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Abstract. In this survey paper, we briefly review various aspects
of the SYZ approach to mirror symmetry for non-Calabi-Yau
varieties, focusing in particular on Lagrangian fibrations and
wall-crossing phenomena in Floer homology. Various examples are
presented, some of them new.
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2 D. AUROUX

1. Introduction

While mirror symmetry first arose as a set of predictions relating Hodge
structures and quantum cohomology for Calabi-Yau 3-folds (see e.g. [8, 13]),
it has since been extended in spectacular ways. To mention just a few key
advances, Kontsevich’s homological mirror conjecture [26] has recast mir-
ror symmetry in the language of derived categories of coherent sheaves and
Fukaya categories; the Strominger-Yau-Zaslow (SYZ) conjecture [39] has
provided the basis for a geometric understanding of mirror symmetry; and
mirror symmetry has been extended beyond the Calabi-Yau setting, by con-
sidering Landau-Ginzburg models (see e.g. [23, 27]).

In this paper, we briefly discuss various aspects of mirror symmetry from
the perspective of Lagrangian torus fibrations, i.e. following the Strominger-
Yau-Zaslow philosophy [39]. We mostly focus on the case of Kähler manifolds
with effective anticanonical divisors, along the same general lines as [4]. The
two main phenomena that we would like to focus on here are, on one hand,
wall-crossing in Floer homology and its role in determining “instanton cor-
rections” to the complex geometry of the mirror; and on the other hand, the
possibility of “transferring” mirror symmetry from a given Kähler manifold
to a Calabi-Yau submanifold.

The paper is essentially expository in nature, expanding on the themes
already present in [4]. The discussion falls far short of the level of sophisti-
cation present in the works of Kontsevich-Soibelman [28, 29], Gross-Siebert
[18, 19], or Fukaya-Oh-Ohta-Ono [14, 15]; rather, our goal is to show how
various important ideas in the modern understanding of mirror symmetry
naturally arise from the perspective of a symplectic geometer, and to illus-
trate them by simple examples. Accordingly, most of the results mentioned
here are not new, though to our knowledge some of them have not appeared
anywhere in the literature.

Another word of warning is in order: we have swept under the rug many
of the issues related to the rigorous construction of Lagrangian Floer the-
ory, and generally speaking we take an optimistic view of issues such as the
existence of fundamental chains for moduli spaces of discs and the conver-
gence of various Floer-theoretic quantities. These happen not to be issues
in the examples we consider, but can be serious obstacles in the general
case.

The rest of this paper is organized as follows: in Section 2 we review the
SYZ approach to the construction of mirror pairs, and the manner in which
the mirror superpotential arises naturally as a Floer-theoretic obstruction in
the non Calabi-Yau case. Section 3 presents various elementary examples,
focusing on wall-crossing phenomena and instanton corrections. Section 4
discusses some issues related to convergent power series Floer homology.
Finally, Section 5 focuses on mirror symmetry in the relative setting, namely
for a Calabi-Yau hypersurface representing the anticanonical class inside a
Kähler manifold, or more generally for a complete intersection.
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2. Lagrangian tori and mirror symmetry

2.1. Lagrangian tori and the SYZ conjecture. The SYZ conjec-
ture essentially asserts that mirror pairs of Calabi-Yau manifolds should
carry dual special Lagrangian torus fibrations [39]. This statement should
be understood with suitable qualifiers (near the large complex structure
limit, with instanton corrections, etc.), but it nonetheless gives the basic
template for the geometric construction of mirror pairs.

From this perspective, to construct the mirror of a given Calabi-Yau
manifold X, one should first try to construct a special Lagrangian torus
fibration f : X → B. This is a difficult problem, but assuming it has been
solved, the first guess for the mirror manifold X∨ is then the total space of
the dual fibration f∨. Given a torus T , the dual torus T∨ = Hom(π1(T ), S1)
can be viewed as a moduli space of rank 1 unitary local systems (i.e., flat
unitary connections up to gauge equivalence) over T ; hence, points of the
dual fibration parametrize pairs consisting of a special Lagrangian fiber in
X and a unitary local system over it.

More precisely, let (X, J, ω) be a Kähler manifold of complex dimension
n, equipped with a nonvanishing holomorphic volume form Ω ∈ Ωn,0(X).
This is sometimes called an “almost Calabi-Yau” manifold (to distinguish
it from a genuine Calabi-Yau, where one would also require the norm of Ω
with respect to the Kähler metric to be constant). It is an elementary fact
that the restriction of Ω to a Lagrangian submanifold L ⊂ X is a nowhere
vanishing complex-valued n-form.

Definition 2.1. A Lagrangian submanifold L ⊂ X is special Lagrangian
if the argument of Ω|L is constant.

The value of the constant depends only on the homology class of L, and
we will usually normalize Ω so that it is a multiple of π/2. For simplicity, in
the rest of this paragraph we will assume that Ω|L is a positive real multiple
of the real volume form volg induced by the Kähler metric g = ω(·, J ·).

The following classical result is due to McLean [32] (in the Calabi-Yau
setting; see §9 of [24] or Proposition 2.5 of [4] for the almost Calabi-Yau
case):

Proposition 2.2 (McLean). Infinitesimal special Lagrangian deforma-
tions of L are in one to one correspondence with cohomology classes in
H1(L, R). Moreover, the deformations are unobstructed.
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Specifically, a section of the normal bundle v ∈ C∞(NL) determines a
1-form α = −ιvω ∈ Ω1(L, R) and an (n − 1)-form β = ιvIm Ω ∈ Ωn−1(L, R).
These satisfy β = ψ ∗g α, where ψ ∈ C∞(L, R+) is the ratio between the
volume elements determined by Ω and g, i.e. the norm of Ω with respect
to the Kähler metric; moreover, the deformation is special Lagrangian if
and only if α and β are both closed. Thus special Lagrangian deformations
correspond to “ψ-harmonic” 1-forms

−ιvω ∈ H1
ψ(L) = {α ∈ Ω1(L, R) | dα = 0, d∗(ψα) = 0}.

In particular, special Lagrangian tori occur in n-dimensional families, giving
a local fibration structure provided that nontrivial ψ-harmonic 1-forms have
no zeroes.

The base B of a special Lagrangian torus fibration carries two natural
affine structures, which we call “symplectic” and “complex”. The first one,
which encodes the symplectic geometry of X, locally identifies B with a
domain in H1(L, R) (L ≈ Tn). At the level of tangent spaces, the cohomology
class of −ιvω provides an identification of TB with H1(L, R); integrating, the
local affine coordinates on B are the symplectic areas swept by loops forming
a basis of H1(L). The other affine structure encodes the complex geometry
of X, and locally identifies B with a domain in Hn−1(L, R). Namely, one
uses the cohomology class of ιvIm Ω to identify TB with Hn−1(L, R), and
the affine coordinates are obtained by integrating Im Ω over the n-chains
swept by cycles forming a basis of Hn−1(L).

The dual special Lagrangian fibration can be constructed as a moduli
space M of pairs (L,∇), where L ⊂ X is a special Lagrangian fiber and ∇
is a rank 1 unitary local system over L. The local geometry of M is well-
understood (cf. e.g. [20, 30, 17]); in particular we have the following result
(cf. e.g. §2 of [4]):

Proposition 2.3. Let M be the moduli space of pairs (L,∇), where L
is a special Lagrangian torus in X and ∇ is a flat U(1) connection on the
trivial complex line bundle over L up to gauge. Then M carries a natural
integrable complex structure J∨ arising from the identification

T(L,∇)M = {(v, α) ∈ C∞(NL) ⊕ Ω1(L, R) | − ιvω + iα ∈ H1
ψ(L) ⊗ C},

a holomorphic n-form

Ω∨((v1, α1), . . . , (vn, αn)) =
∫

L
(−ιv1ω + iα1) ∧ · · · ∧ (−ιvnω + iαn),

and a compatible Kähler form

ω∨((v1, α1), (v2, α2)) =
∫

L
α2 ∧ ιv1Im Ω − α1 ∧ ιv2Im Ω

(this formula for ω∨ assumes that
∫
L Re Ω has been suitably normalized).
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In particular, M can be viewed as a complexification of the moduli
space of special Lagrangian submanifolds; forgetting the connection gives
a projection map f∨ from M to the real moduli space B. The fibers of this
projection are easily checked to be special Lagrangian tori in the almost
Calabi-Yau manifold (M, J∨, ω∨, Ω∨).

This special Lagrangian fibration on M is fiberwise dual to the one
previously considered on X; they have the same base B, and passing from
one fibration to the other simply amounts to exchanging the roles of the two
affine structures on B.

In real life, unless we restrict ourselves to complex tori, we have to con-
sider special Lagrangian torus fibrations with singularities. The base of the
fibration is then a singular affine manifold, and the picture discussed above
only holds away from the singularities. A natural idea would be to obtain
the mirror by first constructing the dual fibration away from the singulari-
ties, and then trying to extend it over the singular locus. Unfortunately, this
cannot be done directly; instead we need to modify the complex geometry
of M by introducing instanton corrections.

To give some insight into the geometric meaning of these corrections,
consider the SYZ conjecture from the perspective of homological mirror
symmetry.

Recall that Kontsevich’s homological mirror symmetry conjecture [26]
predicts that the derived category of coherent sheaves DbCoh(X∨) of the
mirror X∨ is equivalent to the derived Fukaya category of X. For any point
p ∈ X∨, the skyscraper sheaf Op is an object of the derived category. Since
Ext∗(Op,Op) � H∗(Tn; C) (as a graded vector space), we expect that Op

corresponds to some object Lp of the derived Fukaya category of X such that
End(Lp) � H∗(Tn). It is natural to conjecture that, generically, the object
Lp is a Lagrangian torus in X with trivial Maslov class, equipped with a
rank 1 unitary local system, and such that HF ∗(Lp,Lp) � H∗(Tn) (as a
graded vector space). This suggests constructing the mirror X∨ as a moduli
space of such objects of the Fukaya category of X. (However it could still be
the case that some points of X∨ cannot be realized by honest Lagrangian
tori in X.)

In the Calabi-Yau setting, it is expected that “generically” (i.e., sub-
ject to a certain stability condition) the Hamiltonian isotopy class of the
Lagrangian torus Lp should contain a unique special Lagrangian represen-
tative [40, 41]. Hence it is natural to restrict one’s attention to special
Lagrangians, whose geometry is richer than that of Lagrangians: for instance,
the moduli space considered in Proposition 2.3 carries not only a complex
structure, but also a symplectic structure. However, if we only care about
the complex geometry of the mirror X∨ and not its symplectic geometry,
then it should not be necessary to consider special Lagrangians.

On the other hand, due to wall-crossing phenomena, the “convergent
power series” version of Lagrangian Floer homology which is directly rele-
vant to the situation here is not quite invariant under Hamiltonian isotopies
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(see e.g. [10], and Section 4 below). Hence, we need to consider a corrected
equivalence relation on the moduli space of Lagrangian tori in X equipped
with unitary local systems. Loosely speaking, we’d like to say that two
Lagrangian tori (equipped unitary local systems) are equivalent if they
behave interchangeably with respect to convergent power series Floer homol-
ogy; however, giving a precise meaning to this statement is rather tricky.

2.2. Beyond the Calabi-Yau case: Landau-Ginzburg models.
Assume now that (X, J, ω) is a Kähler manifold of complex dimension n,
and that D ⊂ X is an effective divisor representing the anticanonical class,
with at most normal crossing singularities. Then the inverse of the defining
section of D is a section of the canonical line bundle KX over X \ D, i.e. a
holomorphic volume form Ω ∈ Ωn,0(X \ D) with simple poles along D.

We can try to construct a mirror to the almost Calabi-Yau manifold X\D
just as above, by considering a suitable moduli space of (special) Lagrangian
tori in X \ D equipped with unitary local systems. The assumption on the
behavior of Ω near D is necessary for the existence of a special Lagrangian
torus fibration with the desired properties: for instance, a neighborhood of
the origin in C equipped with Ω = zk dz does not contain any compact
special Lagrangians unless k = −1.

Compared to X \ D, the manifold X contains essentially the same
Lagrangians. However, (special) Lagrangian tori in X \ D typically bound
families of holomorphic discs in X, which causes their Floer homology to
be obstructed in the sense of Fukaya-Oh-Ohta-Ono [14]. Namely, Floer the-
ory associates to L = (L,∇) (where L is a Lagrangian torus in X \ D and
∇ is a flat U(1) connection on the trivial line bundle over L) an element
m0(L) ∈ CF ∗(L,L), given by a weighted count of holomorphic discs in
(X, L).

More precisely, recall that in Fukaya-Oh-Ohta-Ono’s approach the Floer
complex CF ∗(L,L) is generated by chains on L (with suitable coefficients),
and its element m0(L) is defined as follows (see [14] for details). Given a class
β ∈ π2(X, L), the moduli space Mk(L, β) of holomorphic discs in (X, L) with
k boundary marked points representing the class β has expected dimension
n−3+k +μ(β), where μ(β) is the Maslov index; when L ⊂ X \D is special
Lagrangian, μ(β) is simply twice the algebraic intersection number β·[D] (see
e.g. Lemma 3.1 of [4]). This moduli space can be compactified by adding
bubbled configurations. Assuming regularity, this yields a manifold with
boundary, which carries a fundamental chain [Mk(L, β)]; otherwise, various
techniques can be used to define a virtual fundamental chain [Mk(L, β)]vir,
usually dependent on auxiliary perturbation data. The (virtual) fundamen-
tal chain of M1(L, β) can be pushed forward by the evaluation map at the
marked point, ev : M1(L, β) → L, to obtain a chain in L: then one sets

(2.1) m0(L) =
∑

β∈π2(X,L)

zβ(L) ev∗[M1(L, β)]vir,



SPECIAL LAGRANGIAN FIBRATIONS 7

where the coefficient zβ(L) reflects weighting by symplectic area:

(2.2) zβ(L) = exp(−
∫
β ω) hol∇(∂β) ∈ C

∗,

or zβ(L) = T
∫

β ω hol∇(∂β) ∈ Λ0 if using Novikov coefficients to avoid con-
vergence issues (see below).

Note that zβ as defined by (2.2) is locally a holomorphic function with
respect to the complex structure J∨ introduced in Proposition 2.3. Indeed,
recall that the tangent space to the moduli space M is identified with the
space of complex-valued ψ-harmonic 1-forms on L; the differential of log zβ

is just the linear form on H1
ψ(L) ⊗ C given by integration on the homology

class ∂β ∈ H1(L).
In this paper we will mostly consider weakly unobstructed Lagrangians,

i.e. those for which m0(L) is a multiple of the unit (the fundamental cycle of
L). In that case, the Floer differential on CF ∗(L,L) does square to zero, but
given two Lagrangians L,L′ we find that CF ∗(L,L′) may not be well-defined
as a chain complex. To understand the obstruction, recall that the count of
holomorphic triangles equips CF ∗(L,L′) with the structure of a left module
over CF ∗(L,L) and a right module over CF ∗(L′,L′). Writing m2 for both
module maps, an analysis of the boundary of 1-dimensional moduli spaces
shows that the differential on CF ∗(L,L′) squares to

m2(m0(L′), ·) − m2(·,m0(L)).

The assumption that m0 is a multiple of the identity implies that Floer
homology is only defined for pairs of Lagrangians which have the same m0.
Moreover, even though the Floer homology group HF ∗(L,L) can still be
defined, it is generically zero due to contributions of holomorphic discs in
(X, L) to the Floer differential; in that case L is a trivial object of the Fukaya
category.

