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Abstract. We consider vacuum spacetimes in 2 + 1 dimensions
defined on manifolds of the form M = Σ×R where Σ is a compact,
orientable surface of genus > 1. By exploiting the harmonicity
properties of the Gauss map for an arbitrary constant mean cur-
vature (CMC) slice in such a spacetime we relate the Hamiltonian
dynamics of the corresponding reduced Einstein equations to some
fundamental results in the Teichmüller theory of harmonic maps.
In particular we show, expanding upon an argument sketched by
Puzio, that a global complete solution to the Hamilton-Jacobi
equation for the reduced Einstein equations can be expressed in
terms of the Dirichlet energy for harmonic maps defined over the
surface Σ. While in principle this complete solution to the Hamilton-
Jacobi equation determines all the solution curves to the reduced
Einstein equations, one can derive a more explicit characterization
of these curves through the solution of an associated (parametrized)
Monge-Ampêre equation. Using the latter we define a correspond-
ing family of “ray structures” on the Teichmüller space of the
chosen 2-manifold Σ. These ray structures are similar but comple-
mentary to a different family of such ray structures defined by M.
Wolf and we herein derive a “relativistic interpretation” of both
sets. We also use our Hamilton-Jacobi results to define comple-
mentary families of Lagrangian foliations of the cotangent bundle
of the Teichmüller space of Σ and to provide the corresponding
“relativistic interpretation” of the leaves of these foliations.

1. Introduction

If Einstein’s vacuum field equations are formulated for 3-dimensional
Lorentzian metrics on manifolds of the form M = Σ×R, where Σ is a com-
pact surface, then it is hardly surprising to find the Teichmüller space of Σ
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playing an important role in the analysis. Indeed, it can be shown from sev-
eral independent points of view [1, 2, 3] that this Teichmüller space, T (Σ),
serves as the natural reduced configuration space and its cotangent bundle
T ∗T (Σ) the natural reduced phase space for Einstein’s equations treated
as a Hamiltonian dynamical system. That this system is only finite dimen-
sional, in contrast to the situation for higher dimensional spacetimes, is an
immediate consequence of the fact that a vanishing Einstein tensor (i.e., the
vacuum condition) implies a vanishing Riemann tensor in 3 dimensions and
hence the absence of any local degrees of freedom for the gravitational field.
Only certain global degrees of freedom remain and these can be identified
with the Teichmüller parameters describing the conformal geometry induced
on Σ by the spacetime metric at any given “time”. The evolution of these
Teichmüller parameters as one sweeps through the leaves of a foliation of
the spacetime by suitably chosen (hyper-) surfaces is the finite dimensional
dynamical system that we are interested in.

In higher dimensions, the vanishing of the Einstein tensor leaves open the
possibility of non-vanishing curvature and in fact, one can show that this
latter tensor satisfies a hyperbolic equation whose (non-stationary) solu-
tions can be thought of as describing gravitational waves. Here, too, it is
possible to show that the conformal geometry induced on the leaves of a
foliation by Cauchy hypersurfaces provides the natural reduced configu-
ration degrees of freedom but, in contrast to the 3-dimensional case, the
associated Teichmüller-like space of conformal structures is always infinite
dimensional (to accommodate the gravitational waves) and the correspond-
ing reduced field equations take the form of a hyperbolic/elliptic system of
partial differential equations [4, 5]. Only in 3 dimensions (the lowest, non-
trivial possibility) do the Einstein field equations reduce (after solution of
the elliptic constraints and imposition of suitable coordinate gauge condi-
tions) to ordinary differential equations unless some additional restriction,
such as spatial homogeniety, is imposed upon the higher dimensional metrics
under study.

In this article, we are primarily interested in studying the reduced
Einstein equations in so-called CMCSH (constant-mean-curvature-spatially-
harmonic) gauge which is defined by the requirements that the level sur-
faces of a suitably chosen time function, which are each Cauchy (hyper-)
surfaces diffeomorphic to Σ, satisfy the CMC (constant-mean-curvature)
condition and that the induced Riemannian metric g on each such Cauchy
surface is such that the identity map from (Σ, g) to (Σ, g̃), for some con-
veniently chosen target metric g̃ is harmonic. This latter condition is well-
known to depend only upon the conformal class of the domain metric g and
hence only upon the Teichmüller parameters of this slice dependent variable.
The reduced Einstein equations, which can be expressed in Hamiltonian
form, give the evolution of these Teichmüller parameters together with their
canonically conjugate momenta (which, taken together, provide coordinates
for T ∗T (Σ)).
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One of our main results is to show that the foliation of such vacuum met-
rics on Σ×R by CMC slices is globally determined through the solution of an
associated (fully non-linear) elliptic equation of Monge-Ampêre type which
depends parametrically upon the mean curvature variable τ (which plays the
role of “time”) and upon the choice of an arbitrary point of T ∗T (Σ) which
can be thought of as an asymptotic data point in the reduced phase space.
By exploiting the method of continuity, we prove that every solution of this
Monge-Ampêre equation (each of which is fixed by prescribing asymptotic
data at τ = 0) extends globally to a solution for all τ in the interval (−∞, 0].
The limit τ ↘ −∞ corresponds to a big bang singularity at which the geo-
metric area of Σ tends to zero and for which, generically, the corresponding
solution curve runs off-the-edge of Teichmüller space. The opposite limit
τ ↗ 0 corresponds to that of infinite cosmological expansion for which the
geometric area of Σ blows up but for which the induced conformal geometry
always asymptotes to an interior point of Teichmüller space (which together
with an associated asymptotic “velocity” is determined by the chosen point
of T ∗T (Σ)). It is known from earlier work that the range (−∞, 0) always
exhausts the maximal Cauchy development for each vacuum solution [6].

A closely related result that we shall derive shows how the Dirichlet
energy for a suitably defined harmonic map (the Gauss Map for a CMC slice
of the associated, flat spacetime) can be exploited to yield a global, complete
solution to the Hamilton-Jacobi equation for the Hamiltonian system defined
by the reduced field equations. A sketch of how to relate the Dirichlet energy
for the Gauss map to a complete solution for the Hamilton-Jacobi equation
was given earlier by Puzio [7]. To make his insight more precise, we fill
in some of the details that were not provided in Puzio’s argument and, in
particular, show how the partial derivatives of the Dirichlet energy (with
respect to the Teichmüller parameters) are related to the momenta of the
reduced Hamiltonian formalism.

The complete solution to the reduced Einstein-Hamilton-Jacobi equation
that we obtain, allows us to define a set of “ray-structures” on Teichmüller
space that are similar but complementary to the well-known ray structures
defined by Michael Wolf [8]. In our formulation each ray corresponds to
(the projection of) a solution curve of the reduced Einstein equations and
the collection of such curves yielding a particular ray structure corresponds
to the collection of all those curves having the same asymptotic confor-
mal geometry as τ ↗ 0. By varying this target point over the interior of
Teichmüller space one obtains all of the ray structures defined by the com-
plete solution to the Hamilton-Jacobi equation. By contrast to this, one
can also give a relativistic interpretation to Wolf’s rays but each such ray
corresponds to the locus of endpoints defined by a one-parameter family
of solutions to Einstein’s equations defined by fixing (at say τ =−1), the
conformal geometry, but scaling up the traceless part of the second funda-
mental form (a holomorphic quadratic differential in Wolf’s terminology) by
a (spatially constant) multiplicative factor.
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Wolf was able to prove that (holding the domain conformal geometry
fixed) he could define a global chart for the (topologically trivial) Teichmüller
space of Σ by varying the holomorphic quadratic differential over the full
vector space of such objects. In a complementary way here, we are able to
exploit the Monge-Ampêre analysis mentioned above to define a family of
global charts for Teichmüller space in each of which the target conformal
geometry is held fixed and one varies a holomorphic quadratic differential
defined relative to this fixed target. Wolf gets a family of such charts by
varying the domain conformal geometry whereas we get a family by varying
the target.

Our approach to this latter problem is quite different from that of
B. Tabak [9]. She also holds the target (of a family of harmonic maps) fixed
but exploits the properties of so-called subsonic  -holomorphic quadratic
differentials to develop a family of global charts for Teichmüller space. The
concept of subsonic  -holomorphic quadratic differentials was introduced by
L.M. Sibner and R.J. Sibner in connection with a certain hydrodynamics
problem wherein they showed that these objects were expressible in terms
of a certain non-linear generalization of harmonic one-forms on a compact
manifold [10]. Since the dimension of the space of such generalized harmonic
one-forms coincides with that given by Hodge theory (the first Betti number
of the manifold) when these objects are non-singular it is necessary to allow
forms with certain well-defined singularities in order to match the correct
dimension of Teichmüller space in the higher genus cases for surfaces. Tabak
gives a careful study of such singularities that need be allowed. By contrast
though, our approach only requires globally regular holomorphic quadratic
differentials of the conventional type, in close parallel to Wolf’s treatment.

Hamilton-Jacobi theory is closely connected to the construction of
Lagrangian foliations of the associated phase space, in our case T ∗T (Σ)
the cotangent bundle of Teichmüller space. Since we are in the ideal situa-
tion of having a global, complete solution to the Hamilton-Jacobi equation,
we can exploit this close connection to define two (one-parameter families
of) global Lagrangian foliations of T ∗T (Σ) and to give the leaves of these
foliations a “natural” interpretation in terms of corresponding families of
solutions to Einstein’s equations.

2. Preliminary Computations

Let Σ be a compact connected, orientable surface of genus >1 and set
M = Σ × R. Relative to a “time” function t defined on M whose level sur-
faces are diffeomorphic to Σ we can express Lorentzian metrics on M in the
Arnowitt, Deser and Misner (ADM) form

ds2 = (3)gμνdx
μdxν(2.1)

= −N2dt2 + gab(dxa + Xadt)(dxb + Xbdt).
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Here μ, ν . . . range over {0, 1, 2}, where x0 = t is the time, and a, b, . . . range
over {1, 2} where {x1, x2} are the spatial coordinates. Induced upon each
level surface of t is a Riemannian metric gt (the first fundamental form)
given by

(2.2) gt = gabdx
a ⊗ dxb

where here and below we suppress the spacetime coordinate dependence of
component expressions such as gab to simplify the notation. N is a positive
function on M (the “lapse”) and Xa ∂

∂xa is an (in general t-dependent) vector
field tangent to the level surfaces of t (the “shift”).

The covariant derivative of the unit normal field (“future” directed
towards increasing t) to the surfaces of constant t determines, in the usual
way, another symmetric two-tensor kt (the second fundamental form) on
each such surface which we shall write in component form as

(2.3) kt = kabdx
a ⊗ dxb.

Writing μg =
√

det gab for the area element of gt, we define the gravitational
momentum πt (a symmetric, contravariant, two-tensor density with compo-
nents πab) by

(2.4) πab = −μg(kab − gabtrgk)

where gab = (g−1
t )ab are the components of the inverse metric to gt, two-

dimensional indices are raised and lowered using gt and g−1
t and where

trgk= gabkab, the trace of kt. This latter quantity, the mean curvature of
the t= constant hypersurfaces, will play an important role in what follows
and we shall often designate it by the symbol τ . Thus, from the formulas
above

(2.5) τ := trgk = gabkab =
trgπ

μg
=

gabπ
ab

μg
.

The ADM action for Einstein’s equations is given by

(2.6) IADM =
∫

I×Σ
d3x{πabgab,t −NH−XaJa}

where I = [t0, t1] ⊂ R is an arbitrary closed interval and where

H = H(g, π) =
1
μg

(πabπab − (trgπ)2) − μ(2)
g R(g)(2.7a)

Ja = Ja(g, π) = −2πb
a|b = −2(2)∇bπ

b
a.(2.7b)

Here (2)R(g) is the scalar curvature of the Riemannian metric g and | or (2)∇
designates covariant differentiation with respect to this metric.
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Variation of IADM with respect to the lapse N and shift Xa yields the
Einstein constraint equations

(2.8) H(g, π) = 0, Ja(g, π) = 0

whereas variation with respect to g and π yield evolution equations (in
Hamiltonian form) for these “canonical” variables. There are no equations
determining N and Xa and these quantities can be specified freely to deter-
mine a coordinate system on the developing spacetime. Two choices which
we shall make use of are the gaussian normal choice N = 1, Xa = 0 (in which
the spatial coordinates are held constant along the normal geodesics from
an initial slice and t is the metrically determined proper time along those
geodesics) and another in which the hypersurfaces of constant t are required
to each have constant mean curvature and the spatial coordinates are required
to satisfy a harmonic condition defined below. Imposing these conditions
upon the spacetime coordinates leads to a system of linear elliptic equations
for N and Xa which determines these quantities uniquely in terms of the
remaining (canonical) data {gt, πt}. The Bianchi identities ensure that the
constraints (2.8) are conserved by the evolution equations in essentially an
arbitrary coordinate gauge.

The Einstein evolution equations for vacuum 2 + 1 gravity simplify greatly
when expressed in gaussian normal coordinates (gnc) and in fact reduce to a
decoupled system of ordinary differential equations for {gab, π

ab} along each
normal geodesic in the evolving flat spacetime. Insofar as these geodesics
are initially diverging the absence of spacetime curvature (which results
from the fact that vanishing Einstein tensor implies vanishing Riemann ten-
sor in 3 dimensions) ensures that these “straight lines” will never cross to
the future of the initial surface and thus that the gnc coordinate system will
never break down in this temporal direction (though in general it does break
down in the opposite direction). As we shall show later by analyzing the con-
straint equations in detail, the future directed normals to a constant mean
curvature hypersurface having τ = constant <0 (and where “future” desig-
nates the direction of increasing τ) are always diverging and thus the gnc
coordinate systems developed from such an initial surface cover the entire
spacetime to the future of this surface. Indeed, by exploiting the simplified
form of the evolution equations, one can construct the spacetime metric
essentially explicitly in gaussian normal coordinates.

