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Abstract. This is a survey article for Surveys in Differential
Geometry series on the subject of Li-Yau-Hamilton type differential
inequalities and related monotonicity formulae.

1. Introduction

The purpose of this essay is to give an expository account on various
sharp estimates of Li-Yau-Hamilton type for solutions to geometric evolution
equations and their relation to various important monotonicity formulae in
the subject.

The Li-Yau-Hamilton type estimates in the geometric evolution equa-
tions are originally called differential Harnack estimates since they imply
the celebrated Harnack estimates for the parabolic equations originated with
the work of Moser [Mo]. In the seminar paper [LY] P. Li and S.-T. Yau first
proved a gradient estimate for positive solutions to the heat equation via
the maximum principle and derived a sharp form of Harnack estimate by
integrating the proven gradient estimate on space-time paths. Even though
its proof has its root in the corresponding earlier works on geometric elliptic
equations (cf. [ChY1, ChY2, Y], etc.), this gradient estimate differs from
its elliptic analogue fundamentally by its sharpness as well as its broader
impact to the study of nonlinear geometric evolution equations. Later on,
the similar technique was employed by R. Hamilton in the study of Ricci flow
[H2, H3], as well as the hypersurface mean curvature flow [H4]. Based on
this history and its great impact towards the study of geometric evolution
equations, in [NT], the class of sharp differential inequalities which yield
a Harnack type estimate by the path-integration, started to be called Li-
Yau-Hamilton type estimates. Soon after Hamilton’s work the corresponding
results for the Kähler-Ricci flow and Gauss curvature flow (Yamabe flow)
were proved by H.-D. Cao [Co] and B. Chow [Ch1, Ch2] respectively. Later
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in [An1], the result was established for a general class of hypersurface flows
by B. Andrews.

On the other hand, Hamilton also generalized Li-Yau’s original estimate
for the linear heat equation to a matrix form on a class of
Riemannian manifolds with nonnegative sectional curvature [H5]. More
importantly he derived several important monotonicity formulae out of his
matrix estimate [H6].

In the last decade there were a few further developments along this
direction, [CC1, CC2, CH, NT, CN, N3, N4]. Many applications in
geometry have also been discovered. The most spectacular one is the Li-
Yau-Hamilton type estimate for the conjugate heat equation (coupled with
the Ricci flow) and its related entropy monotonicity formula discovered by
G. Perelman [P] (see also [N5]). Perelman’s inequality and its relation with
the reduced volume monotonicity suggest a profound connection between the
monotonicity formulae and Li-Yau-Hamilton type estimates. It is one of our
purposes here to convey this connection.

Due to its expository nature, in this paper we shall only include a com-
plete proof of a statement in the cases either the stated result appears in the
first time, or we are compelled by the simplicity of the original arguments.
In the rest of the cases, we shall just give a outline or the key steps.

Here is how we organize this paper. In Section 2 we discuss various Li-
Yau-Hamilton inequalities on geometric evolution equations. In Section 3
we discuss how various monotonicity formulae can be derived out of the
Li-Yau-Hamilton inequalities. In Section 4 we discuss how monotonicity for-
mulae in turn suggest new Li-Yau-Hamilton type inequalities. The order of
the appearance of the results may not necessarily follow the chronological
order in which the results were proved. Instead we present them in the order
which we feel is the most natural and logical. Due to the lack of exper-
tise and the limited time allowed for writing this article we have to omit
the applications of Li-Yau-Hamilton inequality altogether, as well as other
various important topics, which we shall list in the section of comments
for interested parties. Through out the paper n denotes the dimension of a
Riemannian manifold Mn and m denotes the complex dimension of a Kähler
manifold Mm (n= 2m).

2. Li-Yau-Hamilton type inequalities

The most miraculous result is Hamilton’s matrix Li-Yau-Hamilton
(which we shall abbreviate as LYH later) for Ricci flow of metrics with
a bounded nonnegative curvature operator. However its proof as well as
the formulation is motivated by the corresponding simpler consideration
on linear heat equations. We also found that it is more suggestive to start
with the simpler case since its understanding often sheds lights on the more
technically complicated nonlinear setting. Hence we start with the solutions
to the linear heat equation.
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2.1. Linear heat equation. Through out this subsection, let (M, g)
be a fixed Riemannian manifold. The main concern is on the positive
solution to

(2.1)
(
∂

∂t
− Δ

)
u(x, t) = 0.

A. Li-Yau’s gradient estimate for the linear heat equation. In [LY],
the following result was proved.

Theorem 2.1. Let (M, g) be a complete Riemannian manifold. Assume
that on the ball B(o, 2R), Ric(M) ≥ −k. Then for any α > 1, we have that

sup
B(o,R)

( |∇u|2
u2 − α

ut

u

)
≤ Cα2

R2

(
α2

α2 − 1
+

√
kR

)
(2.2)

+
nα2k

2(α− 1)
+

nα2

2t
.

If (M, g) has nonnegative Ricci, letting R → ∞, (2.2) gives the clean
estimate (a Hamilton-Jacobi inequality):

(2.3)
|∇u|2
u2 − ut

u
≤ n

2t

This estimate is sharp in the sense that the equality satisfied for some (x0, t0)
implies that (M, g) is isometric to Rn [N5]. It can also be easily checked that
if u is the fundamental solution on Rn given by the formula 1

(4πt)
n
2

exp(− |x|2
4t ),

then the equality holds in (2.3). It was observed by Li-Yau that by integra-
tion over the path jointing (x1, t1) to (x2, t2) with t2 > t1, (2.3) gives

u(x1, t1) ≤
(
t2
t1

)n
2

u(x2, t2) exp
(
r2(x1, x2)
4(t2 − t1)

)
which is a sharp form of Harnack estimates for parabolic equations.

Despite the fundamental importance of Theorem 2.1, its proof is
elementary via the maximum principle for parabolic equations by computing(

∂
∂t − Δ

)
F with F = |∇u|2

u2 − α u
ut

. The localized estimate (2.2) is possible
due to a term of −F 2 appearing in the resulting estimation of

(
∂
∂t − Δ

)
F .

The Ricci curvature comes into play due to the commutation of the differ-
entiations as in the regular Bochner formula [SY]. In the special case that
(M, g) has nonnegative Ricci curvature, the proof of (2.3) is based on the
following computation. Let Q := u

(
Δ log u + n

2t

)
. Then

(2.4)
(
∂

∂t
− Δ

)
Q =

2
u
|Υij |2 −

2
t
Q +

2
u
Rij∇iu∇ju
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where

Υij = ∇i∇ju +
u

2t
gij −

uiuj

u
= u

(
−∇i∇jf +

1
2t
gij

)
.

with f defined by u = e−f

(4πt)n/2 . (Q = gijΥij .)

B. The differential estimates on the fundamental solution. In [N2],
motivated by the work of [P] the following result was proved.

Theorem 2.2. Let (M, g) be a complete Riemannian manifold with non-
negative Ricci curvature. Let u(x, t) = H(x, t; y, o) be the positive heat ker-
nel. Then

(2.5) t(2Δf − |∇f |2) + f − n ≤ 0

where u = e−f

(4πt)
n
2
.

The estimate (2.5) is a Li-Yau-Hamilton type since combining with the
heat equation 2|∇f |2 − 2Δf + 2ft + n

t = 0 we have a Hamilton-Jacobi
inequality

(2.6) |∇f |2 + 2ft +
f

t
≤ 0.

For (x2, t2) and (x1, t1) with t2 > t1 we have that

√
t2f(x2, t2) −

√
t1f(x1, t1) =

∫ t2

t1

d

dt

(√
tf(γ(t), t)

)
dt

=
∫ t2

t1

√
t

(
ft +

f

2t
+ 〈∇f, γ′(t)〉

)
dt

≤ 1
2

∫ t2

t1

√
t|γ′(t)|2 dt

for any path joining from x1 to x2. This gives a Harnack type estimate:

(2.7)
√
t2f(x2, t2)−

√
t1f(x1, t1) ≤ inf

γ

1
2

∫ t2

t1

√
t|γ′(t)|2 dt =

r2(x1, x2)
4(
√
t2 −

√
t1)

.

Since limt→0
√
tf(o, t) ≤ 0 from that limt→0 u(x, t) = limt→0

e
−

√
tf(x,t)√

t

(4πt)
n
2

=

δo(x), we have that

(2.8) f(x2, t2) ≤
r2(o, x2)

4t2
.

This is equivalent to the heat kernel comparison theorem of Cheeger and
Yau [CY].
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The curious reader may ask why the estimate (2.5) is not proved for
arbitrary positive solutions. The simple answer is that it is no longer true
in such generality. This can be seen for those solutions which are smooth on
M× [0, T ). The proof of the result requires both the point-wise computation
as Theorem 2.1 (precisely (2.4)) as well as an entropy formula together with
some integral estimates. Hence we postpone a more detailed account to a
later section. However, there is a geometric consideration which indicates
that (2.5) is a natural one and is related to (2.3). It was known that

lim
t→0

4tf = r2(o, x)

if u is the heat kernel. Rewriting (2.3) as

t(2Δf) − n ≤ 0

one therefore deduces the Laplacian comparison theorem:

Δr2 ≤ 2n.

Define L̂(x, t) := 4tf(x, t). Then (2.3) amounts to ΔL̂ ≤ 2n. Therefore
one can view it as a generalized/space-time version Laplacian comparison
theorem. Writing (2.5) in terms of L̂ we have that

(2.9) ΔL̂ + L̂t ≤ 2n.

In this sense, (2.5) is a space-time Laplacian comparison theorem. The sharp-
ness of (2.5) follows from that the equality holds for some (x, t) with t > 0
if and only if M is isometric to Rn [N5].

C. The matrix LYH inequalities. We found that keeping in mind the
connection between the LYH type estimate and the comparison theorem
on distance functions is beneficial. The following result of Hamilton [H5]
corresponds to the Hessian comparison theorem.

Theorem 2.3. Assume that (M, g) is a complete Riemannian manifold
with nonnegative sectional curvature and parallel Ricci curvature. Then

(2.10) ∇i∇j log u +
1
2t
gij ≥ 0.

Noting the trace of (2.10) is just (2.3). The extra assumption that (M, g)
has parallel Ricci is quite restrictive, which essentially means that (M, g) is
Einstein. When (M, g) is a Kähler manifold this assumption can be dropped
and the nonnegativity of the sectional curvature can be relaxed to the non-
negativity of the bisectional curvature. This was observed in [CN].

Theorem 2.4. Let (M, g) be a complete Kähler manifold with nonneg-
ative holomorphic bisectional curvature. Then

(2.11) ∇i∇j̄ log u +
1
t
gij̄ ≥ 0.
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Both (2.10) and (2.11) yield the Hessian comparison theorem for the
distance function as illustrated before. In the next section we shall show
how they can suggest estimates for the Ricci/Kähler-Ricci flow.

The proof is as usual via the maximum principle. This time one needs
the tensor maximum principle of Hamilton developed in [H1]. The rest is
on computing (

∂

∂t
− Δ

)(
∇i∇j log u +

1
2t
gij

)
and grouping the resulting terms.

D. LYH inequality on (1, 1) forms. The above results are all on the
positive solution to the heat equation. The curious reader may ask if there
is any such result for solutions to a parabolic system. There is one indeed
[N3]. But we have to restrict ourselves to the complex Kähler manifolds.

Let h(x, t) =
√
−1hαβ̄dz

α ∧ dzβ̄ be a real (1, 1) form satisfying the
Lichnerowicz-Laplacian heat equation:(

∂

∂t
− Δ

)
hγδ̄ = Rβᾱγδ̄hαβ̄ − 1

2
(Rγs̄hsδ̄ + Rsδ̄hγs̄) .(2.12)

We assume that hαβ̄(x, t) is semi-positive definite (denoted briefly as
hαβ̄(x, t)≥ 0) and that M has nonnegative bisectional curvature. For any
(1, 0) vector field V we define

Zh(x, t) =
1
2

(
gαβ̄∇β̄ div(h)α + gγδ̄∇γ div(h)δ̄

)
+ gαβ̄ div(h)αVβ̄

+ gγδ̄ div(h)δ̄Vγ + gαβ̄gγδ̄hαδ̄Vβ̄Vγ +
H

t
.(2.13)

Here

div(h)α = gγδ̄∇γhαδ̄, div(h)δ̄ = gαβ̄∇β̄hαδ̄

and

H = gαβ̄hαβ̄.

In the context where the meaning is clear we drop the subscript h in Zh.

