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Abstract. We collect in this paper several results on the
formation of singularities in the mean curvature flow of hypersur-
faces in euclidean space, under various kinds of convexity assump-
tions. We include some recent estimates for the flow of 2-convex
surfaces, i.e. the surfaces where the sum of the two smallest prin-
cipal curvatures is positive everywhere. Such results enable the
construction of a flow with surgeries for these surfaces similar to
the one introduced by Hamilton and Perelman for the Ricci flow.
The topological applications of the construction are also described.

1. Introduction

Let F0 : M → IRn+1 be a smooth immersion of an n-dimensional
hypersurface in Euclidean space, n ≥ 1. The evolution of M0 = F0(M)
by mean curvature flow is a one-parameter family of smooth immersions
F : M× [0, T [→ IRn+1 satisfying

∂F

∂t
(p, t) = −H(p, t)ν(p, t), p ∈ M, t ≥ 0,(1.1)

F (·, 0) = F0,(1.2)

where H(p, t) and ν(p, t) are the mean curvature and the outer normal
respectively at the point F (p, t) of the surface Mt = F (·, t)(M).

This evolution has been studied by many authors in the last decades.
It occurs in some physical models describing interface evolution, and also
in the singular limit of some reaction diffusion equations. It can be checked
that problem (1.1)–(1.2) is parabolic and possesses a unique solution locally
in time. In general, however, global existence cannot be expected, because
the curvature can become unbounded in finite time. This is always the case,
for instance, if the surface is closed. Intuitively, certain parts of the surface,
or the whole surface, shrink with the flow and develop singularities.
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It is natural to look for a generalized definition of the flow which allows to
continue the evolution after the formation of singularities. The first approach
was introduced by Brakke [7], who gave a definition of weak solutions using
notions from geometric measure theory. Several other notions have been
introduced in the following. Among others, we recall the one based on the
level set method which was adopted independently by Chen, Giga and Goto
[8] and by Evans and Spruck [14].

A further reason of interest for the mean curvature flow came from
Hamilton’s paper on the Ricci flow [19]. The Ricci flow is the evolution
of the metric of an abstract Riemannian manifold governed by the equation

(1.3)
∂gij

∂t
= −2Rij ,

where Rij is the Ricci tensor associated with the metric. Like the mean
curvature flow, the Ricci flow is a parabolic problem where singularities can
appear in finite time. Hamilton’s result in [19] was that any initial metric on
a closed three-dimensional manifold with positive Ricci curvature evolving
by Ricci flow converges, up to a suitable rescaling, to a metric of constant
curvature. This implies that any three-dimensional Riemannian manifold
with positive Ricci curvature is diffeomorphic to a quotient of the standard
sphere S3. Such an approach had an antecedent in the work of Eels and
Sampson [13], who had used the heat flow to deform a map between two
fixed Riemannian manifolds. Hamilton’s result, which was soon followed
by similar ones for dimensions other than three, showed that the study of
geometric flows could provide new important results.

In [24] Huisken proved a theorem for the mean curvature flow which had
strong analogies with Hamilton’s one for the Ricci flow. He showed that any
closed convex surface shrinks to a point in finite time and converges, after
rescaling, to a round sphere. Also, it became clear that the two flows have
many similarities. The basic examples of formation of singularities (e.g.,
the sphere, the neckpinch) are analogous for the two flow. In both flows
some important geometric properties remain invariant. For example, positive
curvature operator and positive scalar curvature are preserved under Ricci
flow, while convexity and positive mean curvature are preserved under mean
curvature flow. All these results follow easily by the maximum principle
applied to the evolution equation for the corresponding scalar or tensor
quantity. For both flows the formation of singularities induces in some case
the convergence to a canonical structure (constant curvature). It should
be pointed out that there are no precise connections between Ricci flow
and mean curvature flow, that is, there is no way to transform one flow
into the other. Also, the proofs in [19] and [24] differ in many substantial
steps. Throughout the paper, we will remark further the analogies and the
differences between the two flows.

In the last years, the Ricci flow has become well known in the
mathematical community after Perelman’s proof [34, 35, 36] of Thurston’s
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geometrization conjecture, a result which gives a complete classification of
closed three-dimensional manifolds, and includes the celebrated Poincaré
conjecture. Perelman’s proof accomplishes a program started by Hamilton
shortly after his above mentioned paper, a program aimed to prove the con-
jecture using the Ricci flow. A central tool in the proof is the construction
of a flow after singularities by means of a surgery procedure: when a singu-
larity occurs, the parts of the manifold with larger curvature are removed
and are replaced with more regular ones. The surgery is performed in such a
way that one keeps track of the possible changes of the topology. Hamilton
conjectured that it was possible to define a flow where, after a finite num-
ber of surgeries, the remaining components converge to canonical structures,
allowing to classify the possible topologies of the initial manifold. The hard-
est part in this analysis is to derive suitable estimates for the flow which
give a description of the singular profiles good enough to do the surgeries,
and which allow to prove that the remaining components eventually con-
verge to the desired canonical structure. Hamilton carried out his program
in the simpler case the Ricci flow of four-dimensional manifolds with posi-
tive isotropic curvature in [23]. However, the case of a general three-manifold
needed for geometrization presented some further major difficulties. These
were successfully solved by Perelman, who found some new estimates and
introduced new techniques which allowed the conjectures to be proven.

The aim of the present paper is to give a survey of some recent results
in collaboration with G. Huisken [27, 28, 29], which can be regarded as the
counterpart for the mean curvature flow of Hamilton’s approach to the Ricci
flow. Namely, we define a mean curvature flow with surgeries for hypersur-
faces satisfying a suitable curvature restriction, which we explain below. Like
in the three-dimensional Ricci flow, our flow with surgeries gives rise after
a finite number of steps to components which have a canonical structure,
and allows a classification of the possible topologies of the initial manifold.
The applications of our construction are not as far-reaching as the ones of
Ricci flow, but they show that also mean curvature flow can be used to
derive nontrivial topological consequences. We hope that in the future the
technique can be extended to more general classes of surfaces to obtain a
wider range of applications.

Let us briefly describe our surgery procedure. Following Hamilton [23],
we call a neck a subset of our surface which is close, up to rescaling, to
a portion of the standard cylinder Sn−1 × IR in a suitable topology. Our
surgery consists of removing a neck and filling smoothly the two holes with
convex regions diffeomorphic to disks. The surface changes its topology in
a controlled way, because the surgery acts like the inverse of a connected
sum. The aim is to perform surgeries in such a way that the parts of the
surface with largest curvature are removed and the flow can be continued for
a longer time. To this purpose, one needs to show that it is possible to find a
neck whenever a singularity is formed (except for those cases where we can
already describe the topology of the whole manifold) and that the curvature



306 C. SINESTRARI

decreases after the neck is removed. In order to prove these properties, it
is necessary to have a detailed description of the singularities by means of
suitable a priori estimates. This preliminary analysis is in fact the most
difficult part of the procedure.

At the present stage, a good description of the singularities of mean
curvature flow is only available for hypersurfaces satisfying certain curvature
restrictions. This is in contrast with the Ricci flow, where in low dimensions
(n = 2, 3) it has been possible to study the flow of an arbitrary metric. Our
surgery construction applies to a suitable class of hypersurfaces, usually
called two-convex. A hypersurface is called k-convex, for an integer k =
1, . . . , n, if the sum of the smallest k principal curvatures is nonnegative at
each point. Also, we need the hypothesis that the surface has dimension
n ≥ 3. Our main result is the following.

Theorem 1.1. Let M0 ⊂ IRn+1 be a closed immersed n-dimensional
two-convex hypersurface, with n ≥ 3. Then there is a mean curvature flow
with surgeries with initial value M0 such that, after a finite number of
surgeries, the remaining components are diffeomorphic either to Sn or to
Sn−1 × S1.

Due to the structure of our surgeries, we can easily deduce that the initial
manifold is the connected sum of finitely many components diffeomorphic to
Sn or to Sn−1 × S1. Thus we obtain the following classification of 2-convex
hypersurfaces.

Corollary 1.2. Any smooth closed n-dimensional two-convex immersed
surface M ⊂ IRn+1 with n ≥ 3 is diffeomorphic either to Sn or to a finite
connected sum of Sn−1 × S1.

Another consequence of our construction is the following Schoenflies type
theorem for simply connected two-convex surfaces.

Corollary 1.3. Any smooth closed simply connected n-dimensional
two-convex embedded surface M ⊂ IRn+1 with n ≥ 3 is diffeomorphic to
Sn and bounds a region whose closure is diffeomorphic to a smoothly embed-
ded (n+1)-dimensional standard closed ball.

