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Einstein metrics, four-manifolds, and conformally
Kähler geometry

Claude LeBrun

The Ricci curvature of a smooth Riemannian n-manifold (M, g) is the
function on the unit tangent bundle UTM = {v ∈ TM | g(v, v) = 1} given by

v �→ r(v, v)

where r is the Ricci tensor of g. This function gives a precise measure of the
volume distortion of the exponential map, since in geodesic normal coordi-
nates the metric volume element becomes

dμg =
[
1 − 1

6rjkx
jxk + O(|x|3)

]
dμEuclidean.

If the metric g has constant Ricci curvature, we call it an Einstein metric,
and (M, g) is then said [4] to be an Einstein manifold. This of course happens
precisely when g satisfies the so-called Einstein equation

(1) r = λg

for some real constant λ. The number λ, which then represents the constant
value of the Ricci curvature, is often called the Einstein constant of (M, g).
It is related to the scalar curvature s = ri

i = Rij
ij by s = nλ, so the Einstein

constant and the scalar curvature in particular have the same sign.
All of this terminology is now completely standard among mathemati-

cians, but Einstein himself would probably have been deeply uncomfortable
with it. After all, mathematicians are primarily interested in equation (1) as
a plausible avenue for geometrizing smooth compact manifolds. The fact that
we are interested in Riemannian rather than Lorentzian solutions of (1) is
simply not an issue for us, but it most certainly would have puzzled Einstein
– especially insofar as we have adopted his notation g for the metric, while
forgetting that he intended this as an abbreviation for gravitational field.
In any case, the supreme historical irony is perhaps that Einstein later [14]
called equation (1) the “greatest mistake of his life,” since the introduction
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of the so-called cosmological constant λ into the gravitational field equations
prevented him [31] from predicting the observed Hubble expansion of the
universe.

Of course, we mathematicians have a long history of latching onto good
ideas, without worrying terribly much about where they came from. This
is nothing new. Indeed, it has been nearly two centuries since Goethe [15]
complained that, “Mathematicians are like Frenchmen; you tell them some-
thing, they translate it into their own language, and, before you know, it’s
something entirely different.”

In any case, one of the central problems of modern differential geometry
is to determine precisely which smooth compact n-manifolds admit Einstein
metrics. When n = 2 or 3, the Einstein metrics are just the metrics of con-
stant sectional curvature, so when such a metric exists, it geometrizes the
manifold in the extremely strong sense of displaying it as a quotient of a
standard, homogeneous model by a discrete group of isometries. In fact, the
existence of such metrics on any 2-manifold is guaranteed by the classical
uniformization theorem. By contrast, not every compact 3-manifold admits
an Einstein metric; but Perelman’s successful attack [20, 34, 35, 36] on the
Thurston geometrization program via the Hamilton Ricci flow [18] has still
taught us that every 3-manifold can at least be broken up into Einstein and
collapsed pieces. Dimension four represents an important transition for equa-
tion (1); when n = 4, Einstein metrics are usually no longer locally homoge-
neous, but special low-dimensional phenomena, discussed below, nonetheless
provide powerful links between their geometry and the differential topology
of the underlying manifold. On the other hand, when n ≥ 5, Einstein metrics
do not seem to offer a plausible geometrization of manifolds, because [5, 6]
even familiar manifolds like high-dimensional spheres typically admit unit-
volume Einstein metrics for many different values of the Einstein constant λ.

The case of n = 4 thus seems particularly interesting and important.
But unfortunately, we are still far from being able to determine precisely
which smooth compact 4-manifolds M4 admit Einstein metrics. Neverthe-
less, Kähler geometry provides a rich source of examples of Einstein metrics
on compact 4-manifolds, and Seiberg-Witten theory allows one to mimic
Kähler geometry when treating even non-Kähler metrics on compact com-
plex surfaces. This article will therefore focus on the following restricted
version of the problem:

Question 1. If M4 is the underlying smooth manifold of a compact
complex surface (M, J), when does M carry an Einstein metric?