To see this, set N = 1 and Xa = 0 in the evolution equations and derive
easily that

gab,t =
2
μg

(πab − gabtrgπ)(2.9)

∂t

(
πb

a −
1
2
δb
atrgπ

)
= 0

∂t(trgπ) =
πd

cπ
c
d − (trgπ)2

μg
:= K
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from which follow

∂tμg = −trgπ,(2.10)

∂tK =
∂

∂t

(
πd

cπ
c
d − (trgπ)2

μg

)
= 0,

and, upon using the momentum constraint,

(2.11) ∂t(μg
(2)R(g)) = 0.

Taking, with no real loss of generality t= 0 on the initial (CMC) surface,

one sees immediately that K=
o
K=K|t=0 and finds by straightforward inte-

gration that

μg(t) =
o
μg −

{
o
trgπt +

1
2

o
Kt2
}

(2.12)

trgπ(t) =
o
trgπ +

o
Kt

where
o
trgπ := trgπ|t=0,

o
μg =μg|t=0. The same evolution equations give

∂
∂tJa(g, π) = 0, and, if Ja = 0, that ∂tH(g, π) = 0 as well. In fact, as noted
above, one has separately that ∂t(μg

(2)R(g)) = 0 and ∂tK= 0 where H =
K − μg

(2)R(g). Clearly, Eq. (2.9b) also gives conservation of the traceless
part of πb

a (i.e., that πb
a − 1

2δ
b
atrgπ= (πb

a − 1
2δ

b
atrgπ)|t=0).

Knowing the solution for μg, trgπ and πb
a − 1

2δ
b
atrgπ we need only solve

for the (conformally invariant) density μgg
ab which satisfies the differential

equation

(2.13) ∂t(μgg
ab) = −2(μgg

ac)

(
πb

c − 1
2δ

b
ctrgπ

μg

)
.

The details of this solution are straightforward but uninteresting so we here
give only the result that

μgg
ab(t) = cosh(R(t))(μgg

ab)
∣∣∣∣
t=0

+ sinh(R(t))

⎛⎜⎜⎝πab − 1
2g

abtrgπ√
1
2

λd
cλc

d
(μg)2

⎞⎟⎟⎠∣∣∣∣
t=0

(2.14)

where

(2.15) λb
a = πb

a −
1
2
δb
atrgπ

and

(2.16) eR(t) =
(

2ct + b +
√−q

2ct + b−√−q

)(
b−√−q

b +
√−q

)
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with

b = −
(
trgπ

μg

) ∣∣∣∣
t=0

= −τ

∣∣∣∣
t=0

(2.17)

c = −1
2

( K
μg

) ∣∣∣∣
t=0

q = −2
(
λd

cλ
c
d

(μg)2

) ∣∣∣∣
t=0

and where, if we also assume that τ |t=0 = constant on the initial surface λb
a

has zero divergence with respect to
o
gab = gab|t=0 as well as zero trace.

It is straightforward to verify using the explicit formulas above, that
gab(t) is a smooth Riemannian metric ∀ t ≥ 0 provided that the initial data
satisfies the conditions that

(i) gab|t=0 is smooth and Riemannian on Σ,
(ii) τ |t=0 is smooth with τ |t=0 < 0 on Σ,
(iii) K|t=0 is smooth with K|t=0 < 0 on Σ.
We shall later impose the restriction that τ |t=0 be a negative constant

on Σ and find that the constraint equations force condition (iii) to hold
provided the remaining Cauchy data λb

a is also smooth. Note that the zeros
of λb

a do not disturb the smoothness of μgg
ab(t) since the factor sinh(R(t))

vanishes whenever λb
a does.

The gaussian normal slicing is in general not a CMC slicing (except when
τ |t=0 = constant and λb

a = 0) but one nevertheless has

tτ(t) = −2

{
K
μg

∣∣
t=0

+ 1
t τ
∣∣
t=0

}
{

K
μg

∣∣
t=0

+ 2
t τ
∣∣
t=0

− 2
t2

}(2.18)

= −2 + O

(
1
t

)
.

Of even more interest to us is the limiting behavior of the corresponding
rescaled metric, 2

t2
gab(t). This metric also has a limit (as a Riemannian

metric on Σ) as t → ∞. Explicit computation gives

ρab := lim
t→∞

(
2
t2
gab

)
(2.19)

=
{

(kd
ck

c
d)gab + 2(trgk)

(
kab −

1
2
gab(trgk)

)} ∣∣
t=0

which is clearly smooth and symmetric; positive definiteness depends upon
the condition that K

∣∣
t=0

< 0 on Σ. As we have mentioned, this will be shown
to follow from the constraint equations at least when the initial data surface
is CMC.
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In fact, when the constraint equations (2.8) hold for the initial data
{gab, kab}

∣∣
t=0

the metric ρab actually has constant (negative) curvature, with
(2)R(ρ) = −1. This can be shown by an explicit calculation or, less directly,
by the following argument. Conservation of the constraints, taken together
with the gnc result that ∂tK= 0, yields

(2)R

(
2
t2
g(t)

)
=

1
2
t2(2)R(g(t))(2.20)

=
1
2 t

2K
∣∣
t=0(

μg

∣∣
t=0

− t(trgπ)
∣∣
t=0

− 1
2 t

2K
∣∣
t=0

)
−→
t→∞ −1

since, once again,
o
K=K

∣∣
t=0

< 0 on Σ. Thus (2)R(ρ) = limt→∞ (2)

R( 2
t2
g(t)) =−1.

Another remarkable property obtains if we restrict the initial surface to
have constant mean curvature. The identity map from

(
Σ,

o
gab

)
=
(
Σ, gab

∣∣
t=0

)
to (Σ, ρab) is in fact a harmonic map. This can be shown by explicit compu-
tation of the quantity

(2.21) V c :=
o
g

ab
(Γc

ab(
o
g) − Γ̃c

ab(ρ))

where Γc
ab(

o
g) and Γ̃c

ab(ρ) are the Christoffel connection components of
o
gab and

ρab respectively. Harmonicity of the identity mapping corresponds precisely
to the vanishing of the vector field V c and this in turn follows from imposi-
tion of the constraints and the additional condition that

o
τ = τ

∣∣
t=0

= constant
< 0 on Σ.

Again there is a less direct argument which shows why this should be
true and which traces back to a well-known result of Ruh and Vilms [11]
in the purely Riemannian case. One can show that the Gauss map from
a CMC hypersurface in a flat spacetime is harmonic [7]. Our spacetime
metric (3)gμν is flat since the (vacuum) Einstein equations in three dimen-
sions imply that (3)gμν has vanishing curvature and we are now imposing the
restriction that the initial slice be CMC. That the identity map from (Σ,

o
gab)

to (Σ, ρab) realizes the Gauss map in this case follows from the construction
using (appropriately enough) gaussian normal coordinates as we have done.
To each (future directed) normal to the initial surface one assigns a point in
the hyperbolic space (Σ, ρ) by following the normal geodesic in that direc-
tion to its ideal endpoint. We use the starting point and ideal ending point
of each such normal geodesic to identify the two copies of Σ and appeal to
the results given above to recognize that (Σ, ρ) is indeed hyperbolic.

The data {gab, kab}
∣∣
t=0

are assumed to satisfy the constraints and to have
τ
∣∣
t=0

= trgk
∣∣
t=0

= constant on Σ. We can remove this implicit restriction by
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appealing to the standard (conformal) method for solving the constraints as
follows. First, it follows from the classical uniformization theorem that any
metric gab on a higher genus surface Σ is uniquely and smoothly globally
conformal to another metric γab which has constant curvature, (2)R(γ) = −1.
Writing gab = e2λγab, for some smooth function λ defined on Σ and imposing
the CMC condition that trgπ

μg
= trgk= τ = constant on Σ one finds that the

momentum constraint, Ja(g, π) = − 2(2)∇bπ
b
a = 0, can now be expressed

(2)∇̃b(γ)
(
πb

a −
1
2
δb
atrgπ

)
= (2)∇̃b(γ)λb

a = 0(2.22)

where (2)∇̃b(γ) signifies covariant differentiation with respect to the confor-
mal metric γab. In other words, the traceless tensor density λb

a should also be
“transverse” (i.e. divergence free) with respect to the conformal metric γab.

The Hamiltonian constraint, H(g, π) = 0, can now be expressed as a
non-linear elliptic equation (the “Lichnerowicz equation” in relativity lit-
erature) for the conformal factor λ. In the notation above, this equation
takes the form

(2)Δγλ = γab(2)∇̃a(γ)(2)∇̃b(γ)λ(2.23)

=
1
4
τ2e2λ − 1

2
λb

aλ
a
b

(μγ)2
e−2λ − 1

2

where μγ is the area element of the conformal metric γab, λ
b
a is transverse-

traceless with respect to this metric (with γbcλ
b
a symmetric) and (2)R(γ) =−1.

Upon integration over Σ it is easy to see that Eq. (2.23) has no solutions
if τ = 0 on Σ. For any non-zero constant τ however, one can show (using for
example the method of sub and super solutions [12, 13]) that Eq. (2.23)
always has a unique, smooth, globally defined solution λ on Σ. To summa-
rize, the general solution to the constraint equations for a CMC slice (with
τ = constant 
= 0) can be expressed in terms of the free data

{(τ, γab, λ
b
a)
∣∣τ = const 
= 0, γab a hyperbolic metric on Σ with

(2)R(γ) = −1, λb
a a TT symmetric tensor density w.r.t. γ}

by setting

(2.24) gab = e2λγab, πb
a = λb

a +
1
2
τμgδ

b
a

where λ is the solution of Lichnerowicz’s equation (2.23).
Since the constraint equations are naturally covariant with respect to

diffeomorphisms of Σ (which automatically conserve the constancy of τ)
one can, without any essential loss of generality, pass to the quotient,
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“Teichmüller,” space

T (Σ) ≈ M−1(Σ)/D0(Σ)(2.25)

≈ R6 genus(Σ)−6

where M−1(Σ) designates the space of Riemannian metrics γab on Σ which
have (2)R(γ) = −1 and where D0(Σ) signifies the group of diffeomorphisms
of Σ isotopic to the identity. As is known from the work of Eells, Earle and
Sampson [14], which we shall recall in more detail below, one can represent
Teichmüller spaces as a global cross section of the (trivial) D0(Σ) bundle

(2.26) M−1(Σ) −→ M−1(Σ)/D0(Σ).

Such cross sections can be constructed through the use of harmonic maps.
Restricting the metric γab to lie in such a global cross section and recalling
that λb

a is TT (transverse-traceless) with respect to γab one can regard the
space of pairs {γab, λ

b
a} as a representation of the cotangent bundle, T ∗T (Σ),

of the Teichmüller space of Σ [2].
Noting that

gbc

μg
λc

a =
gbc

μg

(
πc

a −
1
2
δc
atrgπ

)
(2.27)

= −
(
kab −

1
2
gabtrgk

)
= −

(
kab −

1
2
gabτ

)
and that gab

μg
= γab

μγ
one sees that (kab − 1

2gabτ) is transverse-traceless with
respect to γab (or, in fact, to any metric conformal to γab such as gab).
Writing kTT

ab for (kab − 1
2gabτ) we can re-express Eq. (2.19) in the form

(2.28) ρab =
{(

e−4λγdeγcfkTT
ce kTT

df +
1
2
τ2
)
e2λγab + 2τkTT

ab

}
with now both ρab and γab hyperbolic (with unit negative scalar curvature)
and with (since harmonicity depends only upon the conformal structure of
the domain metric) the identity map from (Σ, γ) to (Σ, ρ) harmonic. Note
that one can absorb τ into the remaining variables by defining

(2.29) τ2e2λ = e2λ̃, τkTT
ab = k̃TT

ab

so that

(2.30) ρab =
{(

e−4λ̃γdeγcf k̃TT
ce k̃TT

df +
1
2

)
e2λ̃γab + 2k̃TT

ab

}
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with λ̃ satisfying the (τ -autonomous) equation

(2.31) (2)Δγ λ̃ =
1
4
e2λ̃ − 1

2
λ̃b

aλ̃
a
b

(μγ)2
e−2λ̃ − 1

2

where λ̃b
a := τλb

a (so that gbc
μg

λ̃c
a = γbc

μγ
λ̃c

a = −k̃TT
ab ).

Equation (2.30) is equivalent to a remarkable, well-known formula in the
theory of harmonic maps which allows one, if γab is held fixed, to parame-
terize target metrics ρab in terms of transverse-traceless symmetric tensors
(holomorphic quadratic differentials in the mathematics literature) in such
a way that the identity map from (Σ, γ) to (Σ, ρ) is automatically harmonic.
Indeed this gives a particular means of constructing a global cross section
of the bundle

(2.32) M−1(Σ) −→ M−1(Σ)/D0(Σ)

and thus a concrete model for the Teichmüller space T (Σ). We shall expand
upon this connection to the conventional harmonic maps approach to
Teichmüller theory in a subsequent section, but for now, return to the main
thread of our discussion.

We conclude this section with the proof, promised above, that K
defined by

K :=
(
πa

bπ
b
a − (trgπ)2

μg

)
(2.33)

= μg(kabk
ab − (trgk)2)

satisfies K< 0 on a CMC slice satisfying the initial value constraints. The
momentum constraint is equivalent to

(2.34) kb
a|b − (trgk)|a = 0

which may be re-expressed as the Codazzi condition

(2.35) ka
b|c − ka

c|b = 0.

