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1. Introduction

The purpose of this survey is to explain some aspects of the geometric
Langlands Conjecture and the main ideas relating it to non abelian Hodge
theory. These developments are due to many mathematicians and physicists,
but we emphasize a series of works by the authors, starting from the out-
line in [Don89], through the recent proof of the classical limit conjecture
in [DP06], and leading to the works in progress [DP09], [DPS09b], and
[DPS09a].

The Langlands program is the non-abelian extension of class field the-
ory. The abelian case is well understood. Its geometric version, or geometric
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class field theory, is essentially the theory of a curve C and its Jacobian J =
J(C). This abelian case of the Geometric Langlands Conjecture amounts
to the well known result that any rank one local system (or: line bun-
dle with flat connection) on the curve C extends uniquely to J , and this
extension is natural with respect to the Abel-Jacobi map. The structure
group of a rank one local system is of course just the abelian group C× =
GL1(C). The geometric Langlands conjecture is the attempt to extend this
classical result from C× to all complex reductive groups G. This goes as
follows.

The Jacobian is replaced by the moduli Bun of principal bundles V on C
whose structure group is the Langlands dual group LG of the original G. The
analogues of the Abel-Jacobi maps are the Hecke correspondences Hecke ⊂
Bun ×Bun ×C. These parametrize quadruples (V, V ′, x, β) where x is a
point of C, while V, V ′ are bundles on C, with an isomorphism β : V|C−x →
V ′

|C−x away from the point x having prescribed order of blowing up at x.
(In case G = C× these become triples (L, L′, x) where the line bundle L′

is obtained from L by tensoring with some fixed power of the line bundle
OC(x). By fixing L and varying x we see that this is indeed essentially
the Abel-Jacobi map.) For GL(n) and more complicated groups, there are
many ways to specify the allowed order of growth of β, so there is a collec-
tion of Hecke correspondences, each inducing a Hecke operator on various
categories of objects on Bun. The resulting Hecke operators form a com-
mutative algebra. The Geometric Langlands Conjecture says that an irre-
ducible G-local system on C determines a D-module (or a perverse sheaf)
on Bun which is a simultaneous eigensheaf for the action of the Hecke
operators - this turns out to be the right generalization of naturality with
respect to the Abel-Jacobi map. Fancier versions of the conjecture recast
this as an equivalence of derived categories: of D-modules on Bun versus
coherent sheaves on the moduli Loc of local systems. Our discussion of the
geometric Langlands conjecture occupies section 2 of this survey. There are
many related conjectures and extensions, notably to punctured curves via
parabolic bundles and local systems. Some of these make an appearance
in section 6.

Great progress has been made towards understanding these conjectures
[Dri80, Dri83, Dri87], [Lau87], [BD03], [Laf02], [FGKV98], [FGV01],
[Gai01], [Lau03], including proofs of some versions of the conjecture for
GL2 [Dri83] and later, using Lafforgue’s spectacular work [Laf02], also for
GLn [FGV01, Gai01]. The conjecture is unknown for other groups, nor in
the parabolic case. Even for GL(n) the non-abelian Hodge theory machinery
promises a new concrete construction of the non-abelian Hecke eigensheaves.
This construction is quite different from most of the previously known con-
structions except perhaps for the work of Bezrukavnikov-Braverman [BB07]
over finite fields, which is very much in the spirit of the approach discussed
in this survey.
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The work surveyed here is based on an abelianization of the geometric
Langlands conjecture in terms of Higgs bundles. A Higgs bundle is a pair
(E, θ) consisting of a vector bundle E on C with a ωC-valued endomorphism
θ : E → E ⊗ ωC , where ωC is the canonical bundle of C. More generally, a
G-Higgs bundle is a pair (E, θ) consisting of a principal G-bundle E with
a section θ of ad(E) ⊗ ωC , where ad(E) is the adjoint vector bundle of E.
Hitchin [Hit87b] studied the moduli Higgs of such Higgs bundles (subject
to an appropriate stability condition) and showed that it is an algebraically
integrable system: it is algebraically symplectic, and it admits a natural map
h : Higgs → B to a vector space B such that the fibers are Lagrangian
subvarieties. In fact the fiber over a general point b ∈ B (in the complement
of the discriminant hypersurface) is an abelian variety, obtained as Jacobian
or Prym of an appropriate spectral cover Cb. The description in terms of
spectral covers is somewhat ad hoc, in that it depends on the choice of a
representation of the group G. A uniform description is given in terms of gen-
eralized Pryms of cameral covers, cf. [Don93, Fal93, Don95, DG02]. The
results we need about Higgs bundles and the Hitchin system are reviewed
in section 3.1.

In old work [Don89], we defined abelianized Hecke correspondences on
Higgs and used the Hitchin system to construct eigensheaves for them.
That construction is described in section 3.2. After some encouragement
from Witten and concurrent with the appearance of [KW06], complete
statements and proofs of these results finally appeared in [DP06]. This
paper also built on results obtained previously, in the somewhat different
context of large N duality, geometric transitions and integrable systems, in
[DDP07a, DDP07b, DDD+06]. The case of the groups GLn, SLn and
PGLn had appeared earlier in [HT03], in the context of hyperkahler mirror
symmetry. The main result of [DP06] is formulated as a duality of the
Hitchin system: There is a canonical isomorphism between the bases B, LB
of the Hitchin system for the group G and its Langlands dual LG, taking
the discriminant in one to the discriminant in the other. Away from the
discriminants, the corresponding fibers are abelian varieties, and we exhibit
a canonical duality between them. The old results about abelianized Hecke
correspondences and their eigenseaves then follow immediately. These results
are explained in section 4 of the present survey.

It is very tempting to try to understand the relationship of this abelian-
ized result to the full geometric Langlands conjecture. The view of the geo-
metric Langlands correspondece pursued in [BD03] is that it is a “quan-
tum” theory. The emphasis in [BD03] is therefore on quantizing Hitchin’s
system, which leads to the investigation of opers. One possibility, discussed
in [DP06] and [Ari02, Ari08], is to view the full geometric Langlands
conjecture as a quantum statement whose “classical limit” is the result in
[DP06]. The idea then would be to try to prove the geometric Langlands
conjecture by deforming both sides of the result of [DP06] to higher and
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higher orders. Arinkin has carried out some deep work in this direction
[Ari02, Ari05, Ari08].

But there is another path. In this survey we explore the tantalizing pos-
sibility that the abelianized version of the geometric Langlands conjecture is
in fact equivalent, via recent breakthroughs in non-abelian Hodge theory, to
the full original (non-abelian) geometric Langlands conjecture, not only to
its 0-th order or “classical” approximation. Instead of viewing the solution
constructed in [DP06] as a classical limit of the full solution, it is inter-
preted as the z = 0 incarnation of a twistor-type object that also has a
z = 1 interpretation which is identified with the full solution.

Non abelian Hodge theory, as developed by Donaldson, Hitchin, Corlette,
Simpson [Don87, Hit87a, Cor88, Sim92, Cor93, Sim97], and many
others, establishes under appropriate assumptions the equivalence of local
systems and Higgs bundles. A richer object (harmonic bundle or twistor
structure) is introduced, which specializes to both local systems and Higgs
bundles. This is closely related to Deligne’s notion of a z-connection: at
z = 1 we have ordinary connections (or local systems), while at z = 0
we have Higgs bundles. Depending on the exact context, these specializa-
tion maps are shown to be diffeomorphisms or categorical equivalences.
The projective (or compact Kähler) case and the one dimensional open
case were settled by Simpson twenty years ago - but the open case in
higher dimension had to await the breakthroughs by Biquard [Biq97], Jost-
Yang-Zuo [JYZ07], Sabbah [Sab05], and especially Mochizuki [Moc06,
Moc09, Moc07a, Moc07b]. This higher dimensional theory produces an
equivalence of parabolic local systems and parabolic Higgs bundles. This
is quite analogous to what is obtained in the compact case, except that
the objects involved are required to satisfy three key conditions discov-
ered by Mochizuki. In section 5.1 we review these exciting developments,
and outline our proposal for using non-abelian Hodge theory to construct
the automorphic sheaves required by the geometric Langlands conjecture.
This approach is purely mathematical of course, but it is parallel to physi-
cal ideas that have emerged from the recent collaborations of Witten with
Kapustin, Gukov and Frenkel [KW06, GW06, FW08], where the geomet-
ric Langlands conjecture was placed firmly in the context of quantum field
theory.