Theorem 2.5. Let M be a complete Kähler manifold with nonnegative
holomorphic bisectional curvature. Let hαβ̄(x, t) ≥ 0 be a symmetric (1, 1)
tensor satisfying (1.1) on M × (0, T ). Assume that for any ε′ > 0,

(2.14)
∫ T

ε′

∫
M

e−ar2(x)‖h‖2 dv dt < ∞.
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Then

(2.15) Z(x, t) ≥ 0,

for any (1, 0) vector V . If Z(x0, t0) = 0 for some point (x0, t0) with t0 > 0
and hαβ̄(x, t) > 0, then M is flat.

The proof is via the maximum principle as usual. Instead of explaining
on that we choose to formulate the result in more conventional way for the
people who are more familiar with the complex geometric notations. Recall
the Hodge-Kodaira Laplacian

Δ′′ = ∂̄∂̄∗ + ∂̄∗∂̄.

The standard Kodaira-Bochner formula gives

−Δ′′h = ΔLh � Δhαβ̄ + Rβᾱγδ̄hαβ̄ − 1
2

(Rγs̄hsδ̄ + Rsδ̄hγs̄),

∂∗h = −div(h)δ̄dz
δ̄, ∂̄∗h = div(h)αdz

α

and

gαβ̄∇β̄ div(h)α = −∂∗∂̄∗h, gαβ̄∇α div(h)β̄ = ∂̄∗∂∗h.

Hence the result concludes that for h ≥ 0 satisfying the heat equation(
∂

∂t
+ Δ′′

)
h = 0(2.16)

the scalar quantity

Zh =
1
2
(
−∂∗∂̄∗ + ∂̄∗∂∗)h + ∂̄∗h(V ) − ∂∗h(V̄ ) + h(V, V̄ ) +

Λh
t

≥ 0(2.17)

for any vector field V . Here Λh is the standard contraction of h by the Kähler
form.

When h is the trace of the curvature form of a Hermitian vector
bundle satisfying the Hermitian-Einstein flow, Theorem 2.5 gives a
Li-Yau-Hamilton estimate for Hermitian-Einstein flow on nonnegative
curved manifolds. Please see [N3] for details on this.

2.2. Ricci/Kähler-Ricci flow. For most discussion in this subsection,
(M, g(t)) is a solution to Ricci/Kähler Ricci flow. The most important result
for Ricci flow is Hamilton’s [H3] matrix LYH inequality.

A. Matrix LYH inequalities on curvature. The following fundamental
result for Ricci flow was proved by Hamilton [H3] (see also [H2]).

Theorem 2.6. If (Mn, g( t )), t ∈ [0, T ), is a solution to the Ricci flow
with nonnegative curvature operator, namely RijklUijUkl ≥ 0 for all 2-forms,
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and if (Mn, g( t )) is either compact or complete noncompact with bounded
curvature, then for any 1-form W ∈ C∞ (Λ1M

)
and 2-form U ∈ C∞ (Λ2M

)
we have

(2.18) Z (U,W ) � MijWiWj + 2PpijUpiWj + RipjqUipUjq ≥ 0.

Here

(2.19) Pkij � ∇kRij −∇iRkj

and the symmetric 2-tensor M is defined by

(2.20) Mij � ΔRij −
1
2
∇i∇jR + 2RikjlRkl −RipRpj +

1
2t
Rij .

The original paper [H3] is still the best place to read the proof of this
result. The expression is suggested by playing with gradient expanding soli-
ton equations. This again is well explained in [H3]. As in Li-Yau’s case, the
expression of the estimate is obtained by the computation of the special solu-
tions (grouping various gradient terms of the heat kernel on the Euclidean
space Rn yields the LYH expression for the linear heat equation, grouping
the soliton equation and its various covariant differentiations on an gradi-
ent expanding soliton yields the matrix LYH expression for the Ricci flow).
The LYH expression usually vanishes identically on the special solutions.
However it is highly nontrivial, if not a miracle, to come up as compli-
cated an expression as (2.18) and conclude that it has a sign for the general
solutions/spaces.

The Kähler analogue of the above result was proved by Cao [Co]. Define
(2.21)

Ỹ (X)αβ̄ � ∂

∂t
Rαβ̄ +Rαγ̄Rγβ̄ +∇γRαβ̄X

γ +∇γ̄Rαβ̄X
γ̄ +Rαβ̄γδ̄X

γX δ̄ +
Rαβ̄

t

for any (1, 0)-vector X = Xγ ∂
∂zγ and where X γ̄ � Xγ .

Theorem 2.7. If (Mn, g(t)) is a complete solution to the Kähler–Ricci
flow with bounded nonnegative bisectional curvature, then

(2.22)
(
Ỹ (X)αβ̄

)
≥ 0

for any (1, 0)-vector X.

B. The linear trace LYH inequalities. Recall that the Lichnerowicz
Laplacian acting on symmetric 2-tensors is given by

ΔLhij = Δhij + 2Rikjlhkl −Rikhjk −Rjkhik.

The following result was proved by Chow and Hamilton [CH].
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Theorem 2.8. Suppose (Mn, g (t)), t ∈ [0, T ), is a complete solution of
Ricci flow with bounded nonnegative curvature operator. Assume that h(x, t)
with h (0) ≥ 0, is a solution to

(2.23)
∂

∂t
h = ΔLh

and |h (t)| is bounded. Then h (t) ≥ 0 for t ∈ [0, T ) and for any vector X we
have

(2.24) Z (X) � ∇i∇jhij + Rijhij + 2 (∇jhij)Xi + hijXiXj +
H

2t
≥ 0,

where H � gijhij .

If hij is the Ricci tensor, one can check that (2.23) holds. Hence the
above theorem implies the trace form of (2.18) (choosing U = X ∧W and
tracing the variable W ). Also (2.23) is satisfied by the variational tensors
of a family of solutions to Ricci flow in a certain sense. Namely, (2.23) is a
linearization of the Ricci flow. This explains the term linear trace.

In [NT], with the motivation of study the Liouville property of
plurisubharmonic functions, the Kähler analogue of the above was proved.
Let (Mn, g(t)), t ∈ [0, T ), be a complete noncompact solution of the
Kähler–Ricci flow with bounded nonnegative bisectional curvature. Let h =√
−1hαβ̄dz

α ∧ dzβ̄ be real (1, 1) form satisfying (2.16). Define

Z (h, V ) � 1
2
gαβ̄

(
∇β̄ div (h)α + ∇α div (h)β̄

)
+ Rαβ̄hβᾱ

+ gαβ̄
(
div (h)α Vβ̄ + div (h)β̄ Vα

)
+ hαβ̄VβVᾱ +

H

t
,

where V is a vector field of type (1, 0), H and div(h)α are as before.

Theorem 2.9. Suppose that (Mn, g(t)), t ∈ [0, T ), is a complete solution
of the Kähler–Ricci flow with bounded nonnegative bisectional curvature and
h ≥ 0 satisfying (2.16) and (2.14). Then

(2.25) Z (h, V ) ≥ 0

on M× [0, T ) for any vector field V of type (1, 0) .

As before, expressed in terms operators ∂̄∗ and ∂∗, the result asserts
(2.26)

Z =
1
2
(
−∂∗∂̄∗ + ∂̄∗∂∗)h + ∂̄∗h(V ) − ∂∗h(V̄ ) + Ric(h) + h(V, V̄ ) +

Λh
t

≥ 0.

Here Ric(h) is the contraction of h by the Ricci form.
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C. A matrix LYH inequality for forward conjugate heat equation.
Now we consider the forward conjugate heat equation:

(2.27)
(
∂

∂t
− Δ

)
u(x, t) = R(x, t)u(x, t).

Here R(x, t) is the scalar curvature. The following result was proved in [N4].

Theorem 2.10. Let (M, g(t)) be a solution to Kähler-Ricci flow defined
on M × [0, T ] (for some T > 0) with nonnegative bisectional curvature. In
the case that M is complete noncompact, assume further that the bisectional
curvature is bounded on M × [0, T ]. Let u be a positive solution to (2.27).
Then

(2.28) uαβ̄ +
u

t
gαβ̄ + uRαβ̄ + uαVβ̄ + uβ̄Vα + uVαVβ̄ ≥ 0

for any (1, 0) vector field V .

By choosing the minimizing vector V in (2.28) we have

(2.29) ∇α∇β̄ log u + Rαβ̄ +
1
t
gαβ̄ ≥ 0.

When m = 1, namely M is a Riemann sphere, we have the following estimate
which is very similar to Li-Yau’s (2.3)

(2.30) Δ log u + R +
1
t
≥ 0.

This result was first proved by Chow and Hamilton [CH].
The result was discovered by the interpolation consideration which shall

be explained next.

D. Interpolations. The following estimates was proved by Chow [Ch3],
which links the Li-Yau estimate to the linear trace estimate (2.30) when M
is the Riemann sphere with positive curvature.

Proposition 2.11. Given ε > 0, if
(
M2, g(t)

)
is a solution to the

ε-Ricci flow

(2.31)
∂

∂t
gij = −2εRij = −εRgij

on a closed surface with R > 0 and if u is a positive solution to

(2.32)
∂

∂t
u = Δu + εRu,

then

(2.33)
∂

∂t
log u− |∇ log u|2 +

1
t

= Δ log u + εR +
1
t
≥ 0.
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There are two different high dimensional generalizations of the above
result. They are all in the category of Kähler manifolds. The first one proved
in [N4] is straightforward and connects Theorem 2.10 with Theorem 2.4
(more precisely, connects (2.11) with (2.29).

For any ε > 0, we consider the ε-Kähler-Ricci flow:

(2.34)
∂

∂t
gαβ̄(x, t) = −εRαβ̄(x, t).

Consider the positive solution u to the parabolic equation:

(2.35)
(
∂

∂t
− Δ

)
u(x, t) = εR(x, t)u(x, t).

We shall call (2.35) forward conjugate heat equation, since it is the adjoint
of the backward heat equation

(
∂
∂t + Δ

)
v = 0.

Theorem 2.12. Assume that the complete solution (M, g(t)) (defined
on M × [0, T ] for some T > 0) to (2.34) has nonnegative bisectional curva-
ture. In the case that M is noncompact, assume further that the bisectional
curvature of g(t) is uniformly bounded on M × [0, T ]. Let u be a positive
solution to (2.35). Then

(2.36) ∇α∇β̄ log u + εRαβ̄ +
u

t
gαβ̄ ≥ 0.

It is obvious that Theorem 2.12 generalizes (2.33). The second one proved
in [N3], connects Theorem 2.5 with Theorem 2.9 (more precisely (2.17) and
(2.26)).

Theorem 2.13. Let (M, g(t)) be a solution to (2.34) with bounded non-
negative bisectional curvature. Let h(x, t) ≥ 0 be a real (1, 1) form satisfying
(2.16). Then
(2.37)

Zh,ε =
1
2
(
−∂∗∂̄∗ + ∂̄∗∂∗)h+∂̄∗h(V )−∂∗h(V̄ )+εRic(h)+h(V, V̄ )+

Λh
t

≥ 0.

Moreover, the equality holds for some t > 0 implies that (M, g(t)) is an
expanding gradient soliton, provided that hαβ̄(x, t) > 0 and M is simply-
connected.

It is less obvious that Theorem 2.13 also generalizes (2.33). To see this,
first observe that H = Λh satisfies

(2.38)
(
∂

∂t
− Δ

)
H = εRic(h)

which generalizes (2.32). Now we restrict ourselves to the case in which h is
closed. Using the Kähler identities

(2.39) ∂Λ − Λ∂ = ∂̄∗, ∂̄Λ − Λ∂̄ = −∂∗
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we have that

(2.40) Zh,ε = ΔH + ∂H(V ) + ∂̄H(V̄ ) + εRic(h) + h(V, V̄ ) +
H

t
≥ 0.

In the case m = 1, this gives the estimate (2.33), noticing that −Δ′ =
−Δ′′ = Δ.

Since (2.38) and (2.40) make sense for any (p, p) form h ≥ 0, it is natural
question to ask if (2.40) holds for (p, p) form h ≥ 0. Theorem 2.12 shows
that it is the case for (m,m) forms. We conjecture that it is the case for
general nonnegative (p, p) forms.

E. LYH for the conjugate heat equation. Assume that (M, g(t)) is a
solution to Ricci flow on M × [0, T ]. Now we consider the conjugate heat
equation:

(2.41)
(

∂

∂τ
− Δ + R

)
u(x, τ) = 0.

Here τ =T − t. This equation is the adjoint of the heat equation(
∂
∂t − Δ

)
v= 0. In [P], the following estimate was discovered by Perelman.

Theorem 2.14. Assume that u = e−f

(4πτ)
n
2

is the fundamental solution to

(2.41) with u(o, 0) = δo(x). Then

(2.42) τ(2Δf − |∇f |2 + R) + f − n ≤ 0.