Taking the divergence of this equation,

(2.36) ka
b|c

|c − ka
c|b

|c = 0,

commuting covariant derivatives in the second term and reexpressing the
curvature of g through

(2.37) (2)Rdabc =
1
2

(2)R(g)(gdbgac − gcdgab)

one derives

(2.38) kab|c |c −
(
kac

|c
)

|b
= (2)R(g)

(
kab −

1
2
gabtrgk

)
.
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Imposing the CMC condition trgk = τ = constant and the momentum
constraint and decomposing kab via

(2.39) kab = kTT
ab +

1
2
gabτ

one arrives at

(2.40) kTT
ab|c

|c = (2)R(g)kTT
ab .

It follows easily from Eq. (2.40), upon using now the Hamiltonian
constraint

(2.41) μg

(
kTT

ab kTTab − 1
2
τ2
)

= μg
(2)R(g),

that

(2)Δg

(∣∣kTT
∣∣2
g
− 1

2
τ2
)
− 2

∣∣kTT
∣∣2
g

(∣∣kTT
∣∣2
g
− 1

2
τ2
)

(2.42)

= 2kTT
ab|ck

TTab|c ≥ 0

where

(2.43)
∣∣kTT

∣∣2
g

:= kTT
ab kTTab .

The strong maximum principle applies to this equation and implies that

(2.44)
∣∣kTT

∣∣2
g
− 1

2
τ2 < 0

on the surface Σ [15]. This strict inequality gives K< 0 on Σ and hence
implies the global regularity of the gnc solutions presented above to the
future of an initial CMC slice.

3. The Dirichlet energy of the Gauss map

Let any two Riemannian metrics g and ρ, defined on Σ, be expressed in
local coordinates {xa} and {ψA} as

g = gab(x)dxa ⊗ dxb(3.1)

ρ = ρAB(ψ)dψA ⊗ dψB

and suppose that a mapping ψ : (Σ, g) → (Σ, ρ), expressible locally by
giving ψA(xb), is to be harmonic. Then ψ must satisfy the Euler-Lagrange
equations which result from varying the “action” functional

(3.2) A(g, ρ, ψ) :=
1
2

∫
Σ
dμgg

abψA
,aψ

B
,b ρAB
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with respect to ψ. These “harmonic map” equations take the form

(3.3) (2)Δgψ
C + gabψA

,aψ
B
,b Γ̃C

AB(ψ) = 0

where the Γ̃A
BC are the Christoffel symbols of ρAB and (2)Δg is the Laplacian

of g. The action and its Euler-Lagrange equations are invariant with respect
to conformal transformations of the metric g, where gab → e2ωgab, and thus
depend only upon the conformal class of g.

In the previous section we found that if g and ρ are related by Eq. (2.28)
then the identity map from (Σ, g) to (Σ, ρ), expressible locally as ψA(x) =xA,
is harmonic. Evaluating the action A on this mapping yields

A(g, ρ, Id) =
1
2

∫
Σ
dμgg

abρab(3.4)

=
∫

Σ
dμgg

ab

{
1
2
kd

ck
c
dgab + (trgk)

(
kab −

1
2
gab(trgk)

)}
=
∫

Σ
dμgk

d
ck

c
d.

Recalling that the Hamiltonian constraint satisfied by the data {g, k} takes
the form

H = μg

[
kd

ck
c
d − (trgk)2

]
− μg

(2)R(g)(3.5)

= 0

one sees that Eq. (3.4) can also be written as

A(g, ρ, Id) =
∫

Σ
τ2dμg +

∫
Σ
dμg

(2)R(g)(3.6)

=
∫

Σ
dμgk

d
ck

c
d =

∫
Σ
dμg

[
kTTd

c kTTc
d +

1
2
τ2
]

where kTTd
c = gdekTT

ce and τ = trgk as before. Thus one also has

(3.7)
1
2

∫
Σ
τ2dμg =

∫
Σ
dμgk

TTd
c kTTc

d −
∫

Σ
dμg

(2)R(g)

where the second term on the right hand side is constant by the Gauss-
Bonnet theorem. When we turn to the study of the (reduced) Einstein
equations in CMC (as opposed to gnc) gauge the quantity

∫
Σ τ2dμg, when

re-expressed in terms of the variables {τ, γab, λ
b
a} via gab = e2λγab (with λ

determined by the Lichnerowicz equation) will play the role of a (reduced)
Hamiltonian for the Einstein “flow” on T ∗T (Σ)×R. Note that, from Eq. (3.7),
the infimum of this quantity, which results from setting kTTd

c = 0, is always
given by the Gauss-Bonnet invariant (i.e., the Euler characteristic of Σ).
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4. The reduced Hamiltonian

A local existence theorem for the vacuum Einstein equations in CMCSH
(constant-mean-curvature-spatially-harmonic) gauge was proven in Ref. [4]
for spatially compact spacetimes of dimension n+1 for arbitrary n ≥ 2. The
proof involved various higher order energy estimates to control the (Sobolev
space) norms of solutions to the gauge-fixed field equations. The case n= 2
is very special however, and can be treated by much simpler ODE methods
once it is realized that the gauge-fixed field equations describe dynamics in
a finite dimensional phase space - the cotangent bundle of the Teichmüller
space T (Σ). The local existence result for this problem can be treated by
the methods developed in Ref. [2] after only a slight modification to impose
the CMCSH gauge conditions under consideration here.

The local result derived in [2] was subsequently extended to a global one
in Ref. [6] wherein a non-zero cosmological constant was also allowed for. The
main technique for this argument involved the use of the Dirichlet energy
on Teichmüller space, exploiting its known properties as a proper function,
to bound the motion to the interior of Teichmüller space for all values of
mean curvature τ in the range (−∞, 0) and then to show that this motion
captures the maximal Cauchy development of every solution. Except for a
lower dimensional subset of “trivial” solutions which are known explicitly,
all solutions run “off-the-edge” of Teichmüller space in the limit as τ ↘ −∞
which corresponds to the big-bang singularities of these (vacuum) 2 + 1
dimensional cosmological models. The opposite limit, τ ↗ 0, corresponds
to the limit of infinite cosmological expansion wherein, however, the motion
remains confined to the interior of Teichmüller space. We shall show below
that in fact every solution tends to a limit in T (Σ) as τ ↗ 0.

The arguments of Ref. [6] only exploited the Dirichlet energy in a rather
crude way. In the present paper, we shall significantly refine the application
of this energy by showing how it yields a complete solution to the Hamilton-
Jacobi equation for the reduced Einstein equations in CMCSH gauge. As
a first step in this direction, let us briefly recall some of the key results of
Ref. [2] with the notation of that paper modified to conform to that used
here and with the gauge conditions adjusted to agree with the CMCSH
choice made here.

As we have already shown in Sec. 2 above, the general solution to the
constraints, H(g, π) =Ja(g, π) = 0, in CMC gauge can be expressed (c.f.
Eq. (2.24)) as:

(4.1) gab = e2λγab, πb
a =λb

a +
1
2
τμgδ

b
a

where (2)R(γ) = − 1, λb
a is a symmetric TT tensor density with respect to

γab, τ < 0 is constant on Σ and λ is the corresponding unique solution to the
Lichnerowicz equation (2.23). Defining, as in Ref. [2],

(4.2) pTTab = γacλb
c
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we thus get

(4.3) gab = e2λγab, πab = e−2λpTTab +
1
2
τμγγ

ab

for this general solution.
When the constraints are satisfied along a differentiable curve (that need

not be a solution of the remaining field equations), the ADM action (2.6)
reduces to

(4.4) I∗
ADM =

∫
I×Σ

d3x{πabgab,t}.

We substitute the foregoing expressions for πab and gab into this formula
but restrict the conformal metric to lie in global cross-section of the D0(Σ)
bundle M−1(Σ) → M−1(Σ)/D0(Σ) ≈ T (Σ) ≈ R6genus(Σ)−6 determined by
the requirement that the identity map from (Σ, γ) to (Σ, ρ) be harmonic.
Here ρ is an arbitrary metric satisfying (2)R(ρ) = −1. Later we shall allow ρ
itself to vary over another suitably chosen cross-section of this same bundle
and thus consider a parametrized family of such reduced actions but, for now,
simply regard ρ as fixed. That the cross-sections defined by the requirements
that Id : (Σ, γ) → (Σ, ρ) be harmonic are indeed global, was proven in
Ref. [14].

By choosing global coordinates {qα | α= 1, . . . , 6genus(Σ) − 6} on the
topologically trivial space T (Σ) ≈ R6genus(Σ)−6 and lifting these up to the
chosen cross section, one can express the metrics realizing this cross section
as smooth functions of the qα’s and hence as γab(xc, qα) relative to local coor-
dinates {xa} on Σ. Along a differential curve of such metrics, one thus has

(4.5)
∂γab

∂t
=

∂γab

∂qα
q̇α

where, by construction, the tensor fields
{

∂γab
∂qα | α = 1, . . . , 6genus(Σ) − 6

}
provide a basis to the tangent space to the cross section at any point thereof.
As discussed in Ref. [2] (c.f. Eq. (2.22) and associated references) each such
tangent vector has a unique L2-orthogonal (relative to γab(xc, qa)) decom-
position of the form

(4.6)
∂γab

∂qα
= kTT

(α)ab +
(
L(2)X(α)

γ
)

ab

where kTT
(α) is a TT symmetric tensor with respect to γ and (2)X(α) a vector

field on Σ (with L(2)X(α)
signifying its Lie derivative).

Exploiting this decomposition, it is straightforward to show that there
exists a smoothly varying dual basis {mTTab(β)(xc, qγ)} of symmetric TT
tensor density fields defined on Σ such that

(4.7)
∫

Σ
mTTab(β)kTT

(α)abd
2x =

∫
Σ
mTTab(β)∂γab

∂qα
d2x = δβ

α.



RELATIVISTIC TEICHMÜLLER THEORY 219

In terms of this natural dual basis for the cotanent space to T (Σ), one can
express an arbitrary TT tensor density pTT as

(4.8) pTTab(xc, qα, pα) = pαm
TTab(α)(xc, qα)

for suitable coefficients {pα}. The coordinates {qα, pα} may be regarded, as
we shall see below, as a (global) canonical chart for T ∗T (Σ).

Substituting the foregoing expressions into the reduced action and car-
rying out the steps displayed in Eq. (2.21) of Ref. [2], one arrives at

I∗
ADM =

∫
I
dt

{
pα

dqα

dt
− dτ

dt

∫
Σ
μgd

2x

}
+
∫

Σ
d2x[τμg] |t1t0(4.9)

wherein we recognize the canonical character of the coordinates {qα, pα}.
The boundary term on the right hand side of Eq. (4.9) makes no contribution
to the equations of motion. We therefore drop it and define

(4.10) I∗
ADM |reduced=

∫
I
dt

{
pαq̇

α − dτ

dt

∫
Σ
μgd

2x

}
.

For our purposes the most natural choice of time function (which differs
from that made in Ref. [2]) corresponds to setting t= − 1

τ , so that dτ
dt = τ2,

which thus yields a reduced Hamiltonian

H∗
ADM |reduced := Hreduced = τ2

∫
Σ
μgd

2x = τ2
∫

Σ
e2λμγd

2x.(4.11)

Here Hreduced is regarded as a (globally defined) function on T ∗T (Σ)×R+,
H(qα, pα, t), determined by expressing

γab = γab(xc, qα), pTTab = pTTab(xc, qα, pα)(4.12)

= pαm
TTab(α)(xc, qα),

solving the Lichnerowicz equation (2.23) for λ=λ(xc, qα, pα, t) and carrying
out the integral over Σ.

As discussed in Ref. [2] the resulting Hamiltonian is independent of the
choice of representative cross section used in its construction (e.g., indepen-
dent of the metric ρ) and describes dynamics on the natural reduced phase
space T ∗T (Σ) in terms of canonical coordinates {qα, pα} on that space.

On the other hand, since our ultimate aim is to reconstruct (from solu-
tion curves {qα(t), pα(t)}) vacuum metrics on Σ × R we are more directly
interested in the lifts of curves back up to the chosen cross section where
they yield evolving sets of ADM data

gab(xc, t) = e2λγab(xc, qα(t))(4.13)

πab(xc, t) = e−2λpTTab(xc, qα(t), pα(t))

+
1
2
τ(t)(μγγ

ab)(xc, qα(t))
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expressible in terms of the solution λ = λ(xc, t, qα(t), pα(t)) to Lichnerowicz’s
equation.

To complete the formula for the spacetime metric we also need the lapse
function N and shift field Xa. As discussed in Ref. [2] and shown more
explicitly in Ref. [4], these are uniquely fixed by the elliptic equations defined
by the requirements that the gauge conditions be preserved in time. These
latter correspond to

τ =
trgπ

μg
= −1

t
(4.14)

V c = gab(Γc
ab(g) − Γ̃c

ab(ρ)) = 0

where Γc
ab(g) and Γ̃c

ab(ρ) are the Christoffel connection components of the
metrics g and ρ respectively. Computing the t-derivatives of τ and V c and
setting these equal to τ2 and 0 respectively leads to

(4.15) τ2 =
∂τ

∂t
= −ΔgN +

N

(μg)2
πb

aπ
a
b

which can also be written as

e2λτ2 = −ΔγN + N

{
e−2λ

(μγ)2

[
γabγcdp

TTacpTTbd +
1
2
e4λ(μγ)2τ2

]}
(4.16)

and

0 = −gadgbehde

(
Γc

ab(g) − Γ̃c
ab(ρ)

)
(4.17)

+
1
2
gabgce(hae|b + hbe|a − hab|e)

where

(4.18) hab =
2N
μg

(πab − gabtrgπ) + Xa|b + Xb|a.

The existence and uniqueness of solutions to these equations was established
in Ref. [4] together with the fact that imposing this choice for {N,Xa}
suffices to preserve the gauge conditions (4.14).

