−1

(
R4n−1

)
, dτ = u∗ωS2n , d∗τ = 0. The generalized Hopf invariant

Q (u) =
1

|S2n|2
∫

R4n−1

u∗ωS2n ∧ τ

is well defined and equal to an integer.

Again the first step is to show that du∗ωS2n = 0.

Claim 10.9. For any smooth 2n-form α on S2n, we have du∗α = 0.
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Proof. By linearity we may assume α = f0df1 ∧ · · · ∧ df2n, where
f0, . . . , f2n ∈ C∞c

(
R2n+1, R

)
. Because u ∈ W 1,2n

loc , it follows from Lemma 9.2
that

du∗ (f1df2 ∧ · · · ∧ df2n) = u∗ (df1 ∧ · · · ∧ df2n) .

Hence
du∗ (df1 ∧ · · · ∧ df2n) = 0.

Note that f0 ◦ u ∈ L∞
(
R4n−1

)
, d (f0 ◦ u) ∈ L4n−2

loc

(
R4n−1

)
, d (f0 ◦ u) ∈

L4n−1
(
R4n−1\Ω), u∗ (df1 ∧ · · · ∧ df2n) ∈ L2 (Ω), u∗ (df1 ∧ · · · ∧ df2n) ∈

L
4n−1
2n

(
R4n−1\Ω), and

du∗ (df1 ∧ · · · ∧ df2n) ∈ L∞
(
R

4n−1
)
.

It follows from Lemma 9.5 that

du∗α = d (f0 ◦ u · u∗ (df1 ∧ · · · ∧ df2n))

= d (f0 ◦ u) ∧ u∗ (df1 ∧ · · · ∧ df2n)

= u∗dα = 0.

�

To continue we observe that

(u∗ωS2n)|Ω ∈ L
2n−1

n (Ω) ∩ L2 (Ω) , (u∗ωS2n)|
Rn\Ω ∈ L

4n−1
2n (Rn\Ω) .

Hence u∗ωS2n ∈ L
4n−1
2n

(
R4n−1

)
. Let τ = d∗ (Γ ∗ u∗ωS2n ). Then

τ ∈ L
4n−1
2n−1

(
R

4n−1
)
, dτ = u∗ (ωS2n ) .

In particular,

Q (u) =
1

|S2n|2
∫

R4n−1
u∗ωS2n ∧ τ

is well defined. Because Ju = |u∗ωS2n | ∈ L
4n−1
2n−1 , the proofs of Claim 10.3

and 10.4 remain valid with minor modifications (e.g., replacing Lemma 9.1
by Lemma 9.5 when necessary). Similar to Proposition 10.6, we have

Proposition 10.10. Assume that u ∈ W 1,1
loc

(
R

4n−1, S2n
)
, Ω ⊂ R

4n−1 is
a bounded open subset with continuous boundary such that∫

Ω
|du|4n−2 + |u∗ωS2n |2 +

∫
R4n−1\Ω

|du|4n−1 < ∞,

and that α is a smooth 2n-form on S2n. Then du∗α = 0. If β ∈
L

4n−1
2n−1

(
R

4n−1
)

such that dβ = u∗α, then for n ≥ 2 we have∫
R4n−1

u∗α ∧ β = Q (u)

(∫
S2n

α

)2

.

For n = 1, the equality remains true if, in addition, u is constant near
infinity.
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This follows from a similar argument as that in the proof of Proposi-
tion 10.6.

11. Energy growth estimate

In this section we will describe some basic rules concerning the Hopf
invariant for maps with finite Faddeev energy and the sublinear energy
growth law. Note that such kind of sublinear growth is a special case of
results derived in [LY5]. We provide the arguments here to facilitate the
further discussions in Section 12 and Section 13.

Recall for u ∈ W 1,1
loc

(
R4n−1, S2n

)
, we denote

E (u) =

∫
R4n−1

{|du|4n−2 + |u∗ωS2n |2}.

Let

X =
{

u ∈ W 1,1
loc

(
R

4n−1, S2n
) |E (u) < ∞

}
.

Lemma 11.1. For any u ∈ X ,

|Q (u)| ≤ c (n)E (u)
4n

4n−1 .

Proof. Indeed,

Q (u) =
1

|S2n|2
∫

R4n−1
u∗ωS2n ∧ τ

with τ = d∗ (Γ ∗ u∗ωS2n ). It follows that

|Q (u)| ≤ c (n)

∫
R4n−1

|u∗ωS2n | · |τ |
≤ c (n) ‖u∗ωS2n‖L2‖τ‖L2

≤ c (n) ‖u∗ωS2n‖L2‖u∗ωS2n‖
L

2(4n−1)
4n+1

≤ c (n) ‖u∗ωS2n‖L2‖u∗ωS2n‖
1

4n−1

L2 ‖u∗ωS2n‖
4n−2
4n−1

L
2n−1

n

≤ c (n) ‖u∗ωS2n‖
4n

4n−1

L2 ‖∇u‖
2n(4n−2)

4n−1

L4n−2

≤ c (n)E (u)
4n

4n−1 .
�

For N ∈ Z, denote

EN = inf {E (u) : u ∈ X, Q (u) = N} .

The above lemma gives a lower bound for EN . The upper bound may be
derived by choosing suitable test functions.
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Lemma 11.2. For n = 1, 2, 4, we have

EN ≤ c (n) |N |4n−1
4n for all integers N .

For n �= 1, 2, 4, we have

EN ≤ c (n) |N |4n−1
4n for all even integers N .

We start with some basic facts.

• If u ∈ X , φ : R4n−1 → R4n−1 is an orthogonal transformation, then
u ◦ φ ∈ X and Q (u ◦ φ) = sgn (det φ) ·Q (u).
Indeed, we have

(u ◦ φ)∗ ωS2n = φ∗u∗ωS2n = φ∗dτ = dφ∗τ.

Here τ = d∗ (Γ ∗ u∗ωS2n) ∈ L2. Hence

Q (u ◦ φ) =
1

|S2n|2
∫

R4n−1
φ∗u∗ωS2n ∧ φ∗τ

=
1

|S2n|2
∫

R4n−1

φ∗ (u∗ωS2n ∧ τ)

=
sgn (det φ)

|S2n|2
∫

R4n−1

u∗ωS2n ∧ τ

= sgn (det φ) ·Q (u) .

• If u ∈ X , ψ ∈ C∞
(
S2n, S2n

)
, then ψ ◦ u ∈ X and Q (ψ ◦ u) =

(degψ)2 Q (u).
Indeed, denote α = ψ∗ωS2n . Then

(ψ ◦ u)∗ ωS2n = u∗α = dτ̃

for some τ̃ ∈ L2. It follows from Proposition 10.6 that

Q (ψ ◦ u) =
1

|S2n|2
∫

S2n

u∗ψ∗ωS2n ∧ τ̃

=

(
1

|S2n|
∫

S2n

ψ∗ωS2n

)2

Q (u)

= (degψ)2 Q (u) .

• Assume x1, x2 ∈ R4n−1, ξ ∈ S2n, r1, r2 > 0 such that |x1 − x2| >
r1+r2, u1, u2 ∈ X such that u1 (x) = ξ for |x − x1| ≥ r1, u2 (x) = ξ
for |x − x2| ≥ r2. Let

u (x) =

⎧⎨⎩
u1 (x) , x ∈ Br1 (x1) ,
u2 (x) , x ∈ Br2 (x2) ,
ξ, otherwise.