Completion of these ideas depends on verification that Mochizuki’s con-
ditions are satisfied in situations arising from the geometric Langlands con-
jecture. This requires a detailed analysis of instability loci in moduli spaces.
Particularly important are the wobbly locus of non-very-stable bundles, and
the shaky locus, roughly the Hitchin image of stable Higgs bundles with
an unstable underlying bundle. In section 6.1 we announce some results
about these loci for rank 2 bundles. These lead in some cases to an explicit
construction (modulo solving the differential equations inherent in the non-
abelian Hodge theory) of the Hecke eigensheaf demanded by the geometric
Langlands correspondence.
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2. A brief review of the geometric Langlands conjecture

In a nutshell the Geometric Langlands Conjecture predicts the existence
of a canonical equivalence of categories

(GLC) c : Dcoh(Loc,O)
∼=−→ Dcoh(LBun,D),

which is uniquely characterized by the property that c sends the structure
sheaves of points V in Loc to Hecke eigen D-modules on LBun:

LHμ (c(OV)) = c(OV) � ρμ(V).

The characters appearing in the geometric Langlands correspondence depend
on certain background geometric data:

• a smooth compact Riemann surface C;
• a pair of Langlands dual complex reductive groups G, LG.

If we write g and Lg for the Lie algebras of G and LG and we fix maximal
tori T ⊂ G and LT ⊂ LG with Cartan subalgebras by t ⊂ g and Lt ⊂ Lg,
then group theoretic Langlands duality can be summarized in the relation
between character lattices

rootg ⊂ charG ⊂ weightg ⊂ t∨

corootg ⊂ cocharG ⊂ coweightg ⊂ t

root[Lg] ⊂ char[LG] ⊂ weight[Lg] ⊂ Lt∨

Here rootg ⊂ weightg ⊂ t∨ are the root and weight lattice corresponding to
the root system on g and charG = Hom(T, C×) denotes the character lattice
of G. Similarly

corootg = {x ∈ t | (weightg, x) ⊂ Z} ∼= weight∨g
coweightg = {x ∈ t | (rootg, x) ⊂ Z} ∼= root∨g
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are the coroot and coweight lattices of g, and

cocharG = Hom(C×, T ) = Hom(S1, TR) = {x ∈ t | (charG, x) ⊂ Z} ∼= char∨G

is the cocharacter lattice of G.
With this data we can associate various moduli stacks:

Bun, LBun: the moduli stacks of principal G, LG bundles V on C,
Loc, LLoc: the moduli stacks of G, LG local systems V = (V, ∇)

on C.

The more familiar moduli spaces of stable objects in these stacks are not
quite right for (GLC): unstable bundles and local systems must be consid-
ered along with the stable ones. For semisimple groups, these stacks are the
correct objects. In order to obtain the correct statement also for reductive
groups, we need the rigidified versions Bun, LBun, Loc, LLoc, in which the
connected component of the generic stabilizer is “removed”. In the notation
of [AOV08, Appendix A] we have

Bun = Bun /Z0(G), Loc = Loc /Z0(G),

LBun = LBun/Z0(G), LLoc = LLoc/Z0(LG),

where Z0(G), Z0(LG) denote the connected components of Z(G), Z(LG).
A subgroup of Z(G) and Z(LG) will give a normal flat subgroup in the
inertia of the moduli stacks and as explained in [AOV08, Appendix A]
we can pass to a quotient by such subgroups to obtain rigidified stacks. The
rigidified stacks are thus intermediate between the full stacks and the moduli
spaces of their stable objects. The appearance of the rigidfied moduli in the
Geometric Langlands Conjecture is necessary (see Remark 2.4) to ensure
the matching of components of the two categories involved in (GLC). For
semi-simple groups this step is unnecessary (see Remark 2.1).

Remark 2.1. To clarify the rigidification process it is useful to introduce
the notions of a regularly stable bundle and a regularly simple local system.
By definition these are objects whose automorphism group coincides with
the generic group of automorphisms, namely the center Z(G), Z(LG) of the
structure group G, LG.

It is instructive to note that the rigidified stacks often specialize to famil-
iar geometric objects. For instance if G, LG are semi-simple groups, then
we are rigidifying by the trivial subgroup and so Bun = Bun, Loc = Loc,
etc. Note also that if the center of G is connected, then both Bun and Loc
are generically varieties: in this case the open substacks Bunrs ⊂ Bun,
Locrs ⊂ Loc parameterizing regularly stable bundles or regularly simple
local systems coincide with the GIT-moduli spaces of regularly stable bun-
dles and regularly simple local systems respectively.
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To formulate the characteristic property of c we also need the Hecke
correspondences LHeckeμ ⊂ LHecke defined for all dominant cocharacter
μ ∈ cochar+[LG] as follows:

LHecke: the moduli stack of quadruples (V, V ′, x, β), where
• V , V ′ are principal LG-bundles on C,
• x ∈ C,
• β : V|C−{x} →̃ V ′

|C−{x}.
LHeckeμ: the closed substack of LHecke of quadruples (V, V ′, x, β)

such that if λ ∈ char+[LG] is a dominant cocharacter and if ρλ is

the irreducible representation of LG with highest weight λ, then β
induces an inclusion of locally free sheaves

ρλ(β) : ρλ(V ) ↪→ ρλ(V ′) ⊗ OC(〈μ, λ〉x).

These stacks are equipped with natural projections

LHecke
p

�����
��� q

��������

LBun LBun × C

LHeckeμ
pμ

�������� qμ

���������

LBun LBun × C

where p(V, V ′, x, β) := V , q(V, V ′, x, β) := V ′, and pμ and qμ are the restric-
tions of p and q to LHeckeμ. Moreover

• pμ, qμ are proper representable morphisms which are locally trivial
fibrations in the etale topology;

• LHeckeμ is smooth if and only if μ is a minuscule weight of G;
• LHecke is an ind-stack and is the inductive limit of all LHeckeμ’s;
• p and q are formally smooth morphisms whose fibers are ind-

schemes, the fibers of q are all isomorphic to the affine Grassmanian
for LG.

The Hecke functor LHμ is defined as the integral transform

LHμ : Dcoh(LBun,D) �� Dcoh(LBun,D)

M
� �� qμ

!

(
(pμ)∗M ⊗ LIμ

)
where LIμ is the Goresky-MacPherson middle perversity extension
j!∗ (C

[
dim LHeckeμ

])
of the trivial rank one local system on the smooth

part j :
(
LHeckeμ

)smooth
↪→ LHeckeμ of the Hecke stack.

Remark 2.2. Similarly we can define Hecke operators LHμ,x labeled
by a cocharacter μ ∈ cochar+(LG) and a point x ∈ C. To construct these
operators we can repeat the definition of the LHμ’s but instead of LIμ

we need to use the intersection cohomology sheaf on the restricted Hecke
correspondence

LHeckeμ,x := LHeckeμ ×
LBun×LBun×C

(
LBun × LBun × {x}

)
.
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The operators LHμ,x are known to generate a commutative algebra of endo-
fucntors of Dcoh(LBun,D) [BD03], [Gai01]. In particular it is natural to
look for D-modules on LBun that are common eigen-modules of all the
LHμ,x.

A D-module M on LBun is a Hecke eigen module with eigenvalue V ∈
Loc if for every μ ∈ char+(G) we have

LHμ(M ) = M � ρμ(V).

This setup explains all the ingredients in (GLC). According to the conjecture
(GLC) the derived category of coherent O-modules on Loc is equaivalent
to the derived category of coherent D-modules on LBun. Moreover this
equivalence transforms the skyscraper sheaves of points on Loc into Hecke
eigen D-modules on LBun.

Example 2.3. Suppose G = GLn(C). Then LG = GLn(C) and Loc can
be identified with the stack of rank n vector bundles C equipped with an
integrable connection. In this case the algebra of Hecke operators is gener-
ated by the operators H i given by the special Hecke correspondences

Heckei :=

⎧⎨⎩(V, V ′, x)

∣∣∣∣∣∣
V and V ′ are locally free sheaves of rank
n such that V ⊂ V ′ ⊂ V (x) and
length(V ′/V ) = i.

⎫⎬⎭
The operators H i correspond to the fundamental weights of GLn(C) which
are all minuscule. In particular all Heckei’s are smooth. The fibers of the
projection qi : Heckei → Bun×C are all isomorphic to the Grassmanian
Gr(i, n) of i-dimensional subspaces in an n-dimensional space.