A remarkable feature of the reduced Hamiltonian, established in Ref. [6],
is that it monotonically decays for all solutions except the trivial ones cor-
responding to pTTab = 0 for which it stays constant. We shall show later
that every solution tends, as t → ∞ (or τ ↗ 0) to one such that Hreduced
always achieves its infinum (identified below Eq. (3.7)) in the limit of infinite
cosmological expansion.

Given initial data (
o
γab,

◦
kTT

ab ,
o
τ = constant < 0 with (2)R(

o
γ) = − 1) we

can set λc
a = − μo

γ

o
γcb

o
kTT

ab (c.f. Eq. (2.27)) and solve the Lichnerowicz equa-

tion (2.23) for the function
o
λ and thereby compute the corresponding target
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hyperbolic metric
o
ρab using equation (2.28). Since we know that the iden-

tity map from (Σ,
o
γ) to (Σ,

o
ρ) is harmonic, it seems natural to now fix the

CMCSH gauge precisely by requiring that the evolving conformal metric γτ

continue to lie in the (Eells, Earle) global cross section of the bundle

(4.19) M−1(Σ) → M−1(Σ)/D0(Σ) ≈ T (Σ)

defined by

(4.20) {γ | (2)R(γ) = −1, Id : (Σ, γ) → (Σ,
o
ρ) is harmonic}

during the subsequent evolution. Taking into account the conformal invari-
ance of the harmonicity condition with respect to the domain metric, the
results of Ref. [4] show that this gauge condition (combined with the CMC
condition which fixes the lapse) uniquely determines the shift vector field and
conversely, that when the shift is fixed by the associated elliptic equation,
the CMCSH gauge conditions will continue to hold during the evolution.

However, we could now compute a (potentially) different, target hyper-
bolic metric ρτ on any CMC slice of the subsequent evolution by simply
evaluating the right hand side of Eq. (2.19) for the geometric data (gτ , kτ , τ)
induced on that slice. By construction γτ (which can always be recovered
from gτ by uniformization) will satisfy harmonicity of the mapping

(4.21) Id : (Σ, γτ ) → (Σ, ρτ )

as well as the CMCSH gauge condition which ensures harmonicity of

(4.22) Id : (Σ, γτ ) → (Σ,
o
ρ).

But what is the relationship between ρτ and
o
ρ := ρo

τ
? We shall conclude

this section by showing that ρτ =
o
ρ and thus that the metric ρτ , defined on

each slice by Eq. (2.19), is in fact a constant of the motion for the particular
CMCSH gauge under consideration.

First recall that, in a flat spacetime, the traces of the holonomics defined
via the parallel propagation of vectors around incontractible loops are invari-
ant with respect to arbitrary, continuous deformations of these loops within
the spacetime. Thus if one evaluates any collection of such traces on say a
given CMC slice and then deforms the chosen loops continuously to corre-
sponding loops in another such slice, one will necessarily obtain the same
values for the traces under study. We shall see however, that these same
values for the traces may also be computed by a corresponding holonomy
calculation carried out in a certain “reference spacetime” (Σ × R+,(3)ητ )
defined, for any fixed hyperbolic metric ρτ of the family described above, by
the flat metric

(4.23) (3)ητ = −dt⊗ dt +
t2

2
(ρτ (xc))abdx

a ⊗ dxb.
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But since these traces are independent of the value of τ used to compute
ρτ and since a complete, independent set of (6 genus(Σ)− 6) such traces
determines the ρτ appearing in Eq. (4.23) up to isometry it will follow that
ρτ can only have the form ρτ = ϕ∗

τ
o
ρ = ϕ∗

τρo
τ

for some (possibly non-trivial)
diffeomorphism ϕτ : Σ → Σ defined for each value of τ achieved during
the (non-singular) CMCHS evolution. Finally, however, it will follow from
the particular choice of CMCHS gauge that we have made to specify that
evolution, that ϕτ = Id is the only possibility and thus that ρτ =

o
ρ for every

allowed value of τ .
For any given CMC slice of the spacetime under study, we can compute

the future evolution from that slice in gnc coordinates via Eqs. (2.12)–(2.18).
Parallel propagation of a vector v around an arbitrary loop chosen (for
convenience) to lie in a surface of constant gaussian time t is determined by
solving

(4.24)
dvμ

dλ
+(3) Γμ

αβ vαdx
β

dλ
= 0,

where (3)Γμ
αβ are the Christoffel symbols of the spacetime metric (3)gαβ

expressed in the chosen gnc coordinates. Taking t(λ) = t= constant and writ-
ing out this equation for the rescaled vector ṽ defined by

(4.25) ṽ0 = v0, ṽa = tva

one gets

dṽ0

dλ
+

1
2

(gab,t

t

)
ṽadx

b

dλ
= 0,(4.26)

dṽa

dλ
+(2) Γa

bc(g)ṽ
bdx

c

dλ
+

1
2
(t2gad)

(gcd,t

t

)
ṽ0dx

c

dλ
= 0

where (2)Γa
bc(g) are the Christoffel symbols of the metric g defined (from the

chosen CMC initial data) by Eqs. (2.12)–(2.18).
On an arbitrary t = constant slice these equations are difficult to ana-

lyze but since we know that traces of resultant holonomy calculations will
automatically be independent of the gnc slice chosen we can evaluate them
in the limit as t → ∞ by exploiting the facts (easily derived from Eqs.
(2.12)–(2.18)) that

lim
t→∞

(
2
t2
gab

)
= (ρτ )ab(4.27)

lim
t→∞

(
t2

2
gab

)
= (ρτ )ab
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lim
t→∞

(gab,t

t

)
= (ρτ )ab

lim
t→∞

(2)Γa
bc(g) = lim

t→∞
(2)Γa

bc

(
2
t2
g

)
= (2)Γa

bc(ρτ )

and that the solutions of the linear equations (4.26) vary continuously with
the coefficients. But the limiting equations so obtained,

dṽ0

dλ
+

1
2
(ρτ )abṽ

adx
b

dλ
= 0,(4.28)

dṽa

dλ
+(2) Γa

bc(ρτ )ṽbdx
c

dλ
+ ṽ0dx

a

dλ
= 0,

are equivalent to the parallel propagation equations one would obtain (at
an arbitrary instant of gnc time t> 0) for the “reference metric” (3)ητ given
above by Eq. (4.23).

But a flat metric of the form (4.23) defined on Σ× R+ is isometric to a
quotient of the interior of the future light cone of a point in 3-dimensional
Minkowski space by a discrete subgroup of the (proper orthochronos) Lorentz
group that fixes that point. The subgroup in question must be homomor-
phic to a representation of the fundamental group π1(Σ), of the higher genus
surface Σ and can be recovered from (Σ × R+, (3)ητ ) by the computation
of a complete, independent set of (6 genus (Σ) − 6) traces of holonomies.
Conversely, a specification of these traces determines the ρτ needed in the
metric form (4.23) up to isometry (i.e., up to the pull back action by a
diffeomorphism of Σ).

But this implies, as stated above, that the target metric ρτ computed
from an arbitrary CMC slice in the evolving spacetime (Σ×R+, (3)g) must
satisfy ρτ =ϕ∗

τρ◦
τ
=ϕ∗

τρ for some diffeomorphism ϕτ : Σ → Σ of Σ which, by
continuity of the evolution, is necessarily isotopic to the identity. The forego-
ing implies that the corresponding curve of (uniformized) metric γτ satisfies
both (4.21) and (4.22) with ρτ =ϕ∗

τ
◦
ρ. But, if ϕτ 
= Id, the Eells, Earle global

cross section of the bundle (4.19) is disjoint from that obtained upon replac-
ing

◦
ρ with ρτ =ϕ∗

τ
◦
ρ since, in view of the covariance of the construction, the

latter cross section is obtained from the former by pulling back each metric
by the same diffeomorphism. It follows that since γτ satisfies both (4.21)
and (4.22), we must have ϕτ = Id throughout the evolution.

It is worth mentioning here that the metric (3)g takes the special form
(3)ητ (for which the gaussian time slices are also CMC) only if the initial

data for (3)g satisfies
◦

kTT
ab = 0 which, of course, is generically not the case.

Roughly speaking, the “reference metric” (3)ητ is constructed using only
half of the data needed for the specification of the actual spacetime met-
ric (3)g. There are different ways of invariantly prescribing the “missing”
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data needed to fully characterize (3)g. For example, in the Witten approach
(cf. Ref [1]), one supplements the (linear) holonomies discussed above with
certain translational holonomies defined in regarding (Σ × R+, (3)g) as a
quotient of Minkowski space by a suitably chosen discrete subgroup of the
full inhomogeneous Lorentz (or Poincaré) group. We shall not pursue that
approach here, but instead, following the proposal of Puzio [7], will charac-
terize the remaining data in terms of the conserved quantities defined by a
complete solution of the associated Hamilton-Jacobi equation.

5. Hamilton-Jacobi theory and the Dirichlet energy

In this section we shall establish a remarkable relationship between the
Dirichlet energy for the Gauss map discussed in Sec. 3 and solutions to the
Hamilton-Jacobi equation for the reduced Einstein equations discussed in
the previous section. In fact, we shall derive a dynamically complete solution
to the Hamilton-Jacobi equation by exploiting this relationship and thereby
arrive at an implicit formula for the general solution to the reduced Einstein
equations in CMCSH gauge.

In Sec. 3 we found that whenever any two metrics γ and ρ (satisfy-
ing (2)R(γ) = (2)R(ρ) = − 1) are related by Eq. (2.28), for some choice of
τ = constant < 0, kTT a TT tensor with respect to γ and λ determined
uniquely by Eq. (2.23), then the identity map from (Σ, γ) to (Σ, ρ) is har-
monic and its Dirichlet energy (which depends only upon the conformal class
of γ) is expressible as

(5.1) A(γ, ρ, Id) =
1
2

∫
Σ
dμγγ

abρab.

Recalling the change of notation defined by Eq. (2.29), one can re-express
the relationship between γ and ρ through equations (2.30) and (2.31) which
are autonomous relative to τ . In Ref. [8], Michael Wolf used these latter
equations (with no apparent relativistic or associated Gauss map interpre-
tation) to prove that, for any such fixed metric γ (with (2)R(γ) = − 1), one
could smoothly parametrize the space of metrics ρ satisfying

(i) (2)R(ρ) = −1, and
(ii) Id : (Σ, γ) → (Σ, ρ) is harmonic

by the space of TT tensors relative to γ (i.e., by the tensors k̃TT
ab appearing

in these formulas, normally referred to as holomorphic quadratic differen-
tials in the mathematics literature). More precisely, Wolf showed that the
foregoing formulas define a global diffeomorphism between the space of TT
tensors defined relative to a fixed γ and the space of uniformized metrics ρ
satisfying (i) and (ii) above. Thus for any fixed pair of metrics γ and ρ (each
having scalar curvature = −1 and satisfying (ii) above) and any choice of
τ = constant < 0 there exists a unique TT tensor kTT such that equations
(2.28) and (2.23) hold.
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We want to compute the variation of the energy defined by Eq. (5.1)
above, holding ρ fixed and allowing γ to vary over that global cross section
of M−1(Σ) defined by the requirement that Id : (Σ, γ) → (Σ, ρ) be harmonic.
Writing γab = γab(xc, qα) as in the previous section we evaluate the energy
A(γ(q), ρ, Id) and compute its partial derivatives with respect to the {qα}.
The result is

(5.2)
∂A(γ(q), ρ, Id)

∂qα
= −1

2

∫
Σ
dμγ

(
γacγbd − 1

2
γcdγab

)
ρab

∂γcd

∂qα
.

But substituting the expression (2.28) for ρ (as justified by Wolf’s result)
one arrives at

∂A
∂qα

(γ(q), ρ, Id) = −
∫

Σ
dμγτk

TT
ab γacγbd∂γcd

∂qα
(5.3)

= −τ

∫
Σ
pTTcd

∂γcd

∂qα
= τ

∫
Σ
pβm

TTcd(β)∂γcd

∂qα

= τpα

where we have used equations (2.4), (4.3), and (4.8) to simplify the result.
It thus follows that the gradient of the rescaled Dirichlet energy function,

1
τ A(γ(q), ρ, Id), with respect to the coordinates {qα} (a global chart for
T (Σ)) yields precisely the canonical momentum components {pα} such that
the vacuum Einstein spacetime determined by the data {qα, pα, t= − 1

τ } has
asymptotic rescaled metric (c.f., Eq. (2.19)) given by ρ. As we saw in Sec. 3,
this metric ρ corresponds to the asymptotic conformal geometry invariantly
defined by the linear holonomies of the chosen vacuum spacetime.