Then u ∈ X and Q (u) = Q (u1) +Q (u2).
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Indeed, u∗1ωS2n = dτ1, u∗2ωS2n = dτ2 for some τ1, τ2 ∈ L2. Hence

u∗ωS2n = u∗1ωS2n + u∗2ωS2n = d (τ1 + τ2) .

Hence

Q (u) =
1

|S2n|2
∫

R4n−1

(u∗1ωS2n + u∗2ωS2n) ∧ (τ1 + τ2)

= Q (u1) +Q (u2) +
1

|S2n|2
∫

R4n−1
u∗1ωS2n ∧ τ2

+
1

|S2n|2
∫

R4n−1

u∗2ωS2n ∧ τ1.

Fix a δ > 0 such that r1 + r2 + 2δ < |x1 − x2|. Then dτ2 = 0 on Br1+δ (x1).
It follows that τ2 = dγ2 for some γ2 ∈ W 1,2 (Br1+δ (x1)). Note that on
Br1+δ (x1),

u∗1ωS2n ∧ τ2 = u∗1ωS2n ∧ dγ2 = d (u∗1ωS2n ∧ γ2) .

Hence∫
R4n−1

u∗1ωS2n ∧ τ2 =

∫
Br1+δ(x1)

u∗1ωS2n ∧ τ2 =

∫
Br1+δ(x1)

d (u∗1ωS2n ∧ γ2)

=

∫
R4n−1

d (u∗1ωS2n ∧ γ2) = 0

by Lemma 9.9.

Proof of Lemma 11.2. We simply deal with the case n �= 1, 2, 4. The
case when n = 1, 2, 4 may be treated by similar methods. It follows from
the previous facts that E−N = EN . Hence we may assume N > 0. By
[Hu, corollary 3.6 on p214] we may find a v0 ∈ C∞

(
S4n−1, S2n

)
such that

Q (v0) = 2 and v0|S4n−1
+

= n, the north pole of S2n. Let u0 (x) = v0

(
π−1
n

(x)
)
.

Here πn is the stereographic projection with respect to the north pole of
S4n−1. For any even N , we may find a unique m ∈ N such that

m2 ≤ N

2
< (m+ 1)2 .

Let k = N
2 −m2. Then 0 ≤ k ≤ 2m. By scaling and packing we can find a

ψ ∈ C∞
(
S2n, S2n

)
such that ψ (n) = n, deg ψ = m and |dψ| ≤ c (n)m

1
2n .

Let

u (x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ψ
(
u0

(
m− 1

2n x
))

, for |x| ≤ m
1
2n + 1,

u0

(
x−

(
m

1
2n + 1 + 4j

)
e1

)
, for

∣∣∣x − (
m

1
2n + 1 + 4j

)
e1

∣∣∣ ≤ 1,

1 ≤ j ≤ k
n, otherwise,
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where e1 = (1, 0, . . . , 0) ∈ R
4n−1. Then Q (v) = 2m2 + 2k = N . Moreover

since |du| ≤ c (n), we see that

E (u) ≤ c (n)m
4n−1
2n + c (n) k

≤ c (n)m
4n−1
2n + c (n)m

≤ c (n)m
4n−1
2n ≤ c (n)N

4n−1
4n . �

12. The decomposition lemma

In this section, we prove the crucial decomposition lemma. Roughly
speaking, the lemma says that we may break the domain space into infin-
itely many blocks, on the boundary of each block the map is almost constant,
and hence, we can assign a Hopf–Whitehead invariant for it. By collecting
nonzero “degree” blocks suitably, we may achieve a good understanding of
the minimizing sequence of maps for the Faddeev energy (Theorem 13.1).
Note that such a decomposition lemma for maps from R3 to S2 was proven
in [LY1] using the lifting through the Hopf fibration S3 → S2. In higher
dimensions, we will use the Hodge decomposition of differential forms in
place of the lifting.

Let us introduce some notation. For x ∈ Rm we write

|x|∞ = max
1≤i≤m

|xi| .

For R > 0, y ∈ R
m,

QR (y) = {x ∈ R
m : |x− y|∞ ≤ R} .

QR = QR (0). Denote

Z
m = {x ∈ R

m : xi ∈ Z for 1 ≤ i ≤ m}
as the lattice of all integer points. Then

R
m =

⋃
ξ∈2RZm

QR (ξ) .

Here 2RZm means the scaling of the lattice Zm by factor 2R. The union of
boundaries of these cubes is given by

ΣR = {x ∈ R
m : xi = (2j + 1)R for some 1 ≤ i ≤ m and integer j} .

Lemma 12.1. Assume u ∈ X . That is, u ∈ W 1,1
loc

(
R

4n−1, S2n
)

with

E (u) =

∫
R4n−1

(
|du|4n−2 + |u∗ωS2n |2

)
dx ≤ Λ < ∞.

Let

τ = d∗ (Γ ∗ u∗ωS2n) .
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Here Γ is the fundamental solution of −Δ on R
4n−1. Then for every ε > 0,

there exists R = R (n, ε,Λ)> 0, y ∈ QR/4 and κξ ∈ Z for every ξ ∈ 2RZ
4n−1

such that ∑
ξ∈2RZ4n−1

∣∣∣∣∣ 1

|S2n|2
∫

QR(ξ)+y

u∗ωS2n ∧ τ − κξ

∣∣∣∣∣ ≤ ε.

In particular, except for finitely many ξ’s, κξ = 0 and, when ε < 1,∑
ξ∈2RZ4n−1

κξ = Q (u) .

Proof. Since ‖u∗ωS2n‖
L

2n−1
n (R4n−1)

≤ c (n) ‖du‖2n
L4n−2(R4n−1), it follows

from Hölder’s inequality that

‖u∗ωS2n‖
L

4n−1
2n (R4n−1)

≤ c (n,Λ) .

Hence

‖τ‖
L

4n−1
2n−1 (R4n−1)

+ ‖Dτ‖
L

4n−1
2n (R4n−1)

≤ c (n,Λ) .

It follows from the Fubini type estimate (Section 3 of [HL]) that we may
find some y ∈ QR/4 such that

u|ΣR+y ∈ W 1,4n−2
loc (ΣR + y) , τ |ΣR+y ∈ W

1, 4n−1
2n

loc (ΣR + y) ,

and ∫
ΣR+y

(
|du|4n−2 + |τ |4n−1

2n−1 + |Dτ | 4n−1
2n

)
dS

≤ c (n)

R

∫
R4n−1

(
|du|4n−2 + |τ | 4n−1

2n−1 + |Dτ |4n−1
2n

)
dx

≤ c (n,Λ)

R
.

By translation we may assume y = 0. Pick up a cube QR (ξ) with ξ ∈
2RZ4n−1. Without loss of generality, we may assume ξ = 0. We have∫

∂QR

(
|du|4n−2 + |τ | 4n−1

2n−1 + |Dτ | 4n−1
2n

)
dS ≤ c (n,Λ)

R
.

Claim 12.2. There exists u1 ∈ W 1,4n−1
(
Q2R\QR, S2n

)
such that

u1|∂QR
= u|∂QR

, u1|∂Q2R
= const and

‖du1‖L4n−1(Q2R\QR) ≤ c (n) ‖du‖L4n−2(∂QR).

Here we set

u1 (x) =

⎧⎪⎨⎪⎩
u (x) , x ∈ QR,

u1 (x) , x ∈ Q2R\QR,

u1|∂Q2R
, x ∈ R

4n−1\Q2R.
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Indeed, consider the map φ : R
4n−1 → R

4n−1 given by φ (x) = |x| x
|x|
∞

.