We recall that the Schoenflies conjecture states that any smooth
n-dimensional embedded surface M ⊂ IRn+1 diffeomorphic to Sn bounds
a region whose closure is diffeomorphic to a smoothly embedded (n + 1)-
dimensional standard closed ball. The result has been proved for any dimen-
sion except for n = 4. Thus we show that there are no counterexamples
to the conjecture in the class of 2-convex surfaces. The proof of Corol-
lary 1.3 requires some additional argument (like proving that an embedded
hypersurface remains embedded under the flow with surgeries) but it is a
quite direct consequence of the main Theorem 1.1.
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It is natural to compare the mean curvature flow with surgeries with
the generalized solutions mentioned at the beginning. It should be observed
that our flow cannot be regarded as a weak solution of the equation, because
it introduces an arbitrary modification of the manifold at the surgery time.
However, the flow with surgeries is more natural and useful for the geometric
and topological applications we are considering. For weak solutions, instead,
one does not have such a clear knowledge of the topology of the manifold
after the singular time. Let us mention that for the Ricci flow there is no
such choice between different approaches, because no notion of weak solution
is available there yet.

Let us mention some related results in the previous literature. The struc-
ture of k-convex hypersurfaces immersed in Riemannian manifolds has been
studied by various authors [16, 31, 37, 40]. The results of these papers,
however, concern mainly the homotopy type of the surfaces. Let us also
mention that a piecewise smooth mean curvature flow was considered in [2]
for a class of rotationally symmetric hypersurfaces. It was shown there that
such surfaces become singular at isolated points and times, splitting into
components which become smooth again immediately afterwards, so that
no surgery is needed. The analysis depends strongly on the assumption of
rotational symmetry. Recently, the construction of a mean curvature flow
with surgeries for two-dimensional manifolds, based on independent tech-
niques from [29], has been announced in [9].

In the following we give an informal exposition of the surgery procedure
of [29]. The largest part of the paper is devoted to survey the estimates
which are necessary for the construction, including the ones of [24, 27, 28].
We give here not only the statements of the main results, but also an outline
of the proofs, where possible. Due to the informal character of the paper,
many technical details will be omitted; in particular, most of the proofs
should be intended as sketches. We hope that this will suffice to give the
reader some understanding of the main techniques used in this theory.

2. Examples

There are some well known cases where the solution to the mean curva-
ture flow can be written explicitly, or at least admits a detailed qualitative
description. We recall briefly the interesting ones for our purposes. A more
detailed description can be found in the monograph by Ecker [11].

Example 2.1. Homothetically shrinking solutions These solutions,
also called self-similarly shrinking solutions, are those such that Mt =
λ(t)M0 for a suitable homothety factor λ(t) with λ(t) < 1 for t > 0. The
simplest example is the sphere. It is easily checked that, if M0 = Sn

R(0),
the sphere of radius R around the origin, then Mt = Sn

r(t)(0), where r(t) =√
R2 − 2nt. It follows that the flow exists up to time T = R2/2n, at which

the sphere shrinks to a point. A less obvious example is given by a class of
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immersed curves in the plane, which have been classified by Mullins [33],
see also [1]. Other shrinking solutions are obtained by taking products of
these surfaces with flat factors, e.g., the cylinder Sn−1 × IR. It has been
proved by Huisken [26] that the ones we have just described are the only
homothetically shrinking solutions which are mean convex, i.e., with posi-
tive mean curvature everywhere. An interesting example which is not mean
convex is the homothetically shrinking torus whose existence was proved
by Angenent [5].

Example 2.2. Translating graphs A translating graph is a surface
M0 which is the graph of some function y = u(x), whose evolution by
mean curvature flow exists for all times and is such that Mt is the graph of
y = u(x)+ t. The simplest example is the so called grim reaper, which is the
graph of u(x) = − ln(cosx), x ∈ (−π/2, π/2). It is the only example in one
dimension, up to translations. In higher dimensions, there is a unique rota-
tionally symmetric example, defined in the whole space and asymptotic to
a paraboloid. The existence of translating graphs which are not rotationally
symmetric has been recently shown in [38].

Example 2.3. The standard neckpinch Suppose that M0 looks like
two large balls connected by a cylindrical part (neck) which is very thin,
in such a way that the mean curvature there is much larger than in the
balls. Then one expects that the radius of the neck goes to zero in a short
time while the balls move little from their original position. The existence
of surfaces with this property was first proved rigorously by Grayson [18];
a simple proof can be found in [11]. An explicit example of initial surface is
given in [2] (see the next example).

In contrast with Example 2.1, the surface here does not become singular
everywhere at the singular time, but only in a restricted region. In a case
like this it is interesting to define a weak solution after the singular time.
One intuitively expects that the surface should divide in two parts, each of
them flowing independently afterwards. The idea of the flow with surgeries
is to induce this behavior in a controlled way.

Example 2.4. The degenerate neckpinch This example is given
in [2]. For a given λ > 0, let us set

φλ(x) =
√

(1 − x2)(x2 + λ), −1 ≤ x ≤ 1.

For any n ≥ 2, let Mλ be the n-dimensional surface in IRn+1 obtained by
rotation of the graph of φλ. The surface Mλ looks like a dumbbell, where
the parameter λ measures the width of the central part. Then, the following
properties hold:

(a) if λ is large enough, the surface Mλ
t eventually becomes convex and

shrinks to a point in finite time;
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(b) if λ is small enough, Mλ
t exhibits a neckpinch singularity as in

Example 2.3;
(c) there exists λ > 0 such that Mλ

t shrinks to a point in finite time, has
positive mean curvature up to the singular time, but never becomes
convex. The maximum of the curvature is attained at the two points
where the surface meets the axis of rotation. After rescaling around
either of these points, the asymptotic profile of the surface is given
by a translating solution of the flow.

The behavior in (c) is called degenerate neckpinch and was first conjectured
by Hamilton for the Ricci flow [22, §3]. Intuitively speaking, it is a limiting
case of the neckpinch where the cylinder in the middle and the balls on
the sides shrink at the same time. One can also build the example in an
asymmetric way, with only one of the two balls shrinking simultaneously
with the neck, while the other one remains nonsingular. A sharp analysis of
the singular behavior for a class of rotationally symmetric surfaces exhibiting
a degenerate neckpinch has been done in [6].

Degenerate neckpinches are more difficult to handle when one defines a
flow with surgeries, because it is less clear how to find a cylindrical region
where the surgery can be performed. Hamilton’s intuition for the Ricci flow
was that, although the region with the largest curvature is strictly convex,
one can find almost cylindrical regions on the surface by moving away by a
suitable distance (the rescaled profile near the singularity has an “asymp-
totically necklike end”, in the terminology of [23]). For the mean curvature
flow, one can think of the typical shape of a translating solution, which is
asymptotic to a paraboloid. If one considers a strip of the paraboloid far
from the vertex, it is close enough to a portion of a cylinder for the purposes
of surgery.

3. Invariance properties

Let F : M× [0, T [→ IRn+1 be a solution of mean curvature flow (1.1)–
(1.2) with closed, smoothly immersed evolving surfaces Mt = F (·, t)(M).
We denote the induced metric by g = {gij}, the surface measure by dμ,
the second fundamental form by A = {hij} and the Weingarten operator
by W = {hi

j}. We then denote by λ1 ≤ · · · ≤ λn the principal curvatures,
i.e., the eigenvalues of W , and by H = λ1 + · · ·+ λn the mean curvature. In
addition, |A|2 = λ2

1 + · · · + λ2
n will denote the squared norm of A. All these

quantities depend on (p, t) ∈ M× [0, T [ and satisfy the following equations
computed in [24].

Lemma 3.1. If Mt evolves by mean curvature flow, the associated quan-
tities introduced above satisfy the following equations (here ∇ and Δ denote
respectively the covariant derivative and the Laplace-Beltrami operator
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induced by the metric on Mt):

(i)
∂

∂t
gij = −2Hhij (ii)

∂

∂t
dμ = −H2dμ, (iii)

∂

∂t
hi

j = Δhi
j + |A|2hi

j ,

(iv)
∂

∂t
H = ΔH + |A|2H, (v)

∂

∂t
|A|2 = Δ|A|2 − 2|∇A|2 + 2|A|4.

The mean curvature flow is a parabolic system of PDEs and satisfies
a local existence and uniqueness result for smooth solutions under general
hypotheses. For our purposes the following statement will suffice (see, e.g.,
[12, 15, 17, 24]).

Theorem 3.2. Let M0 = F0(M) be smooth and closed. Then the mean
curvature flow (1.1)–(1.2) has a unique smooth solution, which is defined in a
maximal time interval [0, T [ , where 0 < T < +∞, and satisfies maxMt |A|2 →
∞ as t ↑ T .