It turns out that there is a powerful analogy between complex sur-
faces and 4-manifolds that carry symplectic forms (closed, non-degenerate
2-forms). It is therefore natural to also ask

Question 2. If M4 is a smooth compact 4-manifold that admits a sym-
plectic form ω, when does M carry an Einstein metric?
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Without some restriction on the Einstein metric, a full answer to even
these restricted questions remains tantalizingly out of reach. However, if
we are willing to also make an assumption about the sign of the Einstein
constant λ, definitive answers like the following [9] can now be given.

Theorem 1. Suppose that M is a smooth compact oriented 4-manifold
which admits a complex structure J . Then M also admits a (possibly unre-
lated) Einstein metric g with λ > 0 if and only if M appears on the following
list of diffeotypes:

M≈

⎧⎪⎨
⎪⎩

CP2#kCP2, 0 ≤ k ≤ 8,

or
S2 × S2

Here CP2 denotes the smooth oriented manifold obtained by giving CP2
the non-standard orientation, and

CP2#kCP2 = CP2# CP2# · · ·#CP2︸ ︷︷ ︸
k

,

where # indicates the connected sum operation, which glues two oriented
4-manifolds together by first removing a standard ball from each, and then
identifying the resulting boundary spheres via a reflection. The relevance
of this operation to complex geometry arises from the fact that if N is a
complex surface, we may may replace any point p ∈ N with a CP1 of self-
intersection −1 to obtain a new complex surface N̂ , called the blow-up of N
at p, which is diffeomorphic to N#CP2. Thus the diffeotypes listed above can
be realized by CP1×CP1 and of CP2 blown up at k points in general position,
0 ≤ k ≤ 8. In other words [11, 27], this list describes the diffeotypes of the
Del Pezzo surfaces, which are by definition the compact complex surfaces
which are Fano, in the sense that cR

1 ∈ H2(M, R) is a Kähler class.
If we broaden the question by merely requiring that the Einstein constant

be non-negative, more diffeotypes are allowed, but a complete classification
[24] can still be given.

Theorem 2. Suppose that M is a smooth compact oriented 4-manifold
which admits an integrable complex structure J . Then M also admits an
Einstein metric g with λ ≥ 0 if and only if M appears on the following list
of diffeotypes:

M≈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

CP2#kCP2, 0 ≤ k ≤ 8,

S2 × S2,

K3,

K3/Z2,

T 4,

T 4/Z2, T
4/Z3, T

4/Z4, T
4/Z6,

T 4/(Z2 ⊕ Z2), T 4/(Z3 ⊕ Z3), or T 4/(Z2 ⊕ Z4).
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The diffeotypes we have added in passing from Theorem 1 to Theorem
2 are exactly those represented by the compact complex surfaces of Kähler
type for which c1 ∈ H2(M, Z) is a torsion class. These are traditionally sorted
into four baskets [3, 16]. The first basket holds the K3 surfaces, named
in honor of Kummer, Kähler, and Kodaira, and defined to be the simply
connected compact complex surfaces with c1 = 0; they are all deformation
equivalent [21], and so, for example, are all diffeomorphic to the smooth
quartic t4 + u4 + v4 + w4 = 0 in CP3. Next, there are the Enriques surfaces,
which are Z2-quotients of K3 surfaces; again, there is only one diffeotype.
Then there are the Abelian surfaces, which are diffeomorphic to the 4-torus
T 4. And finally, there are the hyper-elliptic surfaces, which are quotients of
T 4 by one of seven finite groups of affine motions, each of which acts in a
uniquely specified way.

Symplectic analogs of these results are also true:

Theorem 3. Suppose that M is a smooth compact oriented 4-manifold
which admits a symplectic structure ω. Then M also admits an Einstein
metric g with λ > 0 iff it is diffeomorphic to one of the manifolds listed in
Theorem 1. Similarly, it admits an Einstein metric g with λ ≥ 0 iff it is
diffeomorphic to one of the manifolds listed in Theorem 2.

The proofs of these theorems proceed on two distinct fronts: existence
results for Einstein metrics; and obstructions to the existence of Einstein
metrics. We will first discuss the relevant existence results. The main ideas
needed for these arise from Kähler geometry and conformal geometry.