For later convenience, let us now write T (instead of the more generic t),
for the preferred time coordinate − 1

τ and define

S(qα, ρ, T ) = −T

[
A(γ(q), ρ, Id) −

∫
Σ
dμγ

(2)R(γ)
]

(5.4)

wherein
∫
Σ dμγ

(2)R(γ) of course is just the Gauss-Bonnet invariant of Σ.
One now has

pα =
∂S
∂qα

(qα, ρ, T ),(5.5)

−∂S
∂T

= A(γ(q), ρ, Id) −
∫

Σ
dμ(2)

γ R(γ)

but it follows from Eqs. (3.6) and (5.3) that the right hand side of this
last equation is equal to Hreduced(qα, pα, T )

∣∣
pα= ∂S

∂qα
. In other words, that

S(qα, ρ, T ), for fixed ρ satisfies the Hamilton-Jacobi equation for the reduced
Einstein equations in CMCSH gauge

(5.6) −∂S
∂T

= Hreduced

(
qα,

∂S
∂qα

, T

)
.
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This S is just a particular solution determined by the chosen target metric ρ
but the choice of ρ was arbitrary. We are free to let ρ range over M−1(Σ)
but, in view of the D0(Σ) invariance of the Dirichlet energy functional, there
is no essential loss of generality in restricting ρ to lie in a global cross section
for the bundle

(5.7) M−1(Σ) → M−1(Σ)/D0(Σ) ≈ T (Σ)

and hence in a model for Teichmüller space. Choosing global coordinates
{Qα} for this model one can now write, with a slight abuse of notation

(5.8) S(qα, Qα, T ) = S(qα, ρ(Q), T )

and regard this function S as globally defined on T (Σ) × T (Σ) × R+.
To see that this S is dynamically complete, we note that the coordinates

{qα} label the arbitrary (at time T ∈ R+) initial conformal geometry which,
upon making an arbitrary choice of global cross section, gets represented by
the metric γab(xc, qα) lying in that cross section. For fixed γ the freedom to
allow the target metric ρ(Q) to vary over an independent global cross section
of M−1(Σ) (in particular over all those metrics for which Id : (Σ, γ) →
(Σ, ρ) is harmonic) provides precisely (via Wolf’s diffeomorphism result) the
freedom to complement γab with an arbitrary TT tensor kTT

ab . Thus we get
fully general Cauchy data sets {γab, k

TT
ab , T =− 1

τ } by varying {qα, Qα} freely.
A well known result in Hamilton-Jacobi theory is that one can derive a

complementary set of constants of the motion to the {Qα}’s by differenti-
ating the complete solution S(qα, Qα, T ) with respect to these Qα’s. More
precisely the quantities Pα defined by

Pα = − ∂S
∂Qα

(qα, Qα, T )(5.9)

= +T
∂

∂Qα
(A(γ(q), ρ(Q), Id))

are constants of the motion for the solutions of the reduced Hamilton equa-
tions and together with the {Qα} form a complete set of canonically conju-
gate variables that are all constants of the notion. Since the solution curves
are now implicitly determined by setting {Qα, Pα} equal to suitable values
and solving equations (5.9) for {qα(T,Q, P )} with the pα’s then given by
pα(T,Q, P ) = ∂S

∂qα (q(T,Q, P ), Q) it is of interest to express these equations
more explicitly.

Writing ρab(xc, Qα) for the ρab in Eq. (5.1) and differentiating this for-
mula with respect to the Qα’s yields

(5.10)
Pα

T
=

1
2

∫
Σ
dμγγ

ab ∂ρab

∂Qα
(xc, Qα)



RELATIVISTIC TEICHMÜLLER THEORY 227

with γab = γab(xc, qα) in the above. Since ρab is only varying over metrics
satisfying (2)R(ρ) = − 1 and in fact only over a global cross section repre-
senting Teichmüller space the partial derivatives are always expressible in
the form

∂ρab

∂Qα
(xc, Qα) = !̃

TT (α)
ab (xc, Qα) + (L(2)X(xc,Qα)ρ(x

c, Qα))ab(5.11)

(c.f. Eq. (2.22) of Ref. (2) and associated footnotes) where here the !̃
TT (α)
ab

(xc, Qα) provide, at each fixed {Qα} a basis for the TT symmetric tensors
with respect to ρab(xc, Qα) and where the vector fields (2)X(xc, Qα) depend
upon the chosen cross-section but are determined by that choice uniquely.
We shall now show that the contributions from these Lie-derivative terms
drop out of the formula for Pα and hence are ignorable in the following.

For any (2)X we can integrate by parts to get∫
Σ
dμγγ

ab (L(2)Xρ)ab = −
∫

Σ
(L(2)Xμγγ

−1)abρab(5.12)

= −
∫

Σ
dμγ

{(
1
2
γcdγab − γacγbd

)
(Xc|d + Xd|c)ρab

}
= +

∫
Σ
dμγ{[Xa|b + Xb|a − γabXc

|c]ρab}

=
∫

Σ
dμγ{[Xa|b + Xb|a − γabXc

|c]2τk
TT
ab }

= 0

where we have used Eq. (2.28) for ρab in the last step, exploited the traceless-
ness of (L(2)Xμγγ

−1)ab and the transverse-tracelessness of kTT
ab with respect

to γab to complete the reduction. Thus we get

(5.13)
Pα

T
=

1
2

∫
Σ
dμγγ

ab!̃
TT (α)
ab (xc, Qα) = −τPα

where γab = γab(xc, qα) and the {!̃TT (α)
ab (xc, Qα)} yield a basis for the TT

tensors with respect to ρab(xc, Qα).
We shall see below that every solution has the property that

(5.14) γab(xc, qα(T,Q, P )) −→ ρab(xc, Qα) as T −→ ∞

which is clearly compatible with Eq. (5.13) above. Indeed this equation
contains in principle complete information about the solutions to the reduced
Einstein equations but, lacking a more explicit representation for the family
of metrics γab(xc, qα) which fill out a cross section defined by the property
that Id : (Σ, γ) → (Σ, ρ) be harmonic, we cannot convert this result into a
very explicit formula for the solution curves. Wolf’s diffeomorphism result
provides a coordinate system for metrics satisfying this condition but under
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the restriction that γ is held fixed and ρ varies. We want the opposite. In
the following sections we shall show how to derive a complementary result
to that of Wolf in which the (Teichmüller) space of metrics γ satisfying
harmonicity of Id : (Σ, γ) → (Σ, ρ) for fixed ρ is globally parametrized by
the space of TT tensors with respect to the fixed metric ρ. This will lead
us to a more explicit representation of the solution curves but one which
necessitates the solution of an associated Monge-Ampêre equation.

6. Analysis of the Gauss Map equation

As discussed in Sec. 2 the Gauss map equation takes the form

(6.1) ρab = (kd
ck

c
d)gab + 2(trgk)

(
kab −

1
2
gabtrgk

)
where gab and kab = gbck

c
a are respectively the first and second fundamen-

tal forms induced on a CMC slice in a vacuum Einstein spacetime with
Cauchy surfaces diffeomorphic to a higher genus surface Σ. The momen-
tum constraint on the Cauchy data (gab, kab) is equivalent (when the mean
curvature trgk := τ is constant as we have assumed) to harmonicity of the
identity mapping from (Σ, g) to (Σ, ρ) and the Hamiltonian constraint is
equivalent to the equation (2)R(ρ) = − 1 which we also assume imposed.

By the uniformization theorem we can always set gab = e2λγab for some
uniquely determined metric γ which satisfies R(γ) = −1 and uniquely deter-
mined smooth function λ. When τ = trgk= gabkab is constant the traceless
part of kab defined by

(6.2) kTT
ab = kab −

1
2
gabg

cdkcd

is in fact transverse-traceless (by the momentum constraint) with respect to
g or, by the conformal invariance of this condition, with respect to any metric
conformal to g such as γ. Thus we can rewrite the Gauss map equation in
the form

(6.3) ρab =
(
e−2λγceγdfkTT

cd kTT
ef +

1
2
τ2e2λ

)
γab + 2τkTT

ab

where

(2)R(ρ) = −1, (2)R(γ) = −1(6.4)

τ = trgk = gabkab = constant

and where

(6.5) kTT
ab = kab −

1
2
gabtrgk
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is transverse-traceless with respect to γab. The Hamiltonian constraint cor-
responds to the satisfaction of Lichnerowicz’s equation by the conformal
factor λ.

In the gauge we have chosen, the metric ρ, which is determined up to
isometry by the linear holonomies of the vacuum spacetime under study,
remains fixed while the metric γ evolves within a (global) cross-section of
the space M−1(Σ) which represents the Teichmüller space T (Σ) ≈ M−1(Σ)
/D0(Σ). The cross-section in question is the smooth submanifold of M−1(Σ)
consisting of those metrics γ′ such that the identity map from (Σ, γ′) to (Σ, ρ)
is harmonic. In this same (CMCSH) gauge τ plays the role of time and labels
the CMC slices of a global foliation of the spacetime. The lapse function N
and shift field X are uniquely determined throughout the evolution by the
elliptic equations (4.15) and (4.17) discussed in Sec. 4.

Since ρab is fixed during evolution in the chosen gauge and since λ is
uniquely determined in terms of (γab, k

TT
ab , τ) from Lichnerowicz’s equation

it appears that the curve of TT tensors kTT
ab should be determined, via

Eq. (6.3), from the curve of metrics γab evolving within the chosen cross-
section of M−1(Σ). To see this more explicitly, compute

trγρ := γabρab(6.6)

= 2
(
e−2λ

∣∣kTT
∣∣2
γ

+
1
2
τ2e2λ

)
where

(6.7)
∣∣kTT

∣∣2
γ

= γcdγefkTT
ce kTT

df

and rewrite Eq. (6.3) in the form

(6.8) ρtr
ab := ρab −

1
2
γabγ

efρef = 2τkTT
ab .

Thus, up to a factor of 2τ , kTT
ab is simply the traceless part, ρtr

ab, of the
fixed metric ρab computed with respect to the moving metric γab. Rewriting
Eq. (6.6) in this notation yields

(6.9) trγρ := γabρab = τ2e2λ +

∣∣ρtr
∣∣2
γ
e−2λ

2τ2

where

(6.10)
∣∣ρtr
∣∣2
γ

= γdfγceρtr
cfρ

tr
de.

Solving the associated quadratic equation for e2λ then gives

(6.11) τ2e2λ =
trγρ +

√
(trγρ)2 − 2|ρtr|2γ

2
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which shows how λ is determined by ρ and the moving metric γ. Recalling
Eq. (3.5) we also have

(6.12) μρ =
√

det ρab = −μg
(2)R(g)

and hence

(6.13) (2)R(g) = −μρ

μg
= −μρe

−2λ

μγ
.

It was argued in Sec. 5 that the motion of γ within the chosen cross
section of M−1(Σ) is determined implicitly by the equation

(6.14) −τPα =
1
2

∫
Σ
dμγ γ

ab !̃TT
ab(α)

where {!̃TT
(α) | α = 1, . . . , 6 genus(Σ) − 6} is a fixed basis of TT tensors with

respect to ρab and {Pα} is a set of 6 genus (Σ)−6 arbitrary constants which,
together with the complimentary 6 genus (Σ) − 6 independent holonomies
that determine ρab, form a complete set of constants of the motion deter-
mining a vacuum spacetime. To convert this formula into a more explicit
characterization of the motion of γ it is essential to develop a more explicit
characterization of the cross-section of metrics in which γ is moving.

We begin by setting:

(6.15) ζb
a := μgk

TTb
a = μgg

bckTT
ac

and solving Eq. (6.3) algebraically for the (inverse-) metric gab. This solution
can be expressed as

μgg
a� = 2τρabζ�

b +

√
1 +

2τ2|ζ|2
(μρ)2

μρρ
a�(6.16)

τ2μg = μρ

(
1 +

√
1 +

2τ2|ζ|2
(μρ)2

)

where

(6.17) |ζ|2 = ζf
e ζ

e
f .

Now, ζb
a is required to be transverse traceless (and symmetric) with respect

to gab (or any metric γab conformal to gab) but we should like to re-express
these conditions on ζb

a relative to the fixed metric ρab. First of all note that

μgg
a�ζm

a = 2τρabζ�
bζ

m
a +

√
1 +

2τ2|ζ|2
(μρ)2

μρρ
a�ζm

a(6.18)
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so that, since the middle term is automatically symmetric, it follows that the
contravariant form of ζm

a relative to the g metric is symmetric if and only if
its contravariant form relative to the ρ metric is symmetric. The condition
that ζm

a be transverse is equivalent (when τ = constant) to the momentum
constraint and this in turn, as we saw above, is equivalent to the requirement
that the identity map from (Σ, g) to (Σ, ρ) be harmonic. One can express
this latter formulation as the requirement that

(6.19) ∇̃b(ρ)(μgg
ab) = 0

where ∇̃b(ρ) signifies covariant differentiation with respect to ρab. Comput-
ing the ρ-divergence of Eq. (6.16) and imposing the condition (6.19) leads
immediately to

(6.20) 2τ∇̃�(ρ)
(
ζ�
b

μρ

)
+ ∂b

√
1 +

2τ2|ζ|2
(μρ)2

= 0

as a differential condition on ζm
a which only involves the metric ρab. Thus

ζm
a is required to be a traceless tensor density which is both symmetric with

respect to ρ and satisfies Eq. (6.20).
To solve this equation we first decompose ζ�

b into a transverse-traceless
summand (relative to ρ) and an L2-orthogonal conformal Killing form

(6.21) ζ�
b = ζTT�

b + μρρab(∇̃a(ρ)Y � + ∇̃�(ρ)Y a − ρa�∇̃m(ρ)Y m)

where ∇̃m(ρ) = ρmr∇̃r(ρ).
Recalling that ρ has constant curvature (since (2)R(ρ) = − 1) one finds

readily that, in terms of the foregoing expansion of ζ�
b

∇̃�(ρ)
(
ζ�
b

μρ

)
= ∇̃�(ρ)∇̃�(ρ)(ρbcY

c) − 1
2
ρbcY

c.(6.22)

Now the vector field Y c has an L2-orthogonal expansion of the form

(6.23) Y c = Y trc + ρcdΛ,d

where ∇̃c(ρ)Y trc = 0 but it is straightforward to show that the second order
elliptic operator on the right hand side of Eq. (6.22) maps divergence free
vectors to the space orthogonal to gradients and furthermore, that this oper-
ator has trivial kernel within the space of divergence free vector fields.