Note that the result is equivalent to the space time Lapalacian
comparison

(2.43) ΔL̂ + L̂τ ≤ 2n

with L̂ = 4τf . Comparing the above with Theorem 2.2, the most striking
part is that the result holds without any curvature assumption. The detailed
proof of Theorem 2.14 was given in [N5]. The key equation is the following
one discovered by Perelman

(2.44)
(

∂

∂τ
− Δ + R

)
V = −2τ |Rij + ∇i∇jf − 1

2τ
gij |2u

where
V =

[
τ
(
2Δf − |∇f |2 + R

)
+ f − n

]
u.

The equation (2.44) can be derived from the following simpler one which
resembles (2.4)

(2.45)
(

∂

∂τ
− Δ + R

)
v0 = −2|Rij + fij |2u

if v0 = (2Δf − |∇f |2 + R)u.
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Combining (2.42) with (2.41) we have that

(2.46) 2fτ + |∇f |2 −R +
f

τ
≤ 0

which yields for any γ(τ) joining (x1, τ1) with (x2, τ2),

√
τ2f(x2, τ2) −

√
τ1f(x1, τ1) =

∫ τ2

τ1

√
τ

(
fτ +

f

2τ
+ 〈∇f, γ′〉

)
dτ

≤ 1
2

∫ τ2

τ1

√
τ
(
|γ′|2 + R

)
dτ.

Now observing as before that limτ→0
√
τf(o, τ) ≤ 0, we have that

(2.47) f(x, τ̄) ≤ 1
2
√
τ̄

inf
γ

∫ τ̄

0

√
τ
(
|γ′|2 + R

)
dτ.

The right hand side is called reduced distance, denoted by !(x, τ). There
exists another way of proving (2.47) via the fact that(

∂

∂τ
− Δ + R

)
û(x, τ) ≤ 0

where û(x, τ) = e−�(x,τ)

(4πτ)
n
2

satisfying that limτ→0 û(x, τ) = δo(x). For the pur-

pose of better presentation we work with t instead. Assume that H(x, t; y, T )
(with t ≤ T ) is the fundamental solution of (2.41) and h(y, s;x, t) (with
s ≥ t) is the fundamental solution to the heat equation. The well-known
duality asserts that

h(z, s;x, t) = H(x, t; z, s).
Now we can check that

I(s) =
∫

M
h(z, s;x, t)û(z, s; y, T ) dμs(z)

is monotone increasing in s. Here û(z, s; y, T ) corresponds to the reduced
distance starting from (y, T ). Hence

H(x, t; y, T ) = h(y, T ;x, t) = lim
s→T

I(s)

≥ lim
s→t

I(s) = û(x, t; y, T )

from which (2.47) follows easily.

2.3. Hypersurface flows in Rn+1. The LYH estimates for the hyper-
surface flow in Rn+1 were first proved for mean curvature flow by Hamilton
[H4] and Gauss curvature flow by Chow [Ch1]. Here we present the work
of Andrews on much more general class of hypersurface flows, which is a
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lot less computational than the original works of Hamilton and Chow. Our
presentation follows that of [An1, An2].

First we collect some formulae and results needed on the hypersur-
face’s curvature flow. In our discussion we assume that X0 : M → Rn+1

is a immersed closed n-dimensional hypersurface. Consider the 1-family of
smooth hypersurfaces X : M × [0, T ) → Rn+1 satisfying

(2.48)
∂X

∂t
(x, t) = −f(x, t)ν(x, t)

where f(x, t) is a smooth function and ν(x, t) is the outer unit normal. We
assume that Mt = X(M, t) are compact convex hypersurfaces. The following
are well-known.

Let gij be the induced metric, dμ be the induced measure. Then

∂

∂t
gij = −2fhij ;(2.49)

∂

∂t
dμ = −fHdμ(2.50)

∂

∂t
hij = ∇i∇jf − fhikhjlg

kl.(2.51)

Usually, we write that f(x, t) = F (W (x, t)), where W = {hi
j} is the

Weingartan map. Then

∂

∂t
W = g∗ (Hess∇F ) + FW 2(2.52)

∂

∂t
H = tr (g∗ (Hess∇F )) + F |A|2(2.53)

∂

∂t
ν = ∇F(2.54)

∂

∂t
F = Ḟ (g∗ (Hess∇F )) + FḞ (W 2).(2.55)

A. The support function. The support function is very useful for the con-
vex hypersurface flow. Especially because it can be used to reparametrize the
surface via the Gauss map and greatly reduce the computation in deriving
the LYH inequalities for the hypersurfaces flow.

Let s(z) : Sn → R be the support function of M (precisely, X : M →
Rn+1). It can be defined by

s(z) = 〈z,X(ν−1(z))〉

where ν(x) = ν(X(x)), namely the normal of the image. We may recover
the immersion after the reparametrization by

X̄(z) = s(z)z + ∇̄s
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where ∇̄ is the standard connection of Sn. For simplicity when there is no
confusion we just write X(z). Geometrically it is very clear that

X(z) = s(z)z + a(z)

for some vector a(z), tangent to the sphere (normal to z). Just differentiate
we have that

dX(u) = 〈∇̄s, u〉z + su + Dua

= 〈∇̄s, u〉z + su + ∇̄ua− ḡ(u, a)z.

Here ḡ is the metric of the sphere D is the direction derivative of Rn+1.
Noticing that dX(u) is tangent to the sphere we have that

〈∇̄s, u〉 = ḡ(u, a) hence a = ∇̄s.

Namely we have the equation

(2.56) X(z) = s(z)z + ∇̄s.

More precisely we have shown that X(x) = X̄(ν−1(x)) = s(z)z + ∇̄s. If we
extend s to Rn+1 homogenously as a degree 1 function we have that Dzs = s.
Hence

Ds = s(z)z + ∇̄s
which implies that

(2.57) X(z) = Ds.

This gives the immersion from the support function.
For the parametrization via Gauss map as above, it changes the compu-

tation on M to computation with respect to the fixed standard metric of Sn.

Lemma 2.15.

(2.58) W−1 = ḡ∗ (∇̄∇̄s + s id
)
.

Proof. Observe that ν(X(z)) = z. Hence we have that W−1 = dX.
Now using (2.56) we just compute

dX(u) = ∇̄u∇̄s + su

and we have the result. �
The following lemma shows the relation on the time derivatives with

respect to different parametrizations.

Lemma 2.16. Let Q(x, t) and Q̄(z, t) be the quantities related by Q(x, t) =
Q̄(z(x, t), t). Then

(2.59)
∂Q

∂t
=

∂Q̄

∂t
+ h−1(∇F,∇Q).

Here h−1 stands for the inverse of the second fundamental form.
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Proof. Using the connection X(x, t) = X̄(z(x, t), t) we have that

−F (x, t)ν(x, t) =
∂

∂t
X(x, t)

=
∂

∂t
X̄(z, t) + dX̄

(
∂z

∂t

)
.

Recalling X̄(z, t) = s(z, t)z + ∇̄s we have that

∂

∂t
X̄(z, t) =

(
∂

∂t
s

)
z + ∇̄

(
∂

∂t
s

)
.

By comparing the normal and tangential components we have that

∂

∂t
s = −F = −Φ(z, t)

∂z

∂t
= −(dX̄)−1

(
∇̄
(
∂

∂t
s

))
= (dX̄)−1(∇̄F ) = (dX̄)−1(∇̄Φ).

Here when F is viewed as a function on Sn we write as Φ(z, t). Then

∂

∂t
s = −Φ(2.60)

∂z

∂t
= (dX̄)−1(∇̄Φ).(2.61)

Now we have that

∂Q

∂t
=

∂Q̄

∂t
+
〈
∇̄Q̄,

∂z

∂t

〉
=

∂Q̄

∂t
+ 〈∇̄Q̄, (dX̄)−1(∇̄Φ)〉.

To get what we need we use the following observations. First we have also
(from (2.54))

∂z

∂t
= dX(∇F ).

Hence 〈
∇̄Q̄,

∂z

∂t

〉
= 〈∇̄Q̄, dX(∇F )〉 = g(∇F, dX−1(∇̄Q̄)).

On the other hand for any tangent vector u we have that

g(∇Q, u) = uQ = dQ(u)

= dQ̄(dν(dX(u)))

= 〈dν(dX(u)), ∇̄Q〉
= g(W (u), dX−1(∇̄Q̄)).
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Let uW−1(∇F ) we have that

g(∇Q,W−1(∇F )) =
〈
∇̄Q̄,

∂z

∂t

〉
.

This proves the claim. �
When Q = F (then Q̄(z, t) = Φ(z, t), we have that

(2.62)
∂

∂t
F − h−1(∇F,∇F ) =

∂

∂t
Φ.

Note the left hand side often appears in the differential Harnack inequality.
It turns out that it is better that we consider Φ(X) = F (X−1). In terms

of the support function we examine the equation (2.60) for several flows.
Mean curvature flow: F (W ) =

∑
λi, where W is the Weingartan map,

hence Φ(A) =
∑ 1

μi
, where μi are eigenvalues of A = W−1 = ḡ∗Hess∇̄s+s id.

Then the mean curvature flow can be expressed as

(2.63)
∂s

∂t
= − tr

(
(ḡ∗Hess∇̄s + s id)−1

)
.

Gauss curvature flow: F (W ) = Πλi, where W is the Weingartan map,
hence Φ(A) = Π 1

μi
, where μi are eigenvalues of A = W−1 = ḡ∗Hess∇̄s+s id.

Then the Gauss curvature flow can be expressed as

(2.64)
∂s

∂t
= − 1

det (ḡ∗Hess∇̄s + s id)

which was the form more studied from PDE point of view.
Harmonic mean curvature flow: F (W ) = 1∑ 1

λi

, where W is the

Weingartan map, hence Φ(A) = 1∑
μi

, where μi are eigenvalues of A =
W−1 = ḡ∗Hess∇̄s + s id. Then the harmonic mean curvature flow can be
expressed as

(2.65)
∂s

∂t
= − 1

Δ̄s + ns
.

The 1
H -curvature flow: F (W ) = − 1∑

λi
, where W is the Weingartan map,

hence Φ(A) = − 1∑ 1
μi

, where μi are eigenvalues of A = W−1 = ḡ∗Hess∇̄s +

s id. Then the 1
H -curvature flow mean curvature flow can be expressed as

(2.66)
∂s

∂t
=

1

tr
(
(ḡ∗Hess∇̄s + s id)−1

) .
B. The LYH inequality. Using the support function and parametrization
via the Gauss map, we have the following result.
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Theorem 2.17. Assume that −Φ is α-concave for some α < 0. Then

(2.67)
∂Φ
∂t

+
αΦ

(α− 1)t
≥ 0.

Using (2.62) we have that

∂

∂t
F − h−1(∇F,∇F ) +

αF

(α− 1)t
≥ 0.

Ψ : T ∗Sn ⊗ TSn → Rn is called α-concave if

Ψ̈ ≤ α− 1
αΨ

Ψ̇ ⊗ Ψ̇.

We first check the applicability of the theorem to two example curvature
flows: the Gauss curvature flow and the mean curvature flow.

Recall the following useful computational lemma.

Lemma 2.18. When A is diagonal,

Ḟ (A) = diag
(
∂f(λ)
∂λ1

, · · ·, ∂f(λ)
∂λn

)
;(2.68)

F̈ (A)(X,X) =
∑
p,q

∂2f

∂λpλq
Xp

pX
q
q +

∑
p�=q

∂f
∂λp

− ∂f
∂λq

λp − λq

(
Xq

p

)2
.(2.69)

Hence if ∂f
∂λi

> 0 at some A, then Ḟ is positive definite. And if f is convex
(concave), F is convex (concave).

Mean curvature flow: F (W ) =
∑

λi, where W is the Weingartan map,
hence Φ(A) =

∑ 1
μi

, where μi are eigenvalues of A = W−1 = g∗Hess∇̄s+s id.
Ψ = −Φ = −∑ 1

μi
. Using the computational lemma we have that

Ψ̈(X,X) =
∑

p

2
μ3

p

|Xp
p |2 −

∑
p�=q

μp + μq

μ2
pμ

2
q

|Xq
p |2

= −
∑
pq

μp + μq

μ2
pμ

2
q

|Xq
p |2

and

Ψ̇(X) =
1
μ2

p

Xp
p

(Ψ̇(X))2

Ψ
= −

(∑ 1
μ2

p
Xp

p

)(∑ 1
μ2

q
Xq

q

)
∑ 1

μi

.
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Using μp + μq ≥ 2√μpμq, we have that∑
pq

μp + μq

μ2
pμ

2
q

|Xq
p |2 ≥

∑
pq

2

μ
1+1/2
p μ

1+1/2
q

|Xq
p |2

≥
∑

p

2

μ
1+1/2
p μ

1+1/2
p

|Xp
p |2

≥ 2

(∑ 1
μ2

p
Xp

p

)(∑ 1
μ2

q
Xq

q

)
∑ 1

μi

.