A first step in the analysis of singularities is to observe that several
geometric properties are invariant under the flow. The invariance can be
usually proved in an elementary way by means of the maximum principle.
Let us give some examples.

Proposition 3.3. Let Mt, t ∈ [0, T ) be a closed hypersurface evolving
by mean curvature flow.

(i) If H ≥ 0 on M0, then H > 0 on Mt for any t ∈ (0, T ).
(ii) If |A|2 ≤ cH2 on M0, then |A|2 ≤ cH2 on Mt for any t ∈ (0, T ).

Proof. Part (i) follows from Lemma 3.1 and the strong maximum prin-
ciple. To obtain (ii), we compute the evolution equation of f := |A|2/H2.
We obtain, by Lemma 3.1 and a straightforward computation,

(3.1)
∂f

∂t
= Δf +

2
H

〈∇H,∇f〉 − 2
H4 |H∇ihkl −∇iH hkl|2.

Thus, the maximum principle implies that the maximum of f is
nonincreasing. �

Corollary 3.4. Let Mt, t ∈ [0, T ) be a closed n-dimensional hyper-
surface evolving by mean curvature flow.

(i) If H > 0 on M0, then there is ε0 > 0 such that ε0|A|2 ≤ H2 ≤
n|A|2 everywhere on Mt for all t ∈ (0, T ).

(ii) If M0 has positive scalar curvature, then the same holds for Mt

for all t ∈ (0, T ).

Proof. To prove the first inequality in (i), it suffices to take ε0 =
minM0 H

2/|A|2 which is attained by compactness, and to apply Proposi-
tion 3.3-(ii). Inequality H2 ≤ n|A|2 is an algebraic property which holds
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in general. Part (ii) also is a consequence of Proposition 3.3-(ii) because
positive scalar curvature is equivalent to H2/|A|2 > 1. �

Corollary 3.4-(ii) is a particular case of a more general property of the
elementary symmetric polynomials of the curvatures, as we now proceed to
show. We recall that the elementary symmetric polynomial of degree k in n
variables λ1, . . . , λn is defined as

Sk =
∑

1≤i1<i2<···<ik≤n

λi1λi2 · · ·λik

for k = 1, . . . , n. In particular, S1 = H, and S2 is the scalar curvature. It is
not difficult to show that

(3.2) λ1 ≥ 0, . . . , λn ≥ 0 ⇐⇒ S1 ≥ 0, . . . , Sn ≥ 0.

These polynomials enjoy some remarkable concavity properties, see e.g. [4].
The relevant one for our purposes is the following [28, 30].

Theorem 3.5. Let Γk ⊂ IRn denote the connected component of Sk > 0
containing the positive cone. Then Sl > 0 on Γk for all l = 1, . . . , k and the
quotient Sk+1/Sk is concave on Γk.

The above properties remain unchanged if we regard the polynomi-
als Sk as functions of the Weingarten operator, instead of the principal
curvatures, because we have the following result, see [3, Lemma 2.2] or
[28, Lemma 2.11].

Theorem 3.6. Let f(λ1, . . . , λn) be a symmetric convex (concave) func-
tion and let F (A) = f(eigenvalues of A) for any n× n symmetric matrix A
whose eigenvalues belong to the domain of f. Then F is convex (concave).

The concavity of the above expressions allows one to apply the maximum
principle to obtain invariance properties. This will be clear after deriving the
following evolution equation.

Proposition 3.7. Let F (hi
j) be a function homogeneous of degree one.

Let Mt be a closed mean convex surface evolving by mean curvature flow
such that hi

j belongs to the domain of F everywhere. Then

∂

∂t

F

H
− Δ

F

H
=

2
H

〈
∇H,∇F

H

〉
− 1

H

∂2F

∂hi
j∂h

k
l

∇phj
i∇ph

k
l

As a consequence, if F is concave (convex), any estimate of the form F ≥ cH
(resp. F ≤ cH) is preserved.
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Proof. A straightforward computation, using Lemma 3.1(iii)–(iv) and
Euler’s theorem on homogeneous functions, yields

∂

∂t

F

H
=

1
H

∂F

∂hi
j

(Δhi
j + |A|2hi

j) −
F

H2 (ΔH + |A|2H)

= Δ
F

H
+

2
H

〈
∇H,∇F

H

〉
− 1

H

∂2F

∂hi
j∂h

k
l

∇phj
i∇ph

k
l . �

In particular, the previous proposition can be applied to F =Sk+1/Sk,
provided Sk 
= 0. This leads to the following result, which generalizes
Corollary 3.4.

Proposition 3.8. Let M0 be a closed hypersurface such that Sk > 0
everywhere for a given k ∈ {1, . . . , n} and let Mt be its evolution by mean
curvature flow. Then, for any l = 2, . . . , k there exists γl such that Sl ≥
γl H

l > 0 on Mt for all t ∈ (0, T ).

Proof. We first observe that on M0 the curvatures (λ1, . . . , λn) belong
everywhere to the set Γk defined in Theorem 3.5. By the same theorem,
we have Sl > 0 on M0 for l = 1, . . . , k and so, by compactness, we have
Sl ≥ clHSl−1 for suitable constants cl > 0, for any l = 2, . . . , k. We know
from Proposition 3.3 that H > 0 everywhere on Mt for t ∈ (0, T ]. Then
we can consider the quotient S2/H

2 = S2/S1H. It is defined for every t,
it is greater than c2 at time zero, and its minimum is nondecreasing by
Proposition 3.7. It follows that S2 ≥ c2H

2 also for t ∈ (0, T ). We now apply
the same procedure to the quotient S3/S2H to conclude that it is greater
than c3 for t ∈ (0, T ), i.e., S3 ≥ c3S2H ≥ c3c2H

3. Repeating the argument
a finite number of times yields the conclusion. �

Further invariance properties for the mean curvature flow can be obtained
using Hamilton’s maximum principle for tensors [20, Section 4]. Let us first
recall a definition. We say that an immersed surface M is k-convex, for
some 1 ≤ k ≤ n, if the sum of the k smallest curvatures is nonnegative
at every point of M. In particular, 1-convexity coincides with convexity,
while n-convexity means nonnegativity of the mean curvature H, i.e., mean
convexity. Then we have the following result.

Proposition 3.9. If a closed hypersurface M0 satisfies λ1 + · · ·+ λk ≥
αH for some α ≥ 0 and 1 ≤ k ≤ n, then the same holds for its evolution by
mean curvature flow Mt. In particular, if M0 is k-convex, then so is Mt.

Proof. The result follows from Hamilton’s maximum principle for ten-
sors, provided we show that the inequality λ1 + · · · + λk ≥ αH describes
a convex cone in the set of all matrices, and that this cone is invariant
under the system of o.d.e.’s dhi

j/dt = |A|2hi
j , which is obtained by dropping

the diffusion term in the evolution equation for the Weingarten operator in
Lemma 3.1.
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If we denote by W (v1, v2) the Weingarten operator applied to two
tangent vectors v1, v2 at any point, we have

λ1 + · · · + λk = min{W (e1, e1) + · · · + W (ek, ek) : 〈ei, ej〉 = δij

for all 1 ≤ i ≤ j ≤ k}.

This shows that λ1+· · ·+λk is a concave function of the Weingarten operator,
being the infimum of a family of linear maps. Therefore the inequality λ1 +
· · · + λk ≥ αH describes a convex cone of matrices. In addition, system
dhi

j/dt = |A|2hi
j changes the Weingarten operator by homotheties, and thus

leaves any cone invariant. The conclusion follows. �
In particular, we obtain that convex surfaces remain convex under the

flow. Observe that the same property also follows from Proposition 3.8 by
taking k = n and keeping into account property (3.2).

4. Convergence to a point of convex surfaces

As we recalled in the introduction, the singular behavior of convex sur-
faces under the flow is described by the following result.

Theorem 4.1. Let M0 be an n-dimensional closed convex surface embed-
ded in IRn+1. Then Mt shrinks to a point as t → T . In addition, if we choose
a suitable rescaling factor ρ(t), then the surfaces ρ(t)Mt converge to a sphere
as t → T .

Proof The above theorem was proved by Huisken in [24] in the case
n ≥ 2 and by Gage and Hamilton [17] when n = 1. Although the result in
[24] is well known, it is worth describing here some of the main ideas in the
proof, since they play an important role in the later developments of the
theory. Let us set

f =
|A|2
H2 − 1

n
.

Then it is easy to check that

fH2 =
∑
i<j

(λi − λj)2.

Thus, f is nonnegative and it measures how much the curvatures differ from
each other. It vanishes identically on a surface if and only if the surface is a
sphere. This approach is suggested by [19, §8], where Hamilton considered
a similar function of the eigenvalues of the Ricci tensor.

