
Surveys in Differential Geometry XIII

Sphere theorems in geometry

Simon Brendle and Richard Schoen

1. The topological sphere theorem

The sphere theorem in differential geometry has a long history, dating
back to a paper by H.E. Rauch in 1951. In that paper [64], Rauch posed
the question of whether a compact, simply connected Riemannian manifold
M whose sectional curvatures lie in the interval (1, 4] is necessarily homeo-
morphic to the sphere. Around 1960, M. Berger and W. Klingenberg gave
an affirmative answer to this question:

Theorem 1.1 (M. Berger [3]; W. Klingenberg [48]). Let M be a com-
pact, simply connected Riemannian manifold whose sectional curvatures lie
in the interval (1, 4]. Then M is homeomorphic to Sn.

More generally, Berger [4] proved that a compact, simply connected
Riemannian manifold whose sectional curvatures lie in the interval [1, 4] is
either homeomorphic to Sn or isometric to a compact symmetric space of
rank one.

K. Grove and K. Shiohama proved that the upper bound on the sectional
curvature can be replaced by a lower bound on the diameter:

Theorem 1.2 (K. Grove, K. Shiohama [33]). Let M be a compact Rie-
mannian manifold with sectional curvature greater than 1. If the diameter
of M is greater than π/2, then M is homeomorphic to Sn.

There is an interesting rigidity statement in the diameter sphere the-
orem. To describe this result, suppose that M is a compact Riemannian
manifold with sectional curvature K ≥ 1 and diameter diam(M) ≥ π/2. A
theorem of D. Gromoll and K. Grove [27] asserts that M is either home-
omorphic to Sn, or locally symmetric, or has the cohomology ring of the
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16-dimensional Cayley plane (see also [34]). B. Wilking [74] proved that, in
the latter case, M is isometric to the Cayley plane.

2. Manifolds with positive isotropic curvature

M. Micallef and J.D. Moore have used harmonic map theory to prove
a generalization of Theorem 1.1. In doing so, they introduced a new curva-
ture condition which they called positive isotropic curvature. A Riemannian
manifold M is said to have positive isotropic curvature if

R1313 + R1414 + R2323 + R2424 − 2 R1234 > 0

for all points p ∈ M and all orthonormal four-frames {e1, e2, e3, e4} ⊂ TpM .
We say that M has nonnegative isotropic curvature if

R1313 + R1414 + R2323 + R2424 − 2 R1234 ≥ 0

for all points p ∈ M and all orthonormal four-frames {e1, e2, e3, e4} ⊂ TpM .
We next describe an alternative characterization of positive isotropic

curvature, which involves complex notation. To that end, we consider the
complexified tangent space T C

p M = TpM ⊗R C. A manifold M has nonneg-
ative isotropic curvature if and only if

R(z, w, z̄, w̄) ≥ 0

for all points p ∈M and all vectors z, w ∈T C
p M satisfying g(z, z) = g(z, w) =

g(w, w) = 0 (cf. [52]).
The main theorem of Micallef and Moore is a lower bound for the index of

harmonic two-spheres. Recall that the Morse index of a harmonic two-sphere
is defined as the number of negative eigenvalues of the second variation
operator (counted according to their multiplicities).

Proposition 2.1 (M. Micallef, J.D. Moore [52]). Let u : S2 → M
be a harmonic map from S2 into a Riemannian manifold M . We denote
by E = u∗TM the pull-back of the tangent bundle of M under u, and by
EC = E ⊗R C the complexification of E. Moreover, let I be the index form
associated with the second variation of energy. Then

I(s, s̄) = 4
∫

S2

∣∣D ∂
∂z̄

s
∣∣2 dx dy − 4

∫
S2

R

(
∂u

∂z
, s,

∂u

∂z̄
, s̄

)
dx dy.

for all sections s ∈ Γ(EC). Here, z = x + iy denotes the complex coordinate
on S2.
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Proof of Proposition 2.1. Let I : Γ(EC) × Γ(EC) → C denote the
complexified index form. Then

I(s, s̄) =
∫

S2

(∣∣D ∂
∂x

s
∣∣2 +

∣∣D ∂
∂y

s
∣∣2) dx dy

−
∫

S2

(
R

(
∂u

∂x
, s,

∂u

∂x
, s̄

)
+ R

(
∂u

∂y
, s,

∂u

∂y
, s̄

))
dx dy

for all s ∈ Γ(EC). We next define

∂u

∂z
=

1
2

(
∂u

∂x
− i

∂u

∂y

)
∈ Γ(EC),

∂u

∂z̄
=

1
2

(
∂u

∂x
+ i

∂u

∂y

)
∈ Γ(EC).

Moreover, for each section s ∈ Γ(EC) we define

D ∂
∂z

s =
1
2

(
D ∂

∂x
s − i D ∂

∂y
s
)
, D ∂

∂z̄
s =

1
2

(
D ∂

∂x
s + i D ∂

∂y
s
)
.

With this understood, the complexified index form can be written in the
form

I(s, s̄) = 2
∫

S2

(∣∣D ∂
∂z

s
∣∣2 +

∣∣D ∂
∂z̄

s
∣∣2) dx dy

− 2
∫

S2

(
R

(
∂u

∂z̄
, s,

∂u

∂z
, s̄

)
+ R

(
∂u

∂z
, s,

∂u

∂z̄
, s̄

))
dx dy

for all s ∈ Γ(EC). Integration by parts yields∫
S2

(∣∣D ∂
∂z

s
∣∣2 −

∣∣D ∂
∂z̄

s
∣∣2) dx dy =

∫
S2

g
(
D ∂

∂z
D ∂

∂z̄
s − D ∂

∂z̄
D ∂

∂z
s, s̄

)
dx dy

= −
∫

S2
R

(
∂u

∂z
,
∂u

∂z̄
, s, s̄

)
dx dy

=
∫

S2

(
R

(
∂u

∂z̄
, s,

∂u

∂z
, s̄

)

− R

(
∂u

∂z
, s,

∂u

∂z̄
, s̄

))
dx dy

for all s ∈ Γ(EC). Putting these facts together, the assertion follows.

Theorem 2.2 (M. Micallef, J.D. Moore [52]). Let u : S2 → M be a
harmonic map from S2 into a Riemannian manifold M . If M has positive
isotropic curvature, then u has Morse index at least [n−2

2 ].

Proof of Theorem 2.2. We denote by E = u∗TM the pull-back of
the tangent bundle of M , and by EC the complexification of E. Let z = x+iy
the complex coordinate on S2. As above, we define

D ∂
∂z̄

s =
1
2

(D ∂
∂x

s + i D ∂
∂y

s)
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for each section s∈ Γ(EC). We say that s∈ Γ(EC) is holomorphic if
D ∂

∂z̄
s = 0.

Let H denote the space of holomorphic sections of EC. Given two holo-
morphic sections s1, s2 ∈ H, the inner product g(s1, s2) defines a holomor-
phic function on S2. Consequently, the function g(s1, s2) is constant. This
defines a symmetric bilinear form

H × H → C, (s1, s2) �→ g(s1, s2).

By assumption, the map u : S2 → M is harmonic. Hence, ∂u
∂z is a holo-

morphic section of EC. Since u is smooth at the north pole on S2, the section
∂u
∂z vanishes at the north pole. Thus, we conclude that g(∂u

∂z , s) = 0 for every
holomorphic section s ∈ H. In particular, we have g(∂u

∂z , ∂u
∂z ) = 0.

By the Grothendieck splitting theorem (cf. [30]), the bundle EC splits
as a direct sum of holomorphic line subbundles; that is,

EC = L1 ⊕ L2 ⊕ . . . ⊕ Ln.

We assume that the line bundles L1, L2, . . . , Ln are chosen so that

c1(L1) ≥ c1(L2) ≥ . . . ≥ c1(Ln).

Note that c1(L1), c1(L2), . . . , c1(Ln) are uniquely determined, but
L1, L2, . . . , Ln are not. By definition, EC is the complexification of a real
bundle. In particular, the bundle EC is canonically isomorphic to its dual
bundle. From this, we deduce that

c1(Lk) + c1(Ln−k+1) = 0

for k = 1, . . . , n (see [52], p. 209).
For each k ∈ {1, . . . , n}, we denote by F (k) the direct sum of all line

bundles Lj except Lk and Ln−k+1. More precisely, we define

F (k) =
⊕

j∈J (k)

Lj ,

where J (k) = {1, . . . , n} \ {k, n − k + 1}. Note that
⋂n

k=1 F (k) = {0}. More-
over, we have c1(F (k)) = 0 and rankF (k) ≥ n − 2. Let H(k) ⊂ H denote the
space of holomorphic sections of F (k). It follows from the Riemann-Roch
theorem that dimC H(k) ≥ n − 2.

Fix an integer k ∈ {1, . . . , n} such that ∂u
∂z /∈ Γ(F (k)). Since dimC H(k) ≥

n − 2, there exists a subspace H̃ ⊂ H(k) such that dimC H̃ ≥ [n−2
2 ] and

g(s, s) = 0 for all s ∈ H̃. We claim that the resctriction of I to H̃ is negative
definite. To see this, consider a section s ∈ H̃. Since s is holomorphic, we
have

I(s, s̄) = −4
∫

S2
R

(
∂u

∂z
, s,

∂u

∂z̄
, s̄

)
dx dy
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by Proposition 2.1. Moreover, we have g(s, s) = g(∂u
∂z , s) = g(∂u

∂z , ∂u
∂z ) = 0.

Since M has positive isotropic curvature, it follows that

R

(
∂u

∂z
, s,

∂u

∂z̄
, s̄

)
≥ 0.

Putting these facts together, we conclude that I(s, s̄) ≤ 0. It remains to
analyze the case of equality. If I(s, s̄) = 0, then s = f ∂u

∂z for some meromor-
phic function f : S2 → C. However, ∂u

∂z /∈ Γ(F (k)) by our choice of k. Since
s ∈ Γ(F (k)), it follows that f vanishes identically. Therefore, the restriction
of I to H̃ is negative definite.

We now complete the proof of Theorem 2.2. Suppose that m < [n−2
2 ],

where m denotes the number of negative eigenvalues of the second variation
operator. Then dimC H̃ > m. Consequently, there exists a non-vanishing
section s ∈ H̃ which is orthogonal to the first m eigenfunctions of the second
variation operator. Since s ∈ H̃, we have I(s, s̄) < 0. On the other hand,
we have I(s, s̄) ≥ 0 since s is orthogonal to the first m eigenfunctions of the
second variation operator. This is a contradiction.