On the mirror side, these features of the theory can be replicated by the
introduction of a superpotential, i.e. a holomorphic function W : X∨ → C

on the mirror of X \ D. W can be thought of as an obstruction term for the
B-model on X∨, playing the same role as m0 for the A-model on X. More
precisely, homological mirror symmetry predicts that the derived Fukaya
category of X is equivalent to the derived category of singularities of the
mirror Landau-Ginzburg model (X∨, W ) [25, 33]. This category is actually
a collection of categories indexed by complex numbers, just as the derived
Fukaya category of X is a collection of categories indexed by the values of m0.

Given λ ∈ C, one defines Db
sing(W, λ) = DbCoh(W−1(λ))/ Perf(W−1(λ)),

the quotient of the derived category of coherent sheaves on the fiber W−1(λ)
by the subcategory of perfect complexes. Since for smooth fibers the derived
category of coherent sheaves is generated by vector bundles, this quotient
is trivial unless λ is a critical value of W ; in particular, a point of X∨

defines a nontrivial object of the derived category of singularities only if it
is a critical point of W . Alternatively, this category can also be defined in
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terms of matrix factorizations. Assuming X∨ to be affine for simplicity, a
matrix factorization is a Z/2-graded projective C[X∨]-module together with
an odd endomorphism δ such that δ2 = (W − λ) id. For a fixed value of λ,
matrix factorizations yield a Z/2-graded dg-category, whose cohomological
category is equivalent to Db

sing(W, λ) by a result of Orlov [33]. However, if
we consider two matrix factorizations (P1, δ1) and (P2, δ2) associated to two
values λ1, λ2 ∈ C, then the differential on hom((P1, δ1), (P2, δ2)) squares to
(λ1 − λ2) id, similarly to the Floer differential on the Floer complex of two
Lagrangians with different values of m0.

This motivates the following conjecture:

Conjecture 2.4. The mirror of X is the Landau-Ginzburg model
(X∨, W ), where

(1) X∨ is a mirror of the almost Calabi-Yau manifold X \ D, i.e. a
(corrected and completed) moduli space of special Lagrangian tori
in X \ D equipped with rank 1 unitary local systems;

(2) W : X∨ → C is a holomorphic function defined as follows: if p ∈
X∨ corresponds to a special Lagrangian Lp = (L,∇), then

(2.3) W (p) =
∑

β∈π2(X,L), μ(β)=2

nβ(Lp) zβ(Lp),

where nβ(Lp) is the degree of the evaluation chain ev∗[M1(L, β)]vir,
i.e., the (virtual) number of holomorphic discs in the class β passing
through a generic point of L, and the weight zβ(Lp) is given by
(2.2).

There are several issues with the formula (2.3). To start with, except in
specific cases (e.g. Fano toric varieties), there is no guarantee that the sum
in (2.3) converges. The rigorous way to deal with this issue is to work over
the Novikov ring

(2.4) Λ0 =
{∑

i
ai T

λi

∣∣∣ ai ∈ C, λi ∈ R≥0, λi → +∞
}

rather than over complex numbers. Holomorphic discs in a class β are then
counted with weight T

∫
β ω hol∇(∂β) instead of exp(−

∫
β ω) hol∇(∂β). Assum-

ing convergence, setting T = e−1 recovers the complex coefficient version.
Morally, working over Novikov coefficients simultaneously encodes the

family of mirrors for X equipped with the family of Kähler forms κω, κ ∈
R+. Namely, the mirror manifold should be constructed as a variety defined
over the Novikov field Λ (the field of fractions of Λ0), and the superpotential
as a regular function with values in Λ. If convergence holds, then setting
T = exp(−κ) recovers the complex mirror to (X, κω); if convergence fails
for all values of T , the mirror might actually exist only in a formal sense
near the large volume limit κ → ∞.
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Another issue with Conjecture 2.4 is the definition of the numbers
nβ(Lp). Roughly speaking, the value of the superpotential is meant to be
“the coefficient of the fundamental chain [L] in m0”. However, in real life not
all Lagrangians are weakly unobstructed: due to bubbling of Maslov index
0 discs, for a given class β with μ(β) = 2 the chain ev∗[M1(L, β)]vir is in
general not a cycle. Thus we can still define nβ to be its “degree” (or mul-
tiplicity) at some point q ∈ L, but the answer depends on the choice of q.
Alternatively, we can complete the chain to a cycle, e.g. by choosing a “weak
bounding cochain” in the sense of Fukaya-Oh-Ohta-Ono [14], or more geo-
metrically, by considering not only holomorphic discs but also holomorphic
“clusters” in the sense of Cornea-Lalonde [12]; however, nβ will then depend
on some auxiliary data (in the cluster approach, a Morse function on L).

Even if we equip each L with the appropriate auxiliary data (e.g. a base
point or a Morse function), the numbers nβ will typically vary in a discontin-
uous manner due to wall-crossing phenomena. However, recall that X∨ dif-
fers from the naive moduli space of Proposition 2.3 by instanton corrections.
Namely, X∨ is more accurately described as a (completed) moduli space of
Lagrangian tori L ⊂ X \ D equipped with not only a U(1) local system but
also the auxiliary data needed to make sense of the Floer theory of L in gen-
eral and of the numbers nβ in particular. The equivalence relation on this set
of Lagrangians equipped with extra data is Floer-theoretic in nature. Gen-
eral considerations about wall-crossing and continuation maps in Floer the-
ory imply that, even though the individual numbers nβ depend on the choice
of a representative in the equivalence class, by construction the superpoten-
tial W given by (2.3) is a single-valued smooth function on the corrected
moduli space. The reader is referred to §19.1 in [14] and §3 in [4] for details.

In this paper we will assume that things don’t go completely wrong,
namely that our Lagrangians are weakly unobstructed except when they lie
near a certain collection of walls in the moduli space. In this case, the process
which yields the corrected moduli space from the naive one can be thought
of decomposing M into chambers over which the nβ are locally constant,
and gluing these chambers by analytic changes of coordinates dictated by
the enumerative geometry of Maslov index 0 discs on the wall. Thus, the
analyticity of W on the corrected mirror follows from that of zβ on the
uncorrected moduli space.

One last thing to mention is that the incompleteness of the Kähler metric
on X \D causes the moduli space of Lagrangians to be similarly incomplete.
This is readily apparent if we observe that, since |zβ| = exp(−

∫
β ω), each

variable zβ appearing in the sum (2.3) takes values in the unit disc. We will
want to define the mirror of X to be a larger space, obtained by analytic
continuation of the instanton-corrected moduli space of Lagrangian tori (i.e.,
roughly speaking, allowing |zβ| to be arbitrarily large). One way to think of
the points of X∨ added in the completion process is as Lagrangian tori in
X \ D equipped with non-unitary local systems; however this can lead to
serious convergence issues, even when working over the Novikov ring.
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Another way to think about the completion process, under the assump-
tion that D is nef, is in terms of inflating X along D, i.e replacing the
Kähler form ω by ωt = ω + tη where the (1, 1)-form η is Poincaré dual to
D and supported in a neighborhood of D; this “enlarges” the moduli space
of Lagrangians near D, and simultaneously increases the area of all Maslov
index 2 discs by t, i.e. rescales the superpotential by a factor of e−t. Taking
the limit as t → ∞ (and rescaling the superpotential appropriately) yields
the completed mirror.

2.3. Example: Fano toric varieties. Let (X, ω, J) be a smooth toric
variety of complex dimension n. In this section we additionally assume that
X is Fano, i.e. its anticanonical divisor is ample. As a Kähler manifold, X
is determined by its moment polytope Δ ⊂ R

n, a convex polytope in which
every facet admits an integer normal vector, n facets meet at every vertex,
and their primitive integer normal vectors form a basis of Z

n. The moment
map φ : X → R

n identifies the orbit space of the Tn-action on X with Δ.
From the point of view of complex geometry, the preimage of the interior
of Δ is an open dense subset U of X, biholomorphic to (C∗)n, on which
Tn = (S1)n acts in the standard manner. Moreover X admits an open cover
by affine subsets biholomorphic to C

n, which are the preimages of the open
stars of the vertices of Δ (i.e., the union of all the strata whose closure
contains the given vertex).

For each facet F of Δ, the preimage φ−1(F ) = DF is a hypersurface in
X; the union of these hypersurfaces defines the toric anticanonical divisor
D =

∑
F DF . The standard holomorphic volume form on (C∗)n � U =

X \ D, defined in coordinates by Ω = d log x1 ∧ · · · ∧ d log xn, determines a
section of KX with poles along D.

It is straightforward to check that the orbits of the Tn-action are special
Lagrangian with respect to ω and Ω. Thus the moment map determines a
special Lagrangian fibration on X \ D, with base B = int(Δ); by definition,
the symplectic affine structure induced on B by the identification TB ≈
H1(L, R) is precisely the standard one coming from the inclusion of B in R

n

(up to a scaling factor of 2π).
Consider a Tn-orbit L in the open stratum X \ D ≈ (C∗)n, and a flat

U(1)-connection ∇ on the trivial bundle over L. Let

zj(L,∇) = exp(−2πφj(L)) hol∇(γj),

where φj is the j-th component of the moment map, i.e. the Hamiltonian for
the action of the j-th factor of Tn, and γj = [S1(rj)] ∈ H1(L) is the homology
class corresponding to the j-th factor in L = S1(r1) × · · · × S1(rn) ⊂ (C∗)n.
Then z1, . . . , zn are holomorphic coordinates on the moduli space M of pairs
(L,∇) equipped with the complex structure J∨ of Proposition 2.3.

For each facet F of Δ, denote by ν(F ) ∈ Z
n the primitive integer normal

vector to F pointing into Δ, and let α(F ) ∈ R be the constant such that the
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equation of F is 〈ν(F ), φ〉+α(F ) = 0. Moreover, given a = (a1, . . . , an) ∈ Z
n

we denote by za the Laurent monomial za1
1 . . . zan

n .

Proposition 2.5. The SYZ mirror to the smooth Fano toric variety X
is (C∗)n equipped with a superpotential given by the Laurent polynomial

(2.5) W =
∑

F facet

e−2πα(F ) zν(F ).

More precisely, the moduli space M of pairs (L,∇) is biholomorphic to the
bounded open subset of (C∗)n consisting of all points (z1, . . . , zn) such that
each term in the sum (2.5) has norm less than 1; however, the completed
mirror is all of (C∗)n.

Proposition 2.5 is a well-known result, which appears in many places;
for completeness we give a very brief sketch of a geometric proof (see also
[21, 11, 4, 15] for more details).

Sketch of proof. Consider a pair (L,∇) as above, and recall that L
can be identified with a product torus S1(r1) × · · · × S1(rn) inside (C∗)n.
It follows from the maximum principle that L does not bound any non-
constant holomorphic discs in (C∗)n; since the Maslov index of a disc in
(X, L) is twice its intersection number with the toric divisor D, this elimi-
nates the possibility of Maslov index 0 discs. Moreover, since X is Fano, all
holomorphic spheres in X have positive Chern number. It follows that the
moduli spaces of Maslov index 2 holomorphic discs in (X, L) are all compact,
and that we do not have to worry about possible contributions from bubble
trees of total Maslov index 2; this is in sharp contrast with the non-Fano
case, see §3.2.

A holomorphic disc of Maslov index 2 in (X, L) intersects D at a single
point, and in particular it intersects only one of the components, say DF

for some facet F of Δ. Cho and Oh [11] observed that for each facet F
there is a unique such disc whose boundary passes through a given point
x0 = (x0

1, . . . , x
0
n) ∈ L; in terms of the components (ν1, . . . , νn) of the normal

vector ν(F ), this disc can be parametrized by the map

(2.6) w �→ (wν1x0
1, . . . , w

νnx0
n)

(for w ∈ D2 \{0}; the point w = 0 corresponds to the intersection with DF ).
This is easiest to check in the model case where X = C

n, the moment
polytope is the positive octant R

n
≥0, and the normal vectors to the facets

form the standard basis of Z
n. Namely, the maximum principle implies that

holomorphic discs of Maslov index 2 with boundary in a product torus in
C

n are given by maps with only one non-constant component, and up to
reparametrization that non-constant component can be assumed to be lin-
ear. The general case is proved by working in an affine chart centered at a
vertex of Δ adjacent to the considered facet F , and using a suitable change
of coordinates to reduce to the previous case.
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A careful calculation shows that the map (2.6) is regular, and that its
contribution to the signed count of holomorphic discs is +1. Moreover, it
follows from the definition of the moment map that the symplectic area of
this disc is 2π(〈ν(F ), φ(L)〉 + α(F )). (This is again easiest to check in the
model case of C

n; the general case follows by performing a suitable change of
coodinates). Exponentiating and multiplying by the appropriate holonomy
factor, one arrives at (2.5).

Finally, recall that the interior of Δ is defined by the inequalities 〈ν(F ),
φ(L)〉+α(F ) > 0 for every facet F ; exponentiating, this corresponds exactly
to the constraint that |e−2πα(F )zν(F )| < 1 for every facet F . However, adding
the Poincaré dual of tD to ω enlarges the moment polytope by t/2π in every
direction, i.e. it increases α(F ) by t/2π for all facets. This makes M a larger
subset of (C∗)n; rescaling W by et and taking the limit as t → +∞, we
obtain all of (C∗)n as claimed. �

3. Examples of wall-crossing and instanton corrections

3.1. First examples. In this section we give two simple examples
illustrating the construction of the mirror and the process of instanton cor-
rections. The first example is explained in detail in §5 of [4], while the second
example is the starting point of [2]; the two examples are in fact very similar.

Example 3.1.1. Consider X = C
2, equipped with a toric Kähler form

ω and the holomorphic volume form Ω = dx ∧ dy/(xy − ε), which has poles
along the conic D = {xy = ε}. Then X \ D carries a fibration by special
Lagrangian tori

Tr,λ = {(x, y) ∈ C
2, |xy − ε| = r, μS1(x, y) = λ},

where μS1 is the moment map for the S1-action eiθ · (x, y) = (eiθx, e−iθy),
for instance μS1(x, y) = 1

2(|x|2 − |y|2) for ω = i
2(dx ∧ dx̄ + dy ∧ dȳ). These

tori are most easily visualized in terms of the projection f : (x, y) �→ xy,
whose fibers are affine conics, each of which carries a S1-action. The torus
Tr,λ lies in the preimage by f of a circle of radius r centered at ε, and
consists of a single S1-orbit inside each fiber. In particular, Tr,λ is smooth
unless (r, λ) = (|ε|, 0), where we have a nodal singularity at the origin. One
can check that Tr,λ is special Lagrangian either by direct calculation, or by
observing that Tr,λ is the lift of a special Lagrangian circle in the reduced
space Xred,λ = μ−1

S1 (λ)/S1 equipped with the reduced Kähler form ωred,λ and
the reduced holomorphic volume form Ωred,λ = ι(∂/∂θ)#Ω = i d log(xy − ε);
see §5 of [4].

As seen in §2, away from (r, λ) = (|ε|, 0) the moduli space M of pairs
consisting of a torus L = Tr,λ and a U(1) local system ∇ carries a natural
complex structure, for which the functions zβ = exp(−

∫
β ω) hol∇(∂β), β ∈

π2(X, L) are holomorphic.
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Figure 1. The special Lagrangian torus Tr,λ in C
2 \ D

Wall-crossing occurs at r = |ε|, namely the tori T|ε|,λ for λ > 0 intersect
the x-axis in a circle, and thus bound a holomorphic disc contained in the
fiber f−1(0), which has Maslov index 0. Denote by α the relative homotopy
class of this disc, and by w = zα the corresponding holomorphic weight,
which satisfies |w| = e−λ. Similarly the tori T|ε|,λ for λ < 0 bound a holo-
morphic disc contained in the y-axis, representing the relative class −α and
with associated weight z−α = w−1.