Remark 2.4. The categories related by the conjectural geometric
Langlands correspondence admit natural orthogonal decompositions. For
instance note that the center of G is contained in the stabilizer of any
point V of Loc and so Loc is a Z(G)-gerbe over the full rigidification
Loc := Loc /Z(G) = Loc /π0(Z(G)) of Loc. (In fact by the same token
as in Remark 2.1, the stack Loc is generically a variety.) Furthermore the
stack Loc is in general disconnected and

π0(Loc) = π0(Loc) = H2(C, π1(G)tor) = π1(G)tor

where π1(G)tor ⊂ π1(G) is the torsion part of the finitely generated abelian
group π1(G). Thus we get an orthogonal decomposition

(1) Dcoh(Loc,O) =
∐

(γ,α)∈π1(G)tor×Z(G)∧

Dcoh(Locγ ,O; α),

where Z(G)∧ = Hom(Z(G), C×) is the character group of the center and
Dcoh(Locγ ,O; α) is the derived category of α-twisted coherent O-modules
on the connected component Locγ .
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Similarly the group of connected components π0(Z(LG)) is contained
in the stabilizer of any point of LBun and so is a π0(Z(LG))-gerbe over
LBun := LBun/π0(Z(LG)). Also the stack LBun can be disconnected and

π0(LBun) = π0(LBun) = H2(C, π1(LG)) = π1(LG).

Hence we have an orthogonal decomposition

(2) Dcoh(LBun,D) =
∐

(α,γ)∈π1(LG)×π0(Z(LG))∧

Dcoh(LBunα,D; γ),

where Dcoh(LBunα,D; γ) is the derived category of γ-twisted coherent
D-modules on the connected component LBunα.

Finally, observe that the group theoretic Langlands duality gives natural
identifications

π1(LG) = Z(G)∧

Z0(LG) = (π1(G)free)
∧

π0(Z(LG)) = (π1(G)tor)
∧ ,

where again π1(G)tor ⊂ π1(G) is the torsion subgroup, π1(G)free = π1(G)/
π1(G)tor is the maximal free quotient, and Z(LG) is the center of LG, and
Z0(LG) is its connected component.

In particular the two orthogonal decompositions (1) and (2) are labeled
by the same set and one expects that the conjectural equivalence c from
(GLC) idenitifies Dcoh(Locγ ,O; −α) with Dcoh(LBunα,D; γ). The minus
sign on α here is essential and necessary in order to get a duality trans-
formation that belongs to SL2(Z). This behavior of twistings was analyzed
and discussed in detail in [DP08].

Example 2.5. Suppose G ∼= GL1(C) ∼= LG. Then Bun = Pic(C) is the
Picard variety of C. Here there is only one interesting Hecke operator

H1 : Dcoh(Pic(C),D) → Dcoh(C × Pic(C),D)

which is simply the pull-back H1 := aj∗ via the classical Abel-Jacobi map

aj : C × Picd(C) �� Picd+1(C)

(x, L) � �� L(x).

In this case the geometric Langlands correspondence c can be described
explicitly. Let L = (L,∇) be a rank one local system on C. Since π1(Picd(C))
is the abelianization of π1(C) and the monodromy representation of L is
abelian, it follows that we can view L as a local system on each component
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Picd(C) of Pic(C). With this setup we have

c(L) :=

⎛⎜⎜⎜⎝
the unique translation invariant
rank one local system on Pic(C)
whose restriction on each component
Picd(C) has the same monodromy
as L

⎞⎟⎟⎟⎠ .

The local system c(L) can be constructed effectively from L (see e.g.
[Lau90]):

• Pullback the local system L to the various factors of the d-th Carte-
sian power C×d of C and tensor these pullbacks to get rank one
local system L�d on C×d;

• By construction L�d is equipped with a canonical Sd-equivariant
structure compatible with the standard action of the symmetric
group Sd on C×d. Pushing forward L�d via gd : C×d → C(d) =
C×d/Sd and passing to Sd invariants we get a rank one local system(
gd∗L

�d
)Sd on C(d);

• For d > 2g−2 the Abel-Jacobi map ajd : C(d) Picd(C) is a projective
bundle over Picd(C) and so by pushing forward by ajd we get a rank
one local system which we denote by c(L)|Picd(C). In other words

c(L)|Picd(C) := ajd∗

[(
gd∗L

�d
)Sd

]
.

• Translation (•) ⊗ ωC by the canonical line bundle transports the
local systems c(L)|Picd(C) to components Picd(C) of Pic(C) with
d ≤ 2g − 2.

The rough idea of the project we pursue in [DP06, DP09, DPS09a,
DPS09b] is that one should be able to reduce the case of a general group
to the previous example by using Hitchin’s abelianization. We will try to
make this idea more precise in the remainder of the paper. First we need
to introduce the Hitchin integrable system which allows us to abelianize the
moduli stack of Higgs bundles.

3. Higgs bundles, the Hitchin system, and abelianization

3.1. Higgs bundles and the Hitchin map. As in the previous sec-
tion fixing the curve C and the groups G, LG allows us to define moduli
stacks of Higgs bundles:

Higgs, LHiggs: the moduli stacks of ωC-valued G, LG Higgs bun-
dles (E, ϕ) on C. Here E is a principal G, or LG bundle on C and
ϕ ∈ H0(C, ad(E) ⊗ ωC),

and their rigidified versions Higgs, LHiggs in which the connected compo-
nent of the center of the generic stabilizer (= Z0(G), Z0(LG)) is “removed”.
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Hitchin discovered [Hit87b] that the moduli stack Higgs has a natural
symplectic structure and comes equipped with a complete system of com-
muting Hamiltonians. These are most conveniently organized in a remark-
able map h : Higgs → B to a vector space B, known as the Hichin
map.

The target of this map, also known as the Hitchin base, is the cone

B := H0(C, (t ⊗ ωC)/W ),

where as before t is our fixed Cartan algebra in g = Lie(G), and W is the
Weyl group of G. We will see momentarily that the cone B is actually a
vector space.

To construct the Hitchin map h one considers the adjoint action of G
on g. For every principal G-bundle E the quotient map g → g//G induces
a map between the total spaces of the associated fiber bundles

E ×Ad g �� �� E ×Ad (g//G)

ad(E) C × (g//G)

which induces a (polynomial) map between the fiber bundles

(3) ad(E) ⊗ ωC → (g ⊗ ωC)//G.

The map (3) combines with the canonical identification g//G = t/W given
by Chevalley’s restriction theorem [Hum72, Section 23.1] to yield a natural
map of fiber bundles

νE : ad(E) ⊗ ωC → (t ⊗ ωC)/W.

This construction gives rise to the Hitchin map:

h : Higgs �� B := H0(C, (t ⊗ ωC/W )

(E, ϕ) �� “ϕ mod W” := νE(θ).

Slightly less canonically if r = dim t = rank g we can choose homogeneous
G-invariant polynomials I1, I2, . . . , Ir ∈ C[g] such that C[g]G = C[t]W =
C[I1, . . . , Ir]. With this choice we get an identification

B = H0(C, (t ⊗ ωC)/W ) ∼= ⊕r
s=1H

0(C, ω⊗ds
C ),

with ds = deg Is, and we can rewrite the Hitchin map as

h : Higgs �� B = ⊕r
s=1H

0(C, ω⊗ds
C )

(E, ϕ) �� (I1(ϕ), . . . , Ir(ϕ)).
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The points of the Hitchin base admit a natural geometric interpretation
as certain Galois covers of C with Galois group W called cameral covers.
By definition the cameral cover associated with a point b ∈ B is the cover
pb : C̃b → C obtained as the fiber product

C̃b
��

pb ��

tot(t ⊗ ωC)

��
C

b
�� tot(t ⊗ ωC)/W

Repeating the same construction for the tautological section C × B →
tot(t ⊗ ωC)/W we also get the universal cameral cover

C̃ ��

��

tot(t ⊗ ωC)

��
C × B �� tot(t ⊗ ωC)/W

which by construction restricts to C̃b on the slice C × {b} ⊂ C × B.
Deformation theory for principal bundles on C together with Serre dual-

ity gives a natural identification

Higgs ∼= T∨ Bun

of the stack of Higgs bundles with the cotangent stack T∨ Bun to the stack of
bundles. This gives rise to the symplectic structure on Higgs. The Hitchin
map h : Higgs → B is a completely integrable system structure on Higgs.
Its generic fibers are abelian group stacks which are also Lagrangian for the
natural symplectic structure. Concretely the fiber h−1(b) is identified with
an appropriately defined Prym stack for the cameral cover pb : C̃b → C,
i.e. h−1(b) is a special W -isotypic piece for the W -action on the stack of
(decorated) line bundles on C̃b. The details of this picture were worked out
in various situations in [Hit87b, Fal93, Don93, Don95, Sco98, DG02].
The most general result in this direction is [DG02, Theorem 4.4] according
to which:

• the covering map p̃ : C̃ → C × B determines an abelian group
scheme T over C × B;

• if Δ ⊂ B is the discriminant divisor parametrizing b ∈ B for which
p̃b : C̃b → C does not have simple Galois ramification, then the
restriction

h : Higgs|B−Δ → B − Δ

is a principal homogeneous stack over the commutative group stack
TorsT on B − Δ parametrizing T -torsors along C.