Combining their index estimate with the existence theory of Sacks and
Uhlenbeck [67], Micallef and Moore obtained the following result:

Theorem 2.3 (M. Micallef, J.D. Moore [52]). Let M be a compact sim-
ply connected Riemannian manifold with positive isotropic curvature. Then
M is a homotopy sphere. Hence, if n ≥ 4, then M is homeomorphic to Sn.

Sketch of The Proof of Theorem 2.3. Suppose that πj(M) 
= 0
for some integer j ≥ 2. By a theorem of Sacks and Uhlenbeck [67], there
exists a harmonic map u : S2 → M with Morse index less than j −1. On the
other hand, any harmonic map u : S2 → M has Morse index at least [n2 ]− 1
by Theorem 2.2. Putting these facts together, we obtain j > [n

2 ]. Thus,
πj(M) = 0 for j = 2, . . . , [n

2 ]. Since M is simply connected, the Hurewicz
theorem implies that πj(M) = 0 for j = 1, . . . , n − 1. Consequently, M is a
homotopy sphere.

We say that M has pointwise 1/4-pinched sectional curvatures if 0 <
K(π1) < 4 K(π2) for all points p ∈ M and all two-planes π1, π2 ⊂ TpM .
It follows from Berger’s inequality (see e.g. [47]) that every manifold with
pointwise 1/4-pinched sectional curvatures has positive isotropic curvature.
Hence, Theorem 2.3 generalizes the classical sphere theorem of Berger and
Klingenberg.

The topology of non-simply connected manifolds with positive isotropic
curvature is not fully understood. It has been conjectured that the fun-
damental group of a compact manifold M with positive isotropic curva-
ture is virtually free in the sense that it contains a free subgroup of finite
index (see [23],[29]). A. Fraser has obtained an important result in this
direction:



54 S. BRENDLE AND R. SCHOEN

Theorem 2.4 (A. Fraser [23]). Let M be a compact Riemannian man-
ifold of dimension n ≥ 5 with positive isotropic curvature. Then the funda-
mental group of M does not contain a subgroup isomorphic to Z ⊕ Z.

The proof of Theorem 2.4 relies on the existence theory of Schoen and
Yau [68], and a careful study of the second variation of area (see also
[22],[69]). The proof also uses the following result due to A. Fraser (see
[23], Section 3):

Proposition 2.5 (A. Fraser [23]). Let h be a Riemannian metric on
T 2 with the property that every non-contractible loop in (T 2, h) has length at
least 1. Moreover, let S2 be the two-sphere equipped with its standard metric
of constant curvature 1. Then there exists a degree-one map f from (T 2, h)
to S2 such that |Df | ≤ C, where C is a numerical constant.

Proof of Proposition 2.5. Let Σ be the universal cover of (T 2, h),
and let π : Σ → (T 2, h) denote the covering projection. Note that Σ is
diffeomorphic to R

2. For each positive integer k, there exists a unit-speed
geodesic γk : [−k, k] → Σ such that d(γk(k), γk(−k)) = 2k. Passing to the
limit as k → ∞, we obtain a unit-speed geodesic γ : R → Σ such that
d(γ(t1), γ(t2)) = |t1 − t2| for all t1, t2 ∈ R. In particular, γ(t1) 
= γ(t2)
whenever t1 
= t2. By the Jordan curve theorem, the complement Σ \ {γ(t) :
t ∈ R} has exactly two connected components, which we denote by Ω1
and Ω2.

We next define functions D1 : Σ → R and D2 : Σ → R by

D1(p) =

⎧⎪⎨
⎪⎩

inf{d(γ(t), p) : t ∈ R} for p ∈ Ω1

− inf{d(γ(t), p) : t ∈ R} for p ∈ Ω2

0 otherwise

and
D2(p) = d(γ(0), p) − 1.

Clearly, |Dj(p) − Dj(q)| ≤ d(p, q) for all points p, q ∈ Σ. Let

Q =
{

p ∈ Σ : D1(p)2 + D2(p)2 ≤ 1
64

}
.

We claim that
Q ⊂ B1/3(γ(1)) ∪ B1/3(γ(−1)).

To see this, we consider a point p ∈ Q. Then there exists a real number t
such that d(γ(t), p) = |D1(p)|. This implies∣∣|t| − 1

∣∣ =
∣∣d(γ(0), γ(t)) − 1

∣∣
≤

∣∣d(γ(0), γ(t)) − d(γ(0), p)
∣∣ +

∣∣d(γ(0), p) − 1
∣∣

≤ d(γ(t), p) +
∣∣d(γ(0), p) − 1

∣∣
= |D1(p)| + |D2(p)|.
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From this, we deduce that

min
{
d(γ(1), p), d(γ(−1), p)

}
≤ min

{
d(γ(1), γ(t)), d(γ(−1), γ(t))

}
+ d(γ(t), p)

=
∣∣|t| − 1

∣∣ + d(γ(t), p)

≤ 2 |D1(p)| + |D2(p)|

<
1
3
.

Thus, Q ⊂ B1/3(γ(1)) ∪ B1/3(γ(−1)).
We next define R = Q∩B1(γ(1)). Clearly, R ⊂ B1/3(γ(1)). This implies

D1(p)2 + D2(p)2 = 1
64 for all points p ∈ ∂R. Hence, the map (D1, D2) :

R → B1/8(0) maps ∂R into ∂B1/8(0). The map (D1, D2) is smooth in a
neighborhood of γ(1). Moreover, the differential of (D1, D2) at the point
γ(1) is non-singular. Since (D1(p), D2(p)) 
= (D1(γ(1)), D2(γ(1))) for all
p ∈ R \ {γ(1)}, we conclude that the map (D1, D2) : R → B1/8(0) has
degree one.

In the next step, we approximate the functions D1 and D2 by smooth
functions. Let δ be an arbitrary positive real number. Using the convolu-
tion procedure of Greene and Wu (see [24],[25]), we can construct smooth
functions D̃1 : R → R and D̃2 : R → R such that

|D̃j(p) − Dj(p)| ≤ δ

and
|D̃j(p) − D̃j(q)| ≤ 2 d(p, q)

for all points p, q ∈ R.
Fix a cut-off function η : [0,∞) → [0, 1] such that η(s) = 2 for s ≤ 2

and η(s) = 0 for s ≥ 3. We define smooth maps ϕ : R
2 → R

3 \ {0} and
ψ : R

2 → S2 by

ϕ(x1, x2) =
(
x1 η(x2

1 + x2
2), x2 η(x2

1 + x2
2), 1 − x2

1 − x2
2

)
and

ψ(x1, x2) =
ϕ(x1, x2)
|ϕ(x1, x2)|

.

In particular, ψ(x1, x2) = (0, 0,−1) whenever x2
1 + x2

2 ≥ 3. We now define a
map F : R → S2 by

F (p) = ψ
(
16 D̃1(p), 16 D̃2(p)

)
.

There exists a numerical constant C such that d(F (p), F (q)) ≤ C d(p, q) for
all points p, q ∈ R. Moreover, F maps a neighborhood of the boundary ∂R
to the south pole on S2. It is easy to see that the map F : R → S2 has
degree one.
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By assumption, every non-contractible loop in (T 2, h) has length at least
1. Hence, if p, q are two distinct points in Σ satisfying π(p) = π(q), then
d(p, q) ≥ 1. Since R ⊂ B1/3(γ(1)), it follows that the restriction π|R is
injective. We now define a map f : (T 2, h) → S2 by

f(y) =

{
F (p) if y = π(p) for some point p ∈ R
(0, 0,−1) otherwise

for y ∈ T 2. It is straightforward to verify that f has all the required prop-
erties. This completes the proof of Proposition 2.5.

We note that the minimal surface arguments in [23] can be extended to
the case n = 4 provided that M is orientable.

Theorem 2.6. Let M be a compact orientable four-manifold with posi-
tive isotropic curvature. Then the fundamental group of M does not contain
a subgroup isomorphic to Z ⊕ Z.

Proof of Theorem 2.6. Suppose that π1(M) contains a subgroup G
which is isomorphic to Z ⊕ Z. For each positive integer k, we denote by Gk

the subgroup of π1(M) corresponding to kZ ⊕ kZ. Moreover, let

Λk = inf{L(α) : α is a non-contractible loop in M with [α] ∈ Gk}.

Note that Λk → ∞ as k → ∞.
Fix k sufficiently large. By a theorem of Schoen and Yau [68], there exists

a branched conformal minimal immersion u : T 2 → M with the property
that u∗ : π1(T 2) → π1(M) is injective and maps π1(T 2) to Gk. Moreover,
the map u minimizes area in its homotopy class. Hence, u is stable. We
next consider the normal bundle of the surface u(T 2). We denote by E the
pull-back, under u, of the normal bundle of u(T 2). Note that E is a smooth
vector bundle of rank 2, even across branch points. (This follows from the
analysis of branch points in [35],[54].) Since M and T 2 are orientable, we
conclude that E is orientable. Let EC = E ⊗R C be the complexification of
E. Since E is orientable, the complexified bundle EC splits as a direct sum
of two holomorphic line bundles E(1,0) and E(0,1). Here, E(1,0) consists of all
vectors of the form a(v − iw) ∈ EC, where a ∈ C and {v, w} is a positively
oriented orthonormal basis of E. Similarly, E(0,1) consists of all vectors of
the form a(v + iw) ∈ EC, where a ∈ C and {v, w} is a positively oriented
orthonormal basis of E. Since EC is the complexification of a real bundle, we
have c1(E(1,0))+c1(E(0,1)) = c1(EC) = 0. Without loss of generality, we may
assume that c1(E(1,0)) ≥ 0. (Otherwise, we choose the opposite orientation
on E.)