Hence Ψ is −1-concave for the mean curvature flow and we have Hamilton’s

∂

∂t
F − h−1(∇F,∇F ) +

F

2t
≥ 0.

Gauss curvature flow: In fact we consider the more general class F (W ) =

(Πλi)
β, where W is the Weingartan map, hence Φ(A) =

(
Π 1

μi

)β
, where μi

are eigenvalues of A = W−1 = g∗Hess∇̄s+s id. Ψ = −Φ = −
(
Π 1

μi

)β
. Using

the computational lemma we have that

Ψ̈(X,X) =
∑
p�=q

β2Ψ
μpμq

Xp
pX

q
q +

∑
p

(β2 + β)Ψ
μ2

p

|Xp
p |2

+ βΨ
∑
p�=q

1
μpμq

|Xq
p |2

=
∑
pq

β2Ψ
μpμq

Xp
pX

q
q +

∑
pq

βΨ
μpμq

|Xq
p |2

which is negative since Ψ < 0, and

Ψ̇(X) =
βΨ
μp

Xp
p

(Ψ̇(X))2

Ψ
= β2Ψ

(∑ 1
μp

Xp
p

)2

.

Letting Y p
p = 1

μp
Xp

p and observing(∑
Y p

p

)2
≤ n

∑
|Y p

p |2
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Hence

Ψ̈(X,X) =
(Ψ̇(X))2

Ψ
+
∑
pq

βΨ
μpμq

|Xq
p |2

≤ (Ψ̇(X))2

Ψ
+
∑

p

βΨ
μpμp

|Xp
p |2

≤ (Ψ̇(X))2

Ψ
+

1
nβ

(Ψ̇(X))2

Ψ
.

Hence the β-power Gauss curvature flow is −nβ concave and we have Chow’s

∂

∂t
F − h−1(∇F,∇F ) +

nβF

(1 + nβ)t
≥ 0.

Despite the generality of Theorem 2.17 the proof, which shall be given
next, seems a lot easier than the ones for the special cases in [H4, Ch1].

C. PDE satisfied by the speed function. We shall prove Theorem 2.17
and discuss the 1

H -flow case, to which Theorem 2.17 does not apply.
Start from (2.60). Take Hess∇̄ on both sides and notice the commuta-

tivity of the ∂
∂t and Hess∇̄ we have that

∂

∂t
(Hess∇̄s + ḡs) = Hess∇̄Ψ + Ψḡ.

Then

(2.70)
∂

∂t
A = ḡ∗Hess∇̄Ψ + Ψ id .

This enables us to compute the time derivative of the speed function Ψ as
follows

∂Ψ
∂t

= Ψ̇(A)
[
∂A

∂t

]
= Ψ̇(A) [ḡ∗Hess∇̄Ψ + Ψ id]

= LΨ + Ψ̇(A) [id] Ψ.(2.71)

Here Ψ̇(A)[B] is the previous Ψ̇(B). We write this way since it is more clear
to specify that Ψ̇ is computed at A. We shall return to the previous notation
when there is no confusion. Lϕ = Ψ̇(A) [ḡ∗Hess∇̄ϕ].

For the proof we also need the PDE on P := ∂
∂tΨ. Let

Q =
∂

∂t
A = ḡ∗Hess∇̄Ψ + Ψ id .
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Taking one more derivative on (2.71) we have that

∂

∂t
P = Ψ̈(Q,Q) + Ψ̇(ḡ∗Hess∇̄Ψt + Ψt id)

= LP + Ψ̇(id)P + Ψ̈(Q,Q).(2.72)

Note that the first equation in (2.71) is equivalent to

(2.73) P = Ψ̇(Q).

Hence in the case of Ψ being α-concave we have that

(2.74)
∂

∂t
P ≤ LP + Ψ̇(id)P +

α− 1
α

P 2

Ψ
.

Let L = tP + α
α−1Ψ. Using (2.71) and (2.74) we then have that

∂

∂t
L ≤ L(tP ) + tP Ψ̇(id) + t

α− 1
α

P 2

Ψ
+ P

+
α

α− 1
LΨ +

α

α− 1
ΨΨ̇(id)

= LL + Ψ̇(id)L +
P

Ψ
α− 1
α

L.

Theorem 2.17 follows from the maximum principle and the observation that
L ≤ 0 at the initial time (noting that Ψ < 0 at t = 0).

If α = 1, we are in the degenerate case in the definition of the
α-concavity. If we also have that Ψ ≥ 0, as in the 1

H -curvature flow case, we
can only conclude from the above proof that both

sup
M

Ψt and sup
M

∂

∂t
(log Ψ) = sup

M

Ψt

Ψ

are monotone non-increasing.
The following calculation shows that the 1

H -curvature flow is indeed
1-concave. First Ψ = 1∑ 1

μi

, hence

∂Ψ
∂μi

=
Ψ2

μ2
i

and for i 
= j
∂2Ψ

∂μi∂μj
=

2Ψ3

μ2
iμ

2
j

,

for i = j
∂2Ψ

∂μi∂μj
=

2Ψ2

μ3
i

(
Ψ
μi

− 1
)
.
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Now compute

Ψ̈(X,X) =
∑
p�=q

2Ψ3

μ2
pμ

2
q

Xp
pX

q
q +

∑
p

2Ψ2

μ3
p

(
Ψ
μp

− 1
)
|Xp

p |2

−
∑
p�=q

Ψ2(μp + μq)
μ2

pμ
2
q

|Xq
p |2

=
∑
p,q

2Ψ3

μ2
pμ

2
q

Xp
pX

q
q −

∑
p,q

Ψ2(μp + μq)
μ2

pμ
2
q

|Xq
p |2.

On the other hand (
Ψ̇(X)

)2

Ψ
= Ψ3

(∑ 1
μ2

p

Xp
p

)2

.

If we let Y q
p = 1

μpμq
Xq

p we have that

Ψ̈(X,X) = 2Ψ3
∑

Y p
p Y

q
q − Ψ2

∑
(μp + μq)

(
Y q

p

)2
≤ 2Ψ3

(∑
Y p

p

)2
− 2Ψ2

∑√
μpμq(Y q

p )2

≤ 2Ψ3
(∑

Y p
p

)2
− 2Ψ2

∑
μp(Y p

p )2

≤ 0.

Since there exists a situation that all the inequalities hold equality, we con-
clude that Ψ is only concave.

At last, we examine the equation (2.71) for concrete examples.
Mean curvature flow: Ψ = −∑ 1

μi
= −H. Hence, we have that Lϕ =

1
μ2

i
∇̄i∇̄iϕ = (W 2)ij∇̄i∇̄jϕ. Here W 2 is the square of the Weingarten map.

We abuse ij to just mean the (i, j)-th component of W 2. The equation
satisfied by the speed function (on sphere Sn) is

∂

∂t
Ψ = (W 2)ij∇̄i∇̄jΨ + |W |2Ψ.

Gauss curvature flow: Ψ = − 1
Πμi

= −K. Hence Lϕ = (−Ψ)W ij∇̄i∇̄jϕ.

The equation satisfied by the speed function (on sphere Sn) is

∂

∂t
Ψ = (−Ψ)(W )ij∇̄i∇̄jΨ − Ψ2H.

Harmonic mean curvature flow: Ψ = − 1∑
μi

, Lϕ = Ψ2Δ̄ϕ. The equation
satisfied by the speed function is

∂Ψ
∂t

= Ψ2Δ̄Ψ + nΨ3.
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The 1
H -flow: Ψ = 1∑ 1

μi

, and Lϕ = Ψ2(W 2)ij∇̄i∇̄jϕ. The equation satis-

fied by the speed function is

∂Ψ
∂t

= Ψ2(W 2)ij∇̄i∇̄jΨ + Ψ3|W |2.

3. Implied monotonicity

The LYH inequality often has some immediate consequence on the mono-
tonicity. For instance (2.2) implies that t

n
2 u(x, t) is monotone increasing in

t. In the case that h is closed (1, 1) form, (2.17) concludes that

∂

∂t
H + ∂H(V ) + ∂̄H(V̄ ) + h(V, V̄ ) +

H

t
≥ 0

which in turn says that tH(x, t) is monotone increasing. This also applies
to (2.40). Similar conclusions can be drawn from (2.18), (2.22), (2.24) etc.
In this section we shall discuss those less obvious monotonicities, mostly in
the integral form, implied by the LYH inequalities. They can be roughly
divided into three different classes. The first type is obtained by applying
the matrix LYH to submanifolds, or high order symmetric functions in stead
of the trace. The second type is derived using a consideration from thermo-
dynamics. This includes Perelman’s entropy formula. The third type, which
contains Hamilton’s entropy formula for Ricci flow on surfaces and the Gauss
curvature flow, is inferred from the long time existence and an ODE con-
sideration. For the later two types, not the result but the proof of the LYH
inequalities is needed.

3.1. Linear heat equation. Again, we present the linear heat equa-
tion due to its simplicity. Most monotonicity derived for the linear heat
equation has its nonlinear analogue for Ricci flow. This is somewhat strik-
ing.

A. From the matrix LYH inequalities. It was observed first by
Hamilton [H6] that Theorem 2.3 implies several previously known mono-
tonicity formulae, including Huisken’s monotonicity formula for the mean
curvature flow in Rn, and Struwe’s monotonicity formula for the harmonic
maps from Euclidean domains.

Let (M, g) be as in Theorem 2.3. Let T > 0 and τ = T − t. Now let
k(x, τ) be the fundamental solution to the backward heat equation:(

∂

∂τ
− Δ

)
k(x, τ) = 0.

Mean curvature flow: Let V be the family of submanifolds evolved by
the mean curvature flow. More precisely, let X(·, t) : V v → M be a family
of embeddings (v is the dimension of V ) satisfying (2.48) with f being the
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mean curvature H(x, t). Let #H = Hν be the mean curvature vector with ν
being a unit normal. We use D to denote the differentiation with respect
to the metric and connection of M . We use i, j, k, · · · for basis of vectors
tangent to V and α, β, γ, · · · for the basis of vectors normal to V . (More
precisely X(x, t) satisfies ∂

∂tX(x, t) = − #H(x, t) with #H = (−∑i Deiei)
⊥.)

Let Hα = gijhα
ij where hα

ij is the second fundamental form. We also have
the following equations.

∂

∂t
gij = −2gαβH

αhβ
ij ,(3.1)

∂

∂t
dμ = −|H|2dμ,(3.2)

ΔMk = ΔV k + gαβDαDβk + 〈 #H,Dk〉.(3.3)

With respect to the evolving metrics, there exists the heat operator on V .
It is easy to compute that for u defined on M , the following is the conjugate
heat equation:

(3.4) ΔV u− uτ − 〈 #H,Du〉 − |H|2u = 0.

By Theorem 2.3, we have that

ΔV u− uτ − 〈 #H,Du〉 − |H|2u = −τ
n−v

2

∣∣∣ #H + D⊥ log k
∣∣∣2 k.

for u = τ
n−v

2 k. It immediately implies the following result.

Theorem 3.1. Let

I(t) = τ
n−v

2

∫
V
k(x, τ) dμt.

Then

(3.5)
d

dt
I(t) = −τ

n−v
2

∫
k
∣∣∣ #H + D⊥ log k

∣∣∣2 dμt.

Harmonic map heat flow: Let F (·, t) be a family of maps from M into
another Riemannian manifold N satisfying that harmonic map heat equation

∂

∂t
F = ΔF

where locally

(ΔF )α = gij

(
∂2F

∂xi∂xj
− Γk

ij

∂Fα

∂xk
+ Γ̄α

βγ(F )
∂F β

∂xi

∂F γ

∂xj

)
.
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Theorem 3.2. Let F be a solution to the harmonic map heat flow and let

I(t) = τ

∫
M

|DF |2k dμ.

The following identity holds on any M :
(3.6)
d

dt
I(t) = −2τ

∫
M

(∣∣∣∣ΔF +
Dk

k
·DF

∣∣∣∣2 +
(
DiDj log k +

1
2τ

gij

)
DiFDjF

)
k.

In particular if (M, g) is as in Theorem 2.3 then I(t) is non-increasing in t.

The proof is direct computation and integration by parts. The key iden-
tities are ∫

M
Δk|DF |2 = −2

∫
M

DjkDjDiF
αDiF

α,∫
M

DiDjkDiF
αDjF

α = −
∫

M
ΔFαDjF

αDjk +
1
2

∫
M

Δk|DF |2.

Yang-Mills flow: This is similar to the harmonic map heat flow. Now the
equation is on a family of connections A = (Aα

jβ) on a vector bundle E. Let
FA = Fα

ijβ be the curvature of A. The Yang-Mills equation is

(3.7)
∂

∂t
A = divFA

where divFα
kβ = gijDiF

α
jkβ.