Remark 3.1. For every μ ∈ char(G) we can also consider the associated
spectral cover C

μ → C × B. It is the quotient of C̃ by the stabilizer of
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μ in W . Very often, e.g. for classical groups and the fundamental weight
[Hit87b, Don93] the fiber of the Hitchin map can also be described as
a stack of (decorated) line bundles on the spectral cover. For instance if
G = GLn(C) and we use the highest weight of the n-dimensional funda-
mental representation of G, then the associated spectral cover Cb → C is of
degree n, and the fiber of the Hitchin map h−1(b) can be identified with the
stack Pic(Cb) of all line bundles on Cb.

3.2. Using abelianization. From the point of view of the Geometric
Langlands Conjecture the main utility of the Hitchin map is that it allows us
to relate the highly non-linear moduli Bun to an object that is essentially
“abelian”.

The basic idea is to combine the Hitchin map with the projection
LHiggs → LBun, (E, ϕ) → E. More precisely we have a diagram

LHiggs|LB−LΔ

��������� h
���������

LBun LB − LΔ

in which the fibers of h : Higgs|B−Δ → B − Δ are commutative group
stacks and each fiber of h dominates Bun.

We can use this diagram to reformulate questions about O-modules or
D-modules on LBun to questions about O-modules or D-modules on fibers
of h. This process is known as abelianization and has been applied suc-
cessfully to answer many geometric questions about the moduli of bundles.
The fact that each fiber of h : Higgs|B−Δ → B − Δ is an isotypic com-
ponent of the moduli of line bundles on the corresponding cameral cover,
and the fact (see Example 2.5) that the Geometric Langlands Correspon-
dence can be constructed explicitly for rank one local systems, suggests that
abelianization can be used to give a construction of the functor c (GLC) in
general.

A first attempt to reduce the GLC to its abelian case was in the unpub-
lished [Don89]. The Hitchin system was used there to construct abelianized
Hecke eigensheaves (M, δ) on the moduli of Higgs bundles. We describe this
below, along with one way to push these eigensheaves down to the moduli of
bundles. A modern version of the abelianized Hecke eigensheaf construction
appeared in [DP06]. Our current approach [DP09, DPS09b] essentially
replaces the explicit pushforward (from Higgs to Bun) with recent results
from non abelian Hodge theory. We will outline this approach in the remain-
der of this survey.

There are various other ways in which one can employ abelianization to
produce a candidate for the functor c. One possibility is to apply a version
of the generalizations of the Fourier transform due to Laumon, Rothstein,
and Polishchuk [Lau96, Rot96, PR01, Pol08] along the fibers of h. The
most successful implementation of this approach to date is the recent work of
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Frenkel-Teleman [FT09] who used the generalized Fourier transform to give
a construction of the correspondence (GLC) for coherent sheaves on a for-
mal neighborhood of the substack of opers (see [BD05, BD03]) inside Loc.
Another idea is to study the deformation quantization of a Fourier-Mukai
transform along the fibers of h. This is the main component of Arinkin’s
approach [Ari02, Ari08] to the quasi-classical geometric Langlands cor-
respondence. This approach was recently utilized by Bezrukavnikov and
Braverman [BB07] who proved the geometric Langlands correspondence
for curves over finite fields for G = LG = GLn. Last but not least, in the
recent work of Kapustin-Witten [KW06] the geometric Langlands corre-
spondence c is interpreted physically in two different ways. On one hand
it is argued that the existence of the conjectural map (GLC) is a mirror
symmetry statement relating the A and B-type branes on the hyper-Kähler
moduli spaces of Higgs bundles. On the other hand Kapustin and Witten
use a gauge theory/string duality to show that the functor c can be thought
of as an electric-magnetic duality between supersymmetric four-dimensional
Gauge theories with structure groups G and LG respectively. This suggests
that c can be understood as a conjugation of the Fourier-Mukai transform
along the Hitchin fibers with two non-abelian Hodge correspondences. Some
non-trivial tests of this proposal were performed in [KW06] and in the
work of Frenkel-Witten [FW08] who elaborated further on this conjectural
construction.

In the rest of the section we construct the construction of [Don89].
This proposal shares many of the same ingredients as the other approaches
and highlights the important issues that one has to overcome. It also
has the advantage of being manifestly algebraic. In this approach one starts
with a local system V on C (taken to be GLn valued for simplicity) and uses
it together with some geometry to construct a pair (M, δ) where
M is a bundle on Higgs, and δ : M → M ⊗ Ω1

Higgs /B is a meromorphic
relative flat connection acting along the fibers of the Hitchin map
h : Higgs → B. Furthermore by construction the bundle (M, δ) is a Hecke
eigen D-module with eigenvalue (V, ∇) with respect to an abelianized
version

abH
i : Dcoh(Higgs,O) → Dcoh(Higgs×C,O)

of the Hecke functors. These are defined again for i = 1, . . . , n−1 as integral
transforms with respect to the trivial local system on the abelianized Hecke
correspondences

ab Heckei

abpi

�������� abqi

���������

Higgs Higgs×C
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The correspondences ab Heckei are the “Higgs lifts” of the correspondences
Heckei from Example 2.3, that is

ab Heckei

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
((V, ϕ), (V ′, ϕ′), β, x)

∣∣∣∣∣∣∣∣∣∣∣

(V, V ′, β, x) ∈ Heckei and β fits in a com-

mutative diagram V
β ��

ϕ
��

V ′

ϕ′
��

V ⊗ ωC
β⊗id

�� V ′ ⊗ ωC

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
Here the maps abp

i, abq
i are induced from the maps pi, qi and so the fiber of

abq
i over ((V ′, ϕ′), x) is contained in the fiber of qi over (V ′, x), which as we

saw before is isomorphic to Gr(i, n). In fact from the definition we see that
the fiber of abq

i over ((V ′, ϕ′), x) consists of the i-dimensionals subspaces in
V ′

x which are ϕ′-invariant. Thus if the point x is not a ramification point
of the spectral cover of (V ′, ϕ′) it follows that the fiber of abq

i consists of
finitely many points in Gr(i, n).

The construction of (M, δ) occupies the remainder of this section. The
approach depends on one global choice: we will fix a theta characteristic
ζ ∈ Picg−1(C), ζ⊗2 = ωC . To simplify the discussion we will assume that
G = LG = GLn(C). As we saw in the previous section the choice of the fun-
damental n-dimensional representation of GLn(C) gives rise to a universal
n-sheeted spectral cover

C
π ��

C × B

Suppose now we have V = (V, ∇) - a rank n vector bundle with an integrable
connection on C. The fiber over V ∈ Bun of the projection Higgs ∼=
T∨ Bun → Bun is just the fiber T∨

V Bun = H0(C, ad(V ) ⊗ ωC) of the
cotangent bundle to Bun. Restricting the Hitchin map to T∨

V Bun and
pulling back the universal spectral cover we get a cover

C V
��

πV

��

C

π

��
C × T∨

V Bun
hV

�� C × B

Using the spectral correspondence [Hit87b, Don95, DG02] we can find a
holomorphic line bundle L on C V such that

• πV ∗L ∼= p∗
C

(
V ⊗ ζ⊗−(n−1)

)
,

• ∇ induces a (relative over T∨
V Bun) holomorphic connection D

on L.
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Indeed, by definition the vector bundle p∗
CV on C×T∨

V Bun comes equipped
with a tautological Higgs field ϕ ∈ H0(C ×T∨

V Bun, p∗
C(ad(V )⊗ωC)), char-

acterized uniquely by the property that for every θ ∈ T∨
V Bun we have

ϕ|C×{θ} = θ. The cover C V → C × T∨
V Bun is simply the spectral cover of

(p∗
CV, ϕ) and hence comes equipped with a natural line bundle L′, such that

πV ∗L′ = p∗
CV . Notice that for every θ ∈ T∨

V Bun the restriction of the line
bundle L′ to the spectral curve ChV (θ) = C V |C×{θ} has degree n(n−1)(g−1)
and so does not admit a holomorphic connection. To correct this problem
we can look instead at L′

|ChV (θ)
⊗ ζ⊗−(n−1) which has degree zero and so

admits holomorphic connections. With this in mind we set

L := L′ ⊗ π∗
V p∗

Cζ⊗−(n−1).

To see that ∇ induces a relative holomorphic connection D on L we will
need the following fact.