Since u is stable, we have

(1)
∫

T 2

∣∣D⊥
∂
∂z̄

s
∣∣2 dx dy ≥

∫
T 2

R

(
∂u

∂z
, s,

∂u

∂z̄
, s̄

)
dx dy
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for all sections s ∈ Γ(EC) (see [22],[69]). Every section s ∈ Γ(E(1,0)) is
isotropic, i.e. g(s, s) = 0. Since M has positive isotropic curvature, there
exists a positive constant κ such that

R

(
∂u

∂z
, s,

∂u

∂z̄
, s̄

)
≥ κ

∣∣∣∂u

∂z

∣∣∣2 |s|2

for all sections s ∈ Γ(E(1,0)). Putting these facts together, we obtain

(2)
∫

T 2

∣∣D⊥
∂
∂z̄

s
∣∣2 dx dy ≥ κ

∫
T 2

∣∣∣∂u

∂z

∣∣∣2 |s|2 dx dy

for all s ∈ Γ(E(1,0)). Moreover, we can find a positive constant ε = ε(k) such
that

(3)
∫

T 2

∣∣D⊥
∂
∂z̄

s
∣∣2 dx dy +

1
2

κ

∫
T 2

∣∣∣∂u

∂z

∣∣∣2 |s|2 dx dy ≥ 1
2

κ ε

∫
T 2

|s|2 dx dy

for all s ∈ Γ(E(1,0)). Taking the arithmetic mean of (2) and (3), we obtain

(4)
∫

T 2

∣∣D⊥
∂
∂z̄

s
∣∣2 dx dy ≥ 1

4
κ

∫
T 2

(∣∣∣∂u

∂z

∣∣∣2 + ε

)
|s|2 dx dy

for all s ∈ Γ(E(1,0)).
We next define a Riemannian metric h on T 2 by

h = u∗g + 2ε (dx ⊗ dx + dy ⊗ dy) = u∗g + ε (dz ⊗ dz̄ + dz̄ ⊗ dz).

Every non-contractible loop in (T 2, h) has length at least Λk. By Proposition
2.5, there exists a degree-one map f from (T 2, h) to the standard sphere S2

such that Λk |Df | ≤ C. This implies

(5) Λ2
k

∣∣∣∂f

∂z

∣∣∣2 ≤ C1

∣∣∣ ∂

∂z

∣∣∣2
h

= C1

(∣∣∣∂u

∂z

∣∣∣2 + ε

)
,

where C1 is a positive constant independent of k.
Fix a holomorphic line bundle L over S2 with c1(L) > 0. We also fix a

metric and a connection on L. Finally, we fix sections ω1, ω2 ∈ Γ(L∗) such
that |ω1| + |ω2| ≥ 1 at each point on S2.

Let ξ = f∗L be the pull-back of L under the map f . Since f has degree
one, we have c1(ξ) > 0. Since c1(E(1,0)) ≥ 0, it follows that c1(E(1,0)⊗ξ) > 0.
By the Riemann-Roch theorem, the bundle E(1,0)⊗ξ admits a non-vanishing
holomorphic section, which we denote by σ. For j = 1, 2, we define τj =
f∗(ωj) ∈ Γ(ξ∗) and sj = σ ⊗ τj ∈ Γ(E(1,0)). Since σ is holomorphic, we have

D⊥
∂
∂z̄

sj = σ ⊗ ∇ ∂
∂z̄

τj ,

where ∇ denotes the connection on ξ∗. We next observe that
∣∣∇ ∂

∂z̄
τj

∣∣2 =
∣∣∇ ∂f

∂z̄
ωj

∣∣2 ≤ C2

∣∣∣∂f

∂z

∣∣∣2,
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where C2 is a positive constant independent of k. This implies

∣∣D⊥
∂
∂z̄

sj

∣∣2 =
∣∣∇ ∂

∂z̄
τj

∣∣2 |σ|2 ≤ C2

∣∣∣∂f

∂z

∣∣∣2 |σ|2

for j = 1, 2. Using (5), we obtain

Λ2
k

∣∣D⊥
∂
∂z̄

sj

∣∣2 ≤ C1C2

(∣∣∣∂u

∂z

∣∣∣2 + ε

)
|σ|

for j = 1, 2. From this, we deduce that

Λ2
k

∫
T 2

(∣∣D⊥
∂
∂z̄

s1
∣∣2 +

∣∣D⊥
∂
∂z̄

s2
∣∣2) dx dy

≤ 2 C1C2

∫
T 2

(∣∣∣∂u

∂z

∣∣∣2 + ε

)
|σ|2 dx dy.(6)

Note that

|s1| + |s2| = |σ| (|τ1| + |τ2|) ≥ |σ|

at each point on T 2. Hence, it follows from (4) that∫
T 2

(∣∣D⊥
∂
∂z̄

s1
∣∣2 +

∣∣D⊥
∂
∂z̄

s1
∣∣2) dx dy

≥ 1
4

κ

∫
T 2

(∣∣∣∂u

∂z

∣∣∣2 + ε

)
(|s1|2 + |s2|2) dx dy(7)

≥ 1
8

κ

∫
T 2

(∣∣∣∂u

∂z

∣∣∣2 + ε

)
|σ|2 dx dy.

Thus, we conclude that κ Λ2
k ≤ 16 C1C2. This contradicts the fact that

Λk → ∞ as k → ∞.
In the remainder of this section, we describe sufficient conditions for the

vanishing of the second Betti number. M. Berger [4] proved that the second
Betti number of a manifold with pointwise 1/4-pinched sectional curvatures
is equal to 0. In even dimensions, the same result holds under the weaker
assumption that M has positive isotropic curvature:

Theorem 2.7 (M. Micallef, M. Wang [53]). Let M be a compact
Riemannian manifold of dimension n ≥ 4. Suppose that n is even and M has
positive isotropic curvature. Then the second Betti number of M vanishes.

Proof of Theorem 2.7. Suppose that ψ is a non-vanishing harmonic
two-form on M . It follows from the Bochner formula that

Δψik =
n∑

j=1

Ricj
i ψjk +

n∑
j=1

Ricj
k ψij − 2

n∑
j,l=1

Rijkl ψ
jl,
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where Δψ =
∑n

j,l=1 gjl D2
j,lψ denotes the rough Laplacian of ψ. Fix a point

p ∈ M where the function |ψ|2 attains its maximum. At the point p, we have
|ψ|2 > 0 and Δ(|ψ|2) ≤ 0. This implies

0 ≥ Δ
( n∑

i,k=1

ψik ψik

)

≥ 2
n∑

i,k=1

Δψik ψik = 4
n∑

i,j,k,l=1

(Ricij gkl − Rijkl) ψik ψjl(8)

at the point p. In order to analyze the curvature term on the right hand
side, we write n = 2m. We can find an orthonormal basis {v1, w1, v2, w2, . . . ,
vm, wm} of TpM and real numbers λ1, . . . , λm such that

ψ(vα, wβ) = λα δαβ

ψ(vα, vβ) = ψ(wα, wβ) = 0

for 1 ≤ α, β ≤ m. Using the first Bianchi identity, we obtain
n∑

i,j,k,l=1

(Ricij gkl − Rijkl) ψik ψjl

=
m∑

α=1

λ2
α [Ric(vα, vα) + Ric(wα, wα)]

− 2
m∑

α,β=1

λα λβ [R(vα, vβ, wα, wβ) − R(vα, wβ, wα, vβ)]

=
m∑

α,β=1

λ2
α [R(vα, vβ, vα, vβ) + R(vα, wβ, vα, wβ)]

+
m∑

α,β=1

λ2
α [R(wα, vβ, wα, vβ) + R(wα, wβ, wα, wβ)]

− 2
m∑

α,β=1

λα λβ R(vα, wα, vβ, wβ).

This implies
n∑

i,j,k,l=1

(Ricij gkl − Rijkl)ψikψjl

=
∑
α �=β

λ2
α[R(vα, vβ, vα, vβ) + R(vα, wβ, vα, wβ)]

+
∑
α �=β

λ2
α[R(wα, vβ, wα, vβ) + R(wα, wβ, wα, wβ)]

− 2
∑
α �=β

λαλβ R(vα, wα, vβ, wβ).
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Since M has positive isotropic curvature, we have

R(vα, vβ, vα, vβ) + R(vα, wβ, vα, wβ)
+ R(wα, vβ, wα, vβ) + R(wα, wβ, wα, wβ) > 2 |R(vα, wα, vβ, wβ)|.

for α 
= β. Since
∑m

α=1 λ2
α > 0, it follows that

n∑
i,j,k,l=1

(Ricij gkl − Rijkl) ψik ψjl

> 2
∑
α �=β

λ2
α |R(vα, wα, vβ, wβ)| − 2

∑
α �=β

|λα| |λβ| |R(vα, wα, vβ, wβ)|

=
∑
α �=β

(|λα| − |λβ|)2 |R(vα, wα, vβ, wβ)| ≥ 0

at the point p. This contradicts (8).

In odd dimensions, the following result was established by M. Berger:

Theorem 2.8 (M. Berger [4]). Let M be a compact Riemannian mani-
fold of dimension n ≥ 5. Suppose that n is odd and M has pointwise n−3

4n−9 -
pinched sectional curvatures. Then the second Betti number of M vanishes.

Proof of Theorem 2.8. Suppose that ψ is a non-vanishing harmonic
two-form on M . The Bochner formula implies that

Δψik =
n∑

j=1

Ricj
i ψjk +

n∑
j=1

Ricj
k ψij − 2

n∑
j,l=1

Rijkl ψ
jl.

As above, we fix a point p ∈ M where the function |ψ|2 attains its maximum.
At the point p, we have |ψ|2 > 0 and Δ(|ψ|2) ≤ 0. From this, we deduce
that

0 ≥ Δ
( n∑

i,k=1

ψik ψik

)

≥ 2
n∑

i,k=1

Δψik ψik = 4
n∑

i,j,k,l=1

(Ricij gkl − Rijkl) ψik ψjl

(9)

at the point p. We now write n = 2m+1. We can find an orthonormal basis
{u, v1, w1, v2, w2, . . . , vm, wm} of TpM and real numbers λ1, . . . , λm such that

ψ(u, vα) = ψ(u, wα) = 0

ψ(vα, wβ) = λα δαβ

ψ(vα, vβ) = ψ(wα, wβ) = 0
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for 1 ≤ α, β ≤ m. This implies
n∑

i,j,k,l=1

(Ricij gkl − Rijkl) ψik ψjl

=
m∑

α=1

λ2
α [R(u, vα, u, vα) + R(u, wα, u, wα)]

+
∑
α �=β

λ2
α [R(vα, vβ, vα, vβ) + R(vα, wβ, vα, wβ)]

+
∑
α �=β

λ2
α [R(wα, vβ, wα, vβ) + R(wα, wβ, wα, wβ)]

− 2
∑
α �=β

λα λβ R(vα, wα, vβ, wβ).

By assumption, M has pointwise 2m−2
8m−5 -pinched sectional curvatures. After

rescaling the metric if necessary, we may assume that all sectional curvatures
of M at p all lie in the interval (1, 8m−5

2m−2 ]. Using Berger’s inequality (cf. [47]),
we obtain

|R(vα, wα, vβ, wβ)| <
2m − 1
m − 1

.