We have seen in Proposition 3.3 that the maximum of f is nonincreasing.
To prove convergence to a sphere one needs some stronger estimate, showing
that f tends to zero as the singular time is approached. Following [19], one
considers the function fσ = fHσ for a suitably small σ > 0. Observe that
fσ is a homogeneous function of the curvatures of degree σ > 0; thus, one
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would expect fσ to blow up as the singular time T is approached. The next
theorem shows instead that it remains bounded, and this is one of the crucial
steps in the proof of Theorem 4.1.

Theorem 4.2. If σ > 0 is small enough, the function fσ is uniformly
bounded for t ∈ [0, T ).

Proof. Let us first remark that a similar result holds for the analogous
function considered in [19] for the Ricci flow. However, the method of proof
is quite different. In fact, the result of [19] follows from an application of the
maximum principle. In our case, instead, the additional factor Hσ induces
the presence of a positive zero order term in the evolution equation for fσ

that cannot be directly compensated by the other terms. More precisely, one
finds

(4.1)
∂fσ

∂t
≤ Δfσ +

2(1 − σ)
H

〈∇H,∇fσ〉 −
2

H4−σ
|H∇ihkl − hkl∇iH| + σ|A|2fσ.

Thus, a more elaborate procedure is needed to estimate fσ. Let us first
state a useful lower bound for the gradient term in the above inequality.
One can prove that on convex surfaces (and in fact under more general
hypotheses) there exists c such that

(4.2) |H∇ihkl − hkl∇iH| ≥ cH2|∇H|2

(see [24, Lemma 2.3]). We now integrate the inequality on the manifold and
try to estimate the Lp norm of fσ. After integrating by parts we obtain

d

dt

∫
Mt

fp
σdμ ≤ −p(p− 1)

2

∫
Mt

fp−2
σ |∇fσ|2dμ− p

c

∫
Mt

fp−1
σ

H2−σ
|∇H|2dμ

+ pσ

∫
Mt

|A|2fp
σdμ.(4.3)

To show that the last term can be compensated by the other two, we
need some estimate involving both zero order curvature terms and gradient
terms. To this purpose, we recall the identity [24, Lemma 2.1]

(4.4)
1
2
Δ|A|2 = 〈hij ,∇i∇jH〉 + |∇A|2 + Z,

where Z = H
∑

λ3
i −

(∑
λ2

i

)2. Using this equality, one can compute

Δfσ ≥ 2
H2−σ

hij∇i∇jH +
2

H2−σ
Z

− 2(1 − σ)
H

〈∇H,∇fσ〉 +
(

2
nH1−σ

− 2 − σ

H
fσ

)
ΔH.
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After integrating this inequality on Mt and performing some standard
computations we obtain that, for all η > 0∫

1
H2−σ

fp−1
σ Zdμ ≤ (2ηp + 5)

∫
1

H2−σ
fp−1

σ |∇H|2dμ(4.5)

+ η−1(p− 1)
∫

fp−2
σ |∇fσ|2dμ.

On the other hand, it can be shown [24, Lemma 2.3(i)] that on a uniformly
convex surface, say hij ≥ εHgij , we have

(4.6) Z ≥ nε2H4−σfσ > nε2|A|2H2−σfσ.

Thus we can combine estimates (4.3) and (4.5) with an appropriate choice
of η to show that, for p suitably large and for σ suitably small the Lp norm
of fσ is decreasing in time.

This property is the starting point for a Stampacchia iteration procedure
to obtain that the L∞ norm of fσ is bounded. The proof also relies on the
Michael-Simon Sobolev inequality [32]. For the details, see [24, §5].

Several steps remain to complete the proof of Theorem 4.1. Roughly
speaking, the above result shows that, at the points where the curvature
becomes unbounded, the Weingarten operator approaches the one of a sphere.
One then needs to show that the curvature becomes unbounded in the whole
surface when the singular time is approached. The main steps are a gradi-
ent estimate for the mean curvature and an application of Myers’ theorem,
see [24]. �

5. Convexity estimates for mean convex surfaces

We shall now consider the formation of singularities for surfaces which
are mean convex, that is, with positive mean curvature everywhere. As we
have seen in Theorem 3.3, this property is preserved by the mean curvature
flow. For the study of singularities, mean convexity is a significant gener-
alization of convexity. For instance, it is enough general to allow for the
neckpinch behavior described in Section 2; in particular, mean convex sur-
faces do not necessarily shrink to a point at the singular time. A fundamental
result in the analysis of singularities of mean convex surfaces is the follow-
ing estimate on the elementary symmetric polynomials of the curvatures,
proved in [28].

Theorem 5.1. Let M0 ⊂ IRn+1 be a closed mean convex immersed
hypersurface and let Mt, t ∈ [0, T ) be its evolution by mean curvature flow.
Then, for any η > 0 there exists C = C(η,M0) such that Sk ≥ −ηHk − C
for any k = 2, . . . , n on Mt for any t ∈ [0, T ).

Such an estimate easily implies the following one, which has a more
immediate interpretation.
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Theorem 5.2. Under the same hypotheses of the previous theorem, for
any η > 0 there exists C = C(η,M0) such that λ1 ≥ −ηH − C on Mt

for any t ∈ [0, T ).

The interest of the above estimate lies in the fact that η can be chosen
arbitrarily small and C is a constant not depending on the curvatures. Thus
we see that, roughly speaking, the negative curvatures become negligible
with respect to the others when the singular time is approached. This implies
that the surface becomes asymptotically convex near a singularity. For this
reason we call the estimates of the theorems above convexity estimates. Let
us observe that the result of Theorem 5.2 is very similar to a well-known esti-
mate in the Ricci flow, usually called Hamilton-Ivey estimate [22, Theorem
24.4]. In contrast to our result, Hamilton-Ivey estimate holds for arbitrary
manifolds, but only in the three dimensional case. Observe that Theorem
5.2 cannot be valid for general surfaces even in low dimensions, because the
property is violated in Angenent’s example of self-similar shrinking torus.

In this section we illustrate the main steps in the proof of Theorem 5.1.
For a better understanding of the technique, it is useful to consider first the
following weaker result.

Theorem 5.3. Let M0 be a closed hypersurface such that, for some
1 ≤ k ≤ n − 1, we have S1 > 0, . . . , Sk > 0 everywhere on M0. Then,
for any η > 0 there exists C = C(η,M0) such that Sk+1 ≥ −ηHk+1 − C
everywhere on Mt for any t ∈ [0, T ).

Proof. The case k = 1 of this theorem (which can be treated in a more
explicit way) was proved in [27]. The general case can be regarded as a
simplified version of the main theorem in [28]. The strategy of proof is similar
to the one of Theorem 4.2. By our assumptions and by Proposition 3.8, we
have Sk > ckH

k everywhere on Mt and so the quotient Qk+1 := Sk+1/Sk is
well defined. Let us consider the function

f = fσ,η =
−Qk+1 − ηH

H1−σ
.

where σ, η > 0. A straightforward calculation yields the evolution equation

∂f

∂t
= Δf +

2(1 − σ)
H

〈∇H,∇f〉 − σ(1 − σ)
H2 f |∇H|2(5.1)

+
1

H1−σ

∂2Qk+1

∂hi
j∂h

p
q
∇mhi

j∇mhp
q + σ|A|2f.

The function fη,σ will play a similar role to fσ in the proof of Theorem 4.1.
Actually, in the case k = 1 the two functions essentially coincide. Even in
this case, however, the proof needs to be modified, because we no longer have
the convexity assumption that was crucial in some of the estimates there.

In the case σ = 0, the maximum principle applied to (5.1) and the con-
cavity of Qk+1 give a bound on fσ,η. However, the interesting case for us is
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when σ > 0. Namely, we need to show that for any η > 0 there exists σ > 0
such that fσ,η is bounded. In fact, proving that fσ,η < C for some C > 0
implies that

Sk+1 ≥ Sk(−ηH − CH1−σ) ≥ −2ηHk+1 − C ′

for a suitable C ′ = C ′(C, σ, η). Since η > 0 is arbitrary, this proves
Theorem 5.3.