Thus the only possible solutions of Eq. (6.20) must be expressible in
the form of Eq. (6.21) where however, Y c = ρcdΛ,d for some function Λ.
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Substituting this result into Eq. (6.20) one gets the following equation for Λ

∇̃�(ρ)
(
ζ�
b

μρ

)
= ∇̃�(ρ)∇̃�(ρ)(Λ,b) −

1
2
Λ,b(6.24)

= − 1
2τ

∂b

√
1 +

2τ2|ζ|2
(μρ)2

where

ζ�
b

μρ
=
(
ζTT�
b

μρ

)
+ 2∇̃b(ρ)∇̃�(ρ)Λ − δ�

b(∇̃r(ρ)∇̃r(ρ)Λ).(6.25)

Fortunately, one easily proves again using the constancy of curvature of ρ,
that

(6.26) ∇̃�(ρ)∇̃�(ρ)Λ,b = ∂b

[
∇̃�(ρ)∇̃�(ρ)Λ − 1

2
Λ
]

so that Eq. (6.24) becomes

∂b

{
∇̃�(ρ)∇̃�(ρ)Λ − Λ +

1
2τ

√
1 +

2τ2|ζ|2
(μρ)2

}
= 0.(6.27)

Thus we must have

2τ(∇̃�(ρ)∇̃�(ρ)Λ − Λ) +

√
1 +

2τ2|ζ|2
(μρ)2

= C = constant(6.28)

where C could only depend upon τ at most. Note however that, if we define

(6.29) Λ† = 2τΛ + C

then Λ† satisfies

∇̃�(ρ)∇̃�(ρ)Λ† − Λ† +

√
1 +

1
2

∣∣∣∣2τζμρ

∣∣∣∣2 = 0(6.30)

where

2τ
ζ�
b

μρ
=
(

2τζTT�
b

μρ

)
+ 2∇̃b(ρ)∇̃�(ρ)Λ† − δ�

b

(
∇̃m(ρ)∇̃m(ρ)Λ†

)
(6.31)

and wherein the undetermined C plays no role.
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Equation (6.30) is, in view of the Hessian of Λ† which appears in the
expression (6.31) for ζ�

b , a fully non-linear equation for Λ†. We shall show
however that it always has a unique, smooth solution for an arbitrary choice
of the TT tensor

(
ζTT�
b
μρ

)
which therefore parametrizes the space of solutions

Λ† and hence, through Eq. (6.31),
(

ζ�
b

μρ

)
.

Let us first, however, show that the density ζTT
b

� is necessarily a constant
of the motion (i.e., satisfies ∂τζ

TT
b

� = 0) for any solution of the reduced field
equations. This follows from substituting the expression for μγγ

a� =μgg
a�

given by Eq. (6.16) into Eq. (6.14), expanding out ζ�
b through the use of

Eq. (6.21) and then exploiting the transverse-traceless character of !̃TT
a�(α)

(with respect to the fixed metric ρab) to finally derive that

(6.32) −Pα =
∫

Σ
!̃TT
a�(α)ρ

abζTT
b

�.

Thus the components of ζTT
b

� in the basis defined by the time-independent
family of (transverse-traceless) tensors {!̃TT

(α) | α = 1, . . . 6 genus (Σ)− 6} are
simply the constants of the motion {−Pα} identified previously.

7. Some basic properties of the Λ† equation

At a point xmin ∈ Σ where a solution Λ† to equation (6.30) achieves its
minimum value Λ†

min one evidently has (since ∇̃�(ρ)∇̃�(ρ)Λ†(xmin) ≥ 0)

(7.1) Λ†
min = Λ†(xmin) ≥

√
1 +

1
2

∣∣∣∣2τζμρ

∣∣∣∣2(xmin) ≥ 1.

Thus Λ†
min ≥ 1 for any solution. On the other hand, if we square equation

(6.30) and integrate over Σ, we obtain the integral formula∫
Σ

(
∇̃�(ρ)∇̃�(ρ)Λ† − Λ†

)2
dμρ =

∫
Σ

(
1 +

1
2

∣∣∣∣2τζμρ

∣∣∣∣2
)
dμρ(7.2)

which is also satisfied by an arbitrary solution. Upon substituting the
expression (6.31) for 2τζ

μρ
and simplifying the result through the use of

(2)R(ρ) = −1 and the transverse-traceless character of ζTT�
b one easily derives

∫
Σ

{
[(Λ†)2 − 1] + (∇̃�(ρ)Λ†)(∇̃�(ρ)Λ†)

}
dμρ = 2τ2

∫
Σ

(
ζTT�
b

μρ

ζTTb
�

μρ

)
dμρ

(7.3)

from which, rather surprisingly, all second derivatives have canceled.
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An immediate consequence of Eq. (7.3) is that if either τ = 0 or τ 
= 0
but ζTT�

b = 0, so that the right hand side vanishes, then since Λ† ≥ 1 a
priori, we get that Λ† = 1 identically on Σ. We are interested in curves of
solutions to Eq. (6.30) determined by data {ρab, ζ

TT�
b } specified on Σ and

parametrized by τ ∈ [0,−∞). The above result has shown that any such
curve will necessarily satisfy Λ†|τ =0 = 1 on Σ.

To establish the uniqueness of solutions to the Λ† equation (for arbitrary
but fixed ρab, ζTT�

a , and τ) assume that Λ† = θ and Λ† =ψ are any two such
solutions (corresponding to the same given data) and consider the curve
of functions χt = tθ + (1 − t)ψ for 0 ≤ t ≤ 1. Clearly χ0 =ψ, χ1 = θ and
dχ
dt = θ − ψ. Noting that

∫ 1

0
dt

d

dt

⎧⎨⎩∇̃�(ρ)∇̃�(ρ)χt − χt +

√
1 +

1
2

∣∣∣∣2τζt

μρ

∣∣∣∣2
⎫⎬⎭(7.4)

=

⎡⎣∇̃�(ρ)∇̃�(ρ)χt − χt +

√
1 +

1
2

∣∣∣∣2τζt

μρ

∣∣∣∣2
⎤⎦ ∣∣∣∣∣

t=1

t=0

= 0

(where ζt is the expression for ζ with Λ† replaced by χt) we carry out the
t-differentiation explicitly on the left hand side and express the result as

∫ 1

0
dt

⎧⎪⎪⎨⎪⎪⎩ρ�m + ρmb

(
2τ
μρ
ζt

)�

b√
1 + 1

2

(
2τ
μρ
ζt

)2

⎫⎪⎪⎬⎪⎪⎭ ∇̃�(ρ)∇̃m(ρ)(θ − ψ) − (θ − ψ) = 0.

(7.5)

Our aim is to show that this is an elliptic equation for (θ − ψ) of the form

(7.6) ḡ�m∇̃�(ρ)∇̃m(ρ)(θ − ψ) − (θ − ψ) = 0

where ḡ�m is a positive definite (inverse) metric on Σ. It will then follow
from an elementary maximum principle argument that both θ − ψ ≥ 0 on
Σ and ψ − θ ≥ 0 on Σ from which one thus gets that θ=ψ on Σ and hence
that solutions are unique.

The set of (inverse) Riemannian metrics on Σ is an open cone in the set
of symmetric tensor fields so that to show that

(7.7) ḡ�m :=
∫ 1

0
dt

⎧⎪⎪⎨⎪⎪⎩ρ�m + ρmb

(
2τ
μρ
ζt

)�

b√
1 + 1

2

(
2τ
μρ
ζt

)2

⎫⎪⎪⎬⎪⎪⎭
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is Riemannian it suffices to show that

(7.8) ḡ�m
t := ρ�m +

2τζ�m
t

μρ√
1 + 1

2

∣∣∣2τζt

μρ

∣∣∣2
is positive definite for each t ∈ [0, 1] (where here we write ζ�m

t for ρmb(ζt)�
b).

At any point of Σ let va = ρabvb be an arbitrary unit vector with respect
to ρ (i.e., ρabv

avb = 1) and compute ḡ�m
t v�vm using the formula above. For

convenience choose coordinates so that ρ�n = δ�n at the chosen point and, if
needed, make a further, orthogonal transformation to diagonalize the (real-
symmetric-traceless) matrix 2τζ�m

t
μρ

at the chosen point, writing the result
as

(7.9)
(

2τζ�n
t

μρ

)
=
(
u 0
0 −u

)
with ρabvavb = v2

1 + v2
2 = 1 at the chosen point. Evaluating ḡ�n

t v�vn at this
point we get

(7.10) ḡ�m
t v�vm = 1 +

u(v2
1 − v2

2)√
1 + u2

.

Since
∣∣v2

1 − v2
2

∣∣ ≤ 1 and | u√
1+u2 |< 1 it follows that ḡ�n

t is positive definite at
the chosen point which was an arbitrary point of Σ.

The foregoing calculation is also directly relevant to establishing the
ellipticity of the equation for Λ†, a result we shall need for proving the
existence of solutions via the method for continuity. To see this define, for
fixed {ρab, τ, ζ

TT�
b }, the non-linear operator

F(·,Λ†) = ∇̃�(ρ)∇̃�(ρ)Λ† − Λ† +

√
1 +

1
2

∣∣∣∣2τζμρ

∣∣∣∣2(7.11)

where, as before,

2τζ�
b

μρ
=

2τζTT�
b

μρ
+ 2∇̃b(ρ)∇̃�(ρ)Λ† − δ�

b∇̃m(ρ)∇̃m(ρ)Λ†(7.12)

and compute the first variation about an arbitrary C2 configuration Λ†.
Designating the variation of Λ† by δΛ† one gets

DF(·,Λ†) · δΛ† =

⎧⎪⎪⎨⎪⎪⎩ρ�m +
2τζ�m

μρ√
1 + 1

2

∣∣∣2τζ
μρ

∣∣∣2
⎫⎪⎪⎬⎪⎪⎭ ∇̃�(ρ)∇̃m(ρ)δΛ† − δΛ†(7.13)

= g̃�m∇̃�(ρ)∇̃m(ρ)δΛ† − δΛ†



236 V. MONCRIEF

from which the ellipticity (i.e., injectivity of the principle symbol) follows
from the calculation done just above which showed that

(7.14) g̃�m = ρ�m +
2τζ�m

μρ√
1 + 1

2

∣∣∣2τζ
μρ

∣∣∣2
is Riemannian.

Since the operator g̃�m∇̃�(ρ)∇̃m(ρ) clearly plays an important role in
our analysis it is of some interest to explore its relationship to other natural
elliptic operators arising in this context. Note that, for any arbitrary C2-
function λ we can write, using Eq. (6.16)

(7.15) μgg
a�λ,a = 2τρabλ,aζ

�
b +

√
1 +

1
2

∣∣∣∣2τζμρ

∣∣∣∣2μρρ
a�λ,a.

Since μgg
a�λ,a is a vector density its ordinary divergence ∂�(μgg

a�λ,a) can
be identified with its covariant divergence relative to the ρ metric whence

∇̃�(ρ)[μgg
a�λ,a] = ∂�[μgg

a�λ,a] = μg(∇̃�(g)∇̃�(g)λ) = μgΔgλ(7.16)

=

√
1 +

1
2

∣∣∣∣2τζμρ

∣∣∣∣2μρΔ̃ρλ + 2τρabζ�
b

[
∇̃�(ρ)∇̃a(ρ)λ

]
where we have used Eq. (6.20) to simplify the ρ-divergence of the right hand
side of Eq. (7.16) above. Rewriting this result as

μg

μρ

√
1 + 1

2

∣∣∣2τζ
μρ

∣∣∣2 Δgλ =

⎧⎪⎪⎨⎪⎪⎩ρ�m +
2τζ�m

μρ√
1 + 1

2

∣∣∣2τζ
μρ

∣∣∣2
⎫⎪⎪⎬⎪⎪⎭ ∇̃�(ρ)∇̃m(ρ)λ(7.17)

which can be further re-expressed using the formula

(7.18)
τ2μg

μρ
= 1 +

√
1 +

1
2

∣∣∣∣2τζμρ

∣∣∣∣2,
which follows from Eq. (6.16), one thus finally has

(7.19)

⎛⎜⎜⎝1 +

√
1 + 1

2

∣∣∣2τζ
μρ

∣∣∣2√
1 + 1

2

∣∣∣2τζ
μρ

∣∣∣2
⎞⎟⎟⎠( 1

τ2 Δgλ

)
= g̃�m∇̃�(ρ)∇̃m(ρ)λ

as a formula relating these basic elliptic operators.
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8. Existence of solutions to the Λ† equation

To establish the existence of solutions to the Λ† equation, we first need to
specify more precisely the function spaces for which the equation is defined.
We shall then apply the standard method of continuity to show that for any
fixed metric ρ and TT tensor density ζTTb

a there exists a unique solution Λ†
for all τ in the interval [0,−∞).

Let Hs(Σ) designate the Sobolev space of square integrable functions on
Σ having square integrable (distributional) derivatives up to order s and let
Ms(Σ) represent the corresponding space of Hs-Riemannian metrics on Σ.
In the following, we shall assume that ρ ∈ Ms(Σ) for s> 4 and, as usual,
also require that (2)R(ρ) = −1 on Σ. For any such ρ let STTs−1

d (Σ) designate
the (finite dimensional) space of Hs−1 tensor densities of type (1, 1) which,
relative to the chosen ρ, are symmetric (i.e., satisfy ρabζTTc

b = ρcbζTTa
b ), trans-

verse and traceless on Σ. In addition, consider for the same chosen s> 4,
functions Λ† ∈ Hs+1(Σ). The Schauder ring property of Hs maps in 2 dimen-
sions then guarantees that the map

F : STTs−1
d (Σ) ×Hs+1(Σ) → Hs−1(Σ)(8.1) (

ζTT ,Λ†
)
�→ ∇̃�(ρ)∇̃�(ρ)Λ† − Λ† +

√
1 +

1
2

∣∣∣∣2τζμρ

∣∣∣∣2
where, as above,

2τζ�
b

μρ
=

2τζTT�
b

μρ
+ 2∇̃b(ρ)∇̃�(ρ)Λ† − δ�

b

(
∇̃m(ρ)∇̃m(ρ)Λ†

)
(8.2)

is a smooth (i.e., C∞) map between the indicated function spaces. Here, as
before, τ is a real constant in the range [0,−∞).