Then φ is bi-Lipschitz with |φ (x)|∞ = |x|. In particular, φ (∂BR) = ∂QR.
Let v (x) = u (φ (x)) for x ∈ BR. Then∫

∂BR

|dv|4n−2 dS ≤ c (n,Λ)

R
.

It follows from Lemma 9.7 and scaling that, when R = R (n,Λ) is large
enough, there exists a v1 ∈ W 1,4n−1

(
B2R\BR, S2n

)
with v1|∂BR

= v,

v1|∂B2R
= const such that

‖dv1‖L4n−1(B2R\BR) ≤ c (n) ‖dv‖L4n−2(∂BR) ≤ c (n) ‖du‖L4n−2(∂QR).

Let u1 = v1 ◦ φ−1. Then u1 satisfies all the requirements in Claim 12.2.

Claim 12.3. There exists some τ1 ∈ L
4n−1
2n−1

(
R

4n−1
)

with τ1|QR
= τ ,

τ1|R4n−1\Q2R
= 0, dτ1 = u∗1ωS2n and

‖τ1‖
L

4n−1
2n−1 (Q2R\QR)

≤ c(n)

(
‖du‖2n

L4n−2(∂QR)+R
2n−1
4n−1 ‖τ‖

L
4n−1
2n−1 (∂QR)

+R
2n

4n−1 ‖Dτ‖
L

4n−1
2n (∂QR)

)
.

Indeed we may write

τ =
∑

λ∈Λ(4n−1,2n−1)

fλ (x) dxλ.

Then we define

f̃λ (x) =

⎧⎪⎨⎪⎩
fλ(x), x ∈ QR,
2R−|x|

∞

R fλ

(
Rx
|x|
∞

)
, x ∈ Q2R\QR,

0, x ∈ R4n−1\Q2R,

and

τ2 =
∑

λ∈Λ(4n−1,2n−1)

f̃λ (x) dxλ.

It follows that τ2 ∈ L
4n−1
2n−1

(
R

4n−1
)
, Dτ2 ∈ L

4n−1
2n

(
R

4n−1
)
, and

‖τ2‖
L

4n−1
2n−1 (Q2R\QR)

≤ c (n)R
2n−1
4n−1 ‖τ‖

L
4n−1
2n−1 (∂QR)

,

‖Dτ2‖
L

4n−1
2n (Q2R\QR)

≤ c (n)

(
R

2n−1
4n−1 ‖τ‖

L
4n−1
2n−1 (∂QR)

+R
2n

4n−1 ‖Dτ‖
L

4n−1
2n (∂QR)

)
.
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Note that (dτ2)|QR
= u∗ωS2n and (dτ2)|R4n−1\Q2R

= 0. Let v (x) =

u1 (φ (x)). Then v ∈ W 1,1
loc

(
R4n−1, S2n

)
,∫

BR

(
|dv|4n−2 + |v∗ωS2n |2

)
dx+

∫
B2R\BR

|dv|4n−1 dx <∞,

and v|
R4n−1\B2R

= const. It follows from Theorem 10.8 that dv∗ωS2n = 0.

Let η2 = φ∗τ2. It follows from Lemma 9.3 that η2 ∈ L
4n−1
2n−1

(
R

4n−1
)
and

dη2 = φ∗dτ2. In particular, (dη2)|BR
= v∗ωS2n , (dη2)|R4n−1\B2R

= 0, and

‖dη2‖
L

4n−1
2n (B2R\BR)

≤ c (n)

(
R

2n−1
4n−1‖τ‖

L
4n−1
2n−1 (∂QR)

+ R
2n

4n−1 ‖Dτ‖
L

4n−1
2n (∂QR)

)
.

Note that d (v∗ωS2n − dη2) = 0. Hence for any forms ϕ ∈ C∞c (Rn),∫
B2R\BR

〈v∗ωS2n − dη2, d
∗ϕ〉dx =

∫
R4n−1

〈v∗ωS2n − dη2, d
∗ϕ〉dx

= 0.

Using the fact

H2n
(
B2R\BR, ∂BR ∪ ∂B2R, R

)
∼= H2n−1

(
B2R\BR, R

) ∼= H2n−1
(
S4n−2, R

)
= 0,

it follows from the Hodge theory that we may find some η ∈ W 1, 4n−1
2n

(B2R\BR) such that

v∗ωS2n − dη2 = dη on B2R\BR, i∗Rη = 0, i∗2Rη = 0,

and

‖η‖
L

4n−1
2n−1 (B2R\BR)

≤ c (n) ‖v∗ωS2n − dη2‖
L

4n−1
2n (B2R\BR)

≤ c (n)

(
‖du‖2n

L4n−2(∂QR) + R
2n−1
4n−1‖τ‖

L
4n−1
2n−1 (∂QR)

+ R
2n

4n−1 ‖Dτ‖
L

4n−1
2n (∂QR)

)
.

Here iR : ∂BR → R4n−1 and i2R : ∂B2R → R4n−1 are the identity maps. Let

η =

{
η, on B2R\BR,
0, on BR ∪

(
R

4n−1\BR

)
.
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Then it follows that for any form ϕ ∈ C∞c (Rn),∫
R4n−1

η ∧ dϕ =

∫
B2R\BR

η ∧ dϕ

=

∫
B2R\BR

−d (η ∧ ϕ) + dη ∧ ϕ

=

∫
B2R\BR

(v∗ωS2n − dη2) ∧ ϕ−
∫

∂B2R

i∗2R (η ∧ ϕ)

+

∫
∂BR

i∗R (η ∧ ϕ)

=

∫
R4n−1

(v∗ωS2n − dη2) ∧ ϕ.

Hence

dη = v∗ωS2n − dη2 on R
4n−1.

Let η1 = η + η2. Then dη1 = v∗ωS2n . Denote τ1 =
(
φ−1

)∗
η1. Then τ1 ∈

L
4n−1
2n−1

(
R

4n−1
)
. By Lemma 9.3, we have

dτ1 =
(
φ−1

)∗
dη1 =

(
φ−1

)∗
v∗ωS2n = u∗1ωS2n ,

τ1|QR
= τ , τ1|R4n−1\Q2R

= 0, and

‖τ1‖
L

4n−1
2n−1 (Q2R\QR)

≤ c (n)

(
‖du‖2n

L4n−2(∂QR) + R
2n−1
4n−1 ‖τ‖

L
4n−1
2n−1 (∂QR)

+ R
2n

4n−1 ‖Dτ‖
L

4n−1
2n (∂QR)

)
.

It follows from Proposition 10.10 that we have

Q (u1) =
1

|S2n|2
∫

R4n−1
u∗1ωS2n ∧ τ1.