To prove the boundedness of f we are going to apply the same technique
of Theorem 4.2, consisting of Lp estimates on f followed by an iteration
technique. Note that, in contrast to that theorem, the function f here is
not positive everywhere: it is negative, for instance, at all convex points of
the surface. It will be convenient to prove estimates on fp

+, where f+ is the
positive part of f . In this way, we only have to consider the points of Mt

where f > 0, that is, where Qk+1 ≤ −ηH.
As a first step, we need to show that the gradient term in the second

line of (5.1) is not only non positive, but it has some coercivity, i.e. we need,
an analogue of inequality (4.2). This is not an obvious property, because
the function Qk+1 is homogeneous of degree one, and thus it is not strictly
concave. However, analyzing carefully the properties of Qk+1 and exploiting
the symmetries given by the Codazzi equations we obtain [28, Theorems 2.5
and 2.14] that for any η > 0 there exists c > 0 such that

∂2Qk+1

∂hi
j∂h

p
q
∇mhi

j∇mhp
q ≤ −c

|∇A|2
|A|

at all points where Qk+1 < −ηH. This allows to obtain from (5.1)

d

dt

∫
Mt

fp
+ dμ ≤ −1

2
p(p− 1)

∫
Mt

fp−2
+ |∇f |2 dμ− Cp

∫
Mt

fp−1
+

H2−σ
|∇A|2(5.2)

+ 2pσ
∫

Mt

H2fp
+ dμ

for a suitable C = C(η). In the above arguments it is important that we
can restrict our attention to the points where Qk+1 < −ηH. This allows
us to avoid the points where Qk+1 = 0 and the function Qk+1 has weaker
concavity properties. Observe, for instance, that Sk+1 = 0 at all (λ1, . . . , λn)
with λ1 = λ2 = · · · = λn−k = 0 and the other entries are arbitrary. This
shows that the hessian of Qk+1 has a large kernel at such points.

Now we need an inequality which allows to estimate zero order terms
by first order terms, analogue to (4.5). To this purpose, we look for a suit-
able identity involving derivatives of the curvature together with zero order
curvature terms. It turns out that it is convenient to consider the quantity

∂Sk

∂hij
∇i∇jSk+1.
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A long but elementary computation, which uses the commutator identities
for covariant derivatives and various properties of the elementary symmetric
polynomials [28, Lemma 2.15], yields the identity

∂Sk

∂hij
∇i∇jSk+1 =

∂Sk

∂hij

∂2Sk+1

∂hlm∂hpq
∇ihlm∇jhpq +

∂Sk

∂hij

∂Sk+1

∂hlm
∇l∇mhij

−HSkSk+1 + (k + 1)S2
k+1 + k[(k + 1)S2

k+1

− (k + 2)SkSk+2].

Now we have (k + 1)S2
k+1 − (k + 2)SkSk+2 ≥ 0 by a classical property of

symmetric polynomials called Newton’s inequality. We deduce that, at all
points where Qk+1 < −ηH, we have

ηH2S2
k < −HS2

kQk+1 = −HSkSk+1

<
∂Sk

∂hij
∇i∇jSk+1 −

∂Sk

∂hij

∂2Sk+1

∂hlm∂hpq
∇ihlm∇jhpq

− ∂Sk

∂hij

∂Sk+1

∂hlm
∇l∇mhij .

Let us simply denote by (RHS) the right hand side of this inequality.
We have∫

Mt

H2fp
+ dμ ≤ c−2

k

∫
Mt

H2S2
kH

−2kfp
+ dμ ≤ c−2

k η−1
∫

Mt

(RHS)·H−2kfp
+ dμ.

where the last integral no longer contains zero order curvature terms. A care-
ful computation involving integration by parts and properties of the polyno-
mial Sk [28, Proposition 3.6] then shows that the negative gradient terms in
(5.2) can compensate the positive term for a suitable choice of the constants.
In this way we prove that, for any η > 0 and p large enough, there exists σ >
0 such that the Lp norm of (fσ,η)+ is nonincreasing. This allows to apply the
same iteration procedure as in the proof of Theorem 4.2 to conclude that fσ,η

is bounded from above for a suitable σ > 0, and this proves the theorem. �

The above statement contains the strong assumption of the positivity of
Sl for l = 1, . . . , k. To generalize the technique to the case where we only
have H > 0, we define a suitable perturbation of the second fundamental
form. For given ε,D > 0, we define bij = bij;ε,D as follows

bij = hij + (εH + D)gij .

We denote by S̃k the symmetric polynomials computed with respect to bij
instead of hij (we do not write explicitly the dependence on ε,D for simplic-
ity of notation). The interest of this definition is shown by the next result
[28, Lemmas 2.8, 2.11].
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Proposition 5.4. Given a mean convex hypersurface and k ∈ {2, . . . , n},
the following properties hold.

(i) Suppose that for any η > 0 there exists C such that Sl = −ηH l−C,
for l = 2, . . . , k. Then, for any ε > 0 there exists D such that S̃l > 0
for l = 2, . . . , k.

(ii) Conversely, suppose that for any ε > 0, η > 0 there exist D,C such
that S̃l > −ηH̃ − C for l = 2, . . . , k. Then, for any η > 0 there
exists K (in general larger than C) such that Sl = −ηH l −K, for
l = 2, . . . , k.

Proof of Theorem 5.1. The perturbation described above allows us
to apply an induction procedure similar to the one of Proposition 3.8. We
first apply Theorem 5.3 for k = 1 and obtain that for any η > 0 there exists
C > 0 such that S2 ≥ −ηH2 − C. By Proposition 5.4, the perturbed poly-
nomial S̃2 is positive, and so we can consider the quotient S̃3/S̃2. Suppose
that the proof of Theorem 5.3 can be carried through also for the perturbed
polynomials. Then we obtain that for any η > 0 there exists C such that
S̃3 ≥ −ηH̃3−C. But then the unperturbed polynomial S3 satisfies the same
estimate, although with a larger constant, by part (ii) of Proposition 5.4.
This shows that the procedure can be iterated to show that all polynomials
Sk up to k = n satisfy the desired estimate.

The difficult part is to check that the proof of Theorem 5.3
indeed applies also to the perturbed polynomials. The perturbation induces
the presence of several additional terms in the equation, some of which
require a sharp estimation. The computations become more involved, but it
turns out that the same procedure works. Roughly speaking, the additional
terms due to ε can be made arbitrarily small by choosing ε close enough to
zero, while the ones containing D are negligible because they are of lower
order. �

As it is customary in many nonlinear PDEs, it is possible to study the
singular behavior of surfaces evolving by mean curvature flow by rescaling
techniques. The property of rescalings are described in the references [26,
27, 28] and are not strictly needed for the results described in the remainder
of the paper. However, we recall them briefly here since they are useful to
have a better insight of the surgery procedure.

In the rescaling procedure one dilates in space and time the flow around
the points of a sequence along which the curvature becomes unbounded.
The dilations are such that the rescaled flows satisfy local uniform cur-
vature bounds and so we have convergence of a subsequence to a smooth
limiting mean curvature flow. A precise description of the procedure is given
in [27], see also [22, §16]. In the rescaling procedure the constant term in
the convexity estimates of Theorem 5.1 disappears and we obtain that any
limiting flow satisfies λ1 ≥ −ηH for arbitrary η > 0, that is, λ1 ≥ 0.
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Thus we have

Corollary 5.5. Any limit obtained by rescaling near a singularity a
mean convex surface evolving by mean curvature flow is convex (not neces-
sarily strictly).

The above corollary has been also obtained by White [39] by completely
different techniques. His approach also applies to weak solutions. The follow-
ing result gives a classification of the possible limits obtained by rescaling
near a singularity in the mean convex case.

Theorem 5.6. Let Mt ⊂ IRn+1 be a mean curvature flow of closed
mean convex hypersurfaces. Then there is a sequence of rescaled flows near
the singular time converging to one of the following flows:

(i) a product of the form Sn−k
t × IRk, for some 0 ≤ k ≤ n − 1 where

Sn−k
t is an (n− k)–dimensional shrinking sphere;

(ii) a flow of the form Gt × IRn−1, where Gt is a homothetically shrink-
ing curve in the plane;

(iii) a flow of the form Γn−k
t × IRk, for some 0 ≤ k ≤ n− 1, where Γn−k

t

is an (n − k)-dimensional strictly convex translating solution to
the flow.

The above result is proved in [26, Theorem 5.1] and [28, Theorem
4.1]. In addition to the convexity estimates, this classification relies on two
other important results, namely Huisken’s monotonicity formula [25] and
Hamilton’s differential Harnack inequality [21].

6. Cylindrical and gradient estimates for two-convex surfaces

From now on we consider mean curvature flow of hypersurfaces which
have dimension n ≥ 3 and are uniformly 2-convex, that is, satisfy
λ1 +λ2 ≥ αH everywhere for some α > 0. As we have seen in Proposition
3.9, this property is preserved by the flow. The motivation for considering
2-convex surfaces can be intuitively understood in view of the classification
of the possible profiles in Theorem 5.6. If our evolving surfaces are uniformly
2-convex, then so is any limit of rescaled flows. This restricts the number
of possibilities in Theorem 5.6, since the only uniformly two-convex limits
are the sphere Sn, the cylinder Sn−1 × IR and the n-dimensional translating
solutions Γn

t . All these profiles are compatible with the surgery procedure
we are willing to define. In fact, if the limit of the rescalings is the sphere
Sn, then the original manifold should be diffeomorphic to a sphere, and no
surgery is needed since the topology is known. If the limit is a cylinder, then
the manifold should possess a cylindrical region where we can do surgery.
If it is an n-dimensional translating solution Γn

t , we also expect to find a
cylindrical region, as explained at the end of §2. This discussion should be
regarded only as a heuristic motivation, since the information provided by
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Theorem 5.6 is too weak for the purposes of a flow with surgeries. Our actual
proof will be independent of Theorem 5.6 and in fact will not use rescaling
techniques, except at one stage (Theorem 9.1). We begin with the following
result.