Theorem 3.3. Let
I(t) = τ2

∫
M

|F |2k.
Then

d

dt
I(t) = −4τ2

∫
M

((
DiDj log k +

1
2τ

gij

)
Fα

ikβF
α
ikβ

+
∣∣divFα

jβ + Di log kFα
ijβ

∣∣2) k.(3.8)

Kähler case: Applying Theorem 2.4 and Theorem 2.5 one can obtain
results similar as the above. Due to the fact that the estimate now is on
complex Hessian only, the results are on holomorphic objects. The first result
is in the same line as Theorem 3.1, but with the opposite monotonicity since
we apply (2.4) to the heat kernel instead of the fundamental solution to the
backward heat equation.

Theorem 3.4. Let M be a complete Kähler manifold with nonnegative
bisectional curvature. Let H(x, t; y, 0) be the fundamental solution of the
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heat equation. Let V ⊂ M be any complex subvariety of dimension s. Let
KV(x, t; y, 0) be the fundamental solution of heat equation on V. Then

(i)

(3.9) KV(x, t; y, 0) ≤ (πt)m−sH(x, t; y, 0), for any x, y ∈ V.

If the equality holds, then V is totally geodesic. Furthermore if M̃ is the
universal cover of M with covering map π and Ṽ = π−1(V), then M̃ =
M̃1 ×Ck for some Kähler manifold M̃1 which does not contain any Euclidean
factors, with k ≥ m− s. Moreover Ṽ = M̃1 × Cl with l < k.

(ii)

(3.10)
d

dt

∫
V
(πt)m−sH(x, t; y, 0) dAV(y) ≥ 0, for any x ∈ M.

Similarly, if the equality holds for some x ∈ M at some positive time t, then
M̃ = M̃1 × Ck with k ≥ m− s.

The result has applications in obtaining the sharp dimension estimates
on the space of holomorphic functions with polynomial growth [N3].

Theorem 2.4 also implies the monotonicity of the weighted energy of
a holomorphic mapping from M (into any Kähler manifolds), as well as
the monotonicity of the weighted energy for Hermitian-Einstein flow on any
holomorphic vector bundle over M .

Let F be a holomorphic mapping from M (into, say, another Kähler
manifold N), then we have that

(3.11)
d

dt

(
(T − t)

∫
M

|∂F |2k(x, t;x0, T ) dμ
)

≤ 0

where |∂F |2 = gαβ̄hij̄F
i
αF

j̄

β̄
, k(x, t;x0, T ) is the fundamental solution to

the backward heat equation satisfying ( ∂
∂t + Δ)k(x, t;x0, T ) = δ(x0,T )(x, t).

Dually we also have that

(3.12)
d

dt

(
t

∫
M

|∂F |2H(x, t;x0, 0) dμ
)

≥ 0

where H(x, t;x0, 0) is the fundamental solution of the heat equation centered
at (x0, 0).

Let H(t) be a family of metrics of a holomorphic vector bundle E satis-
fying the Hermitian-Einstein equation

(3.13)
∂h

∂t
h−1 = −ΛF + λ I

where hβ
α(t) = H(t)αγ̄H(0)γ̄β , a Hermitian symmetric morphism of E. Then

(3.14)
d

dt

(
(T − t)2

∫
M

|F |2k(x, t;x0, T ) dμ
)

≤ 0
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where |F |2 = |Fij̄αβ |2.

B. Thermodynamical consideration. In the thermodynamics the con-
cept of the entropy is used to characterize the equilibrium states. In this
setting, there is entropy function S which depends on state variable energy
E as well as other parameters. The following are assumed: The entropy
function S and energy E satisfy

1) ∂S
∂E > 0 (hence define 1

τ � ∂S
∂E , with τ being interpreted as the

temperature);
2) S is concave in E;
3) S is positively homogenous of degree 1.

Written as functions of S, there is free energy F � E − TS.
In statistical mechanics, the entropy was used to measure the uncer-

tainty. Here the equilibrium is characterized as the distribution maximizing
the entropy(=uncertainty). Let (M, dμ) be a manifold with measure. Let
H : (M, dμ) → R be the Hamiltonian. We have the following definitions.

Partition function: Z :=
∫
M e−βH dμ;

Temperature: τ := 1
β ;

Energy: E := − ∂
∂β logZ ≥ 0;

Entropy: S := βE + logZ;
Free energy: F := − 1

β logZ.
The following result recovers the aspects of the classical equilibrium
thermodynamics.

Theorem 3.5.

E = 〈H〉, with respect to the canonical distribution σ =
1
Z
e−βH ,

S = S(σ) = −
∫

M
σ log σ dμ,

∂S

∂E
=

1
τ
, F = E − Sτ,

∂F

∂τ
= −S.

Define the heat capacity

CV =
∂E

∂τ
= −β2∂E

∂β
.

Corollary 3.6. CV ≥ 0 and

CV = β2 ∂2

∂β2 logZ,

∂2S

∂E2 =
(
∂E

∂β

)−1

≤ 0,

∂S

∂β
= β

∂E

∂β
≤ 0.
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This consideration suggests the following entropy formula. First after
(2.4) (replacing t by τ) denote that cv = 2

u |Υij |2 + 2
uRij∇iu∇ju. Then

∂

∂τ

∫
M

Qdμ =
∫

M
cv dμ− 2

τ

∫
M

Qdμ.

Equivalently,
∂

∂τ

(
τ2
∫

M
Qdμ

)
= CV

where CV = τ2 ∫
M cv dμ. This suggests that τ2 ∫

M Q should be the energy
E. Normalizing

∫
M u dμ = 1, then logZ (essentially it is the anti-derivative

of E in terms of 1
τ ) can be computed.

logZ =
∫

M
u log u +

n

2
log(4πτ) +

n

2
.

This gives the entropy

S =
∫

M
(−τΔf − f + n)u dμ = −

∫
M

(τ |∇f |2 + f − n)u dμ.

The following is a direct consequence of Corollary 3.6.

Theorem 3.7. Let W = −S. Then

(3.15)
dW
dτ

= −2τ
∫

M

(∣∣∣∣∇i∇jf − 1
2τ

gij

∣∣∣∣2 + Rijfifj

)
u dμ.

In particular, if M has nonnegative Ricci curvature, W(f, τ) is monotone
decreasing along the heat equation.

3.2. Ricci flow. The most important monotonicity formula for the
Ricci flow is the entropy monotonicity discovered by Perelman [P]. How-
ever, before this spectacular result, several monotonicity results have been
obtained by Hamilton, mostly for surfaces, including his entropy and isoperi-
metric constant monotonicity.

A. Hamilton’s entropy for surfaces. In [H2], Hamilton discovered an
entropy monotonicity for the Ricci flow on the Riemann sphere with positive
curvature. It is derived out of the proof for the LYH inequality for the surface
case and the long time existence for the normalized flow: ∂

∂tgij = (r−R)gij ,

where r =
∫

R dμt

A(Mt)
is the average of R. It is easy to see that the normalized flow

preserves the area A(Mt). Also it is not hard to show that the normalized
flow has a long time solution [H2].

Theorem 3.8. Let I(t) =
∫
M R logR. Then I(t) is monotone non-

increasing in t.
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Direct computation, using
(

∂
∂t − Δ

)
R = R2 − rR, shows that

d

dt
I(t) =

∫
M

(ΔR) logR + R2 −Rr =
∫

M
(Δ logR + R− r)R.

Let Q = R(Δ logR + R− r). Similar as (2.4) we have that

(3.16)
(
∂

∂t
− Δ

)
Q = 2

∣∣∣∣∇i∇j logR +
1
2
(R− r)gij

∣∣∣∣2 R + rQ + Q(R− r)

which implies Hamilton’s LYH inequality for surfaces by applying maximum
principle. Integrating the above one has that

d

dt

∫
M

Qdμ =
∫

M
2
∣∣∣∣∇i∇j logR +

1
2
(R− r)gij

∣∣∣∣2 R + r

∫
M

Q.

Using(∫
M

Q

)2

≤
(∫

M

(
Q

R

)2

R

)∫
M

R ≤ 8π
∫

M
2
∣∣∣∣∇i∇j logR +

1
2
(R− r)gij

∣∣∣∣2 R
the above implies that if denote Z =

∫
M Qdμ = I ′,

Z ′ ≥ 1
8π

Z2 + rZ.

By ODE comparison we conclude that Z ≤ 0, otherwise Z has to blow up
at some finite time.

It is easy to see from the proof that if Z = 0 for some t0, (M, g) is a
gradient shrinking soliton.

B. From matrix LYH inequalities. The first result is a consequence of
Cao’s inequality (2.22). A simple consequence is the following trace inequal-
ity:

(3.17)
∂R

∂t
+ Xs∇s̄R + Xs̄∇sR + Rij̄XīXj +

R

t
≥ 0.

In particular, we have that

(3.18)
∂R

∂t
− |∇R|2

R
+

R

t
≥ 0.

In [Co], the following result was derived on Sn(x, t) := det(Rij̄)
det(gij̄)

, the n-th
symmetric function of Ric with respect to the Kähler metric ω,

(3.19)
∂Sn

∂t
− |∇Sn|2

nSn
+

nSn

t
≥ 0.
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We shall derive the similar results for general symmetric functions of Ric
with respect to ω.

First we have to set some notations. Here we follow [HS] (see also [An1]).
Let A be a symmetric (Hermitian symmetric) matrix. Denote by λi its
eigenvalues.

Sk(λ) :=
∑

α1<α2<···<αk

λα1λα2 · · · λαk
.

The symmetric functions Sk(λ) can also be viewed as functions of matrix A
(when so we write as Sk(A)). Define the map

A(k)(eα1 ⊗ · · ·eαk
) :=

1
k!

∑
σ∈S(k)

(−1)sgn(σ)A(eσ(α1)) ⊗ · · ·A(eσ(αk)).

Then we have that Sk(λ) = trA(k). Now it is easy to show that at the points
where A is diagonal we have that

(3.20)
(
∂Sk(A)
∂aij

)
= diag

(
∂Sk(λ)
∂λ1

, · · ·, ∂Sk(λ)
∂λn

)
.

It is also easy to see that

Sk(Ric) =
n!

k!(n− k)!
Rick ∧ωn−k

ωn
.

Let Sk,i(λ) be the sum of terms of Sk(λ) not containing the factor λi.
We shall need the following identities, which are proved in [HS].

Lemma 3.9.

∂Sk(λ)
∂λi

(λ) = Sk−1,i(λ),(3.21)

Sk(λ) = Sk,i(λ) + λiSk−1,i(λ),(3.22)
n∑

i=1

Sk,i(λ) = (n− k)Sk(λ),(3.23)

n∑
i=1

λiSk−1,i(λ) = kSk(λ),(3.24)

n∑
i=1

λ2
iSk−1,i(λ) = S1(λ)Sk(λ) − (k + 1)Sk+1(λ).(3.25)

Armed with the above, we shall first compute ∂
∂t (logSk(Ric)). (In the

following we shall simply denote Sk(Ric) by Sk(x, t), Sk, or Sk(λ), where λi

are eigenvalues of Ric with respect to ω).
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Lemma 3.10. With respect to a unitary frame such that Ric is diagonal
we have

∂

∂t
(logSk(λ)) =

1
Sk(λ)

(
n∑

i=1

Sk−1,i(λ)
∂

∂t
Rīi − (k + 1)Sk+1(λ)

)
+ S1(λ)

(3.26)

∇s (logSk(λ)) =
∑

i ∇sRīiSk−1,i(λ)
Sk(λ)

.(3.27)

Proof. First by the direct calculation we have that

∂

∂t
(logSk(λ)) =

kRick−1 ∧ ∂
∂t Ric∧ωn−k − (n− k) Rick+1 ∧ωn−k−1

Rick ∧ωn−k
+S1(λ).

Direct calculation shows that

kRick−1 ∧ ∂

∂t
Ric∧ωn−k =

k!(n− k)!
n!

n∑
i=1

(
∂

∂t
Rīi

)
Sk−1,i(λ)ωn

and

(n− k) Rick+1 ∧ωn−k−1 =
(k + 1)!(n− k)!

n!
Sk+1(λ)ωn.

Putting them together we prove (3.26). The proof of (3.27) follows from
(3.20) and (3.21). �

Theorem 3.11. Under the assumption that (M, g(t)) is a solution to the
Kähler-Ricci flow with bounded nonnegative bisectional curvature, we have
that

(3.28)
∂Sk

∂t
− 1

k

|∇Sk|2
Sk

+
k

t
Sk ≥ 0.