Since the projection f is holomorphic, holomorphic discs of Maslov index
2 in (C2, Tr,λ) are sections of f over the disc of radius r centered at ε.
When r > |ε| there are two families of such discs; these can be found either
by explicit calculation, or by deforming Tr,λ to a product torus S1(r1) ×
S1(r2) (by deforming the circle centered at ε to a circle centered at the
origin, without crossing ε), for which the discs are simply D2(r1) × {y}
and {x} × D2(r2). Denote by β1 and β2 respectively the classes of these
discs, and by z1 and z2 the corresponding weights, which satisfy z1/z2 =
w. In terms of these coordinates on M the superpotential is then given
by W = z1 + z2.

On the other hand, when r < |ε| there is only one family of Maslov index
2 discs in (C2, Tr,λ). This is easiest to see by deforming Tr,λ to the Chekanov
torus |xy−ε| = r, |x| = |y| (if ω is invariant under x ↔ y this is simply Tr,0);
then the maximum principle applied to y/x implies that Maslov index 2 discs
are portions of lines y = ax, |a| = 1. Denoting by β0 the class of this disc,
and by u the corresponding weight, in the region r < |ε| the superpotential
is W = u.

When we increase the value of r past r = |ε|, for λ > 0, the family of
holomorphic discs in the class β0 deforms naturally into the family of discs in
the class β2 mentioned above; the coordinates on M naturally glue according
to u = z2, w = z1/z2. On the other hand, for λ < 0 the class β0 deforms
naturally into the class β1, so that the coordinates glue according to u = z1,
w = z1/z2. The discrepancy in these gluings is due to the monodromy of
our special Lagrangian fibration around the singular fiber T|ε|,0, which acts
nontrivially on π2(C2, Tr,λ): while the coordinate w is defined globally on
M , z1 and z2 do not extend to global coordinates.
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There are now two issues: the complex manifold M does not extend
across the singularity at (r, λ) = (|ε|, 0), and the superpotential W is dis-
continuous across the walls. Both issues are fixed simultaneously by instan-
ton corrections. Namely, we correct the coordinate change across the wall
r = |ε|, λ > 0 to u = z2(1 + w). The correction factor 1 + w indicates that,
upon deforming Tr,λ by increasing the value of r past |ε|, Maslov index 2
discs in the class β0 give rise not only to discs in the class β2 (by a straight-
forward deformation), but also to new discs in the class β1 = β2 + α formed
by attaching the exceptional disc bounded by T|ε|,λ. Similarly, across r = |ε|,
λ < 0, we correct the gluing to u = z1(1 + w−1), to take into account the
exceptional disc in the class −α bounded by T|ε|,λ.

The corrected gluings both come out to be u = z1 + z2, which means
that we now have a well-defined mirror X∨, carrying a well-defined super-
potential W = u = z1 + z2. More precisely, using the coordinates (u, w) on
the chamber r < |ε|, and the coordinates (v, w) with v = z−1

2 and w = z1/z2
on the chamber r > |ε|, we claim that the corrected and completed mirror is

X∨ = {(u, v, w) ∈ C
2 × C

∗, uv = 1 + w}, W = u.

More precisely, the region r > |ε| of our special Lagrangian fibration corre-
sponds to |z1| and |z2| small, i.e. |v| large; whereas the region r < |ε| cor-
responds to |u| large compared to e−|ε|. When considering M we also have
|u| < 1, as |u| → 1 corresponds to r → 0, but this constraint is removed
by the completion process, which enlarges X along the conic xy = ε by
symplectic inflation. It turns out that we also have to complete X∨ in the
“intermediate” region where u and v are both small, in particular allowing
these variables to vanish; for otherwise, the corrected mirror would have
“gaps” in the heavily corrected region near (r, λ) = (|ε|, 0). Let us also point
out that X∨ is again the complement of a conic in C

2.
General features of wall-crossing in Floer theory ensure that, when cross-

ing a wall, holomorphic disc counts (and hence the superpotential) can be
made to match by introducing a suitable analytic change of coordinates,
consistently for all homotopy classes (see §19.1 of [14] and §3 of [4]). For
instance, if we compactified C

2 to CP
2 or CP

1 × CP
1, then the tori Tr,λ

would bound additional families of Maslov index 2 holomorphic discs (pass-
ing through the divisors at infinity), leading to additional terms in the
superpotential; however, these terms also match under the corrected glu-
ing u = z1 + z2 (see §5 of [4]).

Example 3.1.2. Consider C
2 equipped with the standard holomorphic

volume form d log x∧d log y (with poles along the coordinate axes), and blow
up the point (1, 0). This yields a complex manifold X equipped with the holo-
morphic volume form Ω = π∗(d log x ∧ d log y), with poles along the proper
transform D of the coordinate axes. Observe that the S1-action eiθ · (x, y) =
(x, eiθy) lifts to X, and consider an S1-invariant Kähler form ω for which
the area of the exceptional divisor is ε. Denote by μS1 : X → R the moment
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map for the S1-action, normalized to equal 0 on the proper transform of the
x-axis and ε at the isolated fixed point. Then the S1-invariant tori

Lr,λ = {|π∗x| = r, μS1 = λ}

define a special Lagrangian fibration on X \ D, with a nodal singularity at
the isolated fixed point (for (r, λ) = (1, ε)) [2].

The base of this special Lagrangian fibration is pictured on Figure 2,
where the vertical axis corresponds to the moment map, and a cut has been
made below the singular point to depict the monodromy of the symplectic
affine structure.

For r = 1 the Lagrangian tori Lr,λ bound exceptional holomorphic discs,
which causes wall-crossing: for λ > ε, L1,λ bounds a Maslov index 0 disc in
the proper transform of the line x = 1, whereas for λ < ε, L1,λ splits the
exceptional divisor of the blowup into two discs, one of which has Maslov
index 0. Thus, we have to consider the chambers r > 1 and r < 1 separately.

When r < 1, the Lagrangian torus Lr,λ bounds two families of Maslov
index 2 discs. One family consists of the portions where μS1 < λ of the
lines x = constant; we denote by δ the homotopy class of these discs, and
by z (= zδ) the corresponding holomorphic coordinate on M , which sat-
isfies |z| = e−λ. The other family consists of discs intersecting the y-axis,
and is easiest to see by deforming Lr,λ to a product torus, upon which it
becomes the family of discs of radius r in the lines y = constant. (In fact,
Lr,λ is typically already a product torus for r sufficiently different from 1,
when it lies in the region where the blow-up operation does not affect the
Kähler form.) We denote by β the class of these discs, and by u the corre-
sponding holomorphic coordinate on M . The coordinates u and z on M can
be thought of as (exponentiated) complexifications of the affine coordinates
on the base pictured on Figure 2.

On the other hand, when r > 1 the torus Lr,λ bounds three families of
Maslov index 2 discs. As before, one of these families consists of the por-
tions where μS1 < λ of the lines x = constant, contributing z = zδ to

Figure 2. A special Lagrangian fibration on the blowup of C
2
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the superpotential. The two other families intersect the y-axis, and can be
described explicitly when Lr,λ is a product torus (away from the blown up
region): one consists as before of discs of radius r in the lines y = constant,
while the other one consists of the proper transforms of discs which hit the
x-axis at (1, 0), namely the family of discs z �→ (rz, ρ(rz − 1)/(r − z)) for
fixed |ρ|. Denote by v the complexification of the right-pointing affine coor-
dinate on Figure 2 in the chamber r > 1, normalized so that, if we ignore
instanton corrections, the gluing across the wall (r = 1, λ > ε) is given by
u = v−1. Then the two families of discs intersecting the y-axis contribute
respectively v−1 and eεzv−1 to the superpotential; the first family survives
the wall-crossing at r = 1, while the second one degenerates by bubbling of
an exceptional disc (the part of the proper transform of the line x = 1 where
μS1 < λ). This phenomenon is pictured on Figure 2 (where the various discs
are abusively represented as tropical curves, which actually should be drawn
in the complex affine structure).

Thus the instanton-corrected gluing is given by u = v−1 + eεzv−1 across
the wall (r = 1, λ > ε); and a similar analysis shows that the portion of
the wall where λ < ε also gives rise to the same instanton-corrected gluing.
Thus, the instanton-corrected and completed mirror is given by

X∨ = {(u, v, z) ∈ C
2 × C

∗, uv = 1 + eεz}, W = u + z.

(Before completing the mirror by symplectically enlarging X, we would
impose the restrictions |u| < 1 and |z| < 1.) The reader is referred to [2] for
more details.

Remark. The above examples are particularly simple, as they involve a sin-
gle singularity of the special Lagrangian fibration and a single wall-crossing
correction. In more complicated examples, additional walls are generated by
intersections between the “primary” walls emanating from the singularities;
in the end there are infinitely many walls, and hence infinitely many instan-
ton corrections to take into account when constructing the mirror. A frame-
work for dealing with such situations has been introduced by Kontsevich
and Soibelman [29], see also the work of Gross and Siebert [18, 19].

3.2. Beyond the Fano case: Hirzebruch surfaces. The construc-
tion of the mirror superpotential for toric Fano varieties is well-understood
(see e.g. [21, 11, 4, 15] for geometric derivations), and has been briefly
summarized in §2.3 above. As pointed out to the author by Kenji Fukaya, in
the non-Fano case the superpotential differs from the formula in Proposition
2.5 by the presence of additional terms, which count the virtual contribu-
tions of Maslov index 2 configurations consisting of a disc of Maslov index 2
or more together with a collection of spheres of non-positive Chern number.
A non-explicit formula describing the general shape of the additional terms
has been given by Fukaya-Oh-Ohta-Ono: compare Theorems 3.4 and 3.5 in
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[15]. In this section we derive an explicit formula for the full superpotential
in the simplest example, using wall-crossing calculations.

The simplest non-Fano toric examples are rational ruled surfaces, namely
the Hirzebruch surfaces Fn = P(OP1 ⊕ OP1(n)) for n ≥ 2. The mirror of Fn

is still (C∗)2, but with a superpotential of the form W = W0+ additional
terms [15], where W0 is given by (2.5), namely in this case

(3.1) W0(x, y) = x + y +
e−[ω]·[Sn]

xyn
+

e−[ω]·[F ]

y
,

where [F ] ∈ H2(Fn) is class of the fiber, and [Sn] is the class of a section
of square n. The superpotential W0 has n + 2 critical points, four of which
lie within the region of (C∗)2 which maps to the moment polytope via the
logarithm map. Discarding the other critical points (i.e., restricting to the
appropriate subset of (C∗)2), homological mirror symmetry can be shown to
hold for (a deformation of) W0 [5] (see also [1]). However, this is unsatisfac-
tory for various reasons, among others the discrepancy between the critical
values of W0 and the eigenvalues of quantum cup-product with the first
Chern class in QH∗(Fn) (see e.g. §6 of [4], and [15]).

The approach we use to compute the full superpotential relies on the
observation that, depending on the parity of n, Fn is deformation equiva-
lent, and in fact symplectomorphic, to either F0 = CP

1 × CP
1 or F1 (the

one-point blowup of CP
2), equipped with a suitable symplectic form. Carry-

ing out the deformation explicitly provides a way of achieving transversality
for the Floer theory of Lagrangian tori in Fn, by deforming the non-regular
complex structure of Fn to a regular one. In the case of F2 and F3 at least, the
result of the deformation can be explicitly matched with F0 or F1 equipped
with a non-toric holomorphic volume form of the type considered in Exam-
ple 3.1.1, which allows us to compute the superpotential W . In the case of F2
the deformation we want to carry out is pictured schematically in Figure 3.

Proposition 3.1. The corrected superpotential on the mirror of F2 is
the Laurent polynomial

(3.2) W (x, y) = x + y +
e−[ω]·[S+2]

xy2 +
e−[ω]·[F ]

y
+

e−[ω]·[S−2] e−[ω]·[F ]

y
.

This formula differs from W0 by the addition of the last term; geometri-
cally, this term corresponds to configurations consisting of a Maslov index 2

Figure 3. Deforming F0 to F2
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disc intersecting the exceptional section S−2 together with the exceptional
section itself.

Proof. Consider the family of quadric surfaces X = {x0x1 = x2
2 −

t2x2
3} ⊂ CP

3 × C. For t �= 0, Xt = {x0x1 = (x2 + tx3)(x2 − tx3)} ⊂ CP
3

is a smooth quadric, and can be explicitly identified with the image of the
embedding of CP

1 × CP
1 given in homogeneous coordinates by

it : ((ξ0 : ξ1), (η0 : η1)) �→ (ξ0η1 : ξ1η0 : 1
2(ξ0η0 + ξ1η1) : 1

2t(ξ0η0 − ξ1η1)),

or, in terms of the affine coordinates x = ξ0/ξ1 and y = η0/η1,

it(x, y) = (x : y : 1
2(xy + 1) : 1

2t(xy − 1)).

For t = 0, the surface X0 = {x0x1 = x2
2} is a cone with vertex at the point

(0 : 0 : 0 : 1), where the 3-fold X itself presents an ordinary double point
singularity. Denote by π : X ′ → X a small resolution: composing with the
projection to C, we obtain a family of surfaces X ′

t, such that X ′
t

∼= Xt for
t �= 0, while X ′

0 is the blowup of X0, namely X ′
0

∼= F2.
Consider the family of anticanonical divisors

Dt = {x0 = 0, x2 = tx3} ∪ {x1 = 0, x2 = tx3} ∪ {x3 = −tx2} ⊂ Xt,

and equip Xt with a holomorphic volume form Ωt with poles along Dt.
Observe that Dt is the image by it of the lines at infinity ξ1 = 0 and η1 = 0,
and of the conic Ct : ξ0η0 = 1−t2

1+t2
ξ1η1, i.e. in affine coordinates, xy = 1−t2

1+t2
.

Thus, for t = 1 the pair (Xt, Dt) corresponds to the toric anticanonical divi-
sor in CP

1 × CP
1, while for general t the geometry of (Xt, Dt, Ωt) resembles

closely that of Example 3.1.1 (the only difference is that we have compacti-
fied C

2 to CP
1 × CP

1). Finally, D0 ⊂ X0 is precisely the toric anticanonical
divisor, consisting of the lines x0 = 0, x1 = 0 (two rays of the cone) and the
conic x3 = 0 (the base of the cone).

The quadrics Xt, the divisors Dt and the volume forms Ωt are preserved
by the S1-action (x0 : x1 : x2 : x3) �→ (x0e

iθ : x1e
−iθ : x2 : x3), and so is the

Kähler form induced by restriction of the Fubini-Study Kähler form on CP
3.

Moreover, for t = 1 the standard T 2-action on CP
1 × CP

1 is induced by a
subgroup of PU(4), so that the Kähler form is toric, and the configuration
at t = 0 is also toric (with respect to a different T 2-action!); however for
general t we only have S1-invariance.

The S1-action lifts to the small resolution, and the lifted divisors D′
t =

π−1(Dt) ⊂ X ′
t and holomorphic volume forms Ω′

t = π∗Ωt are S1-invariant.
Additionally, X ′ can be equipped with a S1-invariant Kähler form, whose
cohomology class depends on the choice of a parameter (the symplectic
area of the exceptional −2-curve); restricting to X ′

t, we obtain a family of
S1-invariant Kähler forms ω′

t. Moreover, careful choices can be made in the
construction in order to ensure that the Kähler forms ω′

0 and ω′
1 on X ′

0 and
X ′

1 are invariant under the respective T 2-actions.
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From the symplectic point of view, the family (X ′
t, ω

′
t) is trivial; however,

the complex structure for t = 0 is non-generic. At t = 1 and t = 0 the
anticanonical divisors are the toric ones for F0 and F2 respectively; deforming
away from these values, we partially smooth the toric anticanonical divisor,
which in the case of F2 requires a simultaneous deformation of the complex
structure because the exceptional curve S−2 is rigid. The deformation from
t = 1 to t = 0 is now as pictured on Figure 3, which the reader is encouraged
to keep in mind for the rest of the argument.