Hence∣∣∣∣ 1

|S2n|2
∫

BR

u∗ωS2n ∧ τ −Q (u1)

∣∣∣∣
≤

∣∣∣∣∣ 1

|S2n|2
∫

B2R\BR

u∗1ωS2n ∧ τ1

∣∣∣∣∣
≤ c (n) ‖u∗1ωS2n‖

L
4n−1
2n (Q2R\QR)

‖τ1‖
L

4n−1
2n−1 (Q2R\QR)
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≤ c (n) ‖du‖2n
L4n−2(∂QR)

(
‖du‖2n

L4n−2(∂QR) + R
2n

4n−1‖Dτ‖
L

4n−1
2n (∂QR)

+ R
2n−1
4n−1 ‖τ‖

L
4n−1
2n−1 (∂QR)

)
≤ c (n) ‖du‖2L4n−2(∂QR)

∫
∂QR

|du|4n−2 dS + c (n) ‖du‖
6n−2
4n−1

L4n−2(∂QR)

×
(∫

∂QR

|du|4n−2 dS + R

∫
∂QR

|Dτ | 4n−1
2n dS

)
+ c (n) ‖du‖

2n
4n−1

L4n−2(∂QR)

×
(∫

∂QR

|du|4n−2 dS + R

∫
∂QR

|τ | 4n−1
2n−1 dS

)
≤ c (n,Λ)

R
2n

4n−1

·R
∫

∂QR

(
|du|4n−2 + |τ | 4n−1

2n−1 + |Dτ |4n−1
2n

)
dS,

if R ≥ 1. We may set κ0 = Q (u1) ∈ Z. Then we get∑
ξ∈2RZ4n−1

∣∣∣∣∣ 1

|S2n|2
∫

QR(ξ)
u∗ωS2n ∧ τ − κξ

∣∣∣∣∣
≤ c (n,Λ)

R
2n

4n−1

·R
∫

ΣR

(
|du|4n−2 + |τ | 4n−1

2n−1 + |Dτ |4n−1
2n

)
dS

≤ c (n,Λ)

R
2n

4n−1

≤ ε,

when R is large enough.
As a consequence,∑

ξ∈2RZ4n−1

|κξ| ≤ 1

|S2n|2
∫

QR(ξ)
|u∗ωS2n ∧ τ | dx+ ε < ∞.

This implies κξ = 0 except for finitely many ξ’s. On the other hand,∣∣∣∣∣∣Q (u)−
∑

ξ∈2RZ4n−1

κξ

∣∣∣∣∣∣ ≤
∑

ξ∈2RZ4n−1

∣∣∣∣∣ 1

|S2n|2
∫

QR(ξ)
u∗ωS2n ∧ τ − κξ

∣∣∣∣∣ ≤ ε.

Using the fact that Q (u) −∑
ξ∈2RZ4n−1 κξ is an integer, we see that, when

ε < 1,

Q (u) =
∑

ξ∈2RZ4n−1

κξ.

�

13. Existences of minimizers

After the fore-going preparation, we are ready to prove the main result of
the second part of this article, Theorem 13.1 below. This theorem describes
the behavior of a minimizing sequence of maps for the Faddeev model. Based
on this result and the sublinear growth law, we will obtain several existence
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statements in Section 13.1. It is worth pointing out that even for the Fad-
deev model for maps from R

3 to S2, Theorem 13.1 improves the substantial
inequality in [LY1] to an equality. Such a result is based on some special
operations on maps with finite Faddeev energy given in Lemma 13.2 and
establishes a subadditivity property for the Faddeev knot energy spectrum.

Recall that

X =

{
u ∈ W 1,1

loc

(
R

4n−1, S2n
) ∣∣∣∣E (u)

=

∫
R4n−1

(
|du|4n−2 + |u∗ωS2n |2

)
dx <∞

}
.

For N ∈ Z, we set

EN = inf{E (u) | u ∈ XN} where XN = {u ∈ X |Q (u) = N} .

Theorem 13.1.Assume that N is an nonzero integer such that XN �= φ,
{ui} ⊂ XN such that E (ui)→ EN as i→∞. Then there exists an integer m
with 1 ≤ m ≤ c (n)EN , m nonzero integers N1, . . . , Nm and yi1, . . . , yim ∈
R

4n−1 such that

• N = N1 + · · ·+Nm.
• |yij − yik| → ∞ as i→∞ for 1 ≤ j, k ≤ m, j �= k.
• If we set vij (x) = ui (x− yij) for 1 ≤ j ≤ m, then there exists a

vj ∈ X such that

vij → vj a.e.

dvij ⇀ dvj in L4n−2
(
R

4n−1
)
,

v∗ijωS2n ⇀ v∗j ωS2n in L2
(
R

4n−1
)

as i →∞ and

Q (vj) = Nj, ENj = E (vj) ≥ c (n) > 0

for all j.
•

EN =

m∑
j=1

ENj .

In particular, if EN < EN ′ + EN ′′ for N = N ′ +N ′′, N ′, N ′′ �= 0, then
EN is achieved.

Before carrying out the proof of this theorem, we make some general
discussion. Assume ui ∈ X with E (ui) ≤ Λ < ∞. Then, after passing to a
subsequence, we may find a u∞ ∈ X such that ui → u∞ a.e., dui ⇀ du∞ in
L4n−2

(
R

4n−1
)
, and u∗i ωS2n ⇀ u∗∞ωS2n in L2

(
R

4n−1
)
.
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Indeed we may find a u∞ ∈ W 1,4n−2
loc

(
R

4n−1, S2n
)
such that, after passing

to a subsequence, we have ui → u∞ a.e. and dui ⇀ du∞ in L4n−2
(
R

4n−1
)
.

Next we claim for every 1 ≤ k ≤ 2n, λ ∈ Λ (2n+ 1, k),

dui,λ1 ∧ · · · ∧ dui,λk
→ du∞,λ1 ∧ · · · ∧ du∞,λk

,

in sense of distribution as i → ∞. Here ui,j is the jth component of the
vector ui. The claim is true for k = 1. Assume it is true for k − 1. Then for
λ ∈ Λ (2n+ 1, k), since k − 1 ≤ 2n− 1 < 4n− 2, we see

‖dui,λ2 ∧ · · · ∧ dui,λk
‖

L
4n−2
k−1 (R4n−1)

≤ c (n,Λ) .

Combining with the induction hypothesis, we get du∞,λ2 ∧ · · · ∧ du∞,λk
∈

L
4n−2
k−1

(
R

4n−1
)
and

dui,λ2 ∧ · · · ∧ dui,λk
⇀ du∞,λ2 ∧ · · · ∧ du∞,λk

in L
4n−2
k−1

(
R

4n−1
)
.

Hence

ui,λ1dui,λ2 ∧ · · · ∧ dui,λk
⇀ u∞,λ1du∞,λ2 ∧ · · · ∧ du∞,λk

in L
4n−2
k−1

(
R

4n−1
)
.

It follows from Lemma 9.2 that

dui,λ1 ∧ · · · ∧ dui,λk
= d(ui,λ1dui,λ2 ∧ · · · ∧ dui,λk

)

→ d (u∞,λ1du∞,λ2 ∧ · · · ∧ du∞,λk
)

= du∞,λ1 ∧ · · · ∧ du∞,λk

in sense of distribution. The claim follows.
Using the fact

‖Λ2n (du)‖L2(R4n−1) ≤ ‖u∗ωS2n‖L2(R4n−1) ≤
√
Λ,

we see that, for λ ∈ Λ (2n+ 1, 2n), du∞,λ1 ∧ · · · ∧du∞,λ2n ∈ L2
(
R4n−1

)
and

dui,λ1 ∧ · · · ∧ dui,λ2n ⇀ du∞,λ1 ∧ · · · ∧ du∞,λ2n in L2
(
R

4n−1
)
.

This together with the fact ui → u∞ a.e. implies u∗∞ωS2n ∈ L2
(
R

4n−1
)
and

u∗i ωS2n ⇀ u∗∞ωS2n in L2
(
R

4n−1
)
as i→∞.

If we let

τi = d∗ (Γ ∗ u∗i ωS2n) , τ∞ = d∗ (Γ ∗ u∗∞ωS2n) ,

then

τi ⇀ τ∞ in L
2(4n−1)
4n−3

(
R

4n−1
)
,

Dτi ⇀ Dτ∞ in L2
(
R

4n−1
)
,

τi ⇀ τ∞ in W 1,2 (Br) for every r > 0.