Let θ ∈ H0(C, ad(V ) ⊗ ωC) be a Higgs field and let(
p : C → C, N ∈ Picn(n−1)(g−1)(C)

)
be the associated spectral data. Suppose that C is smooth and that p : C →
C has simple ramification. Let R ⊂ C denote the ramification divisor. Then
there is a canonical isomorphism of affine spaces

τ :

(
holomorphic
connections
on V

)
−→

⎛⎜⎝
meromorphic connections on N
with logarithmic poles along R

and residue
(

−1
2

)
⎞⎟⎠

Indeed, since (C, N) is built out from (V, θ) via the spectral construction
we have that p∗N = V . Away from the ramification divisor N is both
a subbundle in p∗V and a quotient bundle of p∗V . Furthermore if ∇ is a
holomorphic connection on V , the pullback p∗∇ is a holomorphic connection
on p∗V and so on C − R we get a holomorphic connection on N given by
the composition

(4) N → p∗V
p∗∇→ p∗V ⊗ Ω1

C
→ N ⊗ Ω1

C
.

On all of C the composition (4) can be viewed as a meromorphic connection
on N with pole along R. The order of the pole and the residue of this mero-
morphic connection can be computed locally near the ramification divisor
R. The order of the pole is clearly ≤ 1, since this is true for each step in
(4). The residue is clearly locally determined, in particular it is the same at
all the (simple) points of R. An appropriate version of the residue theorem
then implies that this residue must be (−1/2). Here is an explicit calculation
for this.

Since p has simple ramification, in an appropriate local (formal or ana-
lytic) coordinate centered at a point r ∈ R the map p can be written
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as z �→ z2. The image of this local chart in C is, say an analytic disk
D ⊂ C centered at a branch point. Over D the covering C → C splits
into n − 1 connected components: p−1(D) = D0

∐
D1

∐
. . .

∐
Dn−2 where

p0 := p|D0 : D0 → D is the two sheeted ramified cover given by p0(z) = z2

and pi := p|Di
: Di → D are one sheeted components for i = 1, . . . , n − 2.

Over D the bundle V will then split into a direct sum of a rank two piece V0
and a rank n−2 piece W . For the calculation of the polar part of the connec-
tion D near this point only the rank two piece V0 of the bundle is relevant
since upon restriction to D0 the natural adjunction morphisms p∗V → N and
N → p!V = p∗V ⊗OC(R) factor through p∗

0V0 → N and N → p∗
0V0 ⊗OD0(r)

respectively.
Thus we focus on the covering of disks p0 : D0 → D, p0(z) = z2, where

z, w are the coordinates on D0 and D respectively. we denote the covering
involution of this map by σ, i.e. σ : D0 → D0, σ(z) = −z.

Without a loss of generality we may assume that N|D0 has been trivial-
ized. This induces a trivialization of V0 = p0∗OD0 : the frame of this trivial-
ization consists of e+, e− ∈ Γ(D, V0), where e+ is a frame for the subsheaf
of σ-invariant sections of V0, and e− is a frame for the subsheaf of σ-anti-
invariant sections of V . Concretely, if we use the canonical identification
Γ(D, V0) = Γ(D0,O), the section e+ corresponds to 1 ∈ Γ(D0,O) and the
section e− corresponds to z ∈ Γ(D0,O). Since ∇ : V0 → V0 ⊗ Ω1

D
is a holo-

morphic connection on V0, we will have that in the trivialization given by
the frame (e+, e−) it is given by

∇ = d + A(w)dw, A(w) ∈ Mat2×2(Γ(D,O)).

But the change of frame (e+, e−) → (e+, e−) exp(−
∫

A(w)dw), transforms
the connection d + A(w)dw into the trivial connection d and since holomor-
phic changes of frame do not affect the polar behavior it suffices to check
that the connection τ(∇) on OD0 induced from d by (4) has a logarithmic
pole at z = 0 with residue (−1/2).

By (4) we have that the meromorphic connection τ(∇) on OD0 is defined
as the composition

O
D

×
0

��(p∗
0V0)|D×

0

p∗
0∇

��(p∗
0V0)|D×

0
⊗ Ω1

D
×
0

��Ω1
D

×
0

where the first and third maps are induced from the adjunction maps O
D

×
0

→
p!p∗OD

×
0

= p∗p∗OD
×
0

= p∗V0 and p∗V0 = p∗p∗OD
×
0

→ O
D

×
0
.

To compute τ(∇) choose a small subdisk U ⊂ D0, s.t. 0 
∈ U . Then
p−1
0 (p0(U)) = U

∐
σ(U), and the restriction of p0 to U and σ(U) induces an

identification

(5) Γ(U, p∗V ) ∼= Γ(U,O) ⊕ Γ(σ(U),O)

so that adjunction morphisms Γ(U,OU ) → Γ(U, p∗V0) and Γ(U, p∗V0) →
Γ(U,OU ) become simply the inclusion i and projection p for this direct sum
decomposition.
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Now the connection p∗
0 on the bundle p∗

0V0 has a flat frame (p∗
0e+, p∗

0e−).
In terms of the decomposition (5) we have

p∗
0e+ =

(
1
1

)
and p∗

0e− =
(

z
−z

)
Now if f(z) ∈ Γ(U,O) we get

τ(∇)(f) = p ◦ p∗
0∇ ◦ i(f) = p ◦ p∗

0∇
(

f(z)
0

)

= p ◦ p∗
0∇

[
f(z)

2
·
(

1
1

)
+

f(z)
2z

·
(

z
−z

)]

= p
[
f ′(z)

2
dz ·

(
1
1

)
+

(
f ′(z)
2z

− f(z)
2z2

)
dz ·

(
z

−z

)]

= p

⎡⎣⎛⎝f ′(z) − 1
2

f(z)
z

1
2

f(z)
z

⎞⎠ dz

⎤⎦
= f ′(z)dz − 1

2
f(z)

dz

z
.

Hence Resz=0(τ(∇)) = −1/2 as claimed.
Next suppose we are given a line bundle L on a variety X and a

trivalizing open cover {Uα} for L with local frames eα ∈ Γ(Uα,L ). Let
gαβ ∈ Γ(Uαβ ,O×) be the transition functions for these frames: eα = eβgβα.
In particular any section of L is given by a collection {sα} of locally defined
holomorphic functions sα ∈ Γ(Uα,O) satisfying sα = gαβsβ, and a connec-
tion ∇ : L → L ⊗ Ω1

X is given by connection one forms aα ∈ Γ(Uα, Ω1
X)

satisfying aα − aβ = d log gβα. If � ∈ Q is a fixed rational number and if
s ∈ Γ(X, L⊗	) is a global section in some rational power of L , then we can
choose a trivializing cover {Uα} for L which is also a trivializing cover for
L⊗	 and such that the transition functions for L⊗	 in appropriately cho-
sen local frames are all branches g	

αβ of the �-th powers of the transition
functions gαβ for L and the section s is represented by a collection {sα} of
locally defined holomorphic functions satisfying sα = g	

αβsβ. Taking d log of
both sides of this last identity we get that(

−1
�
d log sα

)
−

(
−1

�
d log sβ

)
= d log gβα.

In other words the collection {d − (1/�)d log sα} gives a meromorphic con-
nection on L with pole along the divisor s = 0. Furthermore if the divisor
of s is smooth this connection has residue −1/�.

Now consider the line bundle N ⊗ p∗ζ⊗−(n−1) on C = ChV (θ). As
explained above the connection ∇ on V induces a meromorphic connec-
tion τ(∇) on N with a logarithmic pole along R and residue (−1/2). On
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the other hand we have OC(R) = p∗ζ⊗2(n−1). Let s be a holomorphic sec-
tion of p∗ζ⊗2(n−1) that vanishes on R. Then by the discussion in the pre-
vious paragraph s induces a meromorphic connection D on the line bun-
dle p∗ζ⊗−(n−1): if we trivialize p∗ζ⊗−(n−1) on an open U ⊂ C and if s

is represented by a holomorphic function sU ∈ Γ(U,O) in this trivializa-
tion, then in the same trivialization D := d + 1

2d log(sU ). By construc-
tion D has logarithmic poles along R and residue 1/2. Therefore the ten-
sor product connection τ(∇) ⊗ id + id⊗D is a holomorphic connection on
N ⊗ p∗ζ⊗−(n−1) = L|ChV (θ)×{θ}. The whole construction makes sense rela-

tively over T∨
V Bun and so by varying θ ∈ T∨

V Bun we get a relative holo-
morphic connection D on L, uniquely characterized by the property that
its restriction to the slice ChV (θ) × {θ} is equal to τ(∇) ⊗ id + id⊗D. Even
though this is not needed in what follows, it is instructive to note here that
the relative connection D can be lifted to an absolute (i.e. differentiating in
all directions) holomorphic connection on L. This absolute connection is not
integrable but has curvature which is a holomorphic two form. Of course
this holomorphic two form restricts to zero on each cameral curve which
accounts for the integrability of the relative connection D.