Recall that a Riemannian metric on a connected 2m-manifold M is
Kähler iff its holonomy group is (conjugate to) a subgroup of U(m) ⊂ O(2m).
This is equivalent to saying there exists an almost complex structure
J ∈ Γ(End (TM)), J2 = −1, with ∇J = 0 and g(J ·, J ·) = g. When this hap-
pens, J is integrable, and (M, J) thus becomes a complex manifold. More-
over, the J-invariant 2-form ω defined by ω = g(J ·, ·), called the Kähler form
of (M, g, J), satisfies dω = 0. In particular, ω is a a symplectic form on M ,
meaning that it is a closed 2-form of maximal rank. One of the magical fea-
tures of Kähler geometry is that the 2-form defined by ir(J ·, ·) is exactly the
curvature of the canonical line bundle K = Λm,0, where m is the complex
dimension. Note that m = 2 in the n = 4 case that will concern us here.

We will also need some rudiments of conformal geometry. Recall that two
Riemannian metrics g and h are said to be conformally related if g = fh for
some smooth function f : M → R

+. If h is also a Kähler metric, we will then
say that the metric g is conformally Kähler. When the complex dimension
m is at least two, and if f is non-constant, then g and h can then never
be Kähler metrics adapted to the same complex structure J . However, it is
worth pointing out that there are some rare but interesting examples with
m = 2 where g and h are both Kähler metrics, but are adapted to different
complex structures J and J̃ .
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Many of the existence results needed here are supplied by the theory
of Kähler-Einstein metrics (that is, of Einstein metrics that happen to
be Kähler). The foundations of this theory were laid by Calabi [7], who
translated the problem into a non-linear scalar PDE, called the complex
Monge-Ampère equation, and conjectured that a compact complex mani-
fold of Kähler type with c1

R = 0 would admit a unique Ricci-flat Kähler
metric in each Kähler class. Yau’s proof [42, 43] of this conjecture remains
a major landmark of modern differential geometry. It predicts, in par-
ticular, that both K3 and the Enriques surface K3/Z2 admit Kähler-
Einstein metrics with λ = 0. Of course, T 4 and its relevant quotients also
admit Ricci-flat metrics, but in these cases the metrics are actually flat,
and so can be constructed directly, without the use of any sophisticated
machinery.

The theory of Kähler-Einstein metrics is considerably more subtle when
λ > 0, but case-by-case investigations by Siu [37] and Tian-Yau [40] did
reveal that there exist λ > 0 Kähler-Einstein metrics on CP2#kCP2 for each
k ∈ {3, . . . , 8}. Of course, CP2 and S2 × S2 also admit such metrics, but in
these cases the relevant metrics are just the obvious homogeneous ones.

By contrast, however, CP2#CP2 and CP2#2CP2 cannot admit Kähler-
Einstein metrics. This reflects an important observation due to Matsushima
[29]. Namely, if a compact complex manifold (M, J) admits a Kähler-
Einstein metric g with λ > 0, then its biholomorphism group Aut(M, J)
must be a reductive Lie group, since the identity component Isom0(M, g)
of the isometry group is then a compact real form for Aut0(M, J). Since
CP2#CP2 and CP2#2CP2 have non-reductive automorphism groups, this
therefore implies that they cannot admit Kähler-Einstein metrics.

Nonetheless, in what was long thought to be an entirely unrelated devel-
opment, Page [33] had succeeded in constructing an explicit λ > 0 Einstein
metric on CP2#CP2 by a very different method. The Page metric is of coho-
mogeneity one, meaning that its isometry group has a family of hypersurfaces
as orbits. This feature allowed Page to construct his metric by solving an
appropriate ODE. While none of this seemed to have anything to do with
Kähler geometry, Derdziński [12] later discovered that the Page metric is
actually conformally Kähler, and, in the same paper, then went on to prove
a number of fundamental results concerning conformally Kähler, Einstein
metrics on 4-manifolds.