Hence
u∗i ωS2n ∧ τi ⇀ u∗∞ωS2n ∧ τ∞ in L1 (Br)

for all r > 0.
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Proof of Theorem 13.1. Since N �= 0, it follows from Lemma 11.1
that

EN ≥ c (n) |N |4n−1
4n > 0.

We may assume that i is large enough such that E (ui) ≤ 2EN . Let ε > 0 be
a tiny number to be fixed later. It follows from Lemma 12.1 that we may find
some R = R (n, ε, EN) > 0, yi ∈ QR/4, and integers κi,ξ for ξ ∈ 2RZ

4n−1,
such that ∑

ξ∈2RZ4n−1

∣∣∣∣∣ 1

|S2n|2
∫

QR(ξ)+yi

u∗i ωS2n ∧ τi − κi,ξ

∣∣∣∣∣ ≤ ε.

Here τi = d∗ (Γ ∗ u∗i ωS2n). By translation we may assume yi = 0. It follows
from the calculation in the proof of Lemma 11.1 that∫

R4n−1
|u∗i ωS2n ∧ τi|dx ≤ c (n)E

4n
4n−1

N .

Hence ∑
ξ∈2RZ4n−1

|κi,ξ| ≤ 1

|S2n|2
∫

R4n−1

|u∗i ωS2n ∧ τi| dx

+
∑

ξ∈2RZ4n−1

∣∣∣∣∣ 1

|S2n|2
∫

QR(ξ)
u∗i ωS2n ∧ τi − κi,ξ

∣∣∣∣∣
≤ c (n)E

4n
4n−1

N .

Hence

#
{
ξ ∈ 2RZ

4n−1 | κi,ξ �= 0
} ≤ c (n)E

4n
4n−1

N .

After passing to a subsequence we may assume

#
{
ξ ∈ 2RZ

4n−1 | κi,ξ �= 0
}
= l.

For each i, we may order
{
ξ ∈ 2RZ

4n−1 : κi,ξ �= 0
}
and ξi1, . . . , ξil. After

passing to a subsequence we may assume for all 1 ≤ j, k ≤ l, limi→∞ |ξij−
ξik| = ∞ or limi→∞ (ξij − ξik) = ζjk ∈ 2RZ

4n−1 exists. Passing to another
subsequence we may assume for all 1 ≤ j, k ≤ l, either limi→∞ |ξij − ξik| =
∞ or ξij − ξik = ζjk for all i. We may also assume that κi,ξj = κj for
1 ≤ j ≤ l and all i’s. Let I = {1, . . . , l}. We say that j, k ∈ I are equivalent
if ξij − ξik = ζjk. This defines an equivalence relation on I . Let I1, · · · , Im

be the equivalent classes. For each 1 ≤ a ≤ m, we fix a ka ∈ Ia. Let

Na =
∑
j∈Ia

κj =
∑
j∈Ia

κi,ξj

for all i. Then

N1 + · · ·+Nm =

m∑
j=1

κi,ξj =
∑

ξ∈2RZ4n−1

κi,ξ = Q (ui) = N.
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Let yia = ξika ∈ 2RZ
4n−1. Then for 1 ≤ a, b ≤ m, a �= b,

|yia − yib| = |ξika − ξikb
| → ∞,

as i→∞. Let via (x) = ui (x− yia), τia = d∗ (Γ ∗ v∗iaωS2n ). Then

∑
ξ∈2RZ4n−1

∣∣∣∣∣ 1

|S2n|2
∫

QR(ξ)
v∗iaωS2n ∧ τia − κi,ξ+yia

∣∣∣∣∣ ≤ ε.

After passing to a subsequence if necessary, by the discussion following the
statement of the theorem, we may find va ∈ X such that as i→∞,

via → va a.e., dvia ⇀ dva in L4n−2(R4n−1),

v∗iaωS2n ⇀ v∗aωS2n in L2(R4n−1),

and

τia ⇀ τa in W 1,2 (Br) for every r > 0.

Here τa = d∗ (Γ ∗ v∗aωS2n). In particular,

v∗iaωS2n ∧ τia ⇀ v∗aωS2n ∧ τa in L1 (Br)

for all r > 0. Note that it is clear that limi→∞ κi,ξ+yia = κξ,a always exists.
Moreover

κξ,a =

{
κj if ξ = ζjka for j ∈ Ia,

0, otherwise.

Since 1
|S2n|2

∫
QR(ξ) v∗iaωS2n ∧ τia → 1

|S2n|2

∫
QR(ξ) v∗aωS2n ∧ τa as i→∞, we see

that ∑
ξ∈2RZ4n−1

∣∣∣∣∣ 1

|S2n|2
∫

QR(ξ)
v∗aωS2n ∧ τa − κξ,a

∣∣∣∣∣ ≤ ε.

Hence

|Q (va)−Na| =
∣∣∣∣∣∣Q (va)−

∑
j∈Ia

κj

∣∣∣∣∣∣
≤

∑
ξ∈2RZ4n−1

∣∣∣∣∣ 1

|S2n|2
∫

QR(ξ)
v∗aωS2n ∧ τa − κξ,a

∣∣∣∣∣ ≤ ε.

This implies Q (va) = Na if we choose ε < 1. Moreover, if we choose ε ≤ 1
2 ,

then ∣∣∣∣ 1

|S2n|2
∫

QR

v∗aωS2n ∧ τa − κja

∣∣∣∣ ≤ 1

2
.
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Using the fact that κja �= 0, we see that
∫
QR
|v∗aωS2n ∧ τa|dx ≥ c (n) > 0.

Hence the calculation in Lemma 11.1 implies E (va) ≥ c (n) > 0. Finally, fix
r > 0. Then for i large enough, we have

E (ui) ≥
m∑

a=1

∫
Br(yi,a)

(
|dui|4n−2 + |u∗i ωS2n |2

)
dx

=

m∑
a=1

∫
Br

(
|dvi,a|4n−2 +

∣∣v∗i,aωS2n

∣∣2)dx.

Letting i→∞, we see that

EN ≥
m∑

a=1

∫
Br

(
|dva|4n−2 + |v∗aωS2n |2

)
dx.

Letting r →∞, we see that

EN ≥
m∑

a=1

E (va) ≥
m∑

a=1

ENa .

Using E (va) ≥ c (n) > 0, we see that m ≤ c (n)EN . To finish the argument,
we observe that it follows from Corollary 13.3 below that

∑m
a=1 ENa ≥ EN .

Hence EN =
∑m

a=1 ENa and ENa = E (va) for all a’s. �

Lemma 13.2. For every u ∈ X , there exists a sequence ui ∈ X and a
sequence of positive numbers bi such that

ui → u a.e., dui → du in L4n−2
(
R

4n−1
)
, u∗i ωS2n → u∗ωS2n in L2

(
R

4n−1
)

and

ui

(
x′, x4n−1

) ≡ const for x4n−1 < −bi.

Here x = (x′, x4n−1) with x′ representing the first 4n− 2 coordinates.

To prove the lemma, we first introduce some coordinates on R4n−1. Note
that we may use the stereographic projection with respect to the north pole
n on S4n−2 to get

S4n−2\ {n} → R
4n−2 : x �→ ξ, ξ =

x′

1− x4n−1
.