Now we can use (L, D) as an input for the GL1-version of the geometric
Langlands correspondence. More precisely, applying the construction from
Example 2.5 to the relative local system (L, D) and along the smooth fibers
of πV we get a relative rank one local system (L̃, ∇̃) on the part of

Pic
(
C V /C × T∨

V Bun
)

= Higgs×BT∨
V Bun

sitting over B − Δ. If we push (L̃, ∇̃) forward to Higgs we get a relative
meromorphic local system (M, δ), where M is a holomorphic vector bundle
on Higgs, and δ is a meromorphic connection on M differentiating only
along the fibers of h : Higgs → B.

The bundle M can be described explicitly. Let (E, ψ) ∈ Higgs be any
point, then the fiber of M at (E, ψ) is given by

M(E,ψ) =
⊕

θ∈T ∨
V Bun

h(θ)=h(ψ)

P(Lθ,Nψ),

where P → Pic0(Ch(ψ))×Pic(Ch(ψ)) is the standard Poincare line bundle,
Lθ is the restriction of L to the slice Ch(θ) × {θ}, and Nψ ∈ Pic(Ch(ψ)) is
the line bundle corresponding to (E, ψ) via the spectral correspondence.

Remark 3.2.
• The above approach will give rise to a geometric Langlands corre-

spondence if we can find a way to convert the abH
i-eigen module

(M, δ) on Higgs to an H i-eigen module on Bun. To do this we can
take several routes: we can either average the (M, δ) over all θ ∈
T∨

V Bun, or use deformation quantization as in [Ari02, Ari05], or
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use Simpson’s non-abelian Hodge theory [Sim91, Sim92, Sim97]
as we will do in the remainder of the paper.

• To set up the previous construction for an arbitrary group G we
need to establish a duality between Higgs0 and LHiggs. This was
done in [DP06] and we will review it in section 4.

• The correspondences Higgsi and ab Higgsi can be related geomet-
rically: ab Higgsi is the total space of the relative conormal bundle
of Higgsi ⊂ Bun×Bun×C over C.

4. The classical limit

In this section we review the construction of the Fourier-Mukai functor
FM appearing in step (2) of the six step process in section 5.1.

4.1. The classical limit conjecture. Fix a curve C and groups G,
LG. The moduli stacks of Higgs bundles arise naturally in an interesting
limiting case of conjecture (GLC): the so called classical limit.

On the local system side of (GLC) the passage to the limit is based on
Deligne’s notion of a z-connection [Sim97] which interpolates between the
notions of a local system and a Higgs bundle. A z-connection is by definition
a triple (V, ∇, z), where π : V → C is a principal G-bundle on C, z ∈ C is a
complex number, and ∇ is a differential operator satisfying the Leibnitz rule
up to a factor of z. Equivalently, ∇ is a z-splitting of the Atiyah sequence
for V :

0 �� ad(V ) �� E(V ) σ �� TC
��

∇
		 0.

Here ad(V ) = V ×ad g is the adjoint bundle of V , E(V ) = (π∗TV )G is the
Atiyah algebra of V , σ : E(V ) → TC is the map induced from dπ : TV →
π∗TC , and ∇ is a map of vector bundles satisfying σ ◦ ∇ = z · idTC

.
When z = 1 a z-connection is just an ordinary connection. More gener-

ally, when z 
= 0, rescalling a z-connection by z−1 gives again an ordinary
connection. However for z = 0 a z-connection is a Higgs bundle. In this sense
the z-connections give us a way of deforming a connection into a Higgs bun-
dle. In particular the moduli space of z-connections can be viewed as a
geometric 1-parameter deformation of Loc parametrized by the z-line and
such that the fiber over z = 1 is Loc, while the fiber over z = 0 is Higgs0
the stack of Higgs bundles with trivial first Chern class. Using this picture
we can view the derived category Dcoh(Higgs0,O) as the z → 0 limit of
the category Dcoh(Loc,O).

On the LBun side the limit comes from an algebraic deformation of
the sheaf of rings D of differential operators on LBun. More precisely D is
a sheaf of rings which is filtered by the filtration by orders of differential
operators. Applying the Rees construction [Ree56, Ger66, Sim91] to this
filtration we get a flat deformation of D parametrized by the z-line and such
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that the fiber of this deformation at z = 1 is D and the fiber at z = 0 is the
symmetric algebra S•T = grD of the tangent bundle of LBun. Passing to
categories of modules we obtain an interpretation of Dcoh(LBun, S•T ) as the
z → 0 limit of Dcoh(LBun,D). Since LHiggs is the cotangent stack of LBun
the category Dcoh(LBun, S•T ) will be equivalent to Dcoh(LHiggs,O) and
so we get a limit version of the conecture (GLC) which predicts the existence
of a canonical equivalence of categories

(clGLC0) cl0 : Dcoh(Higgs0,O)
∼=−→ Dcoh(LHiggs,O)

which again sends structure sheaves of points to eigensheaves of a classical
limit version of the Hecke functors. The precise construction of the classical
limit Hecke functors is discussed in [DP06, Section 2]. Here we will only
mention that in a forthcoming work Arinkin and Bezrukavnikov establish
an isomorphism between the algebra of classical limit Hecke functors and
the algebra of abelianized Hecke functors that we discussed in Section 3.2.

We also expect that the equivalence cl0 extends to an equivalence

(clGLC) cl : Dcoh(Higgs,O)
∼=−→ Dcoh(LHiggs,O)

which again sends structure sheaves of points to eigensheaves of a classical
limit version of the Hecke functors.

4.2. Duality of Hitchin systems. The classical limit conjecture
(clGLC) can be viewed as a self duality of Hitchin’s integrable system:
Hitchin’s system for a complex reductive Lie group G is dual to Hitchin’s
system for the Langlands dual group LG. This statement can be interpreted
at several levels:

• First, a choice of an invariant bilinear pairing on the Lie algebra g,
induces an isomorphism between the bases of the Hitchin systems
for G and LG, interchanging the discriminant divisors.

• The general fiber of the neutral connected component Higgs0 of
Hitchin’s system for G is an abelian variety. We show that it is
dual to the corresponding fiber of the neutral connected component
LHiggs0 of the Hitchin system for LG.

• The non-neutral connected components Higgs
α

form torsors over
Higgs0. According to the general philosophy of [DP08], these are
dual to certain gerbes. In our case, we identify these duals as natural
gerbes over LHiggs0. The gerbe Higgs of G-Higgs bundles was
introduced and analyzed in [DG02]. This serves as a universal
object: we show that the gerbes involved in the duals of the non-
neutral connected components Higgs

α
are induced by Higgs.
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• More generally, we establish a duality over the complement of the
discriminant between the gerbe Higgs of G-Higgs bundles and
the gerbe LHiggs of LG-Higgs bundles, which incorporates all the
previous dualities.

• Finally, the duality of the integrable systems lifts to an equivalence
of the derived categories of Higgs and LHiggs. As a corollary
we obtain a construction of eigensheaves for the abelianized Hecke
operators on Higgs bundles.

To elaborate on these steps somewhat, note that the Hitchin base B and
the universal cameral cover C̃ → C × B depend on the group G only
through its Lie algebra g. The choice of a G-invariant bilinear form on g

determines an isomorphism l : B → LB between the Hitchin bases for the
Langlands-dual algebras g, Lg. This isomorphsim lifts to an isomorphism
� of the corresponding universal cameral covers. (These isomorphisms are
unique up to automorphisms of C̃ → C × B: There is a natural action of
C× on B which also lifts to an action on C̃ → C × B. The apparent ambi-
guity we get in the choice of the isomorphisms l, � is eliminated by these
automorphisms.)

The next step [DP06] is to show that the connected component Pb of the
Hitchin fiber h−1(b) over some general b ∈ B is dual (as a polarized abelian
variety) to the connected component LPl(b) of the corresponding fiber for
the Langlands-dual system. This is achieved by analyzing the cohomology
of three group schemes T ⊃ T ⊃ T 0 over C attached to a group G. The first
two of these were introduced in [DG02], where it was shown that h−1(b) is
a torsor over H1(C, T ). The third one T 0 is their maximal subgroup scheme
all of whose fibers are connected. It was noted in [DG02] that T = T
except when G = SO(2r + 1) for r ≥ 1. Dually one finds [DP06] that
T = T 0 except for G = Sp(r), r ≥ 1. In fact, it turns out that the connected
components of H1(T 0) and H1(T ) are dual to the connected components
of H1(LT ), H1(LT 0), and we are able to identify the intermediate objects
H1(T ), H1(LT ) with enough precision to deduce that they are indeed dual
to each other.