In Sec. 7 we showed that the equation F(ζTT ,Λ†) = 0 has the unique
solution Λ† = 1 when τζTT = 0, on Σ and that the equation was elliptic at
an arbitrary configuration which is sufficiently smooth (the latter being here
guaranteed by our Hilbert space assumptions for ρ, ζTT and Λ†). We want
to appeal to the (Banach space version of the) implicit function theorem
to show that a solution Λ† to F(ζTT ,Λ†) = 0 is implicitly determined in
terms of τζTT on some neighborhood of any given solution. We already
know that any such solution must be unique so we need only check that
the Frechet derivative of F with respect to its second argument Λ† defines
(at any “background” configuration (τζTT ,Λ†) ∈ STTs−1

d (Σ)×Hs+1(Σ)) an
isomorphism of the function spaces Hs+1(Σ) and Hs−1(Σ), i.e., that

(8.3) D2F(ζTT ,Λ†) · δΛ† = σ ∈ Hs−1(Σ)

is uniquely solvable for δΛ† ∈ Hs+1(Σ) for arbitrary σ ∈ Hs−1(Σ). Here
D2F is given by the first variation formula (7.13). At a background for
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which τζTT = 0 (so that Λ† = 1) this equation reduces to

(8.4) ρ�m∇̃�(ρ)∇̃m(ρ)δΛ† − δΛ† = σ

but, for any Hs+1 metric ρ, the operator Δρ − 1 provides a well-known
isomorphism of Hs+1(Σ) and Hs−1(Σ) via the Fredholm alternative.

When τ 
= 0, we can combine Eqs. (7.13), (7.14) and (7.19) to re-express
the linearized equation (8.3) as

(8.5)

(
1 +

√
1 + 1

2

∣∣∣2τζ
μρ

∣∣∣2)√
1 + 1

2

∣∣∣2τζ
μρ

∣∣∣2
1
τ2 ΔgδΛ† − δΛ† = σ

where g is the Hs−1 metric defined (at the background solution) by Eqs.
(6.16) and (8.2). The factor involving the square roots lies in Hs−1(Σ) and
so does not cause a serious problem. Multiplying the equation by its inverse
merely converts the source σ to another element of Hs−1(Σ) and replaces the
coefficient of δΛ† by a strictly positive coefficient that is sufficiently smooth
for the application of the standard elliptic theory argument.

A difficulty seems to arise however, though the fact that the g metric
only lies in Hs−1 and thus that its Christoffel symbols generically only lie
in Hs−2(Σ) and not in Hs−1(Σ), as was true of the ρ metric. This seems to
interfere with the desired Hs+1-smoothness of δΛ† (when the source function
is taken to lie in Hs−1). Fortunately, however, our setup ensures that the
identity map from (g,Σ) to (ρ,Σ) is harmonic and thus that

(8.6) gab(Γc
ab(g) − Γ̃c

ab(ρ)) = 0.

Using this equation to re-express the g-Laplacian on functions we get that

(8.7) ΔgδΛ† = gab∇̃a(ρ)∇̃b(ρ)δΛ†

and hence that Δg maps Hs+1 to Hs−1 as desired with no fatal extra loss
of derivatives.

It follows from the standard Fredholm argument again that D2F(ζTT ,Λ†)
yields the needed isomorphism between Hs−1 and Hs+1 and hence that the
equation F(ζTT ,Λ†) = 0 uniquely and implicitly determines Λ† as a smooth
functional of ζTT on some neighborhood of any particular solution. Since
we know the unique solution when τ = 0, we deduce that, for any chosen
ζTT ∈ STTs−1

d (Σ), there exists a τ0 ∈ (0,−∞) such that a unique solution
Λ† exists for all τ ∈ [0, τ0).

To show directly that every solution extends to the full interval τ ∈
[0,−∞) we need to establish that the Hs+1(Σ) -norm of Λ† cannot blow
up until τ exhausts this interval. Ideally, this result should follow from esti-
mates derived directly from the Monge-Ampêre equation itself and indeed
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the derivation of such estimates is part of the aim of an ongoing project
with S.-T. Yau which seeks to sharply characterize the asymptotics of solu-
tions in the limit as τ ↘ −∞ (i.e., at their big bang initial singularities).
We shall describe this project more fully in the concluding section below,
but to complete the present argument, shall here instead give an elementary
proof (based upon a slight refinement of the ideas from Ref. [6]) that all the
solution curves (of the reduced Hamiltonian system) do indeed exhaust the
interval τ ∈ [0,−∞).

The reduced Hamiltonian system under study is a globally smooth sys-
tem of first order ordinary differential equations defined on T ∗T (Σ) × R+

(when expressed in terms of the time variable T = − 1
τ ∈ R+). From

Eq. (5.5) and the properties of the function S it follows that the momenta,
pα(T ) = ∂S

∂qα (qα(T ), ρ, T ), remain well-defined (and hence, through Eq. (4.12)
yield a correspondingly well-defined pTTab(xc, T )) so long as the base curve,
expressed in coordinates through functions {qα(T )}, persists as a curve in
T (Σ). From the smooth character of the associated differential equations
(i.e., Hamilton’s equations) the premature breakdown of such a solution
could only occur if the base curve runs “off-the-edge” of Teichmüller space
before τ ↘ −∞ (or, equivalently, before T ↘ 0). We shall exclude such a
breakdown by exploiting known properties of the Dirichlet energy (with the
target metric ρ held fixed) as a proper function (i.e., an exhaustion function)
on T (Σ) and by deriving estimates which show that this Dirichlet energy
cannot blow up along a solution curve until τ ↘ −∞. These same estimates
will also show that the Dirichlet energy tends to its (unique) infimum in the
opposite limit (as τ ↗ 0 or T ↗ ∞) and, again from known properties of
this energy function, that this implies that the “moving,” conformal metric
γT tends to the target metric ρ as T → ∞, a result which also follows from
the method of continuity argument.

First of all note that, using Eqs. (2.4) and (2.5), Eq. (4.15) can be
re-expressed as

(8.8) τ2 = −ΔgN + N

[∣∣kTT
∣∣2
g
+

1
2
τ2
]
.

Using the inequality given by (2.44), that
∣∣kTT

∣∣2
g
< τ2

2 , one easily derives the
maximum principle bounds for the lapse function N :

(8.9) 1<N ≤ 2 on Σ.

Furthermore, the integral of Eq. (8.8) over Σ yields the formula

(8.10) τ2
∫

Σ
dμg(2 −N) = 2

∫
Σ
dμgN

∣∣kTT
∣∣2
g
.
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Now, from Eqs. (3.6) and (3.7), taking T = − 1
τ as before, we find that

∂

∂T

∫
Σ
dμg

(
kTT

c
dkTT

d
c
)

=
∂

∂T

{
1
2

∫
Σ
τ2dμg +

∫
Σ
dμg

(2)R(g)

}
(8.11)

= τ3
∫

Σ
dμg

(
1 − N

2

)
= τ

∫
Σ
dμgN

∣∣kTT
∣∣2
g

= − 1
T

∫
Σ
dμgN

(
kTT

c
d kTT

d
c
)

where, in intermediate steps, we have used the ADM field equation

gab,T =
2N
μg

(πab − gabtrgπ) + (L(2)X
g)ab(8.12)

= −2Nkab + (L(2)X
g)ab

to evaluate ∂Tμg = 1
2μgg

ab∂T gab.
In view of the upper and lower bounds on N given by (8.9), one easily

derives from Eq. (8.11) the following bounds on

(8.13) F :=
∫

Σ
dμg(kTT

c
d kTT

d
c).

Either
(i) F (T ) = 0∀ T ∈ [0,∞),

or
(ii) F (T0)

(
T0
T1

)2
≤ F (T1)<F (T0)T0

T1

∀T0, T1 such that T0 <T1 with T0, T1 ∈ (0,∞).

Thus, unless F (T ) = 0 identically, one has

const
T 2 ≤ F (T )<

const
T

as T → ∞

and const
T

<F (T ) ≤ const
T 2 as T → 0

and thus that the Dirichlet energy function (c.f., Eqs. (3.6) and (3.7))

A(γT , ρ, Id) = 2
∫

Σ
dμgk

TT
c

d kTT
d

c −
∫

Σ
dμg

(2)R(g)(8.14)

= 2F (T ) −
∫

Σ
dμg

(2)R(g)

cannot blow up until T → 0 but definitely does blow up in this limit unless
F (T ) = 0 identically (which corresponds to the trivial solution γT = ρ ∀ T ∈
[0,∞)). Furthermore, all solutions have the property that

A(γT , ρ, Id) −→ −
∫

Σ
dμg

(2)R(g)(8.15)

T −→ ∞
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so that this energy asymptotes to its global infimum in the indicated limit.
From the aforementioned well-known properties of this function (c.f., the dis-
cussion in Ref. [14]), one sees that all nontrivial solution curves run “off-the-
edge” of Teichmüller space precisely as T ↘ 0 and that every solution curve
(including the trivial ones with γT = ρ) has the property that γT −→

T→∞
ρ

since the (two-point) Dirichlet energy achieves its global infimum precisely
at coincident points.

This latter result can also be recovered from the method of continuity
argument given above. We showed therein that, for fixed ρ ∈ Ms(Σ), s> 4
and arbitrary ζTT ∈ STTs−1

d (Σ) the Monge-Ampêre equation yielded Λ† ∈
Hs+1(Σ) as a smooth functional of τζTT for τ in some interval of the form
[0, τ0), τ0 < 0. Furthermore, the limiting value as τ ↗ 0 was always given by
the unique solution, Λ† = 1, of this equation when τζTT = 0. Now, recalling
Eqs, (6.16), (6.17) and (6.31) we see that the “rescaled” metric g∗

ab := τ2gab

satisfies

(8.16) g∗a� =

[
2τ ρab

μρ
ζ�
b +

√
1 + 2τ2|ζ|

(μρ)2 ρ
a�
]

(
1 +

√(
1 + 2τ2|ζ|2

(μρ)2

))
and has a well-defined limit as τ ↗ 0 given by

(8.17) g∗
ab −→

τ↗0
2ρab

since τζb
a → 0 in that limit. Since γab is obtained from gab (or equivalently

from g∗
ab) by uniformization, it follows that γT −→

T→∞
ρ in this limit.

9. Einstein solution curves and ray structures
on Teichmüller space

In the previous section we saw that, for any fixed metric ρ having
(2)R(ρ) = − 1, the TT symmetric tensors relative to ρ (i.e., the tensors
ρab
μρ

ζTTb
c formed from the mixed TT densities ζTTb

a used there) determine solu-
tion curves to the reduced vacuum Einstein equations in CMCSH (constant-
mean-curvature-spatially-harmonic) gauge. These curves fall naturally into
one parameter families generated by the scale invariance of Einstein’s vac-
uum field equations − replacing ζTT by λζTT , where λ is a constant greater
than zero, yields a rescaled solution for which the slice originally having mean
curvature τ now has mean curvature τ/λ. To obtain all possible vacuum
solutions one must, in addition, allow ρ to vary over a model of Teichmüller
space for the given surface Σ, e.g., over a global cross-section for the trivial
D0(Σ)-bundle M−1(Σ) → M−1(Σ)/D0(Σ) ≈ T (Σ) where M−1(Σ) repre-
sents the space of metrics γ with (2)R(γ) = − 1, D0(Σ) designates the group
of diffeomorphisms of Σ isotopic to the identity and T (Σ) is the abstract
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Teichmüller space of Σ. One can construct such cross sections in at least
two distinct ways using harmonic maps as discussed for example by Tromba
in [14, Sec. (3.4)]. In one such construction (due to Earle and Eells [16])
the section consists of all metrics ρ ∈ M−1(Σ) such that the identity map
from a fixed domain (γ,Σ) to (ρ,Σ) is harmonic. In a complementary sec-
tion discussed by Tromba one holds the target (ρ,Σ) fixed and considers all
γ ∈ M−1(Σ) such that again the identity from (γ,Σ) to (ρ,Σ) is harmonic.
Our result shows that in effect ρ and its conjugate variable ζTT represent
asymptotic “Cauchy data” which, when prescribed in the limit τ ↗ 0, deter-
mine solution curves uniquely via the resolution of the Λ† equation discussed
above.

We know from the work in [6] that every such solution curve extends to
the full interval τ ∈ [0,−∞) which represents cosmological expansion from a
big bang singularity at τ → −∞ to the limit of infinite area as τ ↗ 0. Each
corresponding curve of metrics gτ can be smoothly and uniquely uniformized
to yield a curve γτ which lies in a particular Tromba-section of M−1(Σ),
namely the submanifold consisting of all metrics γ such that Id : (γ,Σ) →
(ρ,Σ) is harmonic for the appropriately chosen asymptotic conformal metric
ρ. The results in [6] show that, except for the trivial, fixed point solutions
generated by ζTT = 0, every solution curve runs “off-the-edge” of Teichmüller
space as τ → −∞. In this section, we want to consider the families of such
uniformized solution curves which all have the same asymptotic limit ρ (i.e.,
the curves determined by the asymptotic data (ρ, ζTT ) for arbitrary ζTT ).
The aim is to show that such families (one for each choice of ρ) define so-
called “ray structures” on Teichmüller space which are distinct from but
somewhat complementary to the ray structures defined by Wolf [8]. In a
similar spirit, we want to show how one can use the TT tensors at ρ to define
a global coordinate system for Teichmüller space that is complementary to
the one defined by Wolf (wherein one used TT tensors relative to the domain
metric of a harmonic mapping rather than at the target as we do).