Since
∑m

α=1 λ2
α > 0, it follows that

n∑
i,j,k,l=1

(Ricij gkl − Rijkl) ψik ψjl > (4m − 2)
m∑

α=1

λ2
α − 4m − 2

m − 1

∑
α �=β

|λα| |λβ|

=
2m − 1
m − 1

∑
α �=β

(|λα| − |λβ|)2 ≥ 0

at the point p. This contradicts (9).

We note that the pinching constant in Theorem 2.8 can be improved for
n = 5 (see [5]).

3. The differentiable sphere theorem

The Topological Sphere Theorem provides a sufficient condition for a
Riemannian manifold M to be homeomorphic to Sn. We next address the
question of whether M is actually diffeomorphic to Sn. Various authors have
obtained partial results in this direction. The first such result was established
in 1966 by D. Gromoll [26] and E. Calabi. Gromoll showed that a simply con-
nected Riemannian manifold whose sectional curvatures lie in the interval
(1, 1

δ(n) ] is diffeomorphic to Sn. The pinching constant δ(n) depends only
on the dimension, and converges to 1 as n → ∞. In 1971, M. Sugimoto,
K. Shiohama, and H. Karcher [72] proved the Differentiable Sphere Theorem
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with a pinching constant δ independent of n (δ = 0.87). The pinching con-
stant was subsequently improved by E. Ruh [65] (δ = 0.80) and by K. Grove,
H. Karcher, and E. Ruh [32] (δ = 0.76). Ruh [66] proved the Differentiable
Sphere Theorem under pointwise pinching assumptions, but with a pinching
constant converging to 1 as n → ∞.

Grove, Karcher, and Ruh [31],[32] established an equivariant version of
the Differentiable Sphere Theorem, with a pinching constant independent
of the dimension (δ = 0.98). The pinching constant was later improved by
H. Im Hof and E. Ruh:

Theorem 3.1 (H. Im Hof, E. Ruh [46]). There exists a decreasing
sequence of real numbers δ(n) with limn→∞ δ(n) = 0.68 such that the fol-
lowing statement holds: if M is a compact, simply connected δ(n)-pinched
Riemannian manifold and ρ is a group homomorphism from a compact
Lie group G into the isometry group of M , then there exists a diffeomor-
phism F : M → Sn and a homomorphism σ : G → O(n + 1) such that
F ◦ ρ(g) = σ(g) ◦ F for all g ∈ G.

In 1982, R. Hamilton [36] introduced fundamental new ideas to this
problem. Given a compact Riemannian manifold (M, g0), Hamilton studied
the following evolution equation for the Riemannian metric:

(10)
∂

∂t
g(t) = −2 Ricg(t), g(0) = g0.

This evolution equation is referred to as the Ricci flow. Hamilton also consid-
ered a normalized version of Ricci flow, which differs from the unnormalized
flow by a cosmological constant:

(11)
∂

∂t
g(t) = −2 Ricg(t) +

2
n

rg(t) g(t), g(0) = g0.

Here, rg(t) is defined as the mean value of the scalar curvature of g(t). The
evolution equations (10) and (11) are essentially equivalent: any solution
to equation (10) can be transformed into a solution of (11) by a rescaling
procedure (cf. [36]).

R. Hamilton [36] proved that the Ricci flow admits a shorttime solution
for every initial metric g0 (see also [21]). Moreover, Hamilton showed that,
in dimension 3, the Ricci flow deforms metrics with positive Ricci curvature
to constant curvature metrics:

Theorem 3.2 (R. Hamilton [36]). Let (M, g0) be a compact three-
manifold with positive Ricci curvature. Moreover, let g(t), t ∈ [0, T ), denote
the unique maximal solution to the Ricci flow with initial metric g0. Then
the rescaled metrics 1

4(T−t) g(t) converge to a metric of constant sectional
curvature 1 as t → T . In particular, M is diffeomorphic to a spherical space
form.
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In [37], Hamilton developed powerful techniques for analyzing the global
behavior of the Ricci flow. Let (M, g0) be a compact Riemannian manifold,
and let g(t), t ∈ [0, T ), be the unique solution to the Ricci flow with initial
metric g0. We denote by E the vector bundle over M × (0, T ) whose fiber
over (p, t) ∈ M × (0, T ) is given by E(p,t) = TpM . The vector bundle admits
a natural bundle metric which is defined by 〈V, W 〉h = 〈V, W 〉g(t) for V, W ∈
E(p,t). Moreover, there is a natural connection D on E, which extends the
Levi-Civita connection on TM . In order to define this connection, we need
to specify the covariant time derivative D ∂

∂t
. Given two sections V, W of E,

we define

(12) 〈D ∂
∂t

V, W 〉g(t) = 〈 ∂

∂t
V, W 〉g(t) − Ricg(t)(V, W ).

Note that the connection D is compatible with the bundle metric h.
Let R be the curvature tensor of the evolving metric g(t). We may view

R as a section of the vector bundle E∗⊗E∗⊗E∗⊗E∗. It follows from results
of R. Hamilton [37] that R satisfies an evolution equation of the form

(13) D ∂
∂t

R = ΔR + Q(R).

Here, D ∂
∂t

denotes the covariant time derivative, and Δ is the Laplacian
with respect to the metric g(t). Moreover, Q(R) is defined by

(14) Q(R)ijkl =
n∑

p,q=1

Rijpq Rklpq + 2
n∑

p,q=1

Ripkq Rjplq − 2
n∑

p,q=1

Riplq Rjpkq.

Hamilton established a general convergence criterion for the Ricci flow,
which reduces the problem to the study of the ODE d

dtR = Q(R) (see [37],
Section 5). As an application, Hamilton proved the following convergence
theorem in dimension 4:

Theorem 3.3 (R. Hamilton [37]). Let (M, g0) be a compact four-
manifold with positive curvature operator. Moreover, let g(t), t ∈ [0, T ),
denote the unique maximal solution to the Ricci flow with initial metric g0.
Then the rescaled metrics 1

6(T−t) g(t) converge to a metric of constant sec-
tional curvature 1 as t → T . Consequently, M is diffeomorphic to S4 or RP

4.

H. Chen [20] showed that the conclusion of Theorem 3.3 holds under
the weaker assumption that (M, g0) has two-positive curvature operator.
(That is, the sum of the smallest two eigenvalues of the curvature operator
is positive at each point on M .) Moreover, Chen proved that any four-
manifold with pointwise 1/4-pinched sectional curvatures has two-positive
curvature operator. This implies the following result (see also [2]):

Theorem 3.4 (H. Chen [20]). Let (M, g0) be a compact four-manifold
with pointwise 1/4-pinched sectional curvatures. Let g(t), t ∈ [0, T ), denote
the unique maximal solution to the Ricci flow with initial metric g0. Then
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the rescaled metrics 1
6(T−t) g(t) converge to a metric of constant sectional

curvature 1 as t → T .

The Ricci flow on manifolds of dimension n ≥ 4 was first studied by
G. Huisken [45] in 1985 (see also [50],[58]). To describe this result, we
decompose the curvature tensor in the usual way as Rijkl = Uijkl + Vijkl +
Wijkl, where Uijkl denotes the part of the curvature tensor associated with
the scalar curvature, Vijkl is the part of the curvature tensor associated with
the tracefree Ricci curvature, and Wijkl denotes the Weyl tensor.

Theorem 3.5 (G. Huisken [45]). Let (M, g0) be a compact Riemannian
manifold of dimension n ≥ 4 with positive scalar curvature. Suppose that
the curvature tensor of (M, g0) satisfies the pointwise pinching condition

|V |2 + |W |2 < δ(n) |U |2,

where δ(4) = 1
5 , δ(5) = 1

10 , and

δ(n) =
2

(n − 2)(n + 1)

for n ≥ 6. Let g(t), t ∈ [0, T ), denote the unique maximal solution to the
Ricci flow with initial metric g0. Then the rescaled metrics 1

2(n−1)(T−t) g(t)
converge to a metric of constant sectional curvature 1 as t → T .

Note that the curvature condition in Theorem 3.5 is preserved by the
Ricci flow. Moreover, any manifold (M, g0) which satisfies the assumptions of
Theorem 3.5 necessarily has positive curvature operator (see [45], Corollary
2.5).

C. Böhm and B. Wilking proved a convergence result for manifolds with
two-positive curvature operator, generalizing Chen’s work in dimension 4:

Theorem 3.6 (C. Böhm, B. Wilking [7]). Let (M, g0) is a compact Rie-
mannian manifold with two-positive curvature operator. Let g(t), t ∈ [0, T ),
denote the unique maximal solution to the Ricci flow with initial metric g0.
Then the rescaled metrics 1

2(n−1)(T−t) g(t) converge to a metric of constant
sectional curvature 1 as t → T .

C. Margerin [51] used the Ricci flow to show that any compact four-
manifold which has positive scalar curvature and satisfies the pointwise
pinching condition |W |2 + |V |2 < |U |2 is diffeomorphic to S4 or RP

4. By
combining Margerin’s theorem with a conformal deformation of the metric,
A. Chang, M. Gursky, and P. Yang were able to replace the pointwise pinch-
ing condition by an integral pinching condition. As a result, they obtained
a conformally invariant sphere theorem in dimension 4:
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Theorem 3.7 (A. Chang, M. Gursky, P. Yang [16]). Let (M, g0) be a
compact four-manifold with positive Yamabe constant. Suppose that (M, g0)
satisfies the integral pinching condition

(15)
∫

M
(|W |2 + |V |2) <

∫
M

|U |2.

Then M is diffeomorphic to S4 or RP
4.

Given any compact four-manifold M , the Gauss-Bonnet theorem asserts
that ∫

M
(|U |2 − |V |2 + |W |2) = 32π2 χ(M)

(cf. [16], equation (0.4)). Hence, the condition (15) is equivalent to

(16)
∫

M
|W |2 < 16π2 χ(M).

Here, the norm of W is defined by |W |2 =
∑n

i,j,k,l=1 Wijkl W
ijkl.

4. New invariant curvature conditions for the Ricci flow

In an important paper [44], R. Hamilton proved that the Ricci flow
preserves positive isotropic curvature in dimension 4. Moreover, Hamilton
studied solutions to the Ricci flow in dimension 4 with positive isotropic
curvature, and analyzed their singularities. Finally, Hamilton [44] devised a
sophisticated procedure for extending the flow beyond singularities (see also
[19], [59], [60]).