Theorem 6.1. Let Mt, with t ∈ [0, T ), be a closed 2-convex solution of
mean curvature flow. Then, for any η > 0 there exists a constant Cη such
that

|λ1| ≤ ηH =⇒ |λj − λk| ≤ cηH + Cη, j, k > 1

everywhere on Mt, for t ∈ [0, T ), where c only depends on n.

We call the above result a cylindrical estimate because it shows that,
at a point where H is large and λ1/H is small, the Weingarten operator is
close to the one of a cylinder, since it has all eigenvalues close to each other
except for λ1 which is small. Such a property is an important tool for the
detection of the cylindrical regions where the surgeries will be performed.

To derive this estimate, we consider again the quotient |A|2/H2 which
was used in the proof of Theorem 4.1. On a cylinder IR × Sn−1 we have
|A|2/H2 ≡ 1/(n − 1). The converse does not hold, that is, if we have
|A|2/H2 = 1/(n − 1) at one point, this does not imply that the curvatures
are a multiple of the ones of a cylinder. However, if |A|2/H2 = 1/(n − 1)
and in addition λ1 = 0, then necessarily λ2 = · · · = λn. In fact, we have
the identity

(6.1) |A|2 − 1
n− 1

H2 =
1

n− 1

⎛⎝ ∑
1<i<j

(λi − λj)2 + λ1(nλ1 − 2H)

⎞⎠.

In view of this equality, the estimate of Theorem 6.1 is an immediate
consequence of the next result [29].

Theorem 6.2. Let Mt, t ∈ [0, T ), be a closed 2-convex solution of mean
curvature flow. Then, for any η > 0 there exists a constant Cη > 0 such that

|A|2 − H2

n− 1
≤ ηH2 + Cη

on Mt for any t ∈ [0, T ).

Proof. Let us consider, for η ∈ IR and σ ∈ [0, 2] , the function

(6.2) fσ,η =
|A|2 −

(
1

n− 1
+ η

)
H2

H2−σ
.

Such a function is very similar to fσ considered in the proof of Theorem 4.1,
and in fact it satisfies the same inequality (4.1). However, in this case we



322 C. SINESTRARI

do not have a bound from below for Z analogous to (4.6). In fact, Z can
be negative on nonconvex surfaces. A typical example is when λ1 < 0 and
λ2 = ... = λn > 0; then Z < 0, even if |λ1| is small compared to the other
curvatures.

However, using also the convexity estimate of Theorem 5.2, we can show
[29, Lemma 5.2] that there exists a constant γ1 > 0 with the following
property: for any δ > 0 there exists Kδ such that

(6.3) Z ≥ γ1H
2
(
|A|2 − 1

n− 1
H2 − δH2

)
−KδH

3

on Mt for any t > 0. As in the proof of Theorem 5.3, we will estimate the
Lp norms of the positive part (fσ,η)+. In this way, we only need to consider
the points where the positive part is nonzero, i.e., |A|2 − H2

n−1 ≥ ηH2. Thus,
if we choose δ = η/2 in (6.3) the first term is positive and the only negative
contribution to the right hand side is the last term which has lower order.
It turns out that this is enough to apply the usual iteration technique of the
previous theorems and obtain an upper bound for fσ,η, see [29, Theorem
5.3]. Such a bound easily implies the estimate of Theorem 6.2. �

Observe that similar results have been obtained by Hamilton for the
Ricci flow of arbitrary three-dimensional manifolds in [22, Theorem 24.7]
and of four-dimensional manifolds with positive isotropic curvature in
[23, Theorem B3.3].

We next describe an estimate for the gradient of the curvature for our
evolving surfaces. With respect to the gradient estimates for mean curvature
flow already available in the literature, e.g., [10, 12], the estimate here does
not depend on the maximum of the curvature in some neighborhood of the
point under consideration. To prove this result we need to assume that the
surfaces are 2-convex and that their dimension is at least three.

Theorem 6.3. Let Mt, t ∈ [0, T ), be a closed n-dimensional 2-convex
solution of mean curvature flow, with dimension n ≥ 3. Then there is a
constant γ2 = γ2(n) and a constant γ3 = γ3(n,M0) such that the flow
satisfies the uniform estimate

(6.4) |∇A|2 ≤ γ2|A|4 + γ3

for every t ∈ [0, T ).

Proof. The result is obtained by applying the maximum principle to a
suitable function we are going to introduce. An important tool in the proof
is the inequality [24, Lemma 2.1], valid for any immersed hypersurface,

(6.5) |∇A|2 ≥ 3
n + 2

|∇H|2.
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Observe that 3
n+2 > 1

n−1 if n ≥ 3. Let us set

κn =
1
2

(
3

n + 2
− 1

n− 1

)
.

By Theorem 6.2 there exists C0 > 0 such that(
1

n− 1
+ κn

)
H2 − |A|2 + C0 ≥ 0.

Let us set

g1 =
(

1
n− 1

+ κn

)
H2 − |A|2 + 2C0, g2 =

3
n + 2

H2 − |A|2 + 2C0.

Then we have g2 > g1 ≥ C0, and so gi − 2C0 = 2(gi − C0) − gi ≥ −gi for
i = 1, 2. Using the evolution equations for |A|2, H2 (see Lemma 3.1) and
inequality (6.5) we find

∂

∂t
g1 − Δg1 = −2

((
1

n− 1
+ κn

)
|∇H|2 − |∇A|2

)
+ 2|A|2 (g1 − 2C0)

(6.6)

≥ 2
(

1 − n + 2
3

(
1

n− 1
+ κn

))
|∇A|2 − 2|A|2g1

= 2κn
n + 2

3
|∇A|2 − 2|A|2g1.

Similarly

(6.7)
∂

∂t
g2 − Δg2 = −2

(
3

n + 2
|∇H|2 − |∇A|2

)
+ 2|A|2 (g2 − 2C0) ≥ −2|A|2g2.

In addition (see [24, Theorem 7.1])

(6.8)
∂

∂t
|∇A|2 − Δ|∇A|2 ≤ −2|∇2A|2 + cn|A|2|∇A|2,

for a constant cn depending only on n. Using the above relations one obtains,
after a straightforward computation, the following inequality for the quotient
|∇A|2/g1g2:

∂

∂t

( |∇A|2
g1g2

)
− Δ

( |∇A|2
g1g2

)
− 2

g2

〈
∇g2,

|∇A|2
g1g2

〉
≤ |∇A|2 |A|2

g1g2

(
(cn + 4) − 2κ2

n

n + 2
3n

|∇A|2
g1g2

)
.

The maximum principle then implies that |∇A|2 ≤ c1g1g2, where c1 only
depends on n and on the initial data. Using the definition of g1, g2, this
easily yields our assertion. �
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Once the estimate for |∇A| is obtained, it is easy to obtain similar
estimates for the higher order derivatives, as well as the time derivatives. In
particular, we have

(6.9) |∂tA| ≤ c1|A|3 + c2.

Let us note that at this stage no analogous direct a priori estimates for
the derivatives of the curvature are known for Ricci flow, since the corre-
sponding estimates obtained by Perelman [34, 35] are derived via contra-
diction arguments.

7. The surgery procedure

We now describe in more detail how we are going to perform our surg-
eries. As explained in the introduction, the surgery consists of removing an
almost cylindrical region (called a neck) and replacing it by two convex caps.
It is important that the procedure does not alter the validity of the estimates
proved in the previous sections. To check this, it is necessary to

• give a precise definition of neck, specifying the notion of “being
close to a cylinder” in a quantitative way;

• give an explicit expression of the surface after the surgery;
• show that the estimates of the previous sections remain valid after

the surgeries with the same constants.
These steps are carefully carried out by Hamilton [23] in the case of the
Ricci flow. We have followed his approach in many parts, with some modifi-
cations suggested by our framework of immersed surfaces. Since the complete
definitions are lengthy, we give a simplified exposition by omitting most of
the technical details.