Recently, in joint work [9] with Xiuxiong Chen and Brian Weber, the
present author managed to prove the existence of a companion of the Page
metric. Namely, there is a conformally Kähler, λ > 0 Einstein metric g on
CP2#2CP2. This metric is toric, and so of cohomogeneity two, but it is
not constructed explicitly. Roughly speaking, the metric is found by first
minimizing the functional

A(h) =
∫

M
s2 dμh
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on the space of all Kähler metrics h compatible with the fixed complex
structure J , where s denotes the scalar curvature of h. Here it is crucial that
the Kähler class [ω] of h is allowed to vary in this problem. If, by contrast,
we fixed [ω], and only considered Kähler metrics with Kähler form in this
fixed de Rham class, we would instead be talking about Calabi’s problem for
extremal Kähler metrics [8]. Thus, the problem under discussion here really
amounts to minimizing A(h) among extremal Kähler metrics h. One thus
proceeds by restricting A to the set of extremal Kähler metrics, and showing
that a critical point h exists for this problem. This preferred extremal Kähler
metric turns out to have scalar curvature s > 0, and one is therefore able
to define a new Riemannian metric by setting g = s−2h. The punch line is
that this conformally Kähler metric g then actually turns out to be Einstein,
with λ > 0.

To explain this seeming miracle, we will need a bit more background
regarding 4-dimensional Riemannian geometry. The special nature of dimen-
sion four basically stems from the fact that the bundle Λ2 of 2-forms over
an oriented Riemannian 4-manifold (M, g) decomposes, in a conformally
invariant manner, into a direct sum

Λ2 = Λ+ ⊕ Λ−

of the self-dual and anti-self-dual 2-forms; here Λ± are by definition the
(±1)-eigenspaces of the Hodge star operator. Since the Riemann curvature
tensor may be thought of as a self-adjoint linear map

R : Λ2 → Λ2

it can therefore be decomposed into irreducible pieces

(2) R =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

W+ + s
12

◦
r

◦
r W− + s

12

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

where s is the scalar curvature,
◦
r= r − s

4g is the trace-free Ricci curvature,
and where W± are the trace-free pieces of the appropriate blocks. The tensors
W± are both conformally invariant, and are respectively called the self-
dual and anti-self-dual Weyl curvature tensors. Their sum W = W+ +W− is
called the Weyl tensor, and is exactly the conformally invariant part of the
curvature tensor R.

We can now consider the conformally invariant functional

W(g) =
∫

M
|W |2dμg =

∫
M

(
|W+|2 + |W−|2

)
dμg
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whose gradient on the space of metrics is represented [4] by the Bach tensor
B, which is the traceless divergence-free tensor field given by

Bab := (∇c∇d +
1
2
r̊cd)Wacbd.

This tensor automatically vanishes for any conformally Einstein metric, since
an Einstein metric is certainly a critical point of both non-Weyl contributions
to the 4-dimensional Gauss-Bonnet formula

χ(M) =
1

8π2

∫
M

(
|W |2 +

s2

24
− |̊r|2

2

)
dμ.

But since the signature

τ(M) =
1

12π2

∫
M

(
|W+|2 − |W−|2

)
dμ

is also a topological invariant, W differs from twice the functional

W+(g) =
∫

M
|W+|2dμg

by only a constant, and the Bach tensor can correspondingly also be
expressed as

Bab := 2(∇c∇d +
1
2
r̊cd)(W+)acbd.

Now, both of these last observations have rather dramatic consequences
in the Kähler context. First, since

|W+|2 =
s2

24
for any Kähler metric on a 4-manifold, the critical points of the functional
A coincide with the critical points of the restriction of W to the space of
Kähler metrics, and are therefore precisely those extremal Kähler metrics h
for which the Bach tensor B is L2-orthogonal to all infinitesimal variations
through Kähler metrics. Second, because W+ of a Kähler metric can be
written in terms of the scalar curvature and Kähler form, the Bach tensor
of an extremal Kähler metric h can explicitly be expressed [9, 12] as

B =
1
12

[
s̊r + 2 Hess0(s)

]
and therefore corresponds to a primitive harmonic (1, 1)-form

ψ = B(J ·, ·) =
1
12

[
sρ + 2i∂∂̄s

]
0
.

This implies that B is actually tangent to a curve of Kähler metrics h + tB.
Hence the critical points of the functional A are exactly the Bach-flat Kähler
metrics, meaning those Kähler metrics for which B = 0. Since multiplying a
4-dimensional metric by u2 alters its traceless Ricci tensor by

r̊ � ˆ̊r = r̊ − 2u Hess0(u−1)
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we also see that, for any extremal Kähler metric h on a complex surface, the
conformally related metric g = s−2h will have traceless Ricci curvature

ˆ̊r = 12s−1B

where B is the Bach tensor of h. Thus, any Bach-flat Kähler metric will be
conformal to an Einstein metric, at least on the open set where s �= 0.