In this way, we get a coordinate system on S4n−2\ {n}. For x ∈ R4n−1\
{(0, a) : a ≥ 0}, we may take r = |x| and ξ as the stereographic projection
of x

|x|
with respect to n. In this way, we get a coordinate system (r, ξ). The

Euclidean metric is written as

gR4n−1 = dr ⊗ dr +
4r2(

1 + |ξ|2
)2

4n−2∑
i=1

dξi ⊗ dξi.
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We will use freely the coordinates x and (r, ξ). For a > 0, we denote

Va = {(r, ξ) : 0 < r < ∞, |ξ| < a} ⊂ R
4n−1

as the corresponding cone with origin as the vertex. Note that

V1 =
{
x ∈ R

4n−1 : x4n−1 < 0
}

.

To continue we define a function

φ (ξ) =

⎧⎪⎪⎨⎪⎪⎩
0, ξ ∈ B1

8
,

2
(|ξ| − 1

8

) ξ
|ξ| , ξ ∈ B1

4
\B1

8
,

ξ, ξ ∈ B1
2
\B1

4
.

We also write
F (r, ξ, ζ) = Fζ (r, ξ) = (r, φ (ξ) + ζ)

for 0 < r < ∞, ξ ∈ B1
2
and ζ ∈ B 1

16
. It follows from the discussion in [HL,

Section 3] that for a.e. ζ ∈ B 1
16
, u ◦ Fζ ∈ W 1,2

loc

(
V 1

2

)
. Moreover∫

V 1
2

(
|d (u ◦ Fζ)|4n−2 + |(u ◦ Fζ)

∗ ωS2n |2
)
dx

≤ c (n)

∫
{0<r<∞,ξ∈B 1

2
}

(
|du|4n−2 + |u∗ωS2n |2

)
(r, φ (ξ) + ζ) · r4n−2drdξ.

Hence∫
B 1

16

dζ

∫
V 1

2

(
|d (u ◦ Fζ)|4n−2 + |(u ◦ Fζ)

∗ ωS2n |2
)
dx

≤ c (n)

∫
{0<r<∞,ζ∈B1}

(
|du|4n−2 + |u∗ωS2n |2

)
(r, ζ) · r4n−2drdζ

≤ c (n)

∫
V1

(
|du|4n−2 + |u∗ωS2n |2

)
dx.

It follows that we may find a ζ ∈ B 1
16
such that∫

V 1
2

(
|d (u ◦ Fζ )|4n−2 + |(u ◦ Fζ)

∗ ωS2n |2
)
dx

≤ c (n)

∫
V1

(
|du|4n−2 + |u∗ωS2n |2

)
dx.

Let

v1 (r, ξ) =

{
u(r, φ(ξ− ζ) + ζ), ξ ∈ B1

2
(ζ),

u(r, ξ), ξ /∈ B1
2
(ζ).

Then v1 ∈ X ,∫
V1

(
|dv1|4n−2 + |v∗1ωS2n |2

)
dx ≤ c (n)

∫
V1

(
|du|4n−2 + |u∗ωS2n |2

)
dx
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and

v1 (r, ξ) = u (r, ζ) for ξ ∈ B 1
16

,

v1|R4n−1\V1
= u.

Let

v2 (r, ξ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
v1

(
r, ξ

256

)
, ξ ∈ B16,

v1

(
r,
(

511
256 (|ξ| − 16) + 1

16

) ξ
|ξ|

)
, ξ ∈ B32\B16,

v1 (r, ξ) , ξ /∈ B32.

We have v2 ∈ X ,∫
V32

(
|dv2|4n−2 + |v∗2ωS2n |2

)
dx ≤ c (n)

∫
V32

(
|du|4n−2 + |u∗ωS2n |2

)
dx

and

v2 (r, ξ) = u (r, ζ) for ξ ∈ B16,

v2|R4n−1\V32
= u.

Let

f (r) = u (r, ζ) for 0 < r < ∞.

Then∫ ∞

0

∣∣f ′ (r)∣∣4n−2
r4n−2dr ≤ c (n)

∫
V1

(
|du|4n−2 + |u∗ωS2n |2

)
dx <∞.

Hence |f ′ (r)| = |f ′ (r)| r · 1r ∈ L1 ([1,∞)). It follows that limr→∞ f (r) exists.
Without loss of generality we may assume that

lim
r→∞

f (r) = −n.

Here n is the north pole of S2n. We may find R > 1 large enough such that
for r ≥ R, f (r) lies in lower half sphere. Let πn : S2n\ {n} → R

2n be the
stereographic projection with respect to n. Define

g (r) = πn (f (r)) for r ≥ R.

Then g (r)→ 0 as r →∞, |g (r)| ≤ 1, and∫ ∞

R

∣∣g′ (r)∣∣4n−2
r4n−2dr ≤ c (n)

∫
V1

(
|du|4n−2 + |u∗ωS2n |2

)
dx.

It follows from Hardy’s inequality that∫ ∞

R
|g (r)|4n−2 dr ≤ c (n)

∫ ∞

R

∣∣g′ (r)∣∣4n−2
r4n−2dr

≤ c (n)

∫
V1

(
|du|4n−2 + |u∗ωS2n |2

)
dx.
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Let

η (x) =

⎧⎪⎨⎪⎩
1, if x4n−1 ≥ |x′| − 1,
x4n−1+2
|x′|+1 , if |x′| − 1 ≥ x4n−1 ≥ −2,
0, if x4n−1 ≤ −2.

Note that

|dη (x)| ≤ c (n)

|x|+ 1
.

Denote

w (x) = η
( x

2R

)
g (|x|) for |x| > R.

Then ∫
R4n−1\BR

(
|dw|4n−2 + |Λ2n (dw)|2

)
dx

≤ c (n)

∫ ∞

R
|g (r)|4n−2 dr + c (n)

∫ ∞

R

∣∣g′ (r)∣∣4n−2
r4n−2dr

≤ c (n)

∫
V1

(
|du|4n−2 + |u∗ωS2n |2

)
dx.

Finally, we set

v (x) =

{
v2 (x) , if x4n−1 ≥ |x′| − 2R,

π−1
n
(w (x)) , if x4n−1 ≤ |x′| − 2R.

Then it follows from the construction that v ∈ X ,∫
V32

(
|dv|4n−2 + |v∗ωS2n |2

)
dx ≤ c (n)

∫
V32

(
|du|4n−2 + |u∗ωS2n |2

)
dx,

and

v|
R4n−1\V32

= u, v (x) = −n for x4n−1 ≤ −4R.

For every ε > 0, by vertical translation we may assume∫
V32

(
|du|4n−2 + |u∗ωS2n |2

)
dx < ε.

Then for the above constructed v, we have∫
R4n−1

(
|dv − du|4n−2 + |v∗ωS2n − u∗ωS2n |2

)
dx

≤ c (n)

∫
V32

(
|du|4n−2 + |u∗ωS2n |2

)
dx ≤ c (n) ε.

Lemma 13.2 follows.

Corollary 13.3. For N1, N2 ∈ Z, if XN1, XN2 �= ∅, then XN1+N2 �= ∅
and

EN1+N2 ≤ EN1 + EN2.
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Indeed, for any ε > 0 small, it follows from Lemma 13.2 that we can
find u1 ∈ XN1, u2 ∈ XN2 such that E (u1) < EN1 + ε, E (u2) < EN2 + ε,
u1 (x

′, x4n−1) = −n for x4n−1 < 0 and u2 (x
′, x4n−1) = −n for x4n−1 > 0.

Here n is the north pole of S2n. Define

u (x) =

{
u1 (x) , when x4n−1 > 0,
u2 (x) , when x4n−1 < 0.