For t = 1, the mirror superpotential is given by the formula for the toric
Fano case (2.5), namely

(3.3) W = z1 + z2 + e−Az−1
1 + e−Bz−1

2 ,

where A and B are the symplectic area of the two CP
1 factors; the first

two terms correspond to discs contained in the affine chart with coordi-
nates x and y we have considered above, while the last two terms corre-
spond to discs which hit the lines at infinity. Deforming to general t, we
have X ′

t \ D′
t

∼= C
2 \ {xy = 1−t2

1+t2
}. Even though the Kähler form ω′

t is not
toric, the construction of an S1-invariant special Lagrangian fibration pro-
ceeds exactly as in Example 3.1.1. The discussion carries over with only
one modification: when considered as submanifolds of CP

1 × CP
1, the tori

Tr,λ = {|xy− 1−t2

1+t2
| = r, μS1 = λ} bound additional families of Maslov index

2 holomorphic discs (intersecting the lines at infinity).
In the chamber r > |1−t2

1+t2
|, deforming Tr,λ to a product torus shows

that it bounds four families of Maslov index 2 discs, and the superpotential
is given by (3.3) as in the toric case. On the other hand, in the chamber
r < |1−t2

1+t2
|, deforming Tr,λ to the Chekanov torus shows that it bounds five

families of Maslov index 2 holomorphic discs; explicit calculations are given
in Section 5.4 of [4]. (In [4] it was assumed for simplicity that the two CP

1

factors had equal symplectic areas, but it is easy to check that the discus-
sion carries over to the general case without modification.) Using the same
notations as in Example 3.1.1, the superpotential is now given by

(3.4) W = u +
e−A(1 + w)

uw
+

e−B(1 + w)
u

(see Corollary 5.13 in [4]). The first term u corresponds to the family of
discs which are sections of f : (x, y) �→ xy over the disc Δ of radius r cen-
tered at 1−t2

1+t2
; these discs pass through the conic xy = (1 − t2)/(1 + t2) and

avoid all the toric divisors. The other terms correspond to sections of f over
CP

1 \ Δ. These discs intersect exactly one of the two lines at infinity, and
one of the two coordinate axes; each of the four possibilities gives rise to one
family of holomorphic discs. The various cases are as follows (see Proposition
5.12 in [4]):
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class x = 0 y = 0 x = ∞ y = ∞ weight
H1 − β0 − α no yes yes no e−A/uw

H1 − β0 yes no yes no e−A/u
H2 − β0 no yes no yes e−B/u

H2 − β0 + α yes no no yes e−Bw/u

Here H1 = [CP
1 × {pt}], H2 = [{pt} × CP

1], and β0 and α are the classes in
π2(C2, Tr,λ) introduced in Example 3.1.1.

Here as in Example 3.1.1, it is easy to check that the two formulas for
the superpotential are related by the change of variables w = z1/z2 and u =
z1+z2, which gives the instanton-corrected gluing between the two chambers.

The tori Tr,λ with r < |1−t2

1+t2
| cover the portion of X ′

t \ D′
t where

|xy − 1−t2

1+t2
| < |1−t2

1+t2
|, which under the embedding it corresponds to the

inequality

|x2 − tx3| >

∣∣∣∣ 2t

1 − t2

∣∣∣∣ |tx2 + x3|.

For t → 0 this region covers almost all of X ′
t \ D′

t, with the exception of a
small neighborhood of the lines {x0 = 0, x2 = tx3} and {x1 = 0, x2 = tx3}.
On the other hand, as t → 0 the family of special Lagrangian tori Tr,λ con-
verge to the standard toric Lagrangian fibration on X ′

0 = F2, without any
further wall-crossing as t approaches zero provided that r is small enough for
Tr,λ to lie within the correct chamber. It follows that, in suitable coordinates,
the superpotential for the Landau-Ginzburg mirror to F2 is given by (3.4).

All that remains to be done is to express the coordinates x and y in
(3.2) in terms of u and w. In order to do this, we investigate the limiting
behaviors of the five families of discs contributing to (3.4) as t → 0: four of
these families are expected to converge to the “standard” families of Maslov
index 2 discs in F2, since those are all regular. Matching the families of discs
allows us to match four of the terms in (3.4) with the four terms in W0. The
leftover term in (3.4) will then correspond to the additional term in (3.2).

Consider a family of tori Tr(t),λ(t) in X ′
t which converge to a T 2-orbit

in X ′
0 = F2, corresponding to fixed ratios |x0|/|x3| = ρ0 and |x1|/|x3| = ρ1

(and hence |x2|/|x3| =
√

ρ0ρ1). Since the small resolution π : X ′ → X is an
isomorphism away from the exceptional curve in X ′

0, we can just work on X
and use the embeddings it to convert back and forth between coordinates on
X ′

t
∼= Xt

∼= CP
1 ×CP

1 and homogeneous coordinates in CP
3 for t �= 0. Since

|x2|
|x3|

=
∣∣∣∣t xy + 1

xy − 1

∣∣∣∣ =
∣∣∣∣t +

2t

xy − 1

∣∣∣∣
should converge to a finite non-zero value as t → 0, the value of |xy − 1|
must converge to zero, and hence r(t) = |xy − 1−t2

1+t2
| must also converge to

0; in fact, an easily calculation shows that r(t) ∼ 2|t|/√
ρ0ρ1. Therefore,
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for t small, xy is close to 1 everywhere on Tr(t),λ(t). On the other hand,
|x|/|y| = |x0|/|x1| converges to the finite value ρ0/ρ1; thus |x| and |y| are
bounded above and below on Tr(t),λ(t). Now, consider a holomorphic disc with
boundary in Tr(t),λ(t), representing the class H1 −β0. Since the y coordinate
has neither zeroes nor poles, by the maximum principle its norm is bounded
above and below by fixed constants (independently of t). The point where
the disc hits the line x = ∞ (i.e., ξ1 = 0) has coordinates (x0 : x1 : x2 : x3) =
(ξ0η1 : 0 : 1

2ξ0η0 : 1
2tξ0η0) = (1 : 0 : y : y/2t), which given the bounds on |y|

converges to the singular point (0 : 0 : 0 : 1) as t → 0. Thus, as t → 0, this
family of discs converges to stable maps in X ′

0 which have non-empty inter-
section with the exceptional curve. The same argument (exchanging x and
y) also applies to the discs in the class H2 −β0. On the other hand, the three
other families of discs can be shown to stay away from the exceptional curve.

In F2, the T 2-orbits bound four regular families of Maslov index 2 holo-
morphic discs, one for each component of the toric anticanonical divisor
D′

0 = S+2 ∪ S−2 ∪ F0 ∪ F1; here S−2 is the exceptional curve, S+2 is the
preimage by π of the component {x3 = 0} of D0 ⊂ X0, and F0 and F1 are
two fibers of the ruling, namely the proper transforms under π of the lines
x0 = 0 and x1 = 0 in X0. The four families of discs can be constructed
explicitly in coordinates as in the proof of Proposition 2.5, see eq. (2.6);
regularity implies that, as we deform X ′

0 = F2 to X ′
t for t �= 0 small enough,

all these discs deform to holomorphic discs in (X ′
t, Tr(t),λ(t)).

The term y in W0 corresponds to the family of discs intersecting the
section S+2, which under the projection X ′

0 → X0 corresponds to the com-
ponent {x3 = 0} of the divisor D0). Thus, its deformation for t �= 0 intersects
the component {x3 = −tx2} of the divisor Dt, namely the conic Ct in the
affine part of CP

1×CP
1. Comparing the contributions to the superpotential,

we conclude that y = u.
Next, the term x in W0 corresponds to the family of discs intersecting

the ruling fiber F0, which projects to the line {x0 = 0} on X0. Thus, for
small enough t �= 0 these discs deform to a family of discs in X ′

t that intersect
the component {x0 = 0, x2 = tx3} of D′

t, i.e. the line at infinity η1 = 0.
There are two such families, in the classes H2−β0 and H2−β0+α; however we
have seen that the discs in the class H2−β0 approach the exceptional curve as
t → 0, which would give a contradiction. Thus the term x in W0 corresponds
to the family of discs in the class H2 − β0 + α, which gives x = e−Bw/u.

The proof is then completed by observing that the change of variables
x = e−Bw/u, y = u identifies (3.2) with (3.4). (Recall that the symplectic
areas of S+2, S−2, and the ruling fibers in F2 are respectively A+B, A−B,
and B).

Note: as a quick consistency check, our change of variables matches the
term e−(A+B)/xy2 in (3.2), which corresponds to discs in F2 that intersect
the ruling fiber F1, with the term e−A/uw in (3.4), which corresponds to discs
representing the class H1 − β0 − α in X ′

t and intersecting the line at infinity
ξ1 = 0. The remaining two terms in (3.4) correspond to discs representing
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the classes H1 − β0 and H2 − β0 in X ′
t, whose limits as t → 0 intersect the

exceptional curve S−2, and can also be matched to the remaining terms in
(3.2). �

A similar method can be applied to the case of F3, and yields:

Proposition 3.2. The corrected superpotential on the mirror of F3 is
the Laurent polynomial

(3.5)

W (x, y) = x+y+
e−[ω]·[S+3]

xy3 +
e−[ω]·[F ]

y
+

2e−[ω]·([S−3]+2[F ])

y2 +
e−[ω]·([S−3]+[F ])x

y
.

Sketch of proof. The deformation we want to carry out is now
depicted on Figure 4. One way of constructing this deformation is to start
with the family X ′ considered previously, and perform a birational trans-
formation. Namely, let C ′ ⊂ X ′ be the proper transform of the curve C =
{x0 = x1 = 0, x2 = tx3} ⊂ X , and let X̂ ′ be the blowup of X ′ along C ′.
(This amounts to blowing up the point x = y = ∞ in each quadric X ′

t for
t �= 0, and the point where S−2 intersects the fiber F1 in X ′

0
∼= F2). Next, let

Ẑ ⊂ X̂ ′ be the proper transform of the surface Z = {x1 = 0, x2 = tx3} ⊂ X .
Denote by X ′′ the 3-fold obtained by contracting Ẑ in X̂ ′: namely, X ′′ is a
family of surfaces X ′′

t , each obtained from X ′
t by first blowing up a point

as explained above and then blowing down the proper transform of the line
x1 = 0, x2 = tx3 (for t �= 0 this is the line at infinity ξ1 = 0, while for
t = 0 this is the ruling fiber F1). One easily checks that X ′′

t
∼= F1 for t �= 0,

while X ′′
0

∼= F3. Moreover, the divisors D′
t ⊂ X ′

t transform naturally under
the birational transformations described above, and yield a family of anti-
canonical divisors D′′

t ⊂ X ′′
t ; for t = 0 and t = 1 these are precisely the toric

anticanonical divisors in X ′′
0 = F3 and X ′′

1 = F1.
In terms of the affine charts on X ′

t
∼= F0 considered in the proof of Propo-

sition 3.1, the birational transformations leading to (X ′′
t , D′′

t ) are performed
“at infinity”: thus D′′

t is again the union of the conic xy = 1−t2

1+t2
and the divi-

sors at infinity, namely for general t we are again dealing with a compactified
version of Example 3.1.1. Thus X ′′

t \ D′′
t still contains an S1-invariant fam-

ily of special Lagrangian tori Tr,λ, constructed as previously, and there are
again two chambers separated by the wall r = |1−t2

1+t2
|; the only difference

Figure 4. Deforming F1 to F3
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concerns the superpotential, since the tori Tr,λ now bound different families
of holomorphic discs passing through the divisors at infinity. These fami-
lies and their contributions to the superpotential can be determined by the
same techniques as in the cases of CP

2 and CP
1 × CP

1, which are treated
in Section 5 of [4]. Namely, for r > |1−t2

1+t2
| the tori Tr,λ can be isotoped to

product tori, and hence they bound four families of Maslov index 2 discs,
giving the familiar formula

(3.6) W = z1 + z2 +
e−(A+B)

z1z2
+

e−B

z2
,

where B is the area of the ruling fiber in F1 and A is the area of the excep-
tional curve. Meanwhile, for r < |1−t2

1+t2
| the tori Tr,λ can be isotoped to

Chekanov tori; it can be shown that they bound 6 families of Maslov index
2 discs, and using the same notations as in Example 3.1.1 we now have

(3.7) W = u +
e−(A+B)(1 + w)2

u2w
+

e−B(1 + w)
u

.

The instanton-corrected gluing between the two chambers is again given by
u = z1 + z2 and w = z1/z2; in fact (3.7) can be derived from (3.6) via this
change of variables without having to explicitly determine the holomorphic
discs bounded by Tr,λ.

The strategy is now the same as in the proof of Proposition 3.1: as
t → 0, the special Lagrangian fibrations on X ′′

t \D′′
t converge to the standard

fibration by T 2-orbits on X ′′
0 � F3, and the chamber r < |1−t2

1+t2
| covers arbi-

trarily large subsets of X ′′
t \ D′′

t . Therefore, as before the superpotential for
the Landau-Ginzburg mirror to F3 is given by (3.7) in suitable coordinates;
the expression for the variables x and y in (3.5) in terms of u and w can be
found by matching some of the families of discs bounded by Tr,λ as t → 0
to the regular families of Maslov index 2 discs bounded by the T 2-orbits
in F3.

Concretely, the term y in (3.1) corresponds to holomorphic discs in F3
which intersect the section S+3. By regularity, these discs survive the defor-
mation to a small nonzero value of t, and there they correspond to a family
of discs which are entirely contained in the affine charts. Hence, as before we
must have y = u. Identifying which term of (3.7) corresponds to the term x
in (3.1) requires more work, but can be done exactly along the same lines
as for Proposition 3.1; in fact, we find that it is given by exactly the same
formula x = e−Bw/u as in the case of F2. A posteriori this is not at all sur-
prising, since this family of discs stays away from the line at infinity ξ1 = 0
in X ′

t, and hence lies in the part of X ′
t that is not affected by the birational

transformations that lead to X ′′
t .

Applying the change of variables x = e−Bw/u, y = u to (3.7), and
recalling that the symplectic areas of S+3, S−3 and the ruling fibers in F3
are respectively A + 2B, A − B, and B, we arrive at (3.5), which completes
the proof. �
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It is tempting to interpret the last two terms in (3.5) as the contributions
of Maslov index 2 stable configurations that include the exceptional curve
S−3 as a bubble component. Namely, the next-to-last term should be a vir-
tual count of configurations that consist of a double cover of a Maslov index
2 disc passing through S−3, together with S−3; and the last term should be
a virtual count of configurations consisting of a Maslov index 4 disc which
intersects both the ruling fiber F0 and the exceptional section S−3, together
with S−3.

In general, Fukaya-Oh-Ohta-Ono show that the “naive” superpoten-
tial W0 should be corrected by virtual contributions of Maslov index 2
configurations for which transversality fails in the toric setting; moreover,
they show that the perturbation data needed to make sense of the virtual
counts can be chosen in a T 2-equivariant manner [15]. In principle, different
choices of perturbation data could lead to different virtual counts of holomor-
phic discs, and hence to different formulas for the corrected superpotential.
Our approach here can be understood as an explicit construction of a per-
turbation that achieves transversality for holomorphic discs, by deforming
the complex structure to a generic one. However, our perturbation is only
S1-equivariant rather than T 2-equivariant, so it is not clear that our count
of discs agrees with the virtual counts obtained by using Fukaya-Oh-Ohta-
Ono’s perturbation data (the latter have not been computed yet, in fact
their direct computation seems extremely difficult). It is nonetheless our
hope that the two counts might agree; from this perspective it is encour-
aging to note that open Gromov-Witten invariants are well-defined in the
S1-equivariant setting, and not just in the toric setting [31].