Fortunately, the A-energy of an extremal Kähler metric is a function of
the Kähler class [ω] which can be calculated a priori, without even knowing
whether or not the extremal metric actually exists; namely it is given by

Avirtual = 32π2 (c1 · [ω])2

[ω]2
+ ‖F[ω]‖2

where F is Futaki invariant [13]. This allows one, at the very outset, to
locate the target Kähler class [ω] where the minimizer h ought to live. The
intimate relationship between the Futaki invariant and the scalar curvature
s also allows one to show that, if the target extremal Kähler metric h exists,
then it has s > 0, so our Einstein metric g = s−2h really will then be defined
on all of M = CP2#2CP2.

Now a gluing argument of Arezzo, Pacard, and Singer [1] implies that
CP2#2CP2 does admit some extremal Kähler metrics, albeit near the edge of
the Kähler cone and far from the target class. On the other hand, a quite gen-
eral implicit-function-theorem argument [25] shows that the Kähler classes
of extremal Kähler metrics form an open subset of the Kähler cone. To prove
the existence of the preferred extremal metric h, it therefore suffices to choose
a nice path in the Kähler cone from a class where one has existence to the
target class [ω], and show that the the set of classes along this path with
extremal representatives is closed as well as open. To do this, one appeals
to a weak compactness result for extremal Kähler metrics [10], which allows
one to conclude that sequences of such metrics have subsequences which
Gromov-Hausdorff converge to orbifolds, once uniform Sobolev and energy
bounds have been established. Smooth convergence is then established by
ruling out all possible bubbling modes, using energy bounds and topological
arguments. Finally, toric geometry is used to show that the limit Kähler
metric is compatible with the original complex structure, and belongs to the
expected Kähler class.

These existence results suffice to prove one direction of implication in
Theorems 1, 2, and 3. To prove the converse statements, one instead needs
to consider obstructions to the existence of Einstein metrics.

The first such result that we will need is the Hitchin-Thorpe inequality
[19]. This is obtained by observing that the Gauss-Bonnet and signature
formulas together imply that

(2χ + 3τ)(M) =
1

4π2

∫
M

(
s2

24
+ 2|W+|2 − |̊r|2

2

)
dμg.
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Since Einstein metrics are characterized by r̊ = 0, the existence of such a
metric would make the integrand in the above expression non-negative, so a
smooth compact oriented 4-manifold can only admit an Einstein metric g if
(2χ+3τ)(M) ≥ 0, with equality iff g is Ricci-flat and anti-self-dual (W+ ≡ 0).
The latter happens, however, iff (M, g) has reduced holonomy ⊂ SU(2). If
M admits a complex or symplectic structure, this then implies [24] that
the relevant structure has c2

1 ≥ 0, with equality iff M is diffeomorphic to
a complex surface with c1 torsion and b1 even. For the purpose of proving
Theorems 1, 2, and 3, one may thus assume henceforth that c2

1(M) > 0.
The rest of the proof depends on Seiberg-Witten theory, which allows

one to imitate certain aspects of Kähler geometry when discussing non-
Kähler metrics on appropriate 4-manifolds. One can’t hope to generalize
the ∂̄ operator in this setting, but ∂̄ + ∂̄∗ does have a natural generalization,
namely as a spinc Dirac operator.

Thus, suppose that M is a smooth compact 4-manifold which admits an
almost-complex structure J , which we then use to orient M . Let L = Λ0,2

be the anti-canonical line bundle of J . For any metric g on M , the bundles

V+ = Λ0,0 ⊕ Λ0,2

V− = Λ0,1

can then formally be written as

V± = S± ⊗ L1/2,

where S± are the left- and right-handed spinor bundles of g. Each unitary
connection A on L then induces a spinc Dirac operator

DA : Γ(V+) → Γ(V−)

generalizing ∂̄ + ∂̄∗. The Seiberg-Witten equations [41] are the coupled sys-
tem