In a recent paper [10], we proved that positive isotropic curvature is
preserved by the Ricci flow in all dimensions. This was shown independently
by H. Nguyen in his doctoral dissertation. Our proof relies on the following
algebraic result which is of interest in itself (see [10], Corollary 10):

Proposition 4.1. Let R be an algebraic curvature tensor on R
n with

nonnegative isotropic curvature. Moreover, suppose that {e1, e2, e3, e4} is an
orthonormal four-frame satisfying

R1313 + R1414 + R2323 + R2424 − 2 R1234 = 0.

Then

Q(R)1313 + Q(R)1414 + Q(R)2323 + Q(R)2424 − 2 Q(R)1234 ≥ 0,

where Q(R) is given by (14).

Sketch of The Proof of Proposition 4.1. Following Hamilton
[37], we write Q(R) = R2 + R#, where R2 and R# are defined by

(R2)ijkl =
n∑

p,q=1

Rijpq Rklpq
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and

(R#)ijkl = 2
n∑

p,q=1

Ripkq Rjplq − 2
n∑

p,q=1

Riplq Rjpkq.

Note that R2 and R# do not satisfy the first Bianchi identity, but R2 + R#

does. Since R satisfies the first Bianchi identity, we have

(R#)1313 + (R#)1414 + (R#)2323 + (R#)2424 + 2 (R#)1342 + 2 (R#)1423

= 2
n∑

p,q=1

(R1p1q + R2p2q) (R3p3q + R4p4q) − 2
n∑

p,q=1

R12pq R34pq

− 2
n∑

p,q=1

(R1p3q + R2p4q) (R3p1q + R4p2q)

− 2
n∑

p,q=1

(R1p4q − R2p3q) (R4p1q − R3p2q).

We claim that the right hand side is nonnegative. To prove this, we define

I(1) =
4∑

p,q=1

(R1p1q + R2p2q) (R3p3q + R4p4q) −
4∑

p,q=1

R12pq R34pq

−
4∑

p,q=1

(R1p3q + R2p4q) (R3p1q + R4p2q)

−
4∑

p,q=1

(R1p4q − R2p3q) (R4p1q − R3p2q),

I(2) =
4∑

p=1

n∑
q=5

(R1p1q + R2p2q) (R3p3q + R4p4q) −
4∑

p=1

n∑
q=5

R12pq R34pq

−
4∑

p=1

n∑
q=5

(R1p3q + R2p4q) (R3p1q + R4p2q)

−
4∑

p=1

n∑
q=5

(R1p4q − R2p3q) (R4p1q − R3p2q),

I(3) =
n∑

p,q=5

(R1p1q + R2p2q) (R3p3q + R4p4q) −
n∑

p,q=5

R12pq R34pq

−
n∑

p,q=5

(R1p3q + R2p4q) (R3p1q + R4p2q)

−
n∑

p,q=5

(R1p4q − R2p3q) (R4p1q − R3p2q).
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We may view the isotropic curvature as a real-valued function on the space
of orthonormal four-frames. This function attains its minimum at {e1, e2,
e3, e4}. Consequently, the first variation at {e1, e2, e3, e4} is zero and the
second variation is nonnegative. Using the fact that the first variation is
zero, we can show that I(1) = I(2) = 0 (see [10], Propositions 5 and 7). In
order to estimate I(3), we consider the following (n − 4) × (n − 4) matrices:

apq = R1p1q + R2p2q, bpq = R3p3q + R4p4q,
cpq = R3p1q + R4p2q, dpq = R4p1q − R3p2q,
epq = R12pq, fpq = R34pq

(5 ≤ p, q ≤ n). Since the second variation is nonnegative, the matrix⎡
⎢⎢⎣

B −F −C −D
F B D −C

−CT DT A −E
−DT −CT E A

⎤
⎥⎥⎦

is positive semi-definite. From this, we deduce that

I(3) = tr(AB) + tr(EF ) − tr(C2) − tr(D2) ≥ 0

(see [10], Proposition 9). Putting these facts together, we conclude that

(R#)1313 + (R#)1414 + (R#)2323 + (R#)2424

+ 2 (R#)1342 + 2 (R#)1423 = 2 I(1) + 4 I(2) + 2 I(3) ≥ 0.
(17)

Moreover, we have

(R2)1313 + (R2)1414 + (R2)2323 + (R2)2424 + 2 (R2)1342 + 2 (R2)1423

=
n∑

p,q=1

(R13pq − R24pq)2 +
n∑

p,q=1

(R14pq + R23pq)2 ≥ 0
(18)

by definition of R2. Adding (17) and (18), we obtain

Q(R)1313 + Q(R)1414 + Q(R)2323 + Q(R)2424

+ 2 Q(R)1342 + 2 Q(R)1423 ≥ 0.
(19)

Since Q(R) satisfies the first Bianchi identity, we conclude that

Q(R)1313 + Q(R)1414 + Q(R)2323 + Q(R)2424 − 2 Q(R)1234 ≥ 0,

as claimed.

Theorem 4.2 (S. Brendle, R. Schoen [10]; H. Nguyen [55]). Let M be
a compact manifold of dimension n ≥ 4, and let g(t), t ∈ [0, T ), be a family
of metrics on M evolving under Ricci flow. If (M, g(0)) has nonnegative
isotropic curvature, then (M, g(t)) has nonnegative isotropic curvature for
all t ∈ [0, T ).
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Proof of Theorem 4.2. It follows from Proposition 4.1 that nonneg-
ative isotropic curvature is preserved by the ODE d

dtR = Q(R). Hence, the
assertion follows from Hamilton’s maximum principle for systems (see [37]).

As an application of Proposition 4.1, we are able to generalize a theorem
of S. Tachibana [73]:

Theorem 4.3 (S. Brendle [14]). Let (M, g) be a compact Einstein man-
ifold of dimension n ≥ 4 with positive isotropic curvature. Then (M, g) has
constant sectional curvature.

Proof of Theorem 4.3. After rescaling the metric if necessary, we
may assume that the scalar curvature of (M, g) equals n(n − 1). Since g is
an Einstein metric, we have Ricij = (n − 1) gij . This implies

(20) ΔR + Q(R) = 2(n − 1) R.

We define a tensor Sijkl by

Sijkl = Rijkl − κ (gik gjl − gil gjk),

where κ is a positive constant. Note that S satisfies all the algebraic proper-
ties of the curvature tensor. Let κ be the largest constant with the property
that Sijkl has nonnegative isotropic curvature. Then there exists a point
p ∈ M and a four-frame {e1, e2, e3, e4} ⊂ TpM such that

S(e1, e3, e1, e3) + S(e1, e4, e1, e4) + S(e2, e3, e2, e3) + S(e2, e4, e2, e4)

− 2 S(e1, e2, e3, e4) = 0.

Therefore, it follows from Proposition 4.1 that

Q(S)(e1, e3, e1, e3) + Q(S)(e1, e4, e1, e4) + Q(S)(e2, e3, e2, e3)

+ Q(S)(e2, e4, e2, e4) − 2 Q(S)(e1, e2, e3, e4) ≥ 0.
(21)

We next observe that

Q(S)ijkl = Q(R)ijkl + 2(n − 1) κ2 (gik gjl − gil gjk)

− 2κ (Ricik gjl − Ricil gjk − Ricjk gil + Ricjl gik),

hence

Q(S)ijkl = Q(R)ijkl + 2(n − 1) κ (κ − 2) (gik gjl − gil gjk).

Substituting this into (21), we obtain

Q(R)(e1, e3, e1, e3) + Q(R)(e1, e4, e1, e4)

+ Q(R)(e2, e3, e2, e3) + Q(R)(e2, e4, e2, e4)(22)

− 2 Q(R)(e1, e2, e3, e4) + 8(n − 1) κ (κ − 2) ≥ 0.
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Fix a vector w ∈ TpM , and consider the geodesic γ(s) = expp(sw). Moreover,
let vj(s) be a parallel vector field along γ with vj(0) = ej . The function

s �→ R(v1(s), v3(s), v1(s), v3(s)) + R(v1(s), v4(s), v1(s), v4(s))

+ R(v2(s), v3(s), v2(s), v3(s)) + R(v2(s), v4(s), v2(s), v4(s))

− 2 R(v1(s), v2(s), v3(s), v4(s)) − 4κ

is nonnegative and vanishes for s = 0. Hence, the second derivative of that
function at s = 0 is nonnegative. This implies

(D2
w,wR)(e1, e3, e1, e3) + (D2

w,wR)(e1, e4, e1, e4) + (D2
w,wR)(e2, e3, e2, e3)

+ (D2
w,wR)(e2, e4, e2, e4) − 2 (D2

w,wR)(e1, e2, e3, e4) ≥ 0.

Since w ∈ TpM is arbitrary, we conclude that

(ΔR)(e1, e3, e1, e3) + (ΔR)(e1, e4, e1, e4) + (ΔR)(e2, e3, e2, e3)

+ (ΔR)(e2, e4, e2, e4) − 2 (ΔR)(e1, e2, e3, e4) ≥ 0.
(23)

Adding (22) and (23) yields

R(e1, e3, e1, e3) + R(e1, e4, e1, e4) + R(e2, e3, e2, e3) + R(e2, e4, e2, e4)

− 2 R(e1, e2, e3, e4) + 4κ (κ − 2) ≥ 0.

On the other hand, we have

R(e1, e3, e1, e3) + R(e1, e4, e1, e4) + R(e2, e3, e2, e3) + R(e2, e4, e2, e4)

− 2 R(e1, e2, e3, e4) − 4κ = 0.

Since κ is positive, it follows that κ ≥ 1. Therefore, S has nonnegative
isotropic curvature and nonpositive scalar curvature. Hence, Proposition 2.5
in [53] implies that the Weyl tensor of (M, g) vanishes.

In the next step, we apply Theorem 4.2 to the product manifolds
(M, g(t)) × R and (M, g(t)) × R

2.

Theorem 4.4 (S. Brendle, R. Schoen [10]). Let M be a compact man-
ifold of dimension n ≥ 4, and let g(t), t ∈ [0, T ), be a solution to the
Ricci flow on M . If (M, g(0)) × R has nonnegative isotropic curvature, then
(M, g(t)) × R has nonnegative isotropic curvature for all t ∈ [0, T ).