Finally we extend the basic duality to the non-neutral components of the
stack of Higgs bundles. The non-canonical isomorphism from non-neutral
components of the Hitchin fiber to Pb can result in the absence of a section,
i.e. in a non-trivial torsor structure [HT03, DP08]. In general, the duality
between a family of abelian varieties A → B over a base B and its dual
family A∨ → B is given by a Poincare sheaf which induces a Fourier-Mukai
equivalence of derived categories. It is well known [DP08, BB07, BB06]
that the Fourier-Mukai transform of an A-torsor Aα is an O∗-gerbe αA∨

on A∨. Assume for concretness that G and LG are semisimple. In this case
there is indeed a natural stack mapping to Higgs, namely the moduli stack
Higgs of semistable G-Higgs bundles on C. Over the locus of stable bundles,
the stabilizers of this stack are isomorphic to the center Z(G) of G and so
over the stable locus Higgs is a gerbe. The stack Higgs was analyzed
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in [DG02]. From [DP08] we know that every pair α ∈ π0(Higgs) =
π1(G), β ∈ π1(LG) = Z(G)∧ defines a U(1)-gerbe βHiggs

α
on the connected

component Higgs
α

and that there is a Fourier-Mukai equivalence of cate-
gories Db(βHiggs

α
) ∼= Db(α

LHiggs
β
). In our case we find that all the U(1)-

gerbes βHiggs
α

are induced from the single Z(G)-gerbe Higgs, restricted
to component Higgs

α
, via the homomorphisms β : Z(G) → U(1). These

results culminate in [DP06, Theorem B], which gives a duality between
the Higgs gerbes Higgs and LHiggs. The key to the proof is our ability
to move freely among the components of Higgs via the abelianized Hecke
correspondences.

5. Non-abelian Hodge theory

5.1. Results from non-abelian Hodge theory. Non Abelian Hodge
theory, as developed by Donaldson, Hitchin, Corlette, Simpson [Don87,
Hit87a, Cor88, Sim92, Cor93, Sim97], and many others, establishes
under appropriate assumptions the equivalence of local systems and Higgs
bundles. A richer object (harmonic bundle or twistor structure) is intro-
duced, which specializes to both local systems and Higgs bundles. This is
closely related to Deligne’s notion of a z-connection (see Section 4.1): at
z = 1 we have ordinary connections (or local systems), while at z = 0 we
have Higgs bundles. Depending on the exact context, these specialization
maps are shown to be diffeomorphisms or categorical equivalences. Origi-
nally Corlette and Simpson proved the non-abelian Hodge theorem for pro-
jective manifolds:

Theorem [Cor88, Sim92, Cor93, Sim97] Let (X, OX(1)) be a smooth
complex projective variety. Then there is a natural equivalence of dg ⊗-
categories:

nahX :
(

finite rank C-local
systems on X

)
−→

( finite rank OX(1)-semistable
Higgs bundles on X with ch1 = 0
and ch2 = 0

)

Remark 5.1. (a) Here by a Higgs bundle we mean a pair (E, θ) where E
is a vector bundle on X, and θ : E → E⊗Ω1

X is an OX -linear map satisfying
θ ∧ θ = 0. A Higgs bundle (E, θ) is OX(1)-semistable if for every θ-invariant
subsheaf F ⊂ E we have χ(F ⊗ O(n))/ rk(F) ≤ χ(E ⊗ O(n))/ rk(E) for
n � 0.

(b) We can also consider Higgs sheaves. These are by definition pairs (F , θ)
where F is a coherent or quasi-coherent sheaf on X, and θ : F → F ⊗ Ω1

X
is OX -linear map satisfying θ ∧ θ = 0.



108 R. DONAGI AND T. PANTEV

For quasi-projective varieties, the one dimensional analogue of the
Corlette-Simpson theorem was settled by Simpson twenty years ago [Sim90].
The open case in higher dimension had to await the recent breakthroughs by
Biquard [Biq97], Jost-Yang-Zuo [JYZ07], Sabbah [Sab05], and especially
Mochizuki [Moc06, Moc09, Moc07a, Moc07b]. This higher dimensional
theory produces an equivalence of parabolic local systems and parabolic
Higgs bundles, quite analogous to what is obtained in the compact case.
Mochizuki is able to prove a version of the non-abelian Hodge correspon-
dence which allows for singularities of the objects involved:

Theorem [Moc06, Moc09] Let (X, OX(1)) be a smooth complex pro-
jective variety and let D ⊂ X be an effective divisor. Suppose that we have
a closed subvariety Z ⊂ X of codimension ≥ 3, such that X − Z is smooth
and D − Z is a normal crossing divisor.

Then there is a canonical equivalence of dg ⊗-categories:

nahX,D :

(
finite rank tame
parabolic C-local
systems on (X, D)

)
−→

⎛⎜⎜⎝
finite rank locally abelian
tame parabolic Higgs bun-
dles on (X, D) which are
OX(1)-semistable and satisfy
parch1 = 0 and parch2 = 0

⎞⎟⎟⎠
Mochizuki requires three basic ingredients for this theorem:

(1) a good compactification, which is smooth and where the boundary
is a divisor with normal crossings away from codimension 3;

(2) a local condition: tameness (the Higgs field is allowed to have at
most logarithmic poles along D) and compatibility of filtrations
(the parabolic structure is locally isomorphic to a direct sum of
rank one objects); and

(3) a global condition: vanishing of parabolic Chern classes.

A feature of the non-abelian Hodge correspondence that is specific to the
open case is captured in another result of Mochizuki:

Theorem [Moc07a, Moc07b] Let U be a quasi-projective variety and
suppose U has two compactifications

X Y

U
��φ



���� �� ψ

��				

where:

• X, Y are projective and irreducible;
• X is smooth and X − U is a normal crossing divisor away from

codimension 3;
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Then the restriction from X to U followed by the middle perversity extension
from U to Y gives an equivalence of abelian categories:

φ∗! ◦ ψ∗ :

( irreducible tame
parabolic C-local
systems on (X, D)

)
−→

(
simple D-modules on Y which
are smooth on U

)

5.2. Using non-abelian Hodge theory. As we mentioned before
non-abelian Hodge theory provides a natural approach to constructing the
geometric Langlands correspondence c. The relevance of non-abelian Hodge
theory to the problem is already implicit in the work of Beilinson-Drinfeld
[BD03] on quantization of Hitchin hamiltonians, in the work of Arinkin
[Ari02, Ari08] on the quasi-classical version of the geometric Langlands
conjecture, and it the work of Bezrukavnikov-Braverman [BB07] on the
Fourier-Mukai interpretation of the correspondence in positive characteris-
tic. The non-abelian Hodge theory approach was brought in the spotlight
in the mirror symmetry work of Hausel-Thaddeus [HT03] and several key
features of the approach were worked out in the ground breaking work of
Kapustin-Witten [KW06] on gauge theory/sigma model duality, in the work
of Frenkel-Witten [FW08] on endoscopy, and in our own work [DP06] on
the classical limit of the Geometric Langlands Conjecture.

The possibility suggested by these works is that the known (see [DP06]
and the discussion in section 4) eigensheaf of the abelianized Heckes, which
is a Higgs-type object (E , ϕ), extends by non abelian Hodge theory to a
twistor eigensheaf on LBun. The original Higgs sheaf appears at z = 0,
while at the opposite end z = 1 we can expect to find precisely the Hecke
eigensheaf postulated by the GLC.

The situation is essentially non-compact: There is a locus S in the moduli
space LBuns of stable bundles along which our Higgs field ϕ blows up. This
can be traced back, essentially, to the difference between the notions of
stability for bundles and Higgs bundles. The cotangent bundle T∨(LBuns)
embeds as a Zariski-open in LHiggss. If we ignore stability the two are
equal: T∨(LBun) = LHiggs. But as moduli of stable objects, there is a locus
Un in LHiggs parametrizing stable Higgs bundles with unstable underlying
bundle. In order to turn the projection LHiggss → LBuns into a morphism,
Un must be blown up to an exceptional divisor Ûn. Then the Higgs field
part ϕ of the Hecke eigensheaf (E , ϕ) on LBuns blows up along the image
S of Ûn.