3.3. Higher dimensions. In this section we give two explicit local
models for singularities of Lagrangian fibrations in higher dimensions and
their instanton-corrected mirrors, generalizing the two examples considered
in §3.1. The open Calabi-Yau manifolds underlying the two examples are in
fact mirror to each other, as will be readily apparent. In complex dimen-
sion 3 these examples are instances of the two types of “trivalent vertices”
that typically arise in the discriminant loci of special Lagrangian fibra-
tions on Calabi-Yau 3-folds and appear all over the relevant literature (see
e.g. [16]). These examples can also be understood by applying the general
machinery developed by Gross and Siebert [18, 19]; nonetheless, we find
it interesting to have a fairly explicit and self-contained description of the
construction.

Example 3.3.1. Consider X = C
n, equipped with the standard Kähler

form ω and the holomorphic volume form Ω = (
∏

xi − ε)−1 dx1 ∧ · · · ∧ dxn,
which has poles along the hypersurface D = {

∏
xi = ε}. Then X \D carries

a fibration by special Lagrangian tori Tr,λ = {(x1, . . . , xn) ∈ C
n, |

∏
xi−ε| =

r, μT n−1(x1, . . . , xn) = λ}, where μT n−1 : C
n → R

n−1 is the moment map
for the action of the group Tn−1 = {diag(eiθ1 , . . . , eiθn),

∑
θi = 0}. More
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explicitly,

Tr,λ =
{
(x1, . . . , xn) ∈ C

n,
∣∣∣ n∏

1
xi − ε

∣∣∣= r, 1
2(|xi|2 −|xn|2) = λi ∀i = 1, . . . , n−1

}
.

The tori Tr,λ are Tn−1-invariant, and as in previous examples they are
obtained by lifting special Lagrangian fibrations on the reduced spaces. As
in Example 3.1.1, these tori are easiest to visualize in terms of the projec-
tion f : (x1, . . . , xn) �→

∏
xi, with respect to which they fiber over circles

centered at ε; see Figure 1. The main difference is that f−1(0) is now the
union of the n coordinate hyperplanes, and Tr,λ is singular whenever it hits
the locus where the Tn−1-action is not free, namely the points where at least
two coordinates vanish. Concretely, Tr,λ is singular if and only if r = |ε| and
λ lies in the tropical hyperplane consisting of those λ = (λ1, . . . , λn−1) such
that either min(λi) = 0, or min(λi) is attained twice. (For n = 3 this is the
union of the three half-lines 0 = λ1 ≤ λ2, 0 = λ2 ≤ λ1, and λ1 = λ2 ≤ 0.)

By the maximum principle, any holomorphic disc in (Cn, Tr,λ) which
does not intersect D = f−1(ε) must be contained inside a fiber of f . The
regular fibers of f are diffeomorphic to (C∗)n−1, inside which product tori
do not bound any nonconstant holomorphic discs. Hence, Tr,λ bounds non-
trivial Maslov index 0 holomorphic discs if and only if r = |ε|. In that case,
T|ε|,λ intersects one of the components of f−1(0) (i.e. a coordinate hyperplane
isomorphic to C

n−1) in a product torus, which bounds various families of
holomorphic discs inside f−1(0).

The wall r = |ε| divides the moduli space of special Lagrangians into
two chambers. In the chamber r > |ε|, the tori Tr,λ can be be deformed into
product tori by a Hamiltonian isotopy that does not intersect f−1(0) (from
the perspective of the projection f , the isotopy amounts simply to deforming
the circle of radius r centered at ε to a circle of the appropriate size centered
at the origin). The product torus S1(r1) × · · · × S1(rn) bounds n families of
Maslov index 2 discs parallel to the x1, . . . , xn coordinate axes; denote their
classes by β1, . . . , βn, and by zi = exp(−

∫
βi

ω) hol∇(∂βi) the corresponding
holomorphic weights. Thus we expect that Tr,λ bounds n families of Maslov
index 2 holomorphic discs; these are all sections of f over the disc of radius
r centered at ε, and the discs in the class βi intersect the fiber f−1(0) at a
point of the coordinate hyperplane xi = 0. Since the deformation from Tr,λ

to the product torus does not involve any wall-crossing, the count of discs
in the class βi is 1, and the superpotential is given by W = z1 + · · · + zn.

Next we look at the chamber r < |ε|. We first observe that the Chekanov-
type torus Tr,0 bounds only one family of Maslov index 2 holomorphic
discs. Indeed, since Maslov index 2 discs have intersection number 1 with
D = f−1(ε), they must be sections of f over the disc of radius r centered at
ε, and hence they do not intersect any of the coordinate hyperplanes. How-
ever, on Tr,0 we have |x1| = · · · = |xn|, so the maximum principle applied to
xi/xn implies that the various coordinates xi are proportional to each other,
i.e. all such holomorphic discs must be contained in lines passing through



26 D. AUROUX

the origin. One easily checks that this gives a single family of holomorphic
discs; we denote by β0 the corresponding homotopy class and by u = zβ0 the
corresponding weight. Finally, since no exceptional discs arise in the defor-
mation of Tr,0 to Tr,λ, we deduce that Tr,λ also bounds a single family of
holomorphic discs in the class β0, and that the superpotential in the chamber
r < |ε| is given by W = u.

When we increase the value of r past r = |ε|, with all λi > 0, the torus
Tr,λ crosses the coordinate hyperplane xn = 0, and the family of holomorphic
discs in the class β0 naturally deforms into the family of discs in the class
βn mentioned above. However, the naive gluing u = zn must be corrected by
wall-crossing contributions. For r = |ε|, Tr,λ intersects the hyperplane xn = 0
in a product torus. This torus bounds n − 1 families of discs parallel to the
coordinate axes inside {xn = 0}, whose classes we denote by α1, . . . , αn−1;
we denote by w1, . . . , wn−1 the corresponding holomorphic weights, which
satisfy |wi| = e−λi . It is easy to check that, on the r > |ε| side, we have
αi = βi − βn, and hence wi = zi/zn; general features of wall-crossing imply
that wi should not be affected by instanton corrections. Continuity of the
superpotential across the wall implies that the relation between u and zn

should be modified to u = z1 + · · ·+zn = zn(w1 + · · ·+wn−1 +1). Thus, only
the families of Maslov index 0 discs in the classes α1, . . . , αn−1 contribute to
the instanton corrections, even though the product torus in {xn = 0} also
bounds higher-dimensional families of holomorphic discs, whose classes are
positive linear combinations of the αi.

Similarly, when we increase the value of r past r = |ε|, with some λk =
min{λi} < 0, the torus Tr,λ crosses the coordinate hyperplane xk = 0, and
the family of discs in the class β0 deforms to the family of discs in the class βk.
However, for r = |ε|, Tr,λ intersects the hyperplane xk = 0 in a product torus,
which bounds n − 1 families of discs parallel to the coordinate axes, repre-
senting the classes αi − αk = βi − βk (i �= k, n), with weight wiw

−1
k = zi/zk,

and −αk = βn − βk, with weight w−1
k = zn/zk. The instanton-corrected

gluing is now u = zk(z1/zk + · · · + zn/zk + 1) = z1 + · · · + zn.
Piecing things together as in Example 3.1.1, we obtain a description

of the corrected and completed SYZ mirror in terms of the coordinates u,
v = z−1

n , w1, . . . , wn−1:

Proposition 3.3. The mirror of X = C
n relatively to the divisor D =

{
∏

xi = ε} is

X∨ = {(u, v, w1, . . . , wn−1) ∈ C
2 × (C∗)n−1, uv = 1 + w1 + · · · + wn−1},

W = u.

A final remark: one way to check that the variables wi are indeed not
affected by the wall-crossing is to compactify C

n to (CP
1)n, equipped now

with the standard product Kähler form. Inside (CP
1)n the tori Tr,λ also

bound families of Maslov index 2 discs that pass through the divisors at
infinity. These discs are sections of f over the complement of the disc of
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radius r centered at ε, and can be described explicitly in coordinates after
deforming Tr,λ to either a product torus (for r > |ε|) or a Chekanov torus
Tr,0 (for r < |ε|). In the latter case, we notice that the discs intersect the
divisor at infinity once and f−1(0) once, so that in affine coordinates exactly
one component of the map has a zero and exactly one has a pole. Each of the
n2 possibilities gives one family of holomorphic discs; the calculations are a
straightforward adaptation of the case of CP

1 × CP
1 treated in Section 5.4

of [4]. The continuity of W leads to an identity between the contributions
to the superpotential coming from discs that intersect the compactification
divisor “xk = ∞” (a single family of discs for r > |ε|, vs. n families for
r < |ε|): namely, denoting by Λ the area of CP

1, we must have

e−Λ

zk
=

e−Λ

uwk
(w1 + · · · + wn−1 + 1).

This is consistent with the formulas given above for the gluing between the
two chambers.

Example 3.3.2. This example is treated carefully in [2], where it is used
as a standard building block to construct mirrors of hypersurfaces in toric
varieties. Here we only give an outline, for completeness and for symmetry
with the previous example.

Consider C
n equipped with the standard holomorphic volume form∏

d log xi, and blow up the codimension 2 linear subspace Y ×0 = {x1+· · ·+
xn−1 = 1, xn = 0}. This yields a complex manifold X equipped with the
holomorphic volume form Ω = π∗(

∏
d log xi), with poles along the proper

transform D of the coordinate hyperplanes. The S1-action rotating the last
coordinate xn lifts to X; consider an S1-invariant Kähler form ω for which
the area of the CP

1 fibers of the exceptional divisor is ε (ε � 1), and which
agrees with the standard Kähler form of C

n away from a neighborhood of
the exceptional divisor. Denote by μS1 : X → R the moment map of the
S1-action, normalized to equal 0 on the proper transform of the coordinate
hyperplane xn = 0, and ε at the stratum of fixed points given by the section
“at infinity” of the exceptional divisor.

The reduced spaces Xλ = {μS1 = λ}/S1 (λ ≥ 0) are all smooth and dif-
feomorphic to C

n−1. They carry natural holomorphic volume forms, which
are the pullbacks of d log x1 ∧ · · · ∧ d log xn−1, and Kähler forms ωλ. While
ωλ agrees with the standard Kähler form for λ � ε, for λ < ε the form ωλ

is not toric; rather, it can be described as the result of collapsing a tubular
neighborhood of size ε − λ of the hypersurface Y = {x1 + · · · + xn−1 = 1}
inside the standard C

n−1. Thus, it is not entirely clear that Xλ carries a
special Lagrangian torus fibration (though it does seem likely).

Nonetheless, using Moser’s theorem to see that ωλ is symplectomorphic
to the standard form on C

n−1, we can find a Lagrangian torus fibration on
the complement of the coordinate hyperplanes in (Xλ, ωλ). Taking the preim-
ages of these Lagrangians in {μS1 = λ}, we obtain a Lagrangian fibration on
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X \ D, whose fibers are S1-invariant Lagrangian tori Lr,λ; for λ � ε these
tori are of the form

{|π∗(xi)| = ri ∀1 ≤ i ≤ n − 1, μS1 = λ}.

The singularities of this fibration correspond to the fixed points of the
S1-action inside X \ D, namely the “section at infinity” of the exceptional
divisor, defined by the equations {μS1 = ε, π∗x1 + · · ·+π∗xn−1 = 1}. In the
base of the fibration, the discriminant locus is therefore of real codimension
1, namely the amoeba of the hypersurface Y , sitting inside the affine hyper-
plane λ = ε (see Figure 5 left). Moreover, Lr,λ bounds nonconstant discs of
Maslov index 0 if and only if it contains points where π∗x1+· · ·+π∗xn−1 = 1.
In that case, the Maslov index 0 discs are contained in the total transforms of
lines parallel to the xn-axis passing through a point of Y ×0. Thus, there are
n + 1 regions in which the tori Lr,λ are weakly unobstructed, corresponding
to the connected components of the complement of the amoeba of Y .

To analyze holomorphic discs in (X, Lr,λ) and their contributions to the
superpotential, we consider tori which lie far away from the exceptional divi-
sor and from the walls, i.e. for r = (r1, . . . , rn−1) sufficiently far from the
amoeba of Y ; then Lr,λ projects to a product torus in C

n. When all ri � 1
for all i, the maximum principle implies that holomorphic discs bounded
by Lr,λ cannot hit the exceptional divisor; hence Lr,λ bounds n families of
Maslov index 2 holomorphic discs, parallel to the coordinate axes. Denote
by β1, . . . , βn−1, δ the classes of these discs, and by u1, . . . , un−1, z the cor-
responding weights (i.e., the complexifications of the affine coordinates pic-
tured in the lower-left chamber of Figure 5 right).

Next consider the case where rk � 1 and rk � ri ∀i �= k. Then we
claim that Lr,λ now bounds n + 1 families of Maslov index 2 holomorphic
discs. Namely, since a Maslov index 2 disc intersects D exactly once, and the
projections to the coordinates (x1, . . . , xn) are holomorphic, at most one of
π∗(x1), . . . , π∗(xn−1) can be non-constant over such a disc. Arguing as in the
2-dimensional case (Example 3.1.2), we deduce that Lr,λ bounds n families
of discs parallel to the coordinate axes, and one additional family, namely
the proper transforms of Maslov index 4 discs in C

n which are parallel to
the (xk, xn)-plane and hit the hyperplane xn = 0 at a point of Y . Denote
by u1,(k), . . . , un−1,(k), z(k) the weights associated to the first n families of

Figure 5. C
3 blown up along {x1 + x2 = 1, x3 = 0}
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discs: then the contribution of the additional family to the superpotential is
eεz(k)uk,(k).

Matching the contributions of the families of discs that intersect each
component of D, we conclude that the instanton-corrected gluings are given
by z = z(k), ui = ui,(k) for i �= k, and uk = uk,(k)(1 + eεz). Let

u0,(k) =

(
n−1∏
i=1

ui,(k)

)−1

=

(
n−1∏
i=1

ui

)−1

(1 + eεz).

Then the coordinate u0,(k) is independent of k, and we can denote it simply
by u0. The coordinates (u0, . . . , un−1, z) can now be used to give a global
description of the mirror (since forgetting one of the ui gives a set of coor-
dinates for each chamber, as depicted in Figure 5 right). Namely, after com-
pletion we arrive at:

Proposition 3.4 (Abouzaid,—,Katzarkov [2]). The SYZ mirror of the
blowup of C

n along {x1 + · · ·+xn−1 = 1, xn = 0} with anticanonical divisor
the proper transform of the toric divisor is

X∨ = {(u0, . . . , un−1, z) ∈ C
n × C

∗, u0 . . . un−1 = 1 + eεz},

W = u1 + · · · + un−1 + z.

If instead we consider the blowup of (C∗)n−1 × C along the generalized
pair of pants {x1+· · ·+xn−1 = 1, xn = 0}, i.e. we remove all the components
of D except the proper transform of the xn = 0 coordinate hyperplane, then
X∨ remains the same but the superpotential becomes simply W = z (since
all the other terms in the above formula correspond to discs that intersect
the coordinate hyperplanes that we are now removing).