Hamilton [23] gives different notions of necks in the case where M is
an abstract Riemannian manifold. For a given ε > 0, he defines ε-geometric
necks as diffeomorphism N : Sn−1 × [a, b] → M such that the standard
metric on the cylinder and the pull-back of the metric on M to the cylinder
are ε-close, up to a homothety. By “ε-close” we mean that the norm of the
difference of the two metric tensors (measured with respect to the standard
metric of the cylinder) is everywhere less than ε. He then defines ε-curvature
necks as regions of M where the curvature operator is ε-close at every point,
up to a homothety, to the curvature operator of a standard cylinder. The
first notion is useful when one wants to define the surgery procedure. The
latter one is useful to prove the existence of necks when a singularity is
approached. Clearly, a geometric neck is also a curvature neck. Conversely,
Hamilton proves that a curvature neck is locally a geometric neck, that is,
that one can detect a neck from the curvature alone.

In our context where M is an immersed manifold, it is natural to consider
notions of neck which also take into account the extrinsic curvature. We say
that a geometric neck is a hypersurface neck if the Weingarten operator of the
cylinder is ε-close at every point to the one induced by the parametrization.
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A useful feature of Hamilton’s definition of geometric neck (which also
holds for hypersurface necks) is that the condition of being close to a cylinder
is only local. In this way, the axis or the radius of the cylinder is allowed to
vary, provided they do it slow enough so that every point has a neighborhood
of given radius sufficiently close to a cylinder. For instance, a sufficiently thin
torus is an ε-hypersurface neck. Also, we can have a long neck with quite
different radii in the different parts. For instance, it may have in the central
part a radius smaller by a factor, say, 10 than the radius at the ends. This
is the kind of necks we want to remove by surgery, because in this way
we reduce the curvature of the surface in that region by the same factor.
Another important property enjoyed by geometric necks is that, if two of
them overlap, then their union is again a geometric neck. Thus, every ε-neck
has a maximal extension.

Let us now describe explicitly our surgery procedure. Suppose that we
have an ε-hypersurface neck N : Sn−1 × [a, b] → M, with ε small enough
and b− a large enough. We denote by (ω, z) ∈ Sn−1 × [a, b] the coordinates
in the neck. Let us choose τ > 0 suitably small and Λ, B > 0 suitably large.
We are going to replace smoothly the image of Sn−1 × [a, b] under N by
two appropriate regions diffeomorphic to disks. We only describe the region
attached to the first end z = a, since the other one is symmetric. First let us
denote by C̄a : Sn−1 × IR → IRn+1 the straight cylinder best approximating
M at the cross section z = a. Then the standard surgery with parameters
τ,Λ, B is performed as follows.

(i) In the region corresponding to z ∈ [a, a+ 2Λ], we bend the surface
inwards replacing the original parametrization N by

Ñ(ω, z) := N(ω, z) − τ exp
(
− B

z − a

)
ν(ω, z).

It can be shown that, if the parameter ε measuring the quality of
the neck is small enough, and if the surgery parameters τ,Λ, B are
chosen appropriately, then the deformed surface is strictly convex
in the part with z ∈ [a + Λ, a + 2Λ].

(ii) To blend the resulting surface into an axially symmetric one we
choose a fixed smooth transition function ϕ : [0, 3Λ] → IR+ with
ϕ = 1 on [0,Λ], ϕ = 0 on [2Λ, 3Λ] with ϕ′ ≤ 0. We then define, for
z ∈ [a + Λ, a + 2Λ]

(7.1) N̂(ω, z) := ϕ(z)Ñ(ω, z) + (1 − ϕ(z))C̃a(ω, z).

where C̃a is obtained from the cylinder C̄a by applying the bending
defined in (i).

(iii) We finally modify the radius of C̃a for z ∈ [a + 2Λ, a + 3Λ] in such
a way that it tends to 0 as z → a + 3Λ and that C̃a(Sn−1 × [a +
2Λ, a + 3Λ]) is a smooth axially symmetric convex cap. We do not
need to write an explicit expression here because knowing that the
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cap is convex and independent of the original surface is sufficient
for the estimates.

It is now possible to prove that, if ε is small enough and if the surgery
parameters are chosen appropriately, the estimates of Theorems 5.1, 6.1 and
6.3 remain valid for a flow with surgeries. Such a property is not surprising:
bending inwards an almost cylindrical region and closing it with a convex
cap should not decrease the convexity of the surface, nor produce parts with
large gradients of the curvature or affect the cylindrical estimates. However,
the proofs are far from being trivial and require careful computations, see
[29]. Actually, in [29], the theorems recalled above are proved directly in
the case of a flow with surgeries, to show more clearly that they hold also
in this case.

8. Neck detection

After having described the surgery procedure, we have to show that it
allows one to define a flow after the singularities until the surface is split into
components with known topology. As a first step, we need results ensuring
that, as the singular time is approached, either we can find a neck on our
surface or we can tell that the surface is convex so that its topology is known.
We discuss such results in this section.

We first introduce some notation. Given p ∈ M, t, r, θ > 0, with θ ≤ t,
the backward parabolic neighborhood centered at (p, t) is the set

(8.1) P(p, t, r, θ) = {(q, s) : q ∈ dt(p, q) ≤ r, s ∈ [t− θ, t]},

where dt denotes the distance on M at time t. If we consider a flow with
surgeries, the above set may be not well defined. In fact, the r-neighborhood
of p at time t may intersect a region which has been inserted with a surgery
at some time between t− θ and t. If this happens, we say that the backward
parabolic neighborhood contains surgeries.

The next result is an essential tool to prove the existence of necks before
a singularity. We shall call it in the following the neck detection theorem.

Theorem 8.1. Let Mt, t ∈ [0, T [ be a mean curvature flow with
surgeries starting from an immersed manifold M0 which is closed,
two-convex and with dimension n ≥ 3. Let ε, θ, L > 0 be given. Then we can
find η0, H0 with the following property. Suppose that p0 ∈ M and t0 ∈ [0, T [
are such that

(ND1) H(p0, t0) ≥ H0,
λ1(p0, t0)
H(p0, t0)

≤ η0,

(ND2) the neighborhood P
(
p0, t0,

L
H(p0,t0) ,

θ
H2(p0,t0)

)
does not contain

surgeries.
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Then, for any t ∈ [t0 − θ/H2(p0, t0), t0], the ball centered at p0 of radius
L/2H(p0, t0) is contained in an ε-hypersurface neck. The constants η0, H0
only depend on M0 and on ε, L, θ.

Proof. We use a contradiction argument based on a rescaling pro-
cedure like the ones which are often used by Hamilton and Perelman for
the Ricci flow [23, 34]. Let us assume that the assertion is false. Then we
can find a sequence (pn, tn) such that H(pn, tn) → +∞, lim supλ1(pn, tn)/
H(pn, tn) ≤ 0, the parabolic neighborhoods do not contain surgeries, but the
points do not lie on an ε-neck. A contradiction will be proved if we show that
a subsequence of the parabolic neighbourhoods (after rescaling) converge to
the flow of a portion of the standard cylinder; in fact, this will imply that
they satisfy the conclusion of the theorem for n large enough.

We first perform a parabolic rescaling of the neighborhoods by a factor
H(pn, tn) and then translate space and time so that (pn, tn) becomes (0, 0);
in such a way, they all become flows defined in the time interval [−θ, 0] and
satisfying H(0, 0) = 1.

To obtain compactness of a sequence of flows we need uniform curva-
ture bounds. We exploit our gradient estimates (6.4) and (6.9) to obtain
that H ≤ 2 in a possibly smaller parabolic neighborhood around (0, 0) for
every element of the sequence. In this smaller neighborhood we have there-
fore convergence of a subsequence to a limit flow M̃t. When we pass to the
limit, the constant terms in the estimates of Theorem 5.2 and 6.1 disappear.
Therefore the limit flow M̃t is convex and satisfies λ̃1(0, 0) = 0. Hence, it is
not strictly convex at the final time. By Hamilton’s strong maximum prin-
ciple for tensors, it must satisfy λ̃1(0, 0) = 0 everywhere. By the cylindrical
estimates, the other curvatures coincide at each point. Then it is easy to
show that the flow is a portion of a shrinking cylinder.

So far we have only proved convergence of a smaller neighborhood around
(0, 0). However, since we have proved that H ≤ 1 everywhere in this neigh-
borhood, we can apply again the gradient estimates to find that H ≤ 2 in a
larger neighborhood, and prove convergence to a cylinder there too. After a
finite number of iterations, we prove convergence to a cylinder of the whole
original neighborhoods. �

The next result deals with the case of a point where the curvature is
large, but λ1/H is not small. We give the statement for a stationary surface,
since the property is not related to mean curvature flow.