Theorem 4.5 (S. Brendle, R. Schoen [10]). Let M be a compact man-
ifold of dimension n ≥ 4, and let g(t), t ∈ [0, T ), be a family of metrics on
M evolving under Ricci flow. If (M, g(0)) × R

2 has nonnegative isotropic
curvature, then (M, g(t)) × R

2 has nonnegative isotropic curvature for all
t ∈ [0, T ).

A similar result holds for products of the form (M, g(t)) × S2(1), where
S2(1) denotes a two-dimensional sphere of radius 1 (see [12], Proposition 10).
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Theorem 4.6 (S. Brendle [12]). Let M be a compact manifold of dimen-
sion n ≥ 4, and let g(t), t ∈ [0, T ), be a solution to the Ricci flow on M . If
(M, g(0))×S2(1) has nonnegative isotropic curvature, then (M, g(t))×S2(1)
has nonnegative isotropic curvature for all t ∈ [0, T ).

Theorem 4.6 is quite subtle, as the manifolds (M, g(t)) × S2(1) do not
form a solution to the Ricci flow.

Theorems 4.4–4.6 provide us with various curvature conditions that are
preserved by the Ricci flow. We now discuss these curvature conditions in
more detail. Let M be a Riemannian manifold of dimension n ≥ 4. The
product M × R has nonnegative isotropic curvature if and only if

R1313 + λ2 R1414 + R2323 + λ2 R2424 − 2λ R1234 ≥ 0

for all orthonormal four-frames {e1, e2, e3, e4} and all λ ∈ [−1, 1] (see [12],
Proposition 4). Similarly, the product M × R

2 has nonnegative isotropic
curvature if and only if

R1313 + λ2 R1414 + μ2 R2323 + λ2μ2 R2424 − 2λμ R1234 ≥ 0

for all orthonormal four-frames {e1, e2, e3, e4} and all λ, μ ∈ [−1, 1] (see [10],
Proposition 21). Finally, the product M × S2(1) has nonnegative isotropic
curvature if and only if

R1313 + λ2 R1414 + μ2 R2323 + λ2μ2 R2424

− 2λμ R1234 + (1 − λ2) (1 − μ2) ≥ 0

for all orthonormal four-frames {e1, e2, e3, e4} and all λ, μ ∈ [−1, 1] (cf. [12],
Proposition 7).

We can also characterize these curvature conditions using complex nota-
tion. The product M × R has nonnegative isotropic curvature if and only
if R(z, w, z̄, w̄) ≥ 0 for all vectors z, w ∈ T C

p M satisfying g(z, z) g(w, w) −
g(z, w)2 = 0. Moreover, the product M × R

2 has nonnegative isotropic cur-
vature if and only if R(z, w, z̄, w̄) ≥ 0 for all vectors z, w ∈ T C

p M (see [53],
Remark 3.3).

Combining these results with earlier work of Hamilton [37] and of Böhm
and Wilking [7], we obtain the following theorem:

Theorem 4.7 (S. Brendle, R. Schoen [10]). Let (M, g0) be a compact
Riemannian manifold of dimension n ≥ 4 such that

(24) R1313 + λ2 R1414 + μ2 R2323 + λ2μ2 R2424 − 2λμ R1234 > 0

for all orthonormal four-frames {e1, e2, e3, e4} and all λ, μ ∈ [−1, 1]. Let
g(t), t ∈ [0, T ), denote the unique maximal solution to the Ricci flow with
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initial metric g0. Then the rescaled metrics 1
2(n−1)(T−t) g(t) converge to a

metric of constant sectional curvature 1 as t → T .

It follows from Berger’s inequality that every manifold with pointwise
1/4-pinched sectional curvatures satisfies (24). Hence, we can draw the fol-
lowing conclusion:

Corollary 4.8 (S. Brendle, R. Schoen [10]). Let (M, g0) be a com-
pact Riemannian manifold with pointwise 1/4-pinched sectional curvatures.
Moreover, let g(t), t ∈ [0, T ), denote the unique maximal solution to the
Ricci flow with initial metric g0. Then the rescaled metrics 1

2(n−1)(T−t) g(t)
converge to a metric of constant sectional curvature 1 as t → T .

Both Theorem 3.6 and Theorem 4.7 are subcases of a more general
convergence theorem for the Ricci flow:

Theorem 4.9 (S. Brendle [12]). Let (M, g0) be a compact Riemannian
manifold of dimension n ≥ 4 such that

(25) R1313 + λ2 R1414 + R2323 + λ2 R2424 − 2λ R1234 > 0

for all orthonormal four-frames {e1, e2, e3, e4} and all λ ∈ [−1, 1]. Let g(t),
t ∈ [0, T ), denote the unique maximal solution to the Ricci flow with initial
metric g0. Then the rescaled metrics 1

2(n−1)(T−t) g(t) converge to a metric of
constant sectional curvature 1 as t → T .

To conclude this section, we provide a diagram showing the logical impli-
cations among the following curvature conditions:

(C1) M has 1/4-pinched sectional curvatures
(C2) M has nonnegative sectional curvature
(C3) M has two-nonnegative flag curvature; that is, R1313 + R2323 ≥ 0

for all orthonormal three-frames {e1, e2, e3}
(C4) M has nonnegative scalar curvature
(C5) M × R

2 has nonnegative isotropic curvature
(C6) M × S2(1) has nonnegative isotropic curvature
(C7) M × R has nonnegative isotropic curvature
(C8) M has nonnegative isotropic curvature
(C9) M has nonnegative curvature operator

(C10) M has two-nonnegative curvature operator

Note that conditions (C4)–(C10) are preserved by the Ricci flow, but
(C1)–(C3) are not.
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5. Rigidity results and the classification of weakly
1/4-pinched manifolds

In this section, we describe various rigidity results. The following theorem
is based on the strict maximum principle and plays a key role in our analysis:

Theorem 5.1 (S. Brendle, R. Schoen [11]). Let M be a compact man-
ifold of dimension n ≥ 4, and let g(t), t ∈ [0, T ), be a solution to the Ricci
flow on M with nonnegative isotropic curvature. Moreover, we fix a time
τ ∈ (0, T ). Then the set of all four-frames {e1, e2, e3, e4} that are orthonor-
mal with respect to g(τ) and satisfy

Rg(τ)(e1, e3, e1, e3) + Rg(τ)(e1, e4, e1, e4) + Rg(τ)(e2, e3, e2, e3)

+ Rg(τ)(e2, e4, e2, e4) − 2 Rg(τ)(e1, e2, e3, e4) = 0

is invariant under parallel transport.

Sketch of The Proof of Theorem 5.1. Let E denote the vector
bundle defined in Section 3, and let P be the orthonormal frame bundle
of E; that is, the fiber of P over a point (p, t) ∈ M × (0, T ) consists of
all n-frames {e1, . . . , en} ⊂ TpM that are orthonormal with respect to the
metric g(t). Note that P is a principal O(n)-bundle over M × (0, T ). Let π
denote the projection from P to M × (0, T ). For each t ∈ (0, T ), we denote
by Pt = π−1(M × {t}) the time t slice of P .

The connection D defines a horizontal distribution on P . For each point
e = {e1, . . . , en} ∈ P , the tangent space TeP splits as a direct sum TeP =
He ⊕ Ve, where He and Ve denote the horizontal and vertical subspaces
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at e, respectively. We next define a collection of horizontal vector fields
X̃1, . . . , X̃n, Ỹ on P . For each j = 1, . . . , n, the value of X̃j at a point
e = {e1, . . . , en} ∈ P is given by the horizontal lift of the vector ej . Similarly,
the value of Ỹ at a point e = {e1, . . . , en} ∈ P is given by the horizontal lift
of the vector ∂

∂t . Note that the vector fields X̃1, . . . , X̃n are tangential to Pt.
We define a function u : P → R by

u : e = {e1, . . . , en} �→ R(e1, e3, e1, e3) + R(e1, e4, e1, e4)

+ R(e2, e3, e2, e3) + R(e2, e4, e2, e4)

− 2 R(e1, e2, e3, e4),

where R denotes the Riemann curvature tensor of the evolving metric g(t).
By assumption, the function u : P → R is nonnegative. Using (13), we
obtain

Ỹ (u) −
n∑

j=1

X̃j(X̃j(u)) = Q(R)(e1, e3, e1, e3) + Q(R)(e1, e4, e1, e4)

+ Q(R)(e2, e3, e2, e3) + Q(R)(e2, e4, e2, e4)

− 2 Q(R)(e1, e2, e3, e4)

(see [11], Lemma 6). Moreover, there exists a positive constant K such that

Q(R)(e1, e3, e1, e3) + Q(R)(e1, e4, e1, e4) + Q(R)(e2, e3, e2, e3)

+ Q(R)(e2, e4, e2, e4) − 2 Q(R)(e1, e2, e3, e4)

≥ K inf
ξ∈Ve, |ξ|≤1

(D2u)(ξ, ξ) − K sup
ξ∈Ve, |ξ|≤1

Du(ξ) − K u

(see [11], Lemma 7). Putting these facts together, we obtain

Ỹ (u) −
n∑

j=1

X̃j(X̃j(u)) ≥ K inf
ξ∈Ve, |ξ|≤1

(D2u)(ξ, ξ)

− K sup
ξ∈Ve, |ξ|≤1

Du(ξ) − K u.

Since u satisfies this inequality, we may apply a variant of Bony’s strict
maximum principle for degenerate elliptic equations (cf. [8]). Hence, if γ̃ :
[0, 1] → Pτ is a horizontal curve such that γ̃(0) lies in the zero set of the func-
tion u, then γ̃(1) lies in the zero set of the function u (see [11], Proposition
5). From this, the assertion follows.

If we apply Proposition 5.1 to the product manifolds (M, g(t))×S1, then
we obtain the following result:

Corollary 5.2 (S. Brendle, R. Schoen [11]). Let M be a compact man-
ifold of dimension n ≥ 4. Moreover, let g(t), t ∈ [0, T ), be a solution to
the Ricci flow on M with the property that (M, g(t)) × R has nonnegative
isotropic curvature. Fix real numbers τ ∈ (0, T ) and λ ∈ [−1, 1]. Then the
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set of all four-frames {e1, e2, e3, e4} that are orthonormal with respect to g(τ)
and satisfy

Rg(τ)(e1, e3, e1, e3) + λ2 Rg(τ)(e1, e4, e1, e4) + Rg(τ)(e2, e3, e2, e3)

+ λ2 Rg(τ)(e2, e4, e2, e4) − 2λ Rg(τ)(e1, e2, e3, e4) = 0

is invariant under parallel transport.