In [2], these local models are patched together in order to build mirrors
of more complicated blowups. The motivation for such a construction comes
from the observation that, if Y is a hypersurface in X, then the derived
category of Y embeds into that of the blowup of X × C along Y × 0 (this
follows from a more general theorem of Bondal and Orlov, see e.g. [7]); and,
if Y deforms in a pencil, then the Fukaya categories of these two manifolds
are also closely related (using Seidel’s work; the key point is that Lefschetz
thimbles for a pencil in X can be lifted to Lagrangian spheres in the blowup
of X ×C along Y ). Thus, a mirror for the blowup of X ×C along Y is almost
as good as a mirror for Y . We illustrate this by considering one half of the
homological mirror symmetry conjecture in a very simple example.

Consider the case n = 3 of Proposition 3.4 and its variants where we
remove various divisors from D. Consider the blowup of (C∗)2×C along {x1+
x2 = 1, x1, x2 �= 0} (a pair of pants, i.e. P

1 minus three points): then X∨ is
as in Proposition 3.4, i.e. (solving for z as a function of u0, u1, u2) the com-
plement of the hypersurface u0u1u2 = 1 inside C

3, and the superpotential is
W = z = e−ε(u0u1u2 − 1), whose critical locus consists of the union of the
three coordinate axes. Up to an irrelevant scaling of the superpotential, this
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Landau-Ginzburg model is indeed known to be a mirror to the pair of pants
(cf. work of Abouzaid and Seidel; see also [38]). If instead we consider the
blowup of C

∗×C
2 along {x1+x2 = 1, x1 �= 0} (∼= C

∗), then the superpoten-
tial becomes W = u2+z = (e−εu0u1+1)u2−e−ε; hence W has a Morse-Bott
singularity along M = {u0u1 = −eε, u2 = 0} � C

∗, which is mirror to C
∗.

Finally, if we compactify our example to consider the blowup of CP
2 × C

along a projective line (given by x1 +x2 = 1 in affine coordinates), then the
mirror remains the same manifold, but the superpotential acquires an extra
term counting discs that pass through the divisor at infinity, and becomes

W = e−Λu0 + u1 + u2 + z = e−Λu0 + u1 + u2 + e−εu0u1u2 − e−ε

where Λ is the area of a line in CP
2. This superpotential has two isolated

non-degenerate critical points at e−Λu0 = u1 = u2 = e±iπ/2e(ε−Λ)/2, which
is reminiscent of the usual mirror of a CP

1 with symplectic area Λ − ε (to
which our mirror can be related by Knörrer periodicity).

4. Floer-theoretic considerations

4.1. Deformations and local systems. There are at least three pos-
sible ways of deforming the Floer theory of a given Lagrangian submanifold
L (for simplicity we assume L to be weakly unobstructed):

(1) formally deforming the Floer theory of L by an element
b ∈ CF 1 (L, L);

(2) equipping L with a non-unitary local system;
(3) deforming L by a (non-Hamiltonian) Lagrangian isotopy and equip-

ping it with a unitary local system.
Our goal in this paragraph is to explain informally how these three fla-

vors of deformation are related. In particular, the careful reader will notice
that Fukaya-Oh-Ohta-Ono define the superpotential as a function on the
moduli space of weak bounding cochains for a given Lagrangian [14, 15],
following the first approach, whereas in this paper and in [4] we view it as
a function on a moduli space of Lagrangians equipped with unitary local
systems, following the last approach.

Recall that there are several models for the Floer complex CF ∗(L, L).
We mostly consider the version in [14], where the Floer complex is generated
by singular chains on L, representing incidence conditions at marked points
on the boundary of holomorphic discs. The k-fold product mk is defined by

mk(C1, . . . , Ck)(4.1)

=
∑

β∈π2(X,L)

zβ(L) (ev0)∗
(
[Mk+1(L, β)]vir ∩ ev∗

1C1 ∩ · · · ∩ ev∗
kCk

)
,

where [Mk+1(L, β)]vir is the (virtual) fundamental chain of the moduli space
of holomorphic discs in (X, L) with k+1 boundary marked points represent-
ing the class β, ev0, . . . , evk are the evaluation maps at the marked points,
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and zβ is a weight factor as in (2.2); when k = 1 the term with β = 0 is
replaced by a classical boundary term.

Here it is useful to also keep in mind a variant where the Floer complex
consists of differential forms or currents on L. The product mk is defined as
in (4.1), which now involves pulling back the given forms/currents to the
moduli space of discs via the evaluation maps ev1, . . . , evk and pushing for-
ward their product by integration along the fibers of ev0. This setup allows
us to “smudge” incidence conditions by replacing the integration current
on a submanifold Ci by a smooth differential form supported in a tubular
neighborhood.

Given b ∈ CF 1(L, L), Fukaya-Oh-Ohta-Ono [14] deform the A∞-algebra
structure on the Floer complex by setting

(4.2)
m

b
k(C1, . . . , Ck) =

∑
l=l0+···+lk≥0

mk+l( b, . . . , b︸ ︷︷ ︸
l0

, C1, b, . . . , b︸ ︷︷ ︸
l1

, . . . , Ck, b, . . . , b︸ ︷︷ ︸
lk

).

We will actually restrict our attention to the case where b is a cycle, repre-
senting a class [b] ∈ H1(L) (or, dually, in Hn−1(L)).

Working over the Novikov ring, the sum (4.2) is guaranteed to be well-
defined when b has coefficients in the maximal ideal

(4.3) Λ+ =
{∑

i
ai T

λi ∈ Λ0

∣∣∣ λi > 0
}

of Λ0 = {
∑

ai T
λi | ai ∈ C, λi ∈ R≥0, λi → +∞}. However, it has been

observed by Cho [10] (see also [15]) that, in the toric case, the sum (4.2)
is convergent even when b is a general element of H1(L,Λ0). Similarly, in
favorable cases (at least for toric Fanos) we can also hope to make sense
of (4.2) when working over C (in the “convergent power series” setting);
however in general this poses convergence problems.

The second type of deformation we consider equips L with a local system
(a flat connection), characterized by its holonomy hol∇, which is a homo-
morphism from π1(L) to Λ∗

0 (the multiplicative group formed by elements
of the Novikov ring with nonzero coefficient of T 0) or C

∗. The local system
modifies the weight zβ for the contribution to mk of discs in the class β by
a factor of hol∇(∂β).

Lemma 4.1. For any cycle b such that convergence holds, the defor-
mation of the A∞-algebra CF ∗(L, L) given by (4.2) is equivalent to equip-
ping L with a local system with holonomy exp(b), i.e. such that hol∇(γ) =
exp([b] · [γ]) for all γ ∈ π1(L).
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Sketch of proof. The statement reduces to a calculation showing
that, given a holomorphic disc u ∈ Mk+1(L, β) (or more generally an ele-
ment of the compactified moduli space), the contribution of “refined” ver-
sions of u (with extra marked points mapped to b) to mb

k is exp([b] · [∂β])
times the contribution of u to mk.

This is easiest to see when we represent the class [b] by a smooth
closed 1-form on L. For fixed l = (l0, . . . , lk), consider the forgetful map
πl : Mk+l+1(L, β) → Mk+1(L, β) which deletes the marked points corre-
sponding to the b’s in (4.2), and its extension π̄l to the compactified moduli
spaces. The fiber of πl above u ∈ Mk+1(L, β) is a product of open simplices
of dimensions l0, . . . , lk, parametrizing the positions of the l0 + · · · + lk new
marked points along the intervals separated by the k + 1 marked points of
u on the boundary of the disc; we denote by Δl the corresponding subset of
(∂D2)l. The formula for mk+l(b⊗l0 , C1, b

⊗l1 , . . . , Ck, b
⊗lk) involves an integral

over Mk+l+1(L, β), but this integral can be pushed forward to Mk+1(L, β)
by integrating over the fibers of π̄l; the resulting integral differs from that
for mk(C1, . . . , Ck) by an extra factor

∫
π̄−1

l (u)
∏

ev∗
i b =

∫
Δl

∏
(u|∂D2 ◦ pri)∗b

in the integrand.
Note that this calculation assumes that the virtual fundamental chains

have been constructed consistently, so that [Mk+l+1(L, β)]vir = π̄∗
l ([Mk+1

(L, β)]vir) as expected. Achieving this property is in general a non-trivial
problem.

Next we sum over l: the subsets Δl of (∂D2)l have disjoint interiors, and
their union Δ is the set of all l-tuples of points which lie in counterclockwise
order on the interval obtained by removing the outgoing marked point of
u from ∂D2. By symmetry, the integral of

∏
(u|∂D2 ◦ pri)∗b over Δ is 1/l!

times the integral over (∂D2)l. Thus

∑
l

∫
Δl

l∏
i=1

(u ◦ pri)∗b =
1
l!

∫
(∂D2)l

l∏
i=1

(u ◦ pri)∗b =
1
l!

(∫
∂D2

u∗b
)l

=
([b] · [∂β])l

l!
.

The statement then follows by summing over l. �

One can also try to prove Lemma 4.1 working entirely with chains on L
instead of differential forms, but it is technically harder. If we take b to be
a codimension 1 cycle in L and attempt to reproduce the above argument,
the incidence constraints at the additional marked points (all mapping to b)
are not transverse to each other. In fact, mb

k will include contributions from
stable maps with constant disc bubbles mapping to b. The difficulty is then to
understand the combinatorial rule for counting such contributions, or more
precisely, why a constant bubble with j marked points on it, all mapped to
a same point of b, should contribute a combinatorial factor of 1/j!.
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The equivalence between the two types of deformations also holds if we
consider not just L itself, but the whole Fukaya category. Given a collection
of Lagrangian submanifolds L0, . . . , Lk with Li0 = L for some i0, the Floer
theoretic product mk : CF ∗(L0, L1) ⊗ · · · ⊗ CF ∗(Lk−1, Lk) → CF ∗(L0, Lk)
can again be deformed by a cycle b ∈ CF 1(L, L). Where the usual product
mk is a sum over holomorphic discs with k + 1 marked points, the deformed
product mb

k counts discs with an arbitrary number of additional marked
points, all lying on the interval of ∂D2 which gets mapped to L, and with
inputs b inserted accordingly into the Floer product as in (4.2). By the same
argument as above, if we represent b by a closed 1-form on L, and consider
discs with fixed corners and in a fixed homotopy class β, the deformation
amounts to the insertion of an extra factor exp(

∫
∂β∩L b). Meanwhile, equip-

ping L with a flat connection ∇ affects the count of discs in the class β by a
factor hol∇(∂β ∩L). Thus, if we ensure that the two match, e.g. by choosing
∇ = d + b, the two deformations are again equivalent.

Next, we turn to the relation between non-unitary local systems and
non Hamiltonian deformations. Consider a deformation of L to a nearby
Lagrangian submanifold L1; identifying a tubular neighborhood of L with a
neighborhood of the zero section in T ∗L, we can think of L1 as the graph of
a C1-small closed form ϕ ∈ Ω1(L, R). Assume that L can be isotoped to L1
(e.g. through Lt = graph(tϕ)) in such a way that there is a one-to-one cor-
respondence between the holomorphic discs bounded by L and L1, namely
given a class β ∈ π2(X, L) and the corresponding class β1 ∈ π2(X, L1), we
have Mk+1(L, β) � Mk+1(L1, β1). Observing that

∫
β1

ω =
∫
β ω +

∫
∂β ϕ,

deforming L to L1 affects the contribution of these discs by a factor of
exp(−[ϕ] · [∂β]). Thus, deforming L to L1 is equivalent to equipping L with
a local system with holonomy exp(−[ϕ]); for example we can set ∇ = d−ϕ.
(This is when working over complex numbers; over the Novikov ring we
would similarly want to equip L with a local system with holonomy T [ϕ].)
However, this only works as long as there is a good correspondence between
moduli spaces of holomorphic discs; while the assumption we made can be
relaxed to some extent, we cannot expect things to work so simply when the
deformation from L to L1 involves wall-crossing.

Similarly, given another Lagrangian submanifold L′, if the isotopy from
L to L1 = graph(ϕ) can be carried out in a manner that remains transverse
to L′ at all times then we can hope to define a map from CF ∗((L,∇), L′)
(with hol(∇) = exp(−[ϕ])) to CF ∗(L1, L

′) in a manner compatible with all
Floer-theoretic products as long as we can find a one-to-one correspondence
between the relevant holomorphic discs. One could also try to proceed in a
slightly greater degree of generality by attempting to construct continuation
maps between the Floer complexes (as in the usual proof of Hamiltonian
isotopy invariance of Floer homology). However, one should keep in mind
that this is doomed to fail in general. For instance, consider X = S2, let L1 be
the equator, and L a circle parallel to the equator but disjoint from it. Denote
by A the annulus bounded by L and L1, and equip L with a non-unitary local
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system ∇ with holonomy exp(
∫
A ω). One easily checks that the Lagrangians

L1 and (L,∇) have well-defined and non-vanishing Floer homology, and the
A∞-algebras CF ∗(L1, L1) and CF ∗((L,∇), (L,∇)) are isomorphic (by the
argument above). However, CF ∗((L,∇), L1) = 0 since L and L1 are disjoint,
so (L,∇) and L1 cannot be isomorphic. (See also the discussion in §4.2).

Remark. Specializing (4.2) to k = 0, the identity mb
0 = m0 + m1(b) +

m2(b, b) + . . . offers a simple perspective into the idea that the derivatives
of the superpotential W at a point L = (L,∇) encode information about
the (symmetrized) Floer products mk on CF ∗(L,L), as first shown by Cho
in [9]. In particular, one can re-derive from this identity the fact that, if L
is not a critical point of the superpotential, then the fundamental class of
L is a Floer coboundary and HF ∗(L,L) vanishes. (For a direct proof, see
[11, 9], see also §6 of [4].)

4.2. Failure of invariance and divergence issues. In this section,
we look more carefully into a subtle issue with instanton corrections and
the interpretation of the mirror as a moduli space of Lagrangian submani-
folds up to Floer-theoretic equivalence. We return to Example 3.1.1, i.e. C

2

equipped with the standard Kähler form and the holomorphic volume form
Ω = dx∧dy/(xy−ε), and use the same notations as above. Consider two spe-
cial Lagrangian fibers on opposite sides of the wall, T1 = Tr1,0 and T2 = Tr2,0,
where r1 < |ε| < r2 are chosen in a way such that the points of M corre-
sponding to T1 and T2 (equipped with the trivial local systems) are identified
under the instanton-corrected gluing u = z1 + z2. Namely, the torus T1 cor-
responds to a point with coordinates w = 1, u = exp(−A1) ∈ R+, where A1
is the symplectic area of a Maslov index 2 disc in (C2, T1), e.g. either of the
two portions of the line x = y where |xy−ε| < r1; meanwhile, T2 corresponds
to w = 1, z1 = z2 = exp(−A2) ∈ R+, where A2 is the symplectic area of a
Maslov index 2 disc in (C2, T2), or equivalently half of the area of the portion
of the line x = y where |xy − ε| < r2. The area Ai can be expressed by an
explicit formula in terms of ri and ε; the actual relation is irrelevant, all that
matters to us is that Ai is a monotonically increasing function of ri. Now
we choose r1 and r2 such that exp(−A1) = 2 exp(−A2) and r1 < |ε| < r2.

We will consider the tori T1 and T2 inside X0 = X \ D = C
2 \ {xy = ε},

where they do not bound any nonconstant holomorphic discs. (Another
option would be to instead compactify C

2 to CP
2, and choose the parameters

of the construction so that exp(−A1) = 2 exp(−A2) = exp(−1
3

∫
CP

1 ω); then
T1 and T2 would be weakly unobstructed and would still have non-vanishing
convergent power series Floer homology. The discussion below would carry
over with minor modifications.)