In current work with C. Simpson [DP09, DPS09b, DPS09a], we are
investigating the possibility of applying non-abelian Hodge theory to the
GLC. The heart of the matter amounts to verification of the Mochizuki
conditions: we need to find where the Higgs field blows up, resolve this locus
to obtain a normal crossing divisor, lift the objects to this resolution, and
verify that the parabolic chern classes of these lifts vanish upstairs. This
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would provide the crucial third step in the following six step recipe for
producing the candidate automorphic sheaf:

Note that all of the other steps in this process are essentially already in
place. The functor (1) is given by the Corlette-Simpson non-abelian Hodge
correspondence (E, θ) = nahC(V, ∇) on the smooth compact curve C. The
functor (2) sends (E, θ) ∈ Higgs to FM(O(E,θ)) where FM is a Fourier-
Mukai transform for coherent sheaves on T∨Bun = Higgs. In fact FM is
the integral transform with kernel the Poincare sheaf constructed (away from
the discriminant) in [DP06]. This sheaf is supported on the fiber product of
the two Hitchin fibrations h : Higgs0 → B and Lh : LHiggs → B and we
discussed it briefly in section 4.1. The functor (4) is the parabolic non-abelian
Hodge correspondence nahLBunss,S of Mochizuki. Here LBunss denotes the
(rigidified) stack of semistable bundles. Note that here we are applying the
first Mochizuki theorem not to a projective variety but to a smooth proper
Deligne-Mumford stack with a projective moduli space. In fact Mochizuki’s
proof [Moc09] works in this generality with no modifications. The functors
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(5) and (6) are the pullback and middle extension functors applied to the
two compactifications LBunss ⊃ LBuns ⊂ LBun. In order to conclude
that the composition (6) ◦ (5) is an equivalence we need a strengthening of
Mochizuki’s extension theorem which would allow for Y to be an Artin stack
which is only locally of finite type [DPS09a].

In the next section we explain some of the issues that one needs to tackle
in order to carry out step (3).

6. Parabolic Higgs sheaves on the moduli of bundles

To construct the functor (3) we need to convert a translation invariant
line bundle L on the Hitchin fiber into a stable parabolic Higgs sheaf (E , ϕ)
on the moduli of bundles. The strategy is:

• construct a suitable blow-up of the Hitchin fiber which resolves the
rational map to LBuns;

• pull L and the taulogical one form on the Hitchin fiber to this
blow-up;

• twist with an appropriate combination of the exceptional divisors;
• push-forward the resulting rank one Higgs bundle on the blow-up to

LBuns to obtain a quasi-parabolic Higgs sheaf (E , ϕ) on (LBuns,S)
• fix parabolic weights for (E , ϕ) so that parch1 = 0 and parch2 = 0.

In [DP09, DPS09b] we work out this strategy for G = GL2(C). The first
task here is to understand the divisors Ûn and S geometrically.

6.1. Wobbly, shaky, and unstable bundles. A G-bundle E is very
stable if it has no nonzero nilpotent Higgs fields θ [Lau88]. Very stable
bundles are stable [Lau88]. We call a bundle wobbly if it is stable but not
very stable, and we call a bundle shaky if it is in S. A major step towards
carrying out our program is the identification of shaky bundles:

Theorem [DP09] Let G = LG = GL2(C). Fix a smooth Hitchin fiber
HiggsC .

(a) The rational map HiggsC ��� Buns can be resolved to a morphism
ĤiggsC → Buns by a canonical sequence of blow-ups with smooth
centers.

(b) For every translation invariant line bundle L on HiggsC , and for
any twist by exceptional divisors of the pullback of L to ĤiggsC ,
the polar divisor of the associated quasi-parabolic Higgs sheaf (E , ϕ)
is independent of C, L , and the twist, and is equal to S.

(c) The shaky bundles are precisely the wobbly ones.

This is in exact agreement with the expected behavior of the Hecke
eigensheaf, according to Drinfeld and Laumon [Lau95].



112 R. DONAGI AND T. PANTEV

In view of this theorem, the key geometric issue needed for a proof of
the GLC along these lines is therefore an analysis of the locus of wobbly
bundles and of the sequence of blowups needed to convert it into a normal
crossing divisor. For G = GL2(C) this analysis is carried out in [DP09].

In specific cases it is possible to work out the moduli spaces, wobbly
loci, and Hecke correspondences in great detail. One such case is when the
curve is P1 with n marked points, and the group is G = GL2(C).

This is an instance of the tamely ramified Geometric Langlands Con-
jecture, or the Geometric Langlands Conjecture for parabolic local systems
and bundles. This natural extension of the GLC is explained beautifully in
[Fre08, GW06], and a simple case (elliptic curve with one marked point)
is analyzed in [FW08] from a point of view similar to ours. The six step
process outlined above applies equally well to the ramified case: in fact,
as explained above, our use of non-abelian Hodge theory has the parabolic
structures built in even when the initial objects are defined over a compact
curve, so there is every reason to expect that our construction should work
just as well when the initial object is itself parabolic.

A major surprise is that in the parabolic case, the [DPS09b] character-
ization of the poles of the parabolic Higgs sheaf (E , ϕ) on Bun needs to be
modified. Wobbly bundles are still shaky, but new, non-wobbly components
of the shaky locus can arise. These seem to be related to the variation of
GIT quotients. In this section we illustrate this new phenomenon in the first
non trivial case, n = 5. The results will appear in [DPS09b].

There is a large body of work describing the moduli space Mn of semi-
stable GL(2) parabolic bundles (or flat U(2) connections) on P1 with n
marked points as well as its cohomology ring, see e.g. [Bau91, Jef94,
BR96, BY96]. In several of these references one can find an identifica-
tion of M5 as a del Pezzo surface dP4, the blowup of P2 at 4 general points.
Actually, Mn is not a single object: it depends on the choice of parabolic
weights at the n points. For instance [Bau91] if we choose all the parabolic
weights to be equal to 1/2, then the moduli space Mn can be described
explicitly as the blow-up of Pn−3 at n-points lying on a rational normal
curve. The dP4 description of M5 holds for the lowest chamber, when the
parabolic weights α are positive but small. By working out the GIT picture,
we find [DPS09b] that in the case of balanced weights there are actually
four chambers, and the corresponding moduli spaces are: dP4 for 0 < α < 2

5 ,
dP5 for 2

5 < α < 2
3 , P2 for 2

3 < α < 4
5 , and empty for 4

5 < α < 1. The Hecke
correspondence essentially relates the space at level α to the corresponding
space at level 1 − α. The non-abelian Hodge theory description gives us the
flexibility of working in a chamber of our choosing; we choose the self-dual
dP5 chamber at 2

5 < α < 3
5 .

We find that in the lowest chamber, the shaky locus does agree with
the wobbly locus. It consists of the 10 lines on the dP4, together with 5
additional rational curves, one from each of the five rulings on the dP4, and
all five passing through the same point p ∈ dP4. In particular, this divisor
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fails to have normal crossings at p and so is not suitable for the non-abelian
Hodge theory approach. As we move to the next chamber, it is precisely
the point p that is blown up to produce the dP5. We check [DPS09b]
that the wobbly locus now consists of 15 of the 16 lines on the dP5 - the
proper transforms of the 15 previous components. This is where the new
phenomenon first shows up: the shaky locus actually consists of all 16 lines
on dP5. In our self-dual chamber, the shaky divisor has normal crossings, the
total space of the Hecke correspondence is smooth, the rational map from
the Hitchin fiber to M5 has a natural resolution producing a parabolic Higgs
sheaf of on M5, and there exist twists and assignments of parabolic weights
along the shaky locus that fulfill the Mochizuki conditions from section 5.1.
More or less all of this fails on the dP4 or the P2 model; in particular, there is
no solution to the Mochizuki conditions involving only 15 of the lines. This
gives in this case an explicit construction (modulo solving the differential
equations inherent in the non-abelian Hodge theory) of the Hecke eigensheaf
demanded by the GLC.

6.2. On functoriality in non-abelian Hodge theory. Showing that
the D-module we construct on LBun in step (6) in section 5.2 is indeed a
Hecke eigensheaf depends on having good functorial properties of the non-
abelian Hodge correspondence and the Mochizuki extension theorem in the
parabolic context. The main task is to define direct images of parabolic
objects under fairly general circumstances and to establish their basic prop-
erties. The aspects of functoriality needed for our construction in examples
are relatively easy to establish, basically because the resolved abelianized
Hecke correspondences tend to be finite. Nevertheless, it seems natural to
try to establish the functorial behavior in general. We are currently pursuing
this in a joint project with C.Simpson [DPS09a].

Through the works of Mochizuki [Moc07a, Moc07b] and Jost-Yang-
Zuo [JYZ07] we know that the de Rham cohomology of the D-module
extensiom (of the restriction to X \ D of) a tame parabolic local system on
(X, D) can be calculated directly in terms of L2 sections with respect to the
harmonic metric. In the case of a map to a point, the functoriality we need
identifies this also with the cohomology of (the Dolbeault complex associated
to) the corresponding parabolic Higgs bundle. Our plan is to establish the
general case of functoriality by combining this with an appropriate extension
of the techniques of Simpson’s [Sim93].
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tions. Duke Math. J., 54(2):309–359, 1987.

[Lau88] G. Laumon. Un analogue global du cône nilpotent. Duke Math. J., 57(2):647–671,
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