Proof. Choose a unitary frame so that Ric is diagonal. By the above
lemma and (2.22) we have that

∂

∂t
(logSk(λ))

≥ 1
Sk(λ)

n∑
i=1

Sk−1,i(λ)
(
−λ2

i −
λi

t
−Xs∇s̄Rīi −Xs̄∇sRīi −Rīist̄Xs̄Xt

)
− (k + 1)Sk+1(λ)

Sk(λ)
+ S1(λ).
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Using (3.25), (3.24) and (3.27) we have that

∂

∂t
(logSk(λ)) ≥ 1

Sk(λ)

(
−S1(λ)Sk(λ) + (k + 1)Sk+1(λ) − kSk(λ)

t

)
−Xs∇s̄ logSk(λ) −Xs̄∇s logSk

− 1
Sk(λ)

n∑
i=1

Sk−1,i(λ)Rīist̄Xs̄Xt −
(k + 1)Sk+1(λ)

Sk(λ)
+ S1(λ)

= −k

t
−Xs∇s̄ logSk(λ) −Xs̄∇s logSk(λ)

− 1
Sk(λ)

n∑
i=1

Sk−1,i(λ)Rīist̄Xs̄Xt.(3.29)

Notice that

Rīist̄Xs̄Xt = R
(
i, ī, X, X̄

)
= |X|2R

(
i, ī,

X

|X| ,
X̄

|X|

)
≤ |X|2Rīi.

Hence

(3.30)
∂

∂t
logSk(λ) ≥ −k

t
−Xs∇s̄ logSk(λ) −Xs̄∇s logSk(λ) − k|X|2.

Here we have used (3.24) again. The claimed result follows by choosing
X = − 1

k∇ logSk(λ). �

The theorem in particular implies that tkSk(x, t) is monotone
non-decreasing. As in the linear case, one can also apply the matrix LYH
inequality (2.29) to subvarieties of M .

Theorem 3.12. Let M be a complete Kähler manifold with bounded non-
negative bisectional curvature. Let H(x, t; y, 0) be a fundamental solution to
the forward conjugate heat equation on M . Let V be a complex subvari-
ety of M of dimension s. Let KV(x, t; y, 0) be the fundamental solution to
the restricted forward conjugate heat equation (with respect to the induced
metrics) on V. Then we have (3.9) and (3.10). Moreover, the equality (for
positive t), in either cases, implies that the universal cover (of M) M̃ has
the splitting M̃ = M̃1 × Ek, where Ek is a gradient expanding Kähler-Ricci
soliton of dimension k ≥ m− s.

Remark 3.13. One can think of (3.10) as a dual version of Perel-
man’s monotonicity of the reduced volume since the reduced volume in the
Section 7 of [P] is, in a sense, a ‘weighted volume’ of M (with weight being
the fundamental solution (to the backward conjugate heat equation) of a
‘potentially infinity dimensional manifold’ restricted to M , as explained in
Section 6 of [P]), while here the monotonicity is on the ‘weighted volume’ of
complex submanifolds with weight being the fundamental solution (of the
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forward conjugate heat equation) of M restricted to the submanifold. The
reduced volume monotonicity of Perelman has important applications in
the study of Ricci flow. We expect that (3.10) will have some applications
in understanding the relation between Kähler-Ricci flow and the complex
geometry of analytic subvarieties.

C. Perelman’s entropy. Perelman’s entropy and its monotonicity can be
obtained from the thermodynamical consideration as before from (2.45).
Recall that (M, g(t)) is a solution to the Ricci flow on M × [0, T ]. Let τ =
T − t, and consider the positive solution u to the conjugate heat equation

∂u

∂τ
− Δu + Ru = 0.

Assume
∫
M u = 1, Integrating (2.45) we have that

∂

∂τ

∫
M

v0 = −2
∫

M
|Rij + fij |2 dμ.

Using ODE, it is easy to see that
∫
M Qdμ ≥ 0 if Q = n

2τ u− v0.) Then

∂

∂τ

∫
M

Q =
∫

M
cv −

2
τ

∫
M

Q

with
cv = 2|Rij + fij −

1
2τ

gij |2u.
Exactly as the earlier linear case we let

E = τ2
∫

M
Qdμ

be the energy and let τ be the temperature, then

logZ =
∫

M
u log u +

n

2
log(4πτ) +

n

2

obtained as the anti-derivative of E.
Now Corollary 3.6 implies the following entropy formula.

Theorem 3.14. Let

W(g, u, τ) :=
∫

M

(
τ(|∇f |2 + R) + f − n

)
u dμ.

Then

(3.31)
dW
dτ

= −2τ
∫

M

∣∣∣∣∇i∇jf + Rij −
1
2τ

gij

∣∣∣∣2 u dμ ≤ 0.
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3.3. Interpolation and localization. The interpolation we mean
here is the one between the LYH inequality (2.29) and Perelman’s entropy
monotonicity (3.31), which we found a little mysterious. This seems to only
work for Kähler cases.

Consider the Kähler-Ricci flow:

(3.32)
∂

∂τ
gαβ̄ = εRαβ̄

where ε is a parameter and the conjugate heat equation:

(3.33)
(

∂

∂τ
− Δ + εR

)
u(x, τ) = 0.

When ε < 0, (3.32) is a forward Ricci flow equation and (3.33) becomes the
forward conjugate heat equation. The equations look different from those in
Section 2 since in this section the case of ε < 0 corresponds to the forward
Ricci flow and the case of ε > 0 corresponds to the backward Ricci flow.
For example ε = 1 is exactly the setting for Perelman’s entropy and energy
monotonicity. Notice that (3.33) becomes the backward conjugate heat equa-
tion for ε = 1. For the positive solution u(x, τ) we define the (1, 1) tensor
Zαβ̄ by

Zαβ̄ = −(log u)αβ̄ + εRαβ̄.

Let ΔL denote the Lichnerowicz Laplacian on (1, 1) tensors. Computation
yields (

∂

∂τ
− ΔL

)
Zαβ̄

= −ε2
(

ΔRαβ̄ + Rαβ̄γδ̄Rγ̄δ + ∇γRαβ̄

(
1
ε
∇γ̄ log u

)
+ ∇γ̄Rαβ̄

(
1
ε
∇γ log u

)
+ Rαβ̄γδ̄

(
1
ε
∇γ̄ log u

)(
1
ε
∇δ log u

))
− (log u)αγ(log u)γ̄β̄ + ∇γ(Zαβ̄)∇γ̄ log u + ∇γ̄(Zαβ̄)∇γ log u

+
1
2
Zαγ̄

(
εRγβ̄ + (log u)γβ̄

)
+

1
2

(εRαγ̄ + (log u)αγ̄)Zγβ̄.(3.34)

Let
Z̃αβ̄ = Zαβ̄ − 1

τ
gαβ̄

and

Yαβ̄ = ΔRαβ̄ + Rαβ̄γδ̄Rγ̄δ + ∇γRαβ̄

(
1
ε
∇γ̄ log u

)
+ ∇γ̄Rαβ̄

(
1
ε
∇γ log u

)
+ Rαβ̄γδ̄

(
1
ε
∇γ̄ log u

)(
1
ε
∇δ log u

)
.
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Notice that Ỹαβ̄ in Theorem 2.7 is related to Yαβ̄ by Ỹαβ̄ = Yαβ̄ − Rαβ̄

ετ .
From (3.34), we can derive the equation for Z̃αβ̄ as follows. In terms of Z̃
we have that(

∂

∂τ
− ΔL

)
Z̃αβ̄ =

(
∂

∂τ
− ΔL

)
Zαβ̄ +

1
τ2 gαβ̄ − 1

τ
εRαβ̄

= −ε2Ỹαβ̄ − (log u)αγ(log u)γ̄β̄

+ ∇γ(Z̃αβ̄)∇γ̄ log u + ∇γ̄(Z̃αβ̄)∇γ log u

+
1
2
Z̃αγ̄

(
εRγβ̄ + (log u)γβ̄ − 1

τ
gγβ̄

)
+

1
2

(
εRαγ̄ + (log u)αγ̄ − 1

τ
gαγ̄

)
Z̃γβ̄.(3.35)

For ε < 0, applying Theorem 2.7 we know that ε2Yαβ̄ − ε
τ Rαβ̄ ≥ 0 under the

assumption that M is a complete Kähler manifold with bounded nonnegative
holomorphic bisectional curvature. Hence the tensor maximum principle and
(3.35) imply that Z̃αβ̄ ≤ 0.

Let f = − log u, Z = gαβ̄Zαβ̄. Tracing (3.34) gives(
∂

∂τ
− Δ

)
Z = −εRᾱβZαβ̄ − ε2gαβ̄Yαβ̄ − (f)αγ(f)γ̄ᾱ

−∇γZ∇γ̄f −∇γ̄Z∇γf + Zαβ̄(εRβᾱ − fβᾱ)(3.36)

and

gαβ̄Yαβ̄ = ΔR + Rαβ̄Rᾱβ −∇γR
(

1
ε
∇γ̄f

)
−
(

1
ε
∇γf

)
∇γ̄R + Rαβ̄

(
1
ε
fᾱ

)(
1
ε
fβ

)
.

For ε = 1, integration by parts as before gives

(3.37)
d

dτ

∫
M

Z̃u dμτ = −
∫

M

(
|Z̃αβ̄|2 + |fαβ |2

)
u dμτ − 2

τ

∫
M

Z̃u dμτ .

The above equation is equivalent to Perelman’s entropy monotonicity since
the quantity Q in Perelman’s entropy formula derivation above is nothing
but −Z̃u (for the Kähler case, there exists a factor 2 difference).

Note that for ε = −1, the scalar curvature R does satisfies (3.33) in the
case m = 1. And renormalization of (3.35) gives the previous Hamilton’s
result (3.16). Hence the matrix computation above also implies the Hamil-
ton’s entropy monotonicity, Theorem 3.8. It is interesting to see if (3.35)
also gives high dimensional analogue of Hamilton’s entropy monotonicity
for Kähler-Ricci flow. It still remains a open problem if Hamilton’s entropy
formula has high dimensional version.
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Localizing LYH inequalities and monotonicity formulae is important to
the study of the singularities. The localization of LYH inequality is not
an easy matter in general. Li-Yau’s original work provides such a localized
estimate. There also exists recent fundamental work of Hamilton [H7] in
this direction. Here we present the localization of the monotonicity formulae
via the heat ball/heat sphere. This consideration can be traced back to the
works of [Fu, Wa]. It is much related to mean value theorems for harmonic
functions and solutions to the heat equation. Here we just include a general
formulation for evolving metrics [EKNT].

In [EKNT], a very general scheme on localizing the monotonicity for-
mulae is developed. It is for any family of metrics evolved by the equation
∂
∂tgij = −2κij . The localization is through the so-called ‘heat ball’. More
precisely for a smooth positive space-time function v, which often is the fun-
damental solution to the backward conjugate heat equation or the ‘pseudo

backward heat kernel’ Ĥ(x0, y, τ) = e− r2(x0,y)
4τ

(4πτ)
n
2

(or e−�(y,τ)

(4πτ)
n
2

in the case of Ricci

flow), with τ = t0 − t, one defines the ‘heat ball’ by Er = {(y, t)| v ≥ r−n;
t < t0}. For all interesting cases we can check that Er is compact for small r
(cf. [EKNT]). Let ψr = log v + n log r. For any ‘Li-Yau-Hamilton’ quantity
Q we define the local quantity:

P (r) :=
∫

Er

(
|∇ψr|2 + ψr(trgκ)

)
Q dμt dt.

The finiteness of the integral can be verified by a local gradient estimate.
The general form of the theorem, which is proved in Theorem 1 of [EKNT],
reads as the following.

Theorem 3.15. Let I(r) = P (r)
rn . Then

I(r2) − I(r1) = −
∫ r2

r1

n

rn+1

∫
Er

[((
∂

∂t
+ Δ − trgκ

)
v

) Q
v

(3.38)

+ψr

(
∂

∂t
− Δ

)
Q
]
dμt dt dr.

It gives the monotonicity of I(r) in the cases that Q ≥ 0, which is
ensured by the LYH estimates in the case we shall consider, and both(

∂
∂t + Δ − trgκ

)
v and

(
∂
∂t − Δ

)
Q are nonnegative. The nonnegativity of(

∂
∂t + Δ − trgκ

)
v comes for free if we chose v to be the ‘pseudo backward

heat kernel’. The nonnegativity of
(

∂
∂t − Δ

)
Q follows from the key compu-

tation, which we call the pre-LYH equation, in the proof of the corresponding
LYH estimate.

There exist certain localizations on the entropy formula (3.31). These
localizations are achieved by suitable cut-off functions and are easier than
the above consideration via the heat balls. Please see [N4] for details.



MONOTONICITY AND LI-YAU-HAMILTON INEQUALITIES 287

3.4. Hypersurface flows. For Gauss curvature flow, define.

E(t) �
∫

M
K logK dμ.