Then clearly u ∈ X and E (u) = E (u1) + E (u2) < EN1 + EN2 + 2ε. We
will show that Q (u) = N1 +N2. It follows that EN1+N2 ≤ EN1 +EN2 + 2ε.
Letting ε → 0+, we get the corollary. Indeed, denote

i : R
4n−2 → R

4n−1 : x′ �→ (
x′, 0

)
as the natural put in map. Since u∗1ωS2n ∈ L

2(4n−1)
4n+1 and u∗1ωS2n = 0 on

R
4n−1
− , it follows from the Hodge theory that we may find τ1 ∈ L2

(
R

4n−1
+

)
with Dτ1 ∈ L

2(4n−1)
4n+1

(
R

4n−1
+

)
and i∗τ1 = 0. Let τ1 = 0 on R

4n−1
− . Then the

same argument as in the proof of Claim 12.3 shows that dτ1 = u∗1ωS2n on
R

4n−1. Similarly we may find τ2 ∈ L2
(
R

4n−1
)
such that dτ2 = u∗2ωS2n and

τ2|R4n−1
+

= 0. Note that

d (τ1 + τ2) = u∗1ωS2n + u∗2ωS2n = u∗ωS2n .

It follows from Proposition 10.6 that

Q (u) =
1

|S2n|2
∫

R4n−1

u∗ωS2n ∧ (τ1 + τ2)

=
1

|S2n|2
∫

R4n−1
u∗1ωS2n ∧ τ1 + u∗2ωS2n ∧ τ2

= Q (u1) +Q (u2)

= N1 +N2.

13.1. Some discussion. Here we describe some consequences of The-
orem 13.1. For n = 1, 2, 4, we know for all N ∈ Z, XN �= ∅ and

c (n)−1 |N |4n−1
4n ≤ EN ≤ c (n) |N |4n−1

4n .

In particular, one can find N0 > 0 with

EN0 = inf {EN |N ∈ N}
and EN0 is attainable. Let

S = {N ∈ Z : EN is attainable} .

Then for every N �= 0, there exist nonzero N1, . . . , Nm ∈ S with N =
N1 + · · ·+Nm and

EN = EN1 + · · ·+ ENm.
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It follows from this and the fact EN ≤ c (n) |N |4n−1
4n that S must be infinite

(otherwise EN would grow at least linearly).
The situation for n �= 1, 2, 4 is more subtle. In this case, we do not know

whether XN �= ∅ when N is an odd integer (see Conjecture 1). If Conjecture
1 is verified, then similar conclusions as above are true with all N ’s being
even. On the other hand, if XN �= ∅ for some odd integer N , then it follows
from Lemma 13.2 and the proof of Lemma 11.2 that for all integers N ,
XN �= ∅ and

c (n)−1 |N |4n−1
4n ≤ EN ≤ c (n) |N |4n−1

4n .

Again the set S = {N ∈ Z |EN is attainable} must be infinite.

14. Skyrme model revisited

In this section, we will prove a similar subadditivity property for the
Skyrme energy spectrum (Corollary 14.2). As a consequence, the substan-
tial inequality derived in [E1, E2, LY1] is improved to an equality (Theo-
rem 14.3).

Recall that for a map u ∈ W 1,1
loc

(
R

3, S3
)
, the Skyrme energy is given by

E (u) =

∫
R3

(
|du|2 + |du ∧ du|2

)
dx.

Denote

X =
{

u ∈ W 1,1
loc

(
R

3, S3
) |E (u) < ∞

}
.

The main aim of this section is to prove the following.

Lemma 14.1. For every u ∈ X , there exists a sequence ui ∈ X and a
sequence of positive numbers bi such that

ui → u a.e., dui → du in L2
(
R

3
)
, dui ∧ dui → du ∧ du in L2

(
R

3
)

and

ui (x1, x2, x3) ≡ const for x3 < −bi.

For N ∈ Z, we let

(14.1) XN =

{
u ∈ X

∣∣∣∣ deg(u) = 1

|S3|
∫

R3
u∗ωS3 = N

}
and

(14.2) EN = inf {E (u) | u ∈ XN} .

A simple corollary of the lemma is the following

Corollary 14.2. For N1, N2 ∈ Z,

EN1+N2 ≤ EN1 + EN2.
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Theorem 14.3. Assume N is an nonzero integer and ui ∈ XN such
that E (ui)→ EN . Then there exists an integer m with 1 ≤ m ≤ c · EN , m
nonzero integers N1, . . . , Nm and yi1, . . . , yim ∈ R

3 such that

• N = N1 + · · ·+Nm.
• |yij − yik| → ∞ as i→∞ for 1 ≤ j, k ≤ m, j �= k.
• If we set vij (x) = ui (x− yij) for 1 ≤ j ≤ m, then there exists a

vj ∈ X such that

vij → vj a.e.

dvij ⇀ dvj in L2
(
R

3
)
,

v∗ijωS3 ⇀ v∗j ωS3 in L2
(
R

3
)

as i →∞ and

1

|S3|
∫

R3

v∗j ωS3 = Nj, ENj = E (vj) ≥ c > 0

for all j.
•

EN =
m∑

j=1

ENj .

In particular, if EN < EN ′ + EN ′′ for N = N ′ +N ′′, N ′, N ′′ �= 0, then
EN defined in (14.2) is attainable.

This theorem follows from similar arguments for Theorem 13.1 (see [E1,

E2, LY1]). Unlike the integral formula for the Hopf–Whitehead invariant,
the formula for the topological degree given in (14.1) is purely local and it
makes the discussion relatively simpler.

Now we turn to the proof of Lemma 14.1. First we introduce some coordi-
nates on R

3. Note that we may use the stereographic projection with respect
to (0, 0, 1) on S2 to get

S2\ {(0, 0, 1)} → R
2 : x �→ ξ, ξ =

(
x1

1− x3
,

x2

1− x3

)
.

In this way, we get a coordinate system on S2\ {(0, 0, 1)}. For x ∈ R
3\

{(0, 0, a) : a ≥ 0}, we may use coordinate r = |x| and ξ as the stereographic
projection of x

|x| with respect to (0, 0,−1). In this way, we get a coordinate
(r, ξ1, ξ2). The Euclidean metric is written as

gR3 = dr ⊗ dr +
4r2(

1 + |ξ|2
)2

(dξ1 ⊗ dξ1 + dξ2 ⊗ dξ2) .

We will use freely the coordinates x and (r, ξ). For a > 0, we denote

Va = {(r, ξ) : 0 < r < ∞, |ξ| < a} ⊂ R
3



214 F. HANG, F. LIN, AND Y. YANG

as the corresponding cone with origin as the vertex. Note that V1 ={
x ∈ R

3 : x3 < 0
}
.

To continue, we define a function,

φ (ξ) =

⎧⎪⎪⎨⎪⎪⎩
0, ξ ∈ B1

8
,

2
(|ξ| − 1

8

) ξ
|ξ|

, ξ ∈ B1
4
\B1

8
,

ξ, ξ ∈ B1
2
\B1

4
.

We also write

F (r, ξ, ζ) = Fζ (r, ξ) = (r, φ (ξ) + ζ)

for 0 < r < ∞, ξ ∈ B1
2
and ζ ∈ B 1

16
. It follows from the discussion in [HL,

section 3] that for a.e. ζ ∈ B 1
16
, u ◦ Fζ ∈ W 1,2

loc

(
V 1

2

)
. Moreover∫

V 1
2

(
|d (u ◦ Fζ)|2 + |d (u ◦ Fζ) ∧ d (u ◦ Fζ)|2

)
dx

≤ c

∫
{0<r<∞,ξ∈B 1

2
}

(
|du|2 + |du ∧ du|2

)
(r, φ (ξ) + ζ) · r2dr dξ.