Working in X0, the convergent power series Floer homologies HF ∗

(T1, T1) and HF ∗(T2, T2) are isomorphic to each other (and to the coho-
mology of T 2). In fact the same property would hold for any other Tr,λ due
to the absence of holomorphic discs in X0, but in the case of T1 and T2
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Figure 6. Creating intersections between T1 and T2

we expect to have a distinguished isomorphism between the Floer homol-
ogy groups, considering that T1 and T2 are in the same instanton-corrected
equivalence class and meant to be “isomorphic”. However, T1 and T2 are
disjoint, so CF ∗(T1, T2) is zero, which does not allow for the existence of the
expected isomorphism. (Note that the issue would not arise when working
over the Novikov ring: we would then have needed to choose the areas A1
and A2 above so that T−A1 = 2T−A2 , which never holds. In that case, one
should instead take A1 = A2 and equip T1 with a nontrivial local system;
but then T1 and T2 cannot be made disjoint by Hamiltonian isotopies.)

One way to realize the isomorphism between T1 and T2 is to deform one
of them by a Hamiltonian isotopy (without crossing any walls) in order to
create intersections. Namely, projecting C

2 to C by the map f(x, y) = xy,
T1 and T2 fiber above concentric circles γi = {|z − ε| = ri}, and inside each
fiber they consist of the “equatorial” S1-orbit where |x| = |y|. Deform T1 by
a Hamiltonian isotopy, without crossing ε or 0, to a S1-invariant Lagrangian
torus T ′

1 which fibers above a closed curve γ′
1 intersecting γ2 in two points p

and q, and T ′
1 = f−1(γ′

1)∩{|x| = |y|} (see Figure 6). Then T ′
1 and T2 intersect

along two circles, which can be handled either as a degenerate Morse-Bott
type intersection (CF ∗(T ′

1, T2) is then generated by chains on T ′
1 ∩ T2), or

by further perturbing T ′
1 to replace each S1 by two transverse intersection

points.

Proposition 4.2. In X0 = C
2 \ f−1(ε), the convergent power series

Floer homology HF ∗(T ′
1, T2) is well-defined and isomorphic to H∗(T 2, C).

Proof. Any holomorphic disc in X0 = C
2 \ f−1(ε) that contributes to

the Floer differential on CF ∗(T ′
1, T2) is necessarily a section of f over one of

the two regions R1 and R2 delimited by γ′
1 and γ2 (see Figure 6). Recalling

that |x| = |y| on T ′
1 ∪ T2, the maximum principle applied to x/y implies

that, if a disc with boundary in T ′
1 ∪ T2 intersects neither the x axis nor the

y axis, then x/y is constant over it. Thus, there is exactly one S1-family of
such sections of f over R1, namely the portions of the lines y = eiϕx which
lie in f−1(R1). On the other hand, there are two S1-families of sections over
R2. Indeed, let g : D2 → R2 be a biholomorphism given by the Riemann
mapping theorem, chosen so that g(0) = 0, and consider a holomorphic map
u : (D2, ∂D2) → (X0, T ′

1 ∪T2), z �→ u(z) = (x(z), y(z)) such that f ◦u maps
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D2 biholomorphically onto R2. Up to a reparametrization we can assume
that f ◦ u = g. Over the image of u, either x or y must vanish transversely
once; assume that it is x that vanishes. Then z �→ x(z)/y(z) is a holomorphic
function on the disc, taking values in the unit circle along the boundary, and
vanishing once at the origin, therefore it is of the form z �→ eiϕz for some
eiϕ ∈ S1. Thus u(z) = (eiϕ/2(zg(z))1/2, e−iϕ/2(g(z)/z)1/2). This gives an S1-
family of holomorphic sections over R2; the other one is obtained similarly
by exchanging x and y.

Denote by α1 (resp. α2) the symplectic area of the holomorphic discs
in (X0, T ′

1 ∪ T2) which are sections of f over R1 (resp. R2). By construc-
tion, these areas are related to those of the Maslov index 2 discs bounded
by T ′

1 and T2 in C
2: namely, α2 − α1 = A2 − A1. Thus, the choices made

above imply that exp(−α1) = 2 exp(−α2). After a careful check of signs,
this in turn implies that the contributions of the various holomorphic discs
in (X0, T ′

1 ∪T2) to the Floer differential on CF ∗(T ′
1, T2) (with C coefficients)

cancel out. �

Denote by ep the generator of CF 0(T ′
1, T2) which comes from the intersec-

tions in f−1(p), and denote by eq the generator of CF 0(T2, T
′
1) which comes

from the intersections in f−1(q). Then m2(ep, eq) = e−α1 [T ′
1] is a nonzero

multiple of the unit in CF ∗(T ′
1, T

′
1), and m2(eq, ep) = e−α1 [T2] is a nonzero

multiple of the unit in CF ∗(T2, T2): this makes it reasonable to state that
T ′

1 and T2 are isomorphic.
This example illustrates the failure of convergent power series Floer

homology to be invariant under Hamiltonian isotopies, even without wall-
crossing (recall the isotopy from T1 to T ′

1 did not cross f−1(0)); this is of
course very different from the situation over the Novikov ring. When we
deform T ′

1 back to T1, we end up being able to cancel all the intersection
points even though they represent nontrivial elements in Floer homology,
because the cancellations in the Floer differential occur between families of
discs with different symplectic areas (something which wouldn’t be possi-
ble over Novikov coefficients). At the critical instant in the deformation, the
discs with area α1 have shrunk to points, while the discs with area α2 become
pinched annuli. At the end of the deformation, the tori T1 and T2 are disjoint,
and the discs have become holomorphic annuli with boundary in T1 ∪ T2.

It would be tempting to hope that a souped up version of Floer theory
that also includes holomorphic annuli would be better behaved. However, in
that case we would immediately hit a divergence issue when working with
complex coefficients: indeed, there are 2k families of holomorphic annuli with
boundary in T1 ∪ T2 which cover k-to-1 the annulus bounded by the circles
γ1 and γ2 in C.

Even without considering annuli, divergence issues are already responsi-
ble for the bad properties of convergent power series Floer homology exhib-
ited here – first and foremost, the lack of invariance under the Hamiltonian
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isotopy from T1 to T ′
1. Denote by H : [0, 1] × X0 → R a family of Hamilto-

nians whose time 1 flow sends T1 to T ′
1, and recall that continuation maps

Φ : CF ∗(T1, T2) → CF ∗(T ′
1, T2) and Φ̄ : CF ∗(T ′

1, T2) → CF ∗(T1, T2) can
be defined by counting index 0 solutions of perturbed holomorphic curve
equations of the form

(4.4)
∂u

∂s
+ J

(
∂u

∂t
− χ(s)XH(t, u(s, t))

)
= 0.

Here u : R× [0, 1] → X0 is a map with u(R×{0}) ⊂ T1 and u(R×{1}) ⊂ T2
and satisfying suitable asymptotic conditions at infinity, XH is the Hamil-
tonian vector field associated to H, and χ : R → [0, 1] is a suitable smooth
cut-off function.

In our case, Φ and Φ̄ are obviously zero since CF ∗(T1, T2) = 0; this of
course prevents Φ ◦ Φ̄ : CF ∗(T ′

1, T2) → CF ∗(T ′
1, T2) from being homotopic

to identity as expected. Specifically, the homotopy would normally be con-
structed by considering exceptional index −1 solutions to (4.4) where the
cut-off χ is equal to 1 near ±∞ and

∫
R
(1 − χ) varies between 0 and infinity.

In the present case, a calculation shows that that there are infinitely many
exceptional solutions – in fact there are 2k solutions of energy k(α2 −α1) for
each integer k, which makes the homotopy divergent. (To see this, choose the
Hamiltonian isotopy from T1 to T ′

1 to be lifted from the complex plane by the
projection f , and look at similar continuation maps between CF ∗(γ1, γ2) = 0
and CF ∗(γ′

1, γ2) inside C \ {ε}. In that case, an explicit calculation shows
that there is an infinite sequence of exceptional index −1 solutions to (4.4),
wrapping once, twice, etc. around the annulus bounded by γ1 and γ2. More-
over, the exceptional trajectory which wraps k times around the annulus in
C \ {ε} can be shown to admit 2k S1-families of lifts to X0.)

Another instance of divergence occurs if we try to test the associativ-
ity of the product in Floer homology. Namely, in addition to the isomor-
phisms ep ∈ CF 0(T ′

1, T2) and eq ∈ CF 0(T2, T
′
1) considered above, denote by

ea ∈ CF 0(T ′
1, T1), resp. eb ∈ CF 0(T1, T

′
1), the generators which come from

the intersections in f−1(a), resp. f−1(b) (see Figure 7). One easily checks
that m2(ea, eb) is a nonzero multiple of the unit in CF ∗(T ′

1, T
′
1). Then we

can try to compose ea, eb and ep in two different ways: m2(m2(ea, eb), ep) is

Figure 7. T1, T ′
1 and T2
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a nonzero multiple of ep, whereas m2(ea,m2(eb, ep)) is zero since m2(eb, ep) ∈
CF ∗(T1, T2) = 0. Passing to cohomology classes, this contradicts the expected
associativity of the product on Floer homology. A closer inspection reveals
that this is caused by the divergence of quantities such as m3(ea, fa, ep)
(where fa is the generator of CF 1(T1, T

′
1) corresponding to the intersections

in f−1(a)): indeed, this triple product counts discs obtained by cutting open
the divergent series of annuli with boundary in T1 ∪ T2 already mentioned
above.

In conclusion, there are many pitfalls associated to the use of convergent
power series Floer homology, even in fairly simple situations (compactifying
the above example to CP

2, we would still encounter the same divergence
phenomena in a smooth projective Fano variety). A cautious view of the
situation would dictate that outside of the very simplest cases it is illusory
to even attempt to work over complex coefficients, and that in general mir-
ror symmetry is only a perturbative phenomenon taking place over a formal
neighborhood of the large volume limit. Nonetheless, as long as one restricts
oneself to consider only certain aspects of Floer theory, the power series
obtained by working over the Novikov ring seem to often have good enough
convergence properties to allow the construction of a mirror that is an hon-
est complex manifold (rather than a scheme over the Novikov field). Floer
theory for a single weakly unobstructed Lagrangian seems to be less prone to
divergence than the theory for pairs such as (L1, L2) in the above example.
Also, in the example we have considered, divergence issues can be avoided
by equipping all our Lagrangian submanifolds with suitable Hamiltonian
perturbation data (i.e., “wiggling” Lagrangians so that they intersect suffi-
ciently). However, more sophisticated divergent examples can be built e.g.
inside conic bundles over elliptic curves; in some of these examples, Floer
products are given by series in Λ0 for which the radius of convergence is
strictly less than 1, i.e. convergence only holds for sufficiently large symplec-
tic forms, regardless of Hamiltonian perturbations.

5. Relative mirror symmetry

5.1. Mirror symmetry for pairs. In this section, we turn to mirror
symmetry for a pair (X, D), where X is a Kähler manifold and D is a smooth
Calabi-Yau hypersurface in the anticanonical linear system. Our goal is to
clarify the folklore statement that “the fiber of the mirror superpotential W :
X∨ → C is mirror to D”. The discussion is fairly similar to that in §7 of [4].

Let D ⊂ X be a hypersurface in the anticanonical linear system, with
defining section σ ∈ H0(X, K−1

X ): then the holomorphic volume form Ω =
σ−1 ∈ Ωn,0(X \D) (with poles along D) induces a holomorphic volume form
ΩD on D, the residue of Ω along D, characterized by the property that
Ω = ΩD ∧ d log σ + O(1) in a neighborhood of D. Additionally, the Kähler
form ω induces a Kähler form on D by restriction.
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It is reasonable to expect that special Lagrangian torus fibrations on
X \ D should have a “nice” boundary behavior. Namely, assuming that the
Kähler metric on X is complete, for a reasonable special Lagrangian fibra-
tion π : X \ D → B we expect:

Conjecture 5.1. Near ∂B, the fibers of π are contained in a neighbor-
hood of D, and the smooth fibers are S1-bundles over special Lagrangian tori
in (D, ω|D, ΩD).

(Here, by ∂B we mean the part of the boundary of B which lies at finite
distance in the symplectic affine structure).

In other terms, we expect that near D the special Lagrangian tori in
X \ D accumulate onto special Lagrangian tori in D (as observed in the
various examples we have discussed). If Conjecture 5.1 holds, then ∂B is
the base of a special Lagrangian fibration on D, and the (uncorrected) SYZ
mirror to D, MD, can be identified as a complex hypersurface lying inside
the boundary of the (uncorrected) moduli space M of pairs (L,∇) in X \D.

Assume D is smooth, and consider a special Lagrangian torus fiber
L = π−1(b) near ∂B: then we expect that L bounds a distinguished family
of Maslov index 2 holomorphic discs, namely small meridian discs in the
normal direction to D. More precisely, as b approaches the boundary of B,
we expect L to collapse onto a special Lagrangian torus Λ in D, and the
meridian discs to be approximated by small discs inside the fibers of the
normal bundle of D lying above the points of Λ.

Call δ the relative homotopy class of the meridian discs, and by zδ the
corresponding holomorphic coordinate on M (which is also the contribution
of the family of meridian discs to the superpotential). Then we expect that
zδ is the dominant term in the superpotential near the boundary of M , as
the meridian discs have areas tending to zero and all the other holomorphic
discs have comparatively much greater areas.

The boundary of M corresponds to limiting pairs (L,∇) where the area
of the meridian disc becomes 0 (i.e., L is entirely collapsed onto a special
Lagrangian torus in D); recalling that |zδ| = exp(−

∫
δ ω), this corresponds to

|zδ| = 1. In fact, the boundary of M fibers above the unit circle, via the map

(5.1) arg(zδ) : ∂M = {|zδ| = 1} → S1,

with fiber MD = {zδ = 1}. The points of MD correspond to pairs (L,∇)
where L is entirely collapsed onto a special Lagrangian torus Λ ⊂ D, and the
holonomy of ∇ around the meridian loop μ = ∂δ is trivial, i.e. ∇ is pulled
back from a U(1) local system on Λ. Thus MD is precisely the uncorrected
SYZ mirror to D.

In general, the fibration (5.1) has monodromy. Indeed, a local trivial-
ization is given by fixing a framing, i.e. an (n − 1)-dimensional subspace
of H1(L, Z) which under the projection L → Λ maps isomorphically onto
H1(Λ, Z). (Less intrinsically, we can choose a set of longitudes, i.e. lifts to L
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of a collection of n − 1 loops generating H1(Λ, Z)); the framing data allows
us to lift to M a set of local holomorphic coordinates on MD. However,
unless the normal bundle to D is trivial there is no consistent global choice
of framings: if we move Λ around a loop in ∂B and keep track of a longitude
λ lifting a loop γ ∈ Λ, the monodromy action is of the form λ �→ λ + kγμ,
where kγ is the degree of the normal bundle of D over the surface traced
out by γ.

A more thorough calculation shows that the monodromy of (5.1) is given
by a symplectomorphism of MD which geometrically realizes (as a fiberwise
translation in the special Lagrangian fibration MD → ∂B dual to the SYZ
fibration on D) the mirror to the autoequivalence − ⊗ K−1

X|D of DbCoh(D).
This is easiest to see if we assume that, in a neighborhood of D, the anti-

canonical bundle K−1
X can be equipped with a semi-flat connection, i.e. a

holomorphic connection whose restriction to the fibers of π is flat. Then the
parallel transport from one fiber of (5.1) to another can be realized geometri-
cally as follows: given a pair (L,∇) where L is almost collapsed onto a special
Lagrangian Λ ⊂ D, we can modify the holonomy of ∇ around the meridian
loop by adding to it a multiple of Im(σ−1∂σ)|L, where σ is the defining sec-
tion of D. The monodromy is then (L,∇) �→ (L,∇+Im(σ−1∂σ)|L), which in
the limit where L collapses onto D is exactly the expected transformation.