Its monotonicity was first established by Ben Chow, using the proof of his
LYH inequality for Gauss curvature flow. It turns out that it holds for slightly
more general flows with a certain integrability condition. (This nice obser-
vation is due to Andrews [An2].)

A. The general formulation. Recall the notations Φ, Ψ, P , etc, from the
previous section. For the simplicity we assume that the flow speed Φ > 0.

Theorem 3.16. Assume that the speed function Ψ = Ψ(A) is α-concave
and satisfies that

(3.39) ∇̄i

(
Ψ−2Ψ̇ij

)
= 0.

Then

(3.40)
d

dt

∫
Sn

∂

∂t
log Φ dσ ≥ α− 1

α

∫
Sn

(
∂

∂t
log Φ

)2

dσ.

Proof. The proof follows from the computation in previous sections on
the LYH estimate for hypersurface flows. Recall that P = Ψt satisfies that

∂

∂t
P = LP + Ψ̇(id)P + Ψ̈(Q,Q)

where Q = ∂
∂tA = ḡ∗Hess∇̄Ψ + Ψ id. Hence

d

dt

∫
Sn

∂

∂t
log Φ dσ =

∫
Sn

∂
∂tP

Ψ
− P ∂

∂tΨ
Ψ2 dσ

=
∫

Sn

(Ψ̇)ij∇̄i∇̄jP + Ψ̇(id)P
Ψ

+
Ψ̈(Q,Q)

Ψ
−
(
P

Ψ

)2

dσ

≥
∫

Sn

(Ψ̇)ij∇̄i∇̄jP + Ψ̇(id)P
Ψ

+
α− 1
α

(
P

Ψ

)2

−
(
P

Ψ

)2

dσ

noting that Ψ̇(Q) = P . Now we compute the first term∫
Sn

(Ψ̇)ij∇̄i∇̄jP

Ψ
dσ =

∫
Sn

Ψ
(
Ψ−2(Ψ̇)ij∇̄i∇̄jP

)
dσ

= −
∫

Sn

∇̄iΨ
(
Ψ−2(Ψ̇)ij∇̄jP

)
dσ

=
∫

Sn

(
∇̄j∇̄iΨ

)
Ψ−2(Ψ̇)ijP dσ.
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Using that P = (Ψ̇)ij(∇̄i∇̄jΨ + Ψḡij) we have that∫
Sn

(Ψ̇)ij∇̄i∇̄jP + Ψ̇(id)P
Ψ

d σ =
∫

Sn

P 2

Ψ2 dσ.

�
Now we check that the condition (3.39) holds for both the Gauss curva-

ture flow and harmonic mean curvature flow.
Gauss curvature flow: Using the normal coordinate centered at a point,

we have that A = (Aij) with Aij = ∇̄i∇̄js + sḡij . Direct calculation shows
that

Ψ−2(Ψ̇)ij = det(A)(A−1)ij =
∂ det(A)
∂Aij

.

Hence it suffices to show

∇̄i

(
∂ det(A)
∂Aij

)
= 0.

This follows from two claims below.

1) For any symmetric tensor A satisfying the Codazzi equation
∇̄kAij = ∇̄iAjk, we have

∇̄i

(
∂Sk(A)
∂Aij

)
= 0

where Sk is the k-th symmetric function.
2) The A =

(
∇̄i∇̄js + sḡij

)
satisfies the Codazzi equation.

The first claim can be checked directly. For the second one, we have the
following computation.

∇̄k

(
∇̄i∇̄js + sḡij

)
− ∇̄i

(
∇̄k∇̄js + sḡkj

)
= ∇̄k∇̄i∇̄js− ∇̄i∇̄k∇̄js + ∇̄ksḡij − ∇̄isḡkj

= −R̄ikjp∇̄ps + ∇̄ksḡij − ∇̄isḡkj

= 0

where we have used the expression for the curvature R̄ikjp = ḡij ḡkp − ḡipḡkj .
Harmonic mean curvature flow: Direct calculation shows that Ψ−2

(Ψ̇)ij = ḡij . Hence ∇̄i(Ψ−2(Ψ̇)ij) is trivially true.

B. The entropy formulae. Now we look further into the Gauss curvature
flow case. Noting that E =

∫
Sn logK dσ, a consequence of the theorem via

the Hölder inequality is that

d2E(t)
dt2

≥ n + 1
nA(Sn)

(
dE(t)
dt

)2

.



MONOTONICITY AND LI-YAU-HAMILTON INEQUALITIES 289

Now consider the normalized flow. Let

X̃ = ψ−1(t)X

where ψ = ((n + 1)(T − t))
1

n+1 . Hence the new equation is

(3.41)
∂

∂τ
X̃ = −K̃ν + X̃

where τ = 1
n+1 log(1 − t

T ). It can be checked that the flow preserves the
enclosed volume if V (M0) = ωn+1, the volume of the unit ball. Now the
corresponding equation on the support function s̃ is that

(3.42)
∂

∂τ
s̃ = s̃− K̃ = s̃− 1

det(ḡ∗Hess∇̄s̃ + s̃ id)
.

Let Ã = ḡ∗ (Hess∇̄s̃ + ḡs̃). Now

∂

∂τ
Ã = Ã + ḡ∗

(
Hess∇̄Ψ̃ + id Ψ̃

)
.

Similarly P̃ � ∂
∂τ Ψ̃ = ˙̃Ψ

(
∂
∂τ Ã

)
satisfies

∂

∂τ
P̃ = LP̃ + ˙̃Ψ(id)P̃ + LΨ̃ + ˙̃Ψ(id)Ψ̃ + ˙̃Ψ(Ã) + ¨̃Ψ(Q̃, Q̃)

= LP̃ + ˙̃Ψ(id)P̃ + ˙̃Ψ
(

∂

∂τ
Ã

)
+ ¨̃Ψ(Q̃, Q̃)

= LP̃ + ˙̃Ψ(id)P̃ + P + ¨̃Ψ(Q̃, Q̃)

where Q̃ = ∂
∂τ Ã. Let Ẽ(τ) =

∫
Sn log K̃ dσ. Repeating the calculation in the

last subsection we have that

(3.43)
d2Ẽ(τ)
dτ2 ≥ n + 1

nA(Sn)

(
dẼ(τ)
dτ

)2

+
dẼ(τ)
dτ

which then implies the following result of Chow. Note that

Ẽ(τ) =
∫

Sn

log
(
((n + 1)(T − t))

n
n+1 K(x, t)

)
dσ.

Theorem 3.17.

(3.44)
dẼ(τ)
dτ

≤ 0.

Proof. This is derived out of the long time existence result of Tso [T].
Otherwise, assume that F � dẼ

dτ > 0 (abbreviated as Ẽ ′) at some τ0. By
(3.43) we have that F ′ ≥ αF2 for all τ ≥ τ0. This implies that F must blow
up at some finite time. A contradiction! �
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This derivation of the monotonicity formula via the long time existence
and ODE consideration is originated in [H2].

It is also worthwhile to look into the special case that the entropy is
constant. Tracing the proof we conclude that K̃τ = 0 and

Ã = λḡ∗
(
Hess∇̄Ψ̃ + ḡΨ̃

)
.

Using the PDE satisfied by Ψ̃, it is easy to conclude that the above λ = −1,
which implies ∂

∂τ Ã = 0. In particular we have that Hess∇̄(K̃−s̃)+(K̃−s̃)ḡ =
0. This concludes that K̃−s̃ is the restriction of a linear function. Keeping in
mind that the choices of different origin to define the support function cause
the support function to differ by a linear function, we essentially have that
s̃ − K̃ = 0. Namely the equality holds only on a shrinking soliton (steady
solution to the normalized flow).

The following dual version of the entropy formula was motivated by the
thermodynamic consideration as before. Define the following entropy-like
quantities:

E(t) = −
∫

Sn

log
(
t

n
n+1K

)
dσ(3.45)

W(t) =
d

dt

(
tE(t)

)
= t

d

dt
E(t) + E(t)

= −t
d

dt
E(t) − nA(Sn)

n + 1
+ E(t).(3.46)

By the LYH inequality we have that

d

dt
E(t) ≤ 0.

Letting K = ∂
∂t logK, the above computation also gives

d

dt
W(t) = −t

d

dt

(
dE(t)
dt

)
− 2

dE(t)
dt

− nA(Sn)
(n + 1)t

≤ −
∫

Sn

(
n + 1
n

tK2 + 2K +
n

(n + 1)t

)
dσ

≤ − nt

n + 1

∫
Sn

(
n + 1
n

K +
1
t

)2

dσ.(3.47)

The following corollary summarizes the above observations.

Corollary 3.18. The entropies E(t) and W(t) are monotone non-
increasing.

Similar entropy formulae for E(t) and W(t), which can be similarly
defined as

E(t) = −
∫

Sn

log
(
Φt

α
α−1

)
dσ and W(t) =

d

dt

(
tE(t)

)
,
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can be shown verbatim provided that the assumption of Theorem 3.16 holds,
particularly including the harmonic mean curvature flow.

By tracing the equality in either (3.45) or (3.46) we have that

Kt

K
+

n

t(n + 1)
= 0

and

−Q = ḡ∗ (∇̄i∇̄jK + Kḡij

)
= λA

for some λ which may depend on space-time point. Using the equation for
K one deduces that λ = − 1

(n+1)t . Hence as before we conclude that the
equality holds only if K + 1

(n+1)ts = 0. Namely the solution is an expanding
soliton.

4. The other direction

The previous section shows how LYH inequality implies the monotonicity
formulae. This process sometimes can be reversed. Here we show that some
geometric considerations which lead to the monotonicity of some geometric
quantities also suggest the LYH inequalities (2.5) (for the heat equation)
and (2.14) (for Ricci flow) respectively. According to Perelman, it is this
consideration that leads the discovery of his entropy formula and (2.14).

4.1. Linear heat equation. Recall that the LYH inequality (2.42)
implies (2.8), which is equivalent to the following result of Cheeger and Yau,
which asserts that on a complete Riemannian manifold with nonnegative
Ricci curvature, the heat kernel H(x, τ ; o, 0) (the fundamental solution of
the operator

(
∂
∂τ − Δ

)
) has the lower estimate

(4.1) H(x, τ ; o, 0) ≥ 1
(4πτ)

n
2

exp
(
−r2(o, x)

4τ

)
where r(o, x) is the distant function on the manifold. This fact can be derived
out of the maximum principle and the differential inequality(

∂

∂τ
− Δ

)(
1

(4πτ)
n
2

exp
(
−r2(o, x)

4τ

))
≤ 0.

Integrating on the manifold M , this differential inequality also implies the
monotonicity (monotone non-increasing) of the integral

(4.2) Ṽ (o, τ) :=
∫

M

1
(4πτ)

n
2

exp
(
−r2(o, y)

4τ

)
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Fix a point o ∈ M . Let γ(τ) (0 ≤ τ ≤ τ̄) be a curve parameterized by the
time variable τ with γ(0) = o. Here we image that we have a time function
τ , with which some parabolic equation is associated. Define the L-length by

(4.3) L(γ)(τ̄) =
∫ τ̄

0

√
τ |γ′(τ)|2 dτ.

We can define the L-geodesic to be the curve which is the critical point of
L(γ). The simple computation shows that the first variation of L is given
by

(4.4) δL(γ) = 2
√
τ̄〈Y,X〉(τ̄) − 2

∫ τ̄

0

√
τ

(
〈∇XX +

1
2τ

X, Y 〉
)
dτ,

where Y is the variational vector field, from which one can write down the
L-geodesic equation. It is an easy matter to see that γ is a L-geodesic if
and only if γ(σ) with σ = 2

√
τ is a geodesic. In other words, a L-geodesic

is a geodesic after certain re-parametrization. Here we insist all curves are
parameterized by the ‘time’-variable τ . One can check that for any v ∈
ToM there exists a L-geodesic γ(τ) such d

dσ (γ(σ))|σ=0 = v. Notice that the
variable σ scales in the same manner as the distance function on M . So it
is more convenient to work with σ.

Following [P] we also introduce the !-‘distance’ function.

!o(y, τ̄) =
1

2
√
τ̄
Lo(y, τ̄), where Lo(y, τ̄) = inf

γ
L(γ)).

Here our ! is defined for a fixed background metric. We also omit the sub-
script o in the context where the meaning is clear. The similar computations
as in [P], together with the second variation formula from the Riemannian
geometry, show that

(4.5) |∇!|2 =
1
τ̄
!

(4.6) !τ = −1
τ̄
!

and

(4.7) Δ! ≤ n

2τ̄
− 1

τ̄
3
2

∫ τ̄

0
τ

3
2 Ric(X,X) dτ

where X = γ′(τ) with γ(τ), 0 ≤ τ ≤ τ̄ being the minimizing L-geodesic
joining o to x. Putting (4.5)–(4.7) together, one obtains a new proof of
the result of Cheeger-Yau, which asserts that if M has nonnegative Ricci
curvature, then

(4.8) −!τ + Δ!− |∇!|2 − n

2τ
≤ 0
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which is equivalent to (
∂

∂τ
− Δ

)(
e−�(x,τ)

(4πτ)
n
2

)
≤ 0.