Hence ∫
B 1

16

dζ

∫
V 1

2

(
|d (u ◦ Fζ)|2 + |d (u ◦ Fζ ) ∧ d (u ◦ Fζ)|2

)
dx

≤ c

∫
{0<r<∞,ζ∈B1}

(
|du|2 + |du ∧ du|2

)
(r, ζ) · r2dr dζ

≤ c

∫
V1

(
|du|2 + |du ∧ du|2

)
dx.

It follows that we may find some ζ ∈ B 1
16
such that∫

V 1
2

(
|d (u ◦ Fζ)|2 + |d (u ◦ Fζ) ∧ d (u ◦ Fζ)|2

)
dx

≤ c

∫
V1

(
|du|2 + |du ∧ du|2

)
dx.

Let

v1 (r, ξ) =

{
u (r, φ (ξ − ζ) + ζ) , ξ ∈ B1

2
(ζ) ,

u (r, ξ) , ξ /∈ B1
2
(ζ) .

Then v1 ∈ X ,∫
V1

(
|dv1|2 + |dv1 ∧ dv1|2

)
dx ≤ c

∫
V1

(
|du|2 + |du ∧ du|2

)
dx,
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and

v1 (r, ξ) = u (r, ζ) for ξ ∈ B 1
16

,

v1|R3\V1
= u.

Let

v2 (r, ξ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
v1

(
r, ξ

256

)
, ξ ∈ B16,

v1

(
r,
(

511
256 (|ξ| − 16) + 1

16

)
ξ
|ξ|

)
, ξ ∈ B32\B16,

v1 (r, ξ) , ξ /∈ B32.

We have v2 ∈ X ,∫
V32

(
|dv2|2 + |dv2 ∧ dv2|2

)
dx ≤ c

∫
V32

(
|du|2 + |du ∧ du|2

)
dx,

and

v2 (r, ξ) = u (r, ζ) for ξ ∈ B16,

v2|R3\V32
= u.

Let
f (r) = u (r, ζ) for 0 < r < ∞.

Then ∫ ∞

0

∣∣f ′ (r)∣∣2 r2dr ≤ c

∫
V1

(
|du|2 + |du ∧ du|2

)
dx <∞.

Hence |f ′ (r)| = |f ′ (r)| r · 1r ∈ L1 ([1,∞)). It follows that limr→∞ f (r) exists.
Without loss of generality we may assume

lim
r→∞

f (r) = (0, 0, 0,−1) .
We may find R > 1 large enough such that for r ≥ R, f (r) lies in lower
half sphere. Let n = (0, 0, 0, 1) and πn : S

3\ {n} → R
3 be the stereographic

projection with respect to n, define

g (r) = πn (f (r)) for r ≥ R.

Then g (r)→ 0 as r →∞, |g (r)| ≤ 1 and∫ ∞

R

∣∣g′ (r)∣∣2 r2dr ≤ c

∫
V1

(
|du|2 + |du ∧ du|2

)
dx.

It follows from Hardy’s inequality that∫ ∞

R

|g (r)|2 dr ≤ c

∫ ∞

R

∣∣g′ (r)∣∣2 r2dr ≤ c

∫
V1

(
|du|2 + |du ∧ du|2

)
dx.

Let

η (x) =

⎧⎪⎪⎨⎪⎪⎩
1, if x3 ≥

√
x2

1 + x2
2 − 1,

x3+2√
x2
1+x2

2+1
, if

√
x2

1 + x2
2 − 1 ≥ x3 ≥ −2,

0, if x3 ≤ −2.
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Note that

|dη (x)| ≤ c

|x|+ 1
.

Denote

w (x) = η
( x

2R

)
g (|x|) for |x| > R.

Then∫
R3\BR

(
|dw|2 + |dw ∧ dw|2

)
dx ≤ c

∫ ∞

R

|g (r)|2 dr + c

∫ ∞

R

∣∣g′ (r)∣∣2 r2dr

≤ c

∫
V1

(
|du|2 + |du ∧ du|2

)
dx.

Finally, we let

v (x) =

{
v2 (x) , if x3 ≥

√
x2

1 + x2
2 − 2R,

π−1
n
(w (x)) , if x3 ≤

√
x2

1 + x2
2 − 2R.

Then, it follows from the construction, that v ∈ X ,∫
V32

(
|dv|2 + |dv ∧ dv|2

)
dx ≤ c

∫
V32

(
|du|2 + |du ∧ du|2

)
dx,

and

v|
R3\V32

= u, v (x1, x2, x3) = (0, 0, 0,−1) for x3 ≤ −4R.

For every ε > 0, after a vertical translation, we may assume∫
V32

(
|du|2 + |du ∧ du|2

)
dx < ε.

Then for the above constructed v, we have∫
R3

(
|dv − du|2 + |dv ∧ dv − du ∧ du|2

)
dx

≤ c

∫
V32

(
|du|2 + |du ∧ du|2

)
dx ≤ cε.

Lemma 14.1 follows.

15. Conclusions

In this paper, we have carried out a systematic study of the Faddeev
type knot energies in the most general Hopf dimensions governing maps
from R

4n−1 into S2n. These maps are topologically stratified by the Hopf–
Whitehead invariant,Q, which may be represented by a Chern–Simons type
integral invariant. Two different types of energies are considered. The first
type, referred to as the Nicole–Faddeev–Skyrme (NFS) model, contains a
potential energy term and a conformally invariant kinetic energy term and
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allows a direct resolution in the spirit of the concentration-compactness
principle due to the validity of an energy-cutting lemma. The second type,
referred to as the Faddeev model, does not contain a potential energy term
or a conformally invariant kinetic term and challenges a direct approach
in a similar fashion. Nevertheless, we are able to show that both mod-
els follow the same energetic and topological decomposition relations in
a global minimization process which closely resemble the energy conser-
vation and charge conservation relations observed in a nuclear fission pro-
cess. Furthermore, both types of models obey the same fractionally-powered
universal growth laws relating knot energy to knot topology. These results
lead us to the conclusion that, for either the NFS model or the Faddeev
model, there is an infinite set of integers, S, such that for each N ∈ S,
there exists a global energy minimizer among the maps in the topological
class given by Q = N . Besides, in the compact setting where the domain
space is S4n−1, both models allow the existence of a global energy mini-
mizer among the topological class Q = N at any realizable Hopf–Whitehead
number N .
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Boston, 1988. pp. 77–93.
[EM] M. Esteban and S. Muller, Sobolev maps with integer degree and applications to

Skyrme’s problem. Proc. Royal Soc. A 436 (1992) 197–201.
[F1] L. Faddeev, Einstein and several contemporary tendencies in the theory of elementary

particles, Relativity, Quanta, and Cosmology, vol. 1 (ed. M. Pantaleo and F. de Finis),
1979, pp. 247–266.

[F2] L. Faddeev, Knotted solitons, Proc. ICM2002, vol. 1, Beijing, August 2002, pp. 235–
244.

[FN1] L. Faddeev and A. J. Niemi, Stable knot-like structures in classical field theory,
Nature 387 (1997) 58–61.

[FN2] L. Faddeev and A. J. Niemi, Toroidal configurations as stable solitons, Preprint,
hep-th/9705176.

[F] H. Federer, Geometric Measure Theory, Springer, New York, 1969.
[FHW] M. H. Freedman, Z. X. He, and Z. H. Wang, Möbius energy of knots and unknots,
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