DAΦ = 0

F+
A = −1

2
Φ � Φ

for the unknowns A and Φ ∈ Γ(V+), where F+
A denotes the self-dual part of

the curvature of A. These equations are non-linear, but become elliptic once
one imposes the ‘gauge-fixing’ condition

d∗(A − A0) = 0

to eliminate automorphisms of L → M . Because the Seiberg-Witten equa-
tions imply the Weitzenböck formula

0 = 2Δ|Φ|2 + 4|∇AΦ|2 + s|Φ|2 + |Φ|4
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one can show that the moduli space of solutions is compact. In the pres-
ence of the assumption that c2

1(M, J) > 0, one can define the Seiberg-Witten
invariant by counting solutions of the Seiberg-Witten equations, modulo
gauge equivalence and with appropriate multiplicities. This count is then
independent of the metric. However, if there exists a metric g of scalar cur-
vature s ≥ 0, and if c2

1(M, J) > 0, the above Weitzenböck formula forces the
non-existence of solutions for the given metric, so the Seiberg-Witten invari-
ant must then vanish.

By contrast, the Seiberg-Witten invariant would be non-zero for a com-
plex surface of general type [22, 32, 41], so the Kodaira classification [3]
allows us to conclude that a complex surface with c2

1 > 0 can therefore only
admit a Riemannian metric of non-negative scalar curvature if it is deforma-
tion equivalent to a Del Pezzo surface. The converse directions in Theorems
1 and 2 now follow. In the symplectic case, one may reach the analogous
conclusion by appealing to a result of Liu [26]. Liu’s argument rests in
part on a result of McDuff [30], which characterizes rational symplectic
manifolds by the presence of a pseudo-holomorphic 2-sphere of positive self-
intersection. The other crucial ingredient is a theorem of Taubes [38], which
produces pseudo-holomorphic curves from solutions of perturbed versions of
the Seiberg-Witten equations for appropriate spinc structures. The converse
direction in Theorem 3 thus also follows, as advertised.

While we now know that all the manifolds listed in Theorem 2 actually
admit Einstein metrics, there are still open questions regarding the mod-
uli of such metrics. Our understanding is quite complete in the cases of
K3, T 4, and their quotients, as these spaces saturate the Hitchin-Thorpe
inequality; every Einstein metric on any such manifold is therefore locally
hyper-Kähler, and one can therefore [3] in particular show that the mod-
uli space of Einstein metrics on any of these manifolds is connected. But
the Del Pezzo cases are quite a different story. For example, while we do
have a reasonable understanding of the moduli of Kähler-Einstein metrics
on Del Pezzo surfaces [39], nothing we know precludes the existence of other
components of the moduli space; however, when a Kähler-Einstein metric
exists, it is at least known [17] that any non-Kähler Einstein metric would
necessarily have strictly smaller Einstein-Hilbert action. By contrast, the
Page and Chen-LeBrun-Weber metrics are not even currently known to have
such a maximizing property. Indeed, the uniqueness of the latter metric has
not really been conclusively demonstrated even among conformally Kähler
metrics, although computer-based calculations [28] lend enormous credibil-
ity to such an assertion.

What about the λ < 0 case? The Aubin/Yau existence theorem [2, 42]
constructs Kähler-Einstein metrics with λ < 0 on a profusion of minimal
complex surfaces of general type. But in the converse direction, we only
have some partial results. If (M, J) is a compact complex surface, and if the
underlying smooth 4-manifold M admits an Einstein metric g, then it is easy
to show, using the Hitchin-Thorpe inequality and the Kodaira classification,
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that either M appears on the list in Theorem 2, or else that (M, J) is of
general type. What remains unknown is whether the underlying 4-manifold
of a non-minimal complex surface of general type can ever admit an Einstein
metric. The best we can currently say is that a surface of general type which
admits an Einstein metric cannot be ‘too’ non-minimal, in the following
numerical sense [23]: if X is a minimal complex surface of general type,
then its k-point blow-up X#kCP2 cannot admit Riemannian Einstein met-
rics if k ≥ c2

1(X)/3. Analogous results can also be proved in the symplectic
setting. But, basically, our knowledge of the λ < 0 realm remains frustrat-
ingly incomplete, even though it is precisely here that most of the known
examples reside. Perhaps what we really need now is some major progress
in constructing Einstein metrics that have nothing to do with Kähler
geometry!
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