Namely e−�(x,τ)

(4πτ)
n
2

is a sub-solution of the heat equation. In particular,

d

dτ

∫
M

e−�(x,τ)

(4πτ)
n
2
dμ ≤ 0.

Using the above geometric consideration, one can think of the above result of
Cheeger-Yau as a parabolic volume comparison with respect to the positive
measure e−�(x,τ)

(4πτ)
n
2
dμ. Recall that the well-known Bishop volume comparison

states that if M has nonnegative Ricci curvature

d

dr

(
1

rn−1

∫
Sx0 (r)

dA

)
≤ 0

where So(r) denotes the boundary of the geodesic ball centered at o with
radius r, dA is the induced area measure. The by-now standard relative
volume comparison can be formulated in the similar way as above. Let A be
a measurable subset of Sn−1 ⊂ ToM one can define CA(r) to be the collection
of vectors rv with v ∈ A such that the geodesic expo(sv) is minimizing for
s ≤ r, where expo(·) is the exponential map. Then the relative volume
comparison theorem asserts that if M has nonnegative Ricci curvature

d

dr

(
1

rn−1

∫
exp(CA(r))

dA

)
≤ 0.

The following is a parabolic version of such a relative volume comparison
theorem parallel to Perelman’s work on Ricci flow geometry.

Proposition 4.1. Assume that M has nonnegative Ricci curvature.
Then

(4.9)
d

dτ

∫
L expCA(τ)(τ)

e−�(x,τ)

(4πτ)
n
2
dμ ≤ 0.

Better comparison between Theorem 4.1 and the classical relative vol-
ume comparison can be seen by identifying the space-time M̃ = M × [0, T ]
with the manifold M , the time-slice M×{a} with the geodesic sphere So(a).
Notice that in [P], one does need such a localized version (for Ricci flow) to
prove the important no local collapsing result on the finite time solution to
Ricci flow.
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The other combinations of (4.5)–(4.7) include the Hamilton-Jacobi equa-
tions:

(4.10) |∇!|2 + 2!τ +
!

τ
= 0,

(4.11) |∇!|2 + !τ = 0

and the inequalities

(4.12) ΔL̄ + L̄τ ≤ 2n, for L̄ = 4τ!,

(4.13) τ(2Δ!− |∇!|2) + !− n ≤ 0.

Notice that assuming (4.10), (4.8) and (4.13) imply each other. One way
of thinking is that ! as a solution to a Hamilton-Jacobi equation (4.10),
one has (4.13) and (4.8). On the other hand Theorem 2.2 asserts that for
the fundamental solution u = e−�

(4πτ)
n
2

to the heat equation, one has (4.13).

Namely, if we insist the equality in (4.8) (hence we look at solutions to the
heat equation in stead of the Hamilton-Jacobi equation (4.10)) we still have
(4.13). The proof of this observation leads to the entropy formula (3.15).
One should also compare (4.10) with (2.6), (4.11) with (2.3), (4.12) with
(2.9).

4.2. Ricci flow. We find it most striking that the above geometric
consideration has a close analogue for the space-time of the solution to the
backward Ricci flow ∂

∂τ g = Ric(g). This is one of the most important con-
tributions of [P].

Recall (from(2.47), a consequence of the LYH (2.42)) the definition of
reduced distance

(4.14) !x0,g(τ)(x, τ̄) := inf
γ

1
2
√
τ

∫ τ̄

0

√
τ
(
|γ′(τ)|2 + R

)
dτ

for all γ(τ) with γ(0) = x0, γ(τ̄) = x (in the right context, we often omit
the subscript x0, g(τ)). The quantity

(4.15) Ṽg(τ)(x0, τ) :=
∫

M

1
(4πτ)

n
2

exp (−!(x, τ)) dμ(τ)

is called the reduced volume. Perelman proved that Ṽg(τ)(x0, τ) is monotone
non-increasing in τ . It was proved in [P] by the first and second variation
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consideration that

!τ = R− !

τ
+

1

2τ
3
2
K,(4.16)

|∇!|2 = −R +
!

τ
− 1

τ
3
2
K,(4.17)

Δ! ≤ −R +
n

2τ
− 1

2τ
3
2
K,(4.18)

where K = K(γ, τ̄) =
∫ τ̄
0 τ

3
2H(X) dτ , with γ being the minimizing L geo-

desic, X = γ′(τ) and

H(X) = −Rτ − R

τ
− 2〈X,∇R〉 + 2 Ric(X,X).

Grouping the above in different ways we have that

2!τ + |∇!|2 −R +
!

τ
= 0,(4.19)

−!τ + Δ!− |∇!|2 + R− n

2τ
≤ 0,(4.20)

τ
(
2Δ!− |∇!|2 + R

)
+ !− n ≤ 0,(4.21)

as well as

(4.22) ΔL̄ + L̄τ ≤ 2n

with L̄ = 4τ!. The monotonicity of the reduced volume follows from (4.20)
easily.

Considering the first and second variation of energy functional as (4.14)
and applying it to prove the monotonicity of a quantity similar as (4.15)
were originated in the seminar work of Li and Yau [LY] on the Schrödinger
operator. As in the linear heat equation case, there they have to assume that
the Ricci curvature is nonnegative together with other conditions on the
potential function of the Schrödinger equation. The most remarkable thing
is that for the backward Ricci flow space time, the whole thing fits together
without assuming anything on the curvature.

Note that assuming (4.19), the inequalities (4.20) and (4.21) imply each
other and each of them can be viewed as a preserved inequality for the solu-
tion to the Hamilton-Jacobi equation (4.19) (The stressing of the Hamilton-
Jacobi equation is attributed to [H8] for the Ricci flow case and the much
earlier work [LY] for the linear Schrödinger equation). According to a con-
versation with Perelman, by insisting that (4.20) holds equality (namely
solving a conjugate heat equation), Perelman discovered the LYH inequality
(4.21), namely (2.42), for the fundamental solution. The proof of this leads
to the entropy formula (3.31). Later on Hamilton [H8] observed that if one
insists on equation (4.19), then for the solution to this Hamilton-Jacobi type
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equation, (4.21) will be preserved. Based on this he also [H8] proposed a
more general notion of reduced distance and claimed some interesting mono-
tonicity and relations between entropy and the reduced volume. We found
that this duality is quite interesting and deserves further understanding.

Naturally one would ask if the similar consideration can lead to an
entropy-like formula for the hypersurface flow.

4.3. Dual version and the matrix inequality. The same line of
thinking as the above can motivate the matrix LYH in Theorem 2.10. This
time one considers the reduced geometry of the Ricci flow (instead of the
backward Ricci flow). For the sake of the exposition we shall focus on Kähler-
Ricci flow.

Let g(t) be a complete solution to Kähler-Ricci flow on Mm × [0, T ]
(where m = dimC(M) and n = 2m). Fix x0 and let γ be a path (x(η), η)
joining (x0, 0) to (x, t̄). Following [P] (see also [LY, FIN]) we define

(4.23) L+(γ) =
∫ t̄

0

√
t
(
R + 4|γ′(t)|2

)
dt.

Let X = γ′(t) = dzα(t)
dt

∂
∂zα and let Y be a variational vector field along γ.

Here |γ′(t)|2 = gαβ̄
dzα(t)

dt
dzβ̄(t)

dt . Using L+ as energy we can define the L+-
geodesics and we denote L+(y, t) to be the length of a shortest geodesics
jointing (x0, 0) to (y, t). We also define

!+(x, t;x0, 0) :=
1

2
√
t
L+(x, t).

Following the first and second variation calculation of [P] (see also [FIN])
we have that

|∇!+|2 = −R +
!+
t

+
K

t3/2 ,(4.24)

∂!+
∂t

= R− K

2t3/2 − !+
t
,(4.25)

Δ!+ ≤ R +
n

2t
− K

2t3/2 .(4.26)

Here

K :=
∫ t

0
η3/2H(X) dη,

where H(X) := ∂R/∂t+2〈∇R,X〉+2〈X,∇R〉+4 Ric(X,X)+R/t, is exactly
the traced LYH differential Harnack expression in [Co] applying to the (1, 0)
vector field 2X.
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Grouping (4.24)–(4.26) suitably we have the following

2
∂!+
∂t

+ |∇!+|2 −R +
!+
t

= 0,(4.27)

∂!+
∂t

+ Δ!+ + |∇!+|2 −R− n

2t
≤ 0,(4.28) (

∂

∂t
− Δ

)(
L̄+ + 2nt

)
≥ 0(4.29)

t(2Δ!+ + |∇!+|2 −R) − !+ − n ≤ 0.(4.30)

In particular (4.30) suggests an entropy formula, which is dual to Perelman’s
(3.31) since it holds equality on expanding solitons.

Theorem 4.2. Let (M, g(t)) be a solution to Ricci flow. Let u be a
solution to the conjugate heat equation with

∫
M u = 1. Write u = e−f+

(4π(t−t0))
n
2

for t > t0. Let

W+ =
∫

M

[
(t− t0)

(
|∇f+|2 + R

)
− f+ + n

]
udμt.

Then

(4.31)
∂W+

∂t
= 2(t− t0)

∫
M

∣∣∣∣Rij + ∇i∇jf+ +
gij

2(t− t0)

∣∣∣∣2 dμ.

Note that the entropy expression is suggested by applying (4.30) to
û = e�+(x,t)

(4π(t−t0))
n
2
, which is a super-solution of the conjugate heat equation

by (4.28).
If we assume that (M, g) has nonnegative bisectional curvature, by

regrouping and observing that K ≥ 0 we have the following result.

Theorem 4.3. Let (Mm, g(t)) be a complete solution to Kähler-Ricci
(Ricci) flow with bounded nonnegative bisectional curvature (curvature oper-
ator). Let H(y, t;x0, 0) be the fundamental solution to forward conjugate heat
equation centered at (x0, 0). Then

ũ(x, t) :=
1

(πt)m
exp (−!+(x, t;x0, 0))

satisfies

(4.32)
(
∂

∂t
− Δ −R

)
ũ(x, t) ≤ 0.

In particular,

(4.33) ũ(x, t;x0, 0) ≤ H(x, t;x0, 0)
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and
θ̃
(x0,0)
+ (t) :=

∫
M

ũ(x, t) dμt(x)

is monotone decreasing. Moreover, the equality in (4.32), or (4.33) implies
that M is a gradient expanding soliton.

Proof. First (4.24)–(4.26) implies that(
∂

∂t
− Δ −R

)(
1

(πt)m
exp(−!+(x, t))

)
= −K

t
3
2

(
1

(πt)m
exp(−!+(x, t))

)
≤ 0.

Here we have used the fact that K ≥ 0 under the assumption that M has
bounded non-negative bisectional curvature. Also if the equality holds it
implies that K ≡ 0. This further implies that M is an expanding soliton
from the computation in [FIN]. In order to prove (4.33) one just needs to
apply the maximum principle and notice that limt→0

1
(πt)m exp(−!+(x, t)) =

δx0(x). The equality case follows from the analysis on the equality case in
[FIN]. �

Moreover we also have the following observation which motivated The-
orem 2.10.

Proposition 4.4. Assume that (M, g(t)) be a Kähler-Ricci flow with
bounded nonnegative bisectional curvature on M × [0, T ). Let ũ(x, t) be as
in Theorem 4.3. Then

(4.34) log(ũ)αβ̄ + Rαβ̄ +
1
t
gαβ̄ ≥ 0.

The equality holds if and only if (M, g(t)) is an expanding Kähler-Ricci
solition.

5. Comments

Due to the limited time allowed and the lack of expertise we could not
address in this exposition many important aspects related to LYH inequali-
ties. Among them, the most notable is the space-time consideration of Chow
and Chu [CC1, CC2, CC3], and the very recent work of Hamilton on the
local approximation of the trace LYH inequality for the Ricci flow [H7]. The
main theme of the space-time consideration is to interpret the LYH expres-
sion as the curvature operator of certain degenerate metric on the space time
M = M× [0, T ]. This geometric consideration sometimes suggests new LYH
estimates [CK, Che]. A similar space-time construction for the backward
Ricci flow was done by Perelman [P]. This construction for the backward
Ricci flow is related to the reduced distance and monotonicity of the reduced
volume.
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Concerning the monotonicity, we completely missed the monotonicity
of many important energy functionals, such as the Donaldson functional
and the Mabuchi energy, constructed in the study of Hermitian metrics on
holomorphic vector bundles or Kähler metrics/potentials. They seem not
related to LYH type estimates in general.
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