If we can neglect the terms other than zδ in the superpotential, for
instance in the large volume limit, then MD is essentially identified with
the fiber of W at 1. In fact, recall from the discussion at the end of §2.2
that changing the Kähler class to [ω] + tc1(X) “enlarges” the mirror while
rescaling the superpotential by a factor of e−t: thus, assuming that X is
Fano, or more generally that −KX is nef, the flow to the large volume limit
can be realized simply by rescaling the superpotential. Hence, Conjecture
5.1 implies:

Conjecture 5.2. If (X∨, W ) is mirror to X, and if −KX is nef, then
for t → ∞ the family of hypersurfaces {W = et} ⊂ X∨ is asymptotic (up
to corrections that decrease exponentially with t) to the family of mirrors to
(D, ω|D + tc1(X)|D).

For example, considering the mirror to CP
2 with [ω] · [CP

1] = Λ, the
j-invariant of the elliptic curve {x + y + e−Λ/xy = et} ⊂ (C∗)2 can be
determined to equal

e3t+Λ(e3t+Λ − 24)3

e3t+Λ − 27
= e9t+3Λ + · · · ,

whose leading term matches with the symplectic area of the anticanonical
divisor after inflation (observe that ([ω] + tc1) · [CP

1] = 3t + Λ).
There are two reasons why this statement only holds asymptotically for

t → ∞. First, the formula for the superpotential includes other terms besides
zδ, so the hypersurfaces {W = et} and {zδ = et} are not quite the same.
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More importantly, the instanton corrections to the mirror of D are not the
same as the instanton corrections to the fiber of zδ. When constructing the
mirror to X, the geometry of MD ⊂ M gets corrected by wall-crossing
terms that record holomorphic Maslov index 0 discs in X; whereas, when
constructing the mirror of D, the corrections only arise from Maslov index
0 holomorphic discs in D.

In other terms: the instanton corrections to the mirror of X arise from
walls generated by singularities in the fibration π : X \ D → B (i.e., singu-
larities in the affine structure of B), whereas the instanton corrections to the
mirror of D arise from the walls generated by singularities in the fibration
πD : D → ∂B (i.e., singularities in the affine structure of ∂B). Since the
singularities of the affine structure on ∂B are induced by those strata of
singularities of B that hit the boundary, the wall-crossing phenomena in
D are induced by a subset of the wall-crossing phenomena in X, but there
are also walls in X which hit the boundary of B without being induced by
singularities at the boundary.

On the other hand, the smooth fibers of W are symplectomorphic to each
other and to the hypersurface {zδ = 1}. Moreover, it is generally believed
that the Kähler class of the mirror should not be affected by instanton cor-
rections, so the discrepancy discussed above is no longer an issue. Hence:
we expect that the fibers of W , viewed as symplectic manifolds, are mirror
to the divisor D viewed as a complex manifold. (Observe that, from this
perspective, the parameter t in Conjecture 5.2 no longer plays any role, and
accordingly the geometries are expected to match on the nose.)

5.2. Homological mirror symmetry. Assuming Conjectures 5.1 and
5.2, we can try to compare the statements of homological mirror symmetry
for X and for the Calabi-Yau hypersurface D. Due to the mismatch between
the complex structure on the mirror to D and that on the fibers of W (see
Conjecture 5.2), in general we can only hope to achieve this in one direction,
namely relating the derived categories of coherent sheaves on X and D with
the Fukaya categories of their mirrors.

Denote by (X∨, W ) the mirror to X, and by D∨ the mirror to D, which
we identify symplectically with a fiber of W , say D∨ = {W = et} ⊂ X∨ for
fixed t � 0.

First we need to briefly describe the Fukaya category of the Landau-
Ginzburg model W : X∨ → C. The general idea, which goes back to
Kontsevich [27] and Hori-Iqbal-Vafa [22], is to allow as objects admissible
Lagrangian submanifolds of X∨; these can be described either as potentially
non-compact Lagrangian submanifolds which, outside of a compact subset,
are invariant under the gradient flow of −Re(W ), or, truncating, as compact
Lagrangian submanifolds with (possibly empty) boundary contained inside
a fixed reference fiber of W (and satisfying an additional condition). The
case of Lefschetz fibrations (i.e., when the critical points of W are nonde-
generate) has been studied in great detail by Seidel; in this case, which is
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by far the best understood, the theory can be formulated in terms of the
vanishing cycles at the critical points (see e.g. [35]).

The formulation which is the most relevant to us is the one discussed
by Abouzaid in [1]: in this version, one considers Lagrangian submanifolds
of X∨ with boundary contained in the given reference fiber D∨ = W−1(et),
and which near the reference fiber are mapped by W to an embedded curve
γ ⊂ C.

Definition 5.3. A Lagrangian submanifold L⊂X∨ with (possibly
empty) boundary ∂L ⊂ D∨ = W−1(et) is admissible with phase ϕ ∈ (−π

2 , π
2 )

if |W | < et at every point of int(L) and, near ∂L, the restriction of W to
L takes values in the half-line et − eiϕ

R+.

Floer theory is then defined by choosing a specific set of Hamiltonian per-
turbations, which amounts to deforming the given admissible Lagrangians
so that their phases are in increasing order, and ignoring boundary intersec-
tions. For instance, to determine HF (L1, L2), one first deforms L2 (rel. its
boundary) to an admissible Lagrangian L+

2 whose phase is greater than that
of L1, and one computes Floer homology for the pair of Lagrangians (L1, L

+
2 )

inside X∨, ignoring boundary intersections. We denote by F(X∨, D∨) the
Fukaya category constructed in this manner. (In fact, strictly speaking, one
should place the reference fiber “at infinity”, i.e. either consider a limit of this
construction as t → +∞, or enlarge the symplectic structure on the subset
{|W | < et} of X∨ so that the symplectic form blows up near the bound-
ary and the Kähler metric becomes complete; for simplicity we ignore this
subtlety.)

By construction, the boundary of an admissible Lagrangian in X∨ is
a Lagrangian submanifold of D∨ (possibly empty, and not necessarily con-
nected). There is a restriction A∞-functor ρ : F(X∨, D∨) → F(D∨) from
the Fukaya category of the Landau-Ginzburg model (X∨, W ) to the (usual)
Fukaya category of D∨. At the level of objects, this is simply (L,∇) �→
(∂L,∇|∂L). At the level of morphisms, the A∞-functor ρ consists of a col-
lection of maps

ρ(k) : HomF(X∨,D∨)(L1, L2) ⊗ · · · ⊗ HomF(X∨,D∨)(Lk, Lk+1)

→ HomF(D∨)(∂L1, ∂Lk+1).

The first order term ρ(1) is the easiest to describe: given an intersection
point p ∈ int(L1) ∩ int(L+

2 ), ρ(1)(p) is a linear combination of intersec-
tion points in which the coefficient of q ∈ ∂L1 ∩ ∂L2 counts holomorphic
strips in (X∨, L1 ∪ L+

2 ) connecting p to q. Similarly, given k + 1 admissible
Lagrangians L1, . . . , Lk+1, and perturbing them so that their phases are in
increasing order, ρ(k) counts holomorphic discs in (X∨,

⋃
L+

i ) with k cor-
ners at prescribed interior intersection points and one corner at a boundary
intersection point.
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Homological mirror symmetry for the pair (X, D) can then be summa-
rized by the following conjecture:

Conjecture 5.4. There is a commutative diagram

DbCoh(X) restr−−−−→ DbCoh(D)

�
⏐⏐� ⏐⏐��

DπF(X∨, D∨)
ρ−−−−→ DπF(D∨)

In this diagram, the horizontal arrows are the restriction functors, and
the vertical arrows are the equivalences predicted by homological mirror
symmetry. The reader is referred to [6] for a verification in the case of Del
Pezzo surfaces.

Another type of Fukaya category that can be associated to X∨ is its
wrapped Fukaya category Fwr(X∨) [3]. The objects of that category are
again non-compact Lagrangian submanifolds, but the Hamiltonian pertur-
bations used to define Floer homology now diverge at infinity. Assuming that
W is proper, we can e.g. use the Hamiltonian flow generated by a function
of |W | that increases sufficiently quickly at infinity; however, the wrapped
category can be defined purely in terms of the symplectic geometry of X∨

at infinity, without reference to the superpotential (see [3]).
Homological mirror symmetry for the open Calabi-Yau X \ D then

predicts an equivalence between the derived category of coherent sheaves
DbCoh(X\D) and the derived wrapped Fukaya category DπFwr(X∨). More-
over, the restriction functor from DbCoh(X) to DbCoh(X \ D) is expected
to correspond to a natural functor � from the Fukaya category of the
Landau-Ginzburg model (X∨, W ) to the wrapped Fukaya category of X∨.
On objects, � is essentially identity (after sending the reference fiber to
infinity, or extending admissible Lagrangians to non-compact ones by paral-
lel transport along the gradient flow of Re(W )). On morphisms, � is essen-
tially an inclusion map if we set up the Hamiltonian perturbations in the
wrapped category to be supported outside of the region where |W | < et; or,
more intrinsically, � is the continuation map induced on Floer complexes
by the deformation from the small Hamiltonian perturbations used to define
the Fukaya category of (X∨, W ) to the large Hamiltonian perturbations used
to define the wrapped category.

In fact, the wrapped Fukaya category can alternatively be defined from
F(X∨, W ) as the result of localization with respect to a certain natural
transformation from the Serre functor (up to a shift) to the identity, induced
by the monodromy of W near infinity (see §4 of [36] and §6 of [37]); this
parallels the fact that DbCoh(X \ D) is the localization of DbCoh(X) with
respect to the natural transformation from − ⊗ KX (i.e., the Serre functor
up to a shift) to the identity given by the defining section of D.
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Finally, when considering compact closed Lagrangian submanifolds,
there is no difference between the Fukaya category of (X∨, W ) and the
wrapped Fulaya category; the full subcategory consisting of these compact
objects is expected to be equivalent to the subcategory of DbCoh(X \ D)
generated by complexes with compactly supported cohomology.

5.3. Complete intersections. As pointed out to the author by
Ludmil Katzarkov, the above ideas can be extended to understand mir-
ror symmetry for complete intersections (remaining in the framework of
manifolds with effective anticanonical divisors). Namely, consider divisors
D1, . . . , Dk ⊂ X (smooth, or at most with normal crossing singularities),
intersecting each other transversely, such that

∑
Di = −KX . Let (X∨, W )

be the mirror of X relative to the anticanonical divisor
∑

Di: then the
superpotential on X∨ splits into a sum W = W1 + · · · + Wk, where Wi :
X∨ → C records the contributions to the superpotential of holomorphic
Maslov index 2 discs which hit the component Di of the anticanonical
divisor.

For a subset I ⊆ {1, . . . , k}, consider the complete intersection XI =⋂
i∈I Di ⊂ X, and the divisors DI,j = XI ∩ Dj , j �∈ I, whose sum represents

the anticanonical class of XI . Then we have:

Conjecture 5.5. In the large volume limit t → ∞, the mirror to XI

equipped with the Kähler form ω|XI
+tc1(X)|XI

and the anticanonical divisor∑
j 
∈I DI,j is approximated (in the sense of Conjecture 5.2) by the complete

intersection X∨
I :=

⋂
i∈I W−1

i (et) in X∨, equipped with the superpotential
WI :=

∑
j 
∈I Wj.

As before, if we are only interested in comparing the complex geometry
of XI with the symplectic geometry of (X∨

I , WI), then the construction does
not depend on the parameter t, and passage to the large volume limit is not
needed.

Conjecture 5.5 can be understood geometrically as follows. In this set-
ting, we expect to have a special Lagrangian torus fibration π : X \(

⋃
Di) →

B, whose base B has boundary and corners: at the boundary, the special
Lagrangian fibers collapse onto one of the hypersurfaces Di, and at the cor-
ners they collapse onto the intersection of several Di. (This picture is e.g.
obvious in the toric setting, where B is the interior of the moment polytope.)

Whenever the fibers of π lie sufficiently close to Di, they are expected to
bound small meridian discs intersecting Di transversely once, whereas the
other families of discs have comparatively larger symplectic area, so that
Wi = zδi

+ o(1). Setting zδi
equal to 1 for i ∈ I amounts to considering

special Lagrangian tori that are completely collapsed onto XI = ∩i∈IDi,
equipped with flat connections that have trivial holonomy along the merid-
ian loops, i.e. are pulled back from special Lagrangian tori in XI . Thus,
before instanton corrections,

⋂
i∈I{zδi

= 1} is the (uncorrected) SYZ mirror
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to XI \ (
⋃

j 
∈I DI,j). When t → ∞ the discrepancy between Wi and zδi
and

the differences in instanton corrections are expected to become negligible.
Moreover, in the limit where L ⊂ X \ (

⋃
Di) collapses onto a special

Lagrangian Λ ⊂ XI \ (
⋃

j 
∈I DI,j), for j �∈ I the dominant terms in Wj

should correspond to families of holomorphic discs in (X, L) that converge
to holomorphic discs in (XI , Λ) (intersecting DI,j). Hence,

∑
j 
∈I Wj should

differ from the superpotential for the mirror to XI by terms that become
negligible in the large volume limit.

As a special case of Conjecture 5.5, taking I = {1, . . . , k}, (in the large
volume limit) the fiber of (W1, . . . , Wk) is mirror to the Calabi-Yau com-
plete intersection X{1,...,k} = D1 ∩ · · · ∩ Dk. (In this case there is no residual
superpotential.) This is consistent with standard conjectures.

It is also worth noting that, in a degenerate toric limit, Conjecture 5.5
recovers the predictions made by Hori and Vafa [23] for mirrors of Fano
complete intersections in toric varieties. To give a simple example, consider
X = CP

3 (with
∫

CP
1 ω = Λ), and let D1, D2 ⊂ X be quadric surfaces inter-

secting transversely in an elliptic curve E = D1 ∩D2. Then the superpoten-
tial on X∨ decomposes as a sum W = W1+W2. In the degenerate limit where
D1 and D2 are toric quadrics consisting of two coordinate hyperplanes each,
and E is a singular elliptic curve with four rational components, we have
X∨ = {z0z1z2z3 = e−Λ} ⊂ (C∗)4, and W = W1 + W2, where W1 = z0 + z1
and W2 = z2 + z3. Then the mirror to D1 is the surface

{z0z1z2z3 = e−Λ, z0 + z1 = et} ⊂ (C∗)4,

equipped with the superpotential W2 = z2+z3, and similarly for D2; and the
mirror to E is the curve {z0z1z2z3 = e−Λ, z0 +z1 = et, z2 +z3 = et} (a non-
compact elliptic curve with four punctures). These formulas are essentially
identical to those in Hori-Vafa [23]. To be more precise: viewing Di and E
as symplectic manifolds (in which case the degeneration to the toric setting
should be essentially irrelevant, i.e. up to a fiberwise compactification of
the Landau-Ginzburg models we can think of smooth quadrics and elliptic
curves), but taking the large volume limit t → ∞, these formulas give an
approximation to the complex geometry of the mirrors. On the other hand,
if we consider the symplectic geometry of the mirrors, then the formulas give
exact mirrors to Di and E viewed as singular complex manifolds (torically
degenerated quadrics and elliptic curves, i.e. large complex structure lim-
its). Thus Hori and Vafa’s formulas for toric complete intersections should
be understood as a construction of the mirror at a limit point in both the
complex and Kähler moduli spaces.
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