Theorem 8.2. Let M be an immersed hypersurface satisfying the gra-
dient estimate (6.4). Let η0, H0 be given. Then there exists γ0 > 1 with the
following property. Let p ∈ M be any point such that H(p) ≥ γ0H0 and
λ1(p) > η0H(p). Then either M is closed and convex or there exists a point
p′ ∈ M such that

λ1(p′) ≤ η0H(p′), H(p′) ≥ H0

and such that H(q) ≥ H0 at all points q with d(p, q) ≤ d(p, p′).
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Proof. We first use the gradient estimate to show that the curvature
cannot decay too fast as we move away from p. Then an elementary com-
putation shows that if λ1 ≥ H in a large enough ball around p, then M
must be convex. It follows that the only other possibility is the existence
of a point p′ not too far from p and with curvature not too much smaller
than H(p), which has the claimed properties (see [29, Theorem 7.14] for
the details). �

The two previous theorems can be combined to prove the existence of
necks before the first singular time. In fact, let η0, H0 be the values given from
Theorem 8.1 for some choices of ε, θ, L, and let γ0 be the value associated to
η0, H0 by Theorem 8.2. Then let us pick a time t0 close to the singular time
so that there exists a point p0 such that H(p0, t0) ≥ γ0H0. If λ1(p0, t0) ≤
η0H(p0, t0) we can directly apply Theorem 8.1 to conclude that p0 lies on
a neck. Otherwise we apply Theorem 8.2 to find another point p1 where
Theorem 8.1 can be applied. If no such point exists, then Theorem 8.2
implies that our surface is convex and therefore diffeomorphic to a sphere;
we do not need to continue the flow any longer. After the first surgery the
argument is no longer so direct, because we have to ensure that hypothesis
(ND2) in Theorem 8.1 is satisfied. We will see in the next section how we
can deal with this difficulty.

9. The surgery algorithm

In this final section we provide an algorithm which determines at which
time and place the surgeries are to be performed, and we show that the flow
with surgeries generated by this algorithm terminates after a finite number
of steps. We will fix three values H1 < H2 < H3 suitably large. The flow
defined by our algorithm will satisfy the following properties:

• the surgeries are performed at times Ti such that maxH(·, Ti) =H3;
• after the surgeries are performed, we have maxH(·, Ti+) ≤ H2;
• the regions introduced with the surgeries satisfy H1/2 ≤ H ≤ 2H1.

A flow with these properties necessarily terminates after a finite number of
steps. This can be seen considering the decrease of area of the surface. The
area is decreasing during the smooth evolution, by Lemma 3.1-(ii). Since the
surgeries are performed on necks with approximately fixed curvature, each
of them decreases the area at least by a given fixed amount. Therefore, there
can be only a finite number of them.

In order to define a flow with the above properties, it is fundamental to
show that we can use surgeries to decrease the curvature of our surface by
a fixed factor. This will be a direct consequence of the next result.

Theorem 9.1. Let M0 be a 2-convex closed hypersurface of dimension
n ≥ 3. It is possible to define η1, H1 with the following properties. Suppose
that Mt, with t ∈ [0, t0], is a mean curvature flow with surgeries starting
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from M0. Suppose that all the regions inserted in the surgeries have curva-
ture less than 2H1. Let p0 be such that

(9.1) H(p0, t0) ≥ 10H1, λ1(p0, t0) ≤ η1H(p0, t0).

Then (p0, t0) lies on an ε0-hypersurface neck N0, which either covers the
whole component of Mt0 including p0, or can be continued in each direction
until one of the two following properties hold:

(i) the mean curvature has decreased to H1, or
(ii) the neck ends with a convex cap.

Proof. The precise proof of this statement is one of the longest and
most technical results in [29]. We explain here in an intuitive way some of
the arguments employed for this result.

Let us first consider the case of the first surgery time. We choose η1, H1
as in the neck detection Theorem 8.1. Then we have that (p0, t0) lies on
an ε0-hypersurface neck, because condition (ND2) is trivially satisfied. Now
we extend the neck in both directions in a maximal way. A first possibility
is that the neck never ends, that is, the two ends meet, showing that the
component of the surface containing p0 is diffeomorphic to a torus Sn−1×S1.
Otherwise, the neck ends somewhere. In this case, we deduce that the points
in the final part of the neck do not satisfy hypothesis (ND1) of the neck
detection theorem. One possibility is that the curvature is no longer large;
then we have proved case (i) of the theorem. The other possibility is that λ1
is no longer small; if this happens on a large enough region, then the surface
must close as a convex cap, as in case (ii). To show this rigorously, a delicate
argument is needed, see [29, Theorem 8.2]; in particular, it is necessary to
make a more restrictive choice of the parameters η1, H1 than the one needed
to apply Theorem 8.1 at the beginning.

Let us now complete the argument to include the case where there have
already been surgeries. We consider again our starting point (p0, t0). It is
possible to show [29, Lemma 7.2] that, if the parameters have been chosen
appropriately, assumption (ND2) holds at (p0, t0) because of the gradient
estimates. In fact, we are assuming that all regions inserted by the surgeries
have curvature less than 2H1, while we have H(p0, t0) ≥ 10H1. Roughly
speaking, if (ND2) were violated, there would not be enough time from the
last surgery to t0 to let the curvature increase from 2H1 to 10H1. It is
important in this argument that our gradient estimates are not obtained by
arguments employing interior parabolic regularity, and therefore they hold
with the same constants regardless how close we are to the surgery times.
This shows that also in this case (p0, t0) possesses a backward parabolic
neighborhood which is surgery-free and we can apply Theorem 8.1 to say
that p0 lies on a neck N0.

As before, we consider the maximal extension of the neck N0 and we
argue that where the neck ends one of the assumptions of Theorem 8.1
must fail. Let us consider the last point p1 where it is possible to apply
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Theorem 8.1. If the points after p1 violate condition (ND1), then we argue
as in the case without surgeries described before. Let us consider instead
the case that (ND2) is violated. Observe that the curvature at p1 may be
comparable with H1 and thus we cannot ensure the validity of (ND2) as
in the case of the point p0. However, we claim that if (ND2) is violated at
the points after p1, we are still able to describe the topology of the region,
and to conclude that the neck ends with a convex cap. In fact, if p1 is the
last point where (ND2) holds, this means that the corresponding backward
parabolic neighborhood is a neck at every fixed time, and it intersects on
the boundary at some previous time t1 the region inserted by a surgery. By
our construction, the region inserted in a surgery starts out cylindrical and
bends gradually until it closes with a convex cap. It is then possible to prove
that the cylindrical part of the region must coincide with the last part of
the neck N0 [29, Lemma 7.12]. This shows that the neck N0 ends with a
convex cap also in this case. �

We now consider the values η1, H1 given by Theorem 9.1, and take the
associated γ0 as in Theorem 8.2. We set

H2 = 10γ0H1, H3 = 10H2.

We then define our surgery algorithm as follows. We stop the flow every time
we reach a time Ti such that Hmax(Ti) = H3. If some connected component
of the hypersurface has become convex everywhere, we neglect it. In the
remaining components, we operate surgeries in order to remove all points
with curvature greater than H2. To do this, let p be any point such that
H(p, Ti) ≥ H2.

If λ1(p, Ti) ≤ η1H(p, Ti), we apply Theorem 9.1 to find that p lies on a
neck N0 having one of the behaviors described there. If the neck covers a
whole component of the surface, we know that the component is diffeomor-
phic to Sn−1 × S1, and we neglect it. If in both directions of the neck we
find points with mean curvature approximately H1, we perform surgeries to
remove the part of the neck in between, which includes the point p. If we find
on one side points with curvature H1 and on the other side a convex cap,
then we do surgery only on one side and neglect the rest of the neck together
with the cap, since this leaves the topology of the surface unchanged. If the
neck ends with a convex cap in both directions, we neglect the component
because it is diffeomorphic to a sphere. In all cases, the point p is removed
and the possible surgeries are performed on a part of the neck with curvature
close to H1.

The other case is that λ1(p) > η1H(p) at time Ti. If the component
containing p is convex, it can be neglected. Otherwise, by Theorem 8.2,
there is another point p′ such that λ1(p′) ≤ η1H(p′) and H(p′) ≥ H(p)/γ0 ≥
H2/γ0 = 10H1. Then we apply Theorem 9.1 to the point p′ as in the former
case. Using the fact that H(q) ≥ H(p)/γ0 at all q such that d(p, q) ≤ d(p, p′)
we can show that the neck containing p′ necessarily ends on one side with
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a convex cap containing p. Hence the procedure described in the previous
case removes the point p together with p′.

We then iterate the procedure until every point with curvature greater
than H2 is removed. This requires at most a finite number of surgeries, since
each surgery decreases the surface area by a fixed amount. After all such
points have been removed, we restart the flow. We repeat the procedure
until there are no more components left. In this way we have defined a
surgery algorithm with the required properties, and the proof of the main
Theorem 1.1 is complete.
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