Theorem 5.1 and Corollary 5.2 can be used to prove various rigidity
results. For example, we can extend Theorem 4.3 as follows:

Theorem 5.3 (S. Brendle [14]). Let (M, g) be a compact Einstein man-
ifold of dimension n ≥ 4 with nonnegative isotropic curvature. Then (M, g)
is locally symmetric.

In the next step, we classify all Riemannian manifolds (M, g0) with the
property that (M, g0) × R has nonnegative isotropic curvature:

Theorem 5.4. Let (M, g0) be a compact, locally irreducible Riemannian
manifold of dimension n ≥ 4. Suppose that (M, g0) × R has nonnegative
isotropic curvature. Moreover, let g(t), t ∈ [0, T ), denote the unique maximal
solution to the Ricci flow with initial metric g0. Then one of the following
statements holds:

(i) The rescaled metrics 1
2(n−1)(T−t) g(t) converge to a metric of con-

stant sectional curvature 1 as t → T .
(ii) n = 2m and the universal cover of (M, g0) is a Kähler manifold.
(iii) (M, g0) is locally symmetric.

Sketch of The Proof of Theorem 5.4. By assumption, the mani-
fold (M, g0) is locally irreducible and has nonnegative Ricci curvature. By a
theorem of Cheeger and Gromoll, the universal cover of M is compact (see
[17] or [61], p. 288).

If (M, g0) is locally symmetric, we are done. Hence, we will assume that
(M, g0) is not locally symmetric. By continuity, there exists a real number
δ ∈ (0, T ) such that (M, g(t)) is locally irreducible and non-symmetric for
all t ∈ (0, δ). By Berger’s holonomy theorem, there are three possibilities:

Case 1: Suppose that Hol0(M, g(τ)) = SO(n) for some τ ∈ (0, δ). In this
case, it follows from Corollary 5.2 that

Rg(τ)(e1, e3, e1, e3) + λ2 Rg(τ)(e1, e4, e1, e4) + Rg(τ)(e2, e3, e2, e3)

+ λ2 Rg(τ)(e2, e4, e2, e4) − 2λ Rg(τ)(e1, e2, e3, e4) > 0

for all orthonormal four-frames {e1, e2, e3, e4} and all λ ∈ [−1, 1]. By Theo-
rem 4.9, the rescaled metrics 1

2(n−1)(T−t) g(t) converge to a metric of constant
sectional curvature 1 as t → T .

Case 2: Suppose that n = 2m and Hol0(M, g(t)) = U(m) for all t ∈
(0, δ). In this case, the universal cover of (M, g(t)) is a Kähler manifold for
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all t ∈ (0, δ). Since g(t) → g0 in C∞, we conclude that the universal cover
of (M, g0) is a Kähler manifold.

Case 3: Suppose that n = 4m ≥ 8 and Hol0(M, g(τ)) = Sp(m) · Sp(1)
for some τ ∈ (0, δ). In this case, the universal cover of (M, g(τ)) is a com-
pact quaternionic-Kähler manifold. In particular, (M, g(τ)) is an Einstein
manifold. Since (M, g(τ)) has nonnegative isotropic curvature, Theorem 5.3
implies that (M, g(τ)) is locally symmetric. This is a contradiction.

In the special case that (M, g0) has weakly 1/4-pinched sectional curva-
tures, we can draw the following conclusion:

Corollary 5.5 (S. Brendle, R. Schoen [11]). Assume that (M, g0) has
weakly 1/4-pinched sectional curvatures in the sense that 0 ≤ K(π1) ≤
4 K(π2) for all points p ∈ M and all two-planes π1, π2 ⊂ TpM . Moreover,
we assume that (M, g0) is not locally symmetric. Finally, let g(t), t ∈ [0, T ),
denote the unique maximal solution to the Ricci flow with initial metric g0.
Then the rescaled metrics 1

2(n−1)(T−t) g(t) converge to a metric of constant
sectional curvature 1 as t → T .

Finally, we briefly discuss the problem of classifying manifolds with
almost 1/4-pinched sectional curvature. This question was first studied by
M. Berger [6]. Berger showed that for each even integer n there exists a
positive real number ε(n) with the following property: if M is a compact,
simply connected Riemannian manifold of dimension n whose sectional cur-
vatures lie in the interval (1, 4 + ε(n)], then M is homeomorphic to Sn or
diffeomorphic to a compact symmetric space of rank one.

Building upon earlier work of J.P. Bourguignon [9], W. Seaman [70]
proved that a compact, simply connected four-manifold whose sectional
curvatures lie in the interval (0.188, 1] is homeomorphic to S4 or CP

2.
U. Abresch and W. Meyer [1] showed that a compact, simply connected,
odd-dimensional Riemannian manifold whose sectional curvatures lie in the
interval (1, 4(1 + 10−6)2] is homeomorphic to a sphere.

Using Theorem 5.4 and Cheeger-Gromov compactness theory, P.
Petersen and T. Tao [62] proved that any compact, simply connected
Riemannian manifold of dimension n whose sectional curvatures lie in the
interval (1, 4 + ε(n)] is diffeomorphic to a sphere or a compact symmetric
space of rank one. Here, ε(n) is a positive real number which depends only
on n.

6. Hamilton’s differential Harnack inequality for the Ricci flow

In 1993, R. Hamilton [39] established a differential Harnack inequal-
ity for solutions to the Ricci flow with nonnegative curvature operator (see
[38] for an earlier result in dimension 2). In this section, we describe this
inequality, as well as some applications. Let (M, g(t)), t ∈ (0, T ), be a fam-
ily of complete Riemannian manifolds evolving under Ricci flow. Following



76 S. BRENDLE AND R. SCHOEN

R. Hamilton [36], we define

Pijk = DiRicjk − DjRicik

and

Mij = ΔRicij − 1
2

D2
i,jscal + 2 Rikjl Rickl − Rick

i Ricjk +
1
2t

Ricij .

Hamilton’s matrix Harnack inequality states:

Theorem 6.1 (R. Hamilton [39]). Let (M, g(t)), t ∈ (0, T ), be a solu-
tion to the Ricci flow with uniformly bounded curvature and nonnegative
curvature operator. Then

M(w, w) + 2 P (v, w, w) + R(v, w, v, w) ≥ 0

for all points (p, t) ∈ M × (0, T ) and all vectors v, w ∈ TpM .

Taking the trace over w, Hamilton obtained a gradient estimate for the
scalar curvature:

Corollary 6.2 (R. Hamilton [39]). Assume that (M, g(t)), t ∈ (0, T ),
is a solution to the Ricci flow with uniformly bounded curvature and non-
negative curvature operator. Then

∂

∂t
scal +

1
t

scal + 2 ∂iscal vi + 2 Ric(v, v) ≥ 0

for all points (p, t) ∈ M × (0, T ) and all vectors v ∈ TpM .

We note that H.D. Cao [15] has established a differential Harnack inequal-
ity for solutions to the Kähler-Ricci flow with nonnegative holomorphic
bisectional curvature. In [13], it was shown that Hamilton’s Harnack inequal-
ity holds under the weaker assumption that (M, g(t)) × R

2 has nonnegative
isotropic curvature:

Theorem 6.3 (S. Brendle [13]). Let (M, g(t)), t ∈ (0, T ), be a solution to
the Ricci flow with uniformly bounded curvature. Moreover, suppose that the
product (M, g(t))×R

2 has nonnegative isotropic curvature for all t ∈ (0, T ).
Then

M(w, w) + 2 P (v, w, w) + R(v, w, v, w) ≥ 0
for all points (p, t) ∈ M × (0, T ) and all vectors v, w ∈ TpM .

The Harnack inequality has various applications. For example, it can be
used to show that any Type II singularity model with nonnegative curvature
operator and strictly positive Ricci curvature must be a steady Ricci soliton
(see [40]). A Riemannian manifold (M, g) is called a gradient Ricci soliton
if there exists a smooth function f : M → R and a constant ρ such that
Ricij = ρ gij + D2

i,jf . Depending on the sign of ρ, a gradient Ricci soliton
is called shrinking (ρ > 0), steady (ρ = 0), or expanding (ρ < 0). As in
Theorem 6.3, we can replace the condition that M has nonnegative curvature
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operator by the weaker condition that M × R
2 has nonnegative isotropic

curvature:

Proposition 6.4 (S. Brendle [13]). Let (M, g(t)), t ∈ (−∞, T ), be
a solution to the Ricci flow which is complete and simply connected. We
assume that (M, g(t))×R

2 has nonnegative isotropic curvature and (M, g(t))
has positive Ricci curvature. Moreover, suppose that there exists a point
(p0, t0) ∈ M × (−∞, T ) such that

scalg(t)(p) ≤ scalg(t0)(p0)

for all points (p, t) ∈ M × (−∞, T ). Then (M, g(t0)) is a steady gradient
Ricci soliton.

Proposition 6.5 (S. Brendle [13]). Let (M, g(t)), t ∈ (0, T ), be a solu-
tion to the Ricci flow which is complete and simply connected. We assume
that (M, g(t))×R

2 has nonnegative isotropic curvature and (M, g(t)) has pos-
itive Ricci curvature. Moreover, suppose that there exists a point (p0, t0) ∈
M × (0, T ) such that

t · scalg(t)(p) ≤ t0 · scalg(t0)(p0)

for all points (p, t) ∈ M × (0, T ). Then (M, g(t0)) is an expanding gradient
Ricci soliton.

7. Compactness of pointwise pinched manifolds

R. Hamilton [41] has shown that a convex hypersurface with pinched sec-
ond fundamental form is necessarily compact. B. Chen and X. Zhu proved an
intrinsic analogue of this result. More precisely, they showed that a complete
Riemannian manifold which satisfies a suitable pointwise pinching condition
is compact:

Theorem 7.1 (B. Chen, X. Zhu [18]). Let (M, g0) be a complete Rie-
mannian manifold of dimension n ≥ 4. Assume that the scalar curvature of
(M, g0) is uniformly bounded and positive. Moreover, suppose that (M, g0)
satisfies the pointwise pinching condition

|V |2 + |W |2 < δ(n) (1 − ε)2 |U |2,

where ε is a positive real number and δ(n) denotes the pinching constant
defined in Theorem 3.5. Then M is compact.

Theorem 7.1 was generalized by L. Ni and B. Wu (see [57], Theorem
3.1). In the remainder of this section, we prove another generalization of
Theorem 7.1. To that end, we need two results due to L. Ni [56] and L. Ma
and D. Chen [49]:
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Proposition 7.2 (L. Ni [56]). Let (M, g) be a steady gradient Ricci
soliton which is complete and non-compact. Suppose that there exists a point
p0 ∈ M such that 0 < scal(p) ≤ scal(p0) for all points p ∈ M . Moreover,
we assume that Ric ≥ ε scal g for some constant ε > 0. Then there exists a
constant α > 0 such that

scal(p) ≤ e−α d(p0,p) scal(p0)

for d(p0, p) ≥ 1.

Proof of Proposition 7.2. Since (M, g) is a steady gradient Ricci
soliton, there exists a smooth function f : M → R such that Ricij = D2

i,jf .
This implies

0 = ∂iscal − 2 gkl DiRickl + 2 gkl DkRicil

= ∂iscal − 2 gkl D3
i,k,lf + 2 gkl D3

k,i,lf

= ∂iscal + 2 gkl Rikjl ∂
jf

= ∂iscal + 2 Ricij ∂jf.

By assumption, the scalar curvature attains its maximum at the point p0.
This implies ∂iscal(p0) = 0. Since M has positive Ricci curvature, it follows
that ∂if(p0) = 0. Hence, the point p0 is a critical point of the function f .
Since f is strictly convex, we conclude that f has no critical points other
than p0. Let σ be a positive real number such that Ric ≥ σ g for d(p0, p) ≤ 1.
This implies f(p)− f(p0) ≥ 1

2 σ d(p0, p)2 for d(p0, p) ≤ 1. Moreover, we have
f(p) − f(p0) ≥ 1

2 σ d(p0, p) for d(p0, p) ≥ 1.
Using the inequality Ric ≥ ε scal g, we obtain

∂i(e2ε f scal) ∂if = e2εf (∂iscal ∂if + 2ε scal |Df |2)
≤ e2εf (∂iscal ∂if + 2 Ricij ∂if ∂jf) = 0.

Fix a point p ∈ M , and let γ : [0,∞) → M be the solution of the ODE
γ′(s) = −∂if(γ(s)) ∂

∂xi with initial condition γ(0) = p. It is easy to see that
γ(s) → p0 as s → ∞. Moreover, the function s �→ e2ε f(γ(s)) scal(γ(s)) is
monotone increasing. Thus, we conclude that

scal(p) ≤ e−2ε(f(p)−f(p0)) scal(p0)

for all points p ∈ M . This implies

scal(p) ≤ e−εσ d(p0,p) scal(p0)

for d(p0, p) ≥ 1.

Proposition 7.3 (L. Ma, D. Chen [49]). Let (M, g) be an expanding
gradient Ricci soliton which is complete and non-compact. Suppose that there
exists a point p0 ∈ M such that 0 < scal(p) ≤ scal(p0) for all points p ∈ M .



SPHERE THEOREMS IN GEOMETRY 79

Moreover, we assume that Ric ≥ ε scal g for some constant ε > 0. Then
there exists a constant α > 0 such that

scal(p) ≤ e−α d(p0,p)2 scal(p0)

for all points p ∈ M .

Proof of Proposition 7.3. Since (M, g) is an expanding gradient
Ricci soliton, there exists a smooth function f : M → R and a constant
ρ < 0 such that Ricij = ρ gij + D2

i,jf . This implies

∂iscal + 2 Ricij ∂jf = 0.

By assumption, the scalar curvature attains its maximum at the point p0.
This implies ∂iscal(p0) = 0. Since M has positive Ricci curvature, it follows
that ∂if(p0) = 0. Thus, p0 is a critical point of the function f . Since f is
strictly convex, p0 is the only critical point of f . Since Ric ≥ 0, we have
f(p) − f(p0) ≥ −1

2 ρ d(p0, p)2 for all p ∈ M .
As above, the inequality Ric ≥ ε scal g implies

∂i(e2ε f scal) ∂if ≤ 0.

Fix an arbitrary point p ∈ M , and let γ : [0,∞) → M be the solution
of the ODE γ′(s) = −∂if(γ(s)) ∂

∂xi with initial condition γ(0) = p. Then
γ(s) → p0 as s → ∞. Moreover, the function s �→ e2ε f(γ(s)) scal(γ(s)) is
monotone increasing. Therefore, we have

scal(p) ≤ e−2ε(f(p)−f(p0)) scal(p0) ≤ eερ d(p0,p)2 scal(p0)

for all points p ∈ M . Since ρ < 0, the assertion follows.
The following theorem generalizes Theorem 7.1 above:

Theorem 7.4. Let (M, g0) be a complete Riemannian manifold of dimen-
sion n ≥ 4 with bounded curvature. Suppose that there exists a positive con-
stant ε such that

R1313 + λ2 R1414 + μ2 R2323 + λ2μ2 R2424 − 2λμ R1234 ≥ ε scal > 0

for all orthonormal four-frames {e1, e2, e3, e4} and all λ, μ ∈ [−1, 1]. Then
M is compact.

Proof of Theorem 7.4. We argue by contradiction. Suppose that M
is non-compact. By work of Shi, we can find a maximal solution to the Ricci
flow with initial metric g0 (see [71], Theorem 1.1). Let us denote this solution
by g(t), t ∈ [0, T ). Using Proposition 13 in [10], one can show that there
exists a positive constant δ with the following property: for each t ∈ [0, T ),
the curvature tensor of (M, g(t)) satisfies

(26) R1313 + λ2 R1414 + μ2 R2323 + λ2μ2 R2424 − 2λμ R1234 ≥ δ scal
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for all orthonormal four-frames {e1, e2, e3, e4} and all λ, μ ∈ [−1, 1]. The
constant δ depends on ε and n, but not on t. In particular, the manifold
(M, g(t)) has positive sectional curvature for all t ∈ [0, T ).

By a theorem of Gromoll and Meyer, the injectivity radius of (M, g(t))
is bounded from below by

inj(M, g(t)) ≥ π√
N(t)

,

where N(t) = supp∈M scalg(t)(p) denotes the supremum of the scalar curva-
ture of (M, g(t)). There are three possibilities:

Case 1: Suppose that T < ∞. Let F be a pinching set with the property
that the curvature tensor of g(0) lies in F for all points p ∈ M . (The existence
of such a pinching set follows from Proposition 17 in [10].) Using Hamilton’s
maximum principle for systems, we conclude that the curvature tensor of
g(t) lies in F for all points p ∈ M and all t ∈ [0, T ).

Since T < ∞, we have supt∈[0,T ) N(t) = ∞. Hence, we can find a
sequence of times tk ∈ [0, T ) such that N(tk) → ∞. Let us dilate the mani-
folds (M, g(tk)) so that the maximum of the scalar curvature is equal to 1.
These rescaled manifolds converge to a limit manifold M̂ which has point-
wise constant sectional curvature. Using Schur’s lemma, we conclude that
M̂ has constant sectional curvature. Consequently, M̂ is compact by Myers
theorem. On the other hand, M̂ is non-compact, since it arises as a limit of
non-compact manifolds. This is a contradiction.

Case 2: Suppose that T = ∞ and supt∈[0,∞) t N(t) = ∞. By a result of
Hamilton, there exists a sequence of dilations of the solution (M, g(t)) which
converges to a singularity model of Type II (see [43], Theorem 16.2). We
denote this limit solution by (M̂, ĝ(t)). The solution (M̂, ĝ(t)) is defined for
all t ∈ (−∞,∞). Moreover, there exists a point p0 ∈ M̂ such that

scalĝ(t)(p) ≤ scalĝ(0)(p0) = 1

for all points (p, t) ∈ M̂ × (−∞,∞).
The manifold (M̂, ĝ(0)) satisfies the pinching estimate (26), as (26) is

scaling invariant. Moreover, it follows from the strict maximum principle
that scalĝ(0)(p) > 0 for all p ∈ M̂ . Therefore, the manifold (M̂, ĝ(0)) has
positive sectional curvature. Since (M̂, ĝ(0)) arises as a limit of complete,
non-compact manifolds, we conclude that (M̂, ĝ(0)) is complete and non-
compact. By a theorem of Gromoll and Meyer [28], the manifold M̂ is dif-
feomorphic to R

n.
It follows from Proposition 6.4 that (M̂, ĝ(0)) is a steady gradient Ricci

soliton. By Proposition 7.2, the scalar curvature of (M̂, ĝ(0)) decays expo-
nentially. Hence, a theorem of A. Petrunin and W. Tuschmann implies that
(M̂, ĝ(0)) is isometric to R

n (see [63], Theorem B). This contradicts the fact
that scalĝ(0)(p0) = 1.
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Case 3: Suppose that T = ∞ and supt∈[0,∞) t N(t) < ∞. By a result of
Hamilton, there exists a sequence of dilations of the solution (M, g(t)) which
converges to a singularity model of Type III (see [43], Theorem 16.2). We
denote this limit solution by (M̂, ĝ(t)). The solution (M̂, ĝ(t)) is defined for
all t ∈ (−A,∞), where A is a positive real number. Moreover, there exists a
point p0 ∈ M̂ such that

(A + t) · scalĝ(t)(p) ≤ A · scalĝ(0)(p0) = A

for all points (p, t) ∈ M̂ × (−A,∞).
As above, the manifold (M̂, ĝ(0)) satisfies the pinching estimate (26).

Moreover, the strict maximum principle implies that scalĝ(0)(p) > 0 for all
p ∈ M̂ . Consequently, the manifold (M̂, ĝ(0)) has positive sectional curva-
ture. Moreover, the manifold (M̂, ĝ(0)) is complete and non-compact, since
it arises as a limit of complete, non-compact manifolds. Therefore, M̂ is
diffeomorphic to R

n (see [28]).
By Proposition 6.5, the manifold (M̂, ĝ(0)) is an expanding gradient

Ricci soliton. Hence, Proposition 7.3 implies that the scalar curvature of
(M̂, ĝ(0)) decays exponentially. By Theorem B in [63], the manifold (M̂, ĝ(0))
is isometric to R

n. This contradicts the fact that scalĝ(0)(p0) = 1.
This completes the proof of Theorem 7.4.

Corollary 7.5. Let (M, g0) be a complete Riemannian manifold of
dimension n ≥ 4 with bounded curvature. Suppose that there exists a positive
constant ε such that 0 < K(π1) < (4− ε) K(π2) for all points p ∈ M and all
two-planes π1, π2 ⊂ TpM . Then M is compact.
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