Thus we fix ρ ∈ M−1(Σ) and focus on that subset of solutions deter-
mined by data {ρ, ζTT } where ζTT is transverse-traceless and symmetric
with respect to ρ. For the moment, let us exclude the trivial solution cor-
responding to ζTT = 0 and look only at the non-fixed-points. We claim that
no two distinct solutions, aside from those obtained by rescaling any given
one, ever intersect (except asymptotically where they all tend to ρ). To see
this, suppose an intersection did exist at some (uniformized) metric γ. By
rescaling we can always arrange that the intersection point for each of the
two curves corresponds to the same value of the mean curvature τ . The com-

plementary TT tensors
(1)

kTT
ab and

(2)

kTT
ab which, together with the common γab,

make up the two sets of conformal Cauchy data at mean curvature time τ for

these solutions must be distinct (i.e., have
(1)

kTT 
=
(2)

kTT ) since otherwise, by
uniqueness of solutions of the reduced Einstein equations in CMCSH gauge
(an elementary ODE uniqueness result in 2+1 dimensions) they would yield
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identical solutions contrary to assumption. However our setup would then
show that Wolf’s basic equation (c.f., Eq. (2.28) above)

(9.1) ρab =
{(

e−4λγdeγcfkTT
ce kTT

df +
1
2
τ2
)
e2λγab + 2τkTT

ab

}
(where λ is uniquely determined by the solution of the Lichnerowicz equation
(2.23)) is then satisfied for fixed {ρ, γ, τ} by two distinct choices for kTT ,

namely
(1)

kTT and
(2)

kTT . But this is impossible by Wolf’s result that shows that
the TT tensors kTT relative to a fixed metric γ define a global coordinate
chart for the Earle-Eells section of M−1(Σ) representing Teichmüller space
T (Σ). In other words, a given target metric ρ satisfying Eq. (9.1) corre-
sponds to a unique kTT (note that Wolf, who was not considering Einstein’s
equations, has effectively taken τ = − 1 in our formulation).

By a similar argument we can show that every metric γ in a Tromba-
section based on ρ is attained by a solution curve (unique up to scaling
if γ 
= ρ) which is asymptotic to ρ. The result is trivial if γ = ρ since
one only need take the fixed point solution so assume that γ 
= ρ but
that γ lies in the Tromba-section based on ρ (i.e., all γ ∈ M−1(Σ) such
that Id : (γ,Σ) → (ρ,Σ) is harmonic). By Wolf’s result (after choosing
say τ = − 1 for convenience to eliminate the scaling freedom) there exists,
for the chosen γ and ρ, a unique kTT satisfying Eq. (9.1) (with λ deter-
mined uniquely by the Lichnerowicz equation (2.23)). However, our argu-
ments from Sec. 8 have shown that this conformal Cauchy data generates
a solution whose asymptotic conformal metric is ρ. To compute the com-
plementary asymptotic data ζTT for the corresponding solution curve we
can appeal to Eqs. (6.15) and (6.21) which show that ζTTb

a is simply the
transverse-traceless summand (relative to the ρ metric decomposition here!)
of the density

(9.2) ζb
a = μgg

bckTT
ac = μγγ

bckTT
ac

and further (in view of Eqs. (6.14)–(6.16) and recalling that μgg
ab =μγγ

ab)
that this projection is independent of the value of τ at which (γab, k

TT
ab ) are

evaluated (and hence of the arbitrary choice τ = − 1 made for convenience
above).

10. Lagrangian foliations of T ∗T (Σ)

Various Lagrangian foliations of the cotangent bundle of Teichmüller
space have been discussed in the mathematics literature [17, 18]. On the
other hand, Hamilton-Jacobi theory is closely connected to the construction
of Lagrangian submanifolds or Lagrangian foliations of the phase spaces of
suitable Hamiltonian systems and we are here in the optimal circumstances
of having a globally defined, complete solution to the Hamilton-Jacobi equa-
tion for the reduced Einstein equations in 2+1 dimensions. This allows us not
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only to define two distinct (one parameter families of) Lagrangian foliations
of T ∗T (Σ) but also to give a simple geometrical interpretation of the leaves
of these foliations in terms of the ray structures discussed in the previous
section.

As shown in Sec. 5 the Dirichlet energy function A, after subtraction of
the Gauss-Bonnet invariant and rescaling by the factor 1

τ , yields a global
solution of the Hamilton-Jacobi equation for reduced 2 + 1 gravity for any
choice of the (uniformized) target metric ρ. By virtue of the D0(Σ) covari-
ance of the formalism, there is no essential loss of generality involved in
constraining ρ to lie in a model for Teichmüller space (e.g., in an Earle-
Eells section of the bundle M−1(Σ) → M−1(Σ)

D0(Σ) ≈ T (Σ)) which can be

globally coordinatized (since T (Σ) ≈ R6 genus(Σ)−6) by a single chart {Qα |
α= 1, 2, . . . , 6 genus(Σ)− 6}. Since the Dirichlet energy construction is con-
formally invariant with respect to the metric on the domain, we can also,
without loss of generality, think of the domain metric γ ∈ M−1(Σ) as con-
strained to lie in a model for T (Σ) which is globally coordinatized by another
single chart {qα | α= 1, 2, . . . , 6 genus(Σ) − 6}. Our Hamilton-Jacobi func-
tion S can thus be regarded as expressible as a globally smooth real-valued
function defined on T (Σ) × T (Σ) × R− and written in coordinates in the
form S(qα, Qα, τ), where

(10.1) S(q,Q, τ) =
A(q,Q)

τ
− 1

τ

∫
Σ
dμ(2)

γ R(γ)

or, in terms of the “Newtonian” time T = − 1
τ which ranges over (0,+∞), as

S(q,Q, T ) =−T
[
A(q,Q) −

∫
Σ dμ

(2)
γ R(γ)

]
. It satisfies the reduced Hamilton-

Jacobi equation

(10.2) −∂S
∂T

=Hreduced

(
qα,

∂S
∂qα

, T

)
∀ {qα, Qα, T} ranging over (the global charts for) T (Σ) × T (Σ) × R+.

In the usual way, we can introduce a global chart for T ∗T (Σ) with bundle
coordinates {(qα, pα) | α= 1, 2, . . . 6 genus(Σ) − 6} in terms of which the
canonical symplectic form is expressible as ω= Σ

α
dqα ∧dpα. By graphing the

gradient of S(q,Q, T ), for fixed {Qα, T} one gets a Lagrangian submanifold
of T ∗T (Σ) expressible in coordinates as {(qα, pα = ∂S

∂qα )}. This clearly has
the (maximal) dimension, namely 6 genus(Σ) − 6, and is Lagrangian since
the pullback of the symplectic form to this submanifold vanishes by virtue
of the induced formula for the differentials dpα, i.e.,

(10.3) dpα =
∑

β

∂2S
∂qα∂qβ

dqβ
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which yields Σ
αβ

∂2S
∂qα∂qβ dq

α ∧ dqβ ≡ 0 by symmetry of ∂2S
∂qα∂qβ . By allowing the

{Qα}’s to vary, still holding T fixed, one generates a family of such leaves
which, taken all together, define a Lagrangian foliation of T ∗T (Σ).

To see this, first note that the points on any given leaf {(qα, pα = ∂S
∂qα ) |

(Qβ, T )fixed} represent the initial data sets (at time T ) for all those solution
curves which tend asymptotically to the conformal geometry represented by
{Q} as T → ∞. Thus no two distinct leaves can intersect since a point of
intersection would have to correspond to a solution curve having two dis-
tinct asymptotic conformal geometries. Furthermore, there is a (necessarily
unique) leaf through any point of T ∗T (Σ) since, thanks to Wolf’s results,
there is, for any base point {qα} a unique covector pαdq

α (usually repre-
sented as a TT tensor or quadratic differential at a representative domain
metric γ ∈ M−1(Σ)) such that the map given by Eq. (9.1) yields any desired
target {Qα}. In fact, by Wolf’s diffeomorphism result, there is a bijective
correspondence between the target points {Qα} and the covectors pαdq

α at
{qα} and in our Hamilton-Jacobi formulation the latter are realized as gra-
dients of S via pαdq

α = ∂S
∂qα (q,Q, T )dqα. Thus every point {qα, pα} in phase

space T ∗T (Σ) is realized as a pair {qα, ∂S
∂qα (q,Q, T )} when, for any fixed

T ∈ (0,∞), the pair (qα, Qα) ranges over a global chart for T (Σ) × T (Σ).
A complimentary Lagrangian foliation is defined by graphs of the form

{(Qα, Pα = ∂S
∂Qα (q,Q, T ))} where again (qα, Qα) ranges over a (globally

defined) chart for T (Σ) × T (Σ) at fixed T > 0. A particular leaf in this
case (corresponding to fixed {qα}) consists of all asymptotic data points
{Qα, Pα} belonging to solution curves which passed through {qα} at time
T > 0. Leaves cannot intersect by virtue of our bijectivity result from Sec. 9
which shows that for a fixed asymptotic geometry {Qα} there is a bijective
correspondence between the asymptotic covectors PαdQ

α (usually expressed
in terms of TT tensors, c.f., Eq. (5.9)–(5.13)) and the points {qα} exhausting
Teichmüller space. This correspondence insures that every point {(Qα, Pα)}
in (a global chart for) T ∗T (Σ) is achieved as, in addition, {Qα} is allowed
to range over its chart for T (Σ).

In the above, T was held fixed. If it is allowed to vary, then the foliations
“evolve” in a smooth way that is directly related to the scale invariance of
Einstein’s equations noted above. This follows from the observation that
pα = ∂S

∂qα = − T ∂A
∂qα and Pα = ∂S

∂Qα = − T ∂A
∂Qα wherein T only appears as an

overall multiplicative factor which rescales the momenta as it is varied.
Suppose that {Qα(p)} and {qα(p)} label the same point p in abstract

Teichmüller space. Then it is not difficult to see that ∂S
∂qα (q(p), Q(p), T ) =

∂S
∂Qα (q(p), Q(p), T ) = 0. This corresponds to the statement that the only
solution curve passing through a given point in Teichmüller space at time
T ∈ (0,∞) and also asymptoting to that point as T → ∞ is in fact the
trivial fixed point solution corresponding to the chosen point.
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Concluding remarks

Solutions to the vacuum field equations on Σ × R can each be used, by
simply taking a product with the circle, to generate corresponding vacuum
solutions to the 3+1 dimensional Einstein equations on Σ×S1×R. Each of
these 3 + 1 dimensional Lorentz manifolds is still flat and spatially compact
(with space sections diffeomorphic to Σ × S1) and has by construction a
spacelike Killing field tangent to the circular factors. As such it provides a
very specialized example of vacuum solutions definable on S1-bundles over
Σ × R which have a Killing symmetry imposed along the circular fibers
of the bundle in question. The most general such (U(1)-isometric) solution
can be regarded (upon adopting a Kaluza-Klein viewpoint and projecting
fields down to the base) as a non-vacuum solution to the 2 + 1 dimensional
field equations defined on Σ×R with a certain very specific type of matter
source. Perhaps the most elegant form of these reduced field equations is
that wherein the 2 + 1 dimensional metric is coupled to a wave map field
with target space given by the Poincaré half-plane. If trivial bundles are
considered this wave map can be polarized (i.,e. restricted so that its image
lies along a geodesic in the half-plane) so that the wave map equations
reduce to a wave equation but in the general case of non-trivial bundles over
Σ × R such a polarization is incompatible with the topology of the bundle
[19, 20, 21].

The global study of such U(1)-invariant vacuum solutions to the 3 + 1
dimensional field equations is an important and still largely open problem
in general relativity. Some significant progress on it has been made by Y.
Choquet-Bruhat and the present author by assuming Cauchy data which is
sufficiently small (as a non-linear perturbation of the trivial, constant wave
map solutions) and evolving only in the direction of cosmological expansion
[19, 20, 21], a device which sidesteps complications produced by the big
bang singularities. However, some independent work by these same authors
together with J. Isenberg has exploited so-called Fuchsian methods to deal
rigorously with the singularities themselves at least when the solutions are
“half-polarized” in a well-defined sense [22, 23]. The generic non-polarized
solution is however, anticipated not to be amenable to this kind of Fuchsian
analysis and instead to exhibit a singularity of oscillatory type [24].

It seems plausible that the formation of black holes in these
U(1)-isometric models is suppressed by the symmetry imposed and thus
that there is no singular behavior expected for the cosmologically expanding
direction at all. In other words, one should have large data global existence
for all solutions to this problem. Of course, it is extremely unlikely that one
could prove such a result without first learning how to treat 2 + 1 dimen-
sional wave maps globally on a background Lorentz manifold. In the present
problem the Lorentzian metric is not a background but instead a functional
of the evolving wave map and the Teichmüller parameters. Indeed even the
(polarized) special case of a wave equation is highly non-linear because of



RELATIVISTIC TEICHMÜLLER THEORY 247

this metrical dependence upon the evolving wave and, at present, only the
small data results mentioned above are known.

Another problem related to that considered in the present article is that
of constructing CMC foliations of flat, higher dimensional, spatially compact
Lorentz manifolds. For any compact hyperbolic manifold (Hn/Γ, h), where h
has constant negative curvature as a Riemannian metric, one can construct
the trivial, flat Lorentz cone spacetime on Hn/Γ × R for any n ≥ 2 which
is naturally foliated by CMC slices. For n ≥ 3, Mostow rigidity forbids any
“obvious” deformation of the metrics on Hn/Γ × R which preserves flat-
ness since there is no corresponding Teichmüller space of hyperbolic metrics
in these cases, but nevertheless, for some choices of Hn/Γ there can exist
non-trivial moduli spaces of flat Lorentzian metrics on Hn/Γ × R and, for
these, it would be of interest to construct CMC foliations. This problem
has already been dealt with using indirect methods by L. Andersson who
exploited earlier results by G. Mess and others on the properties of such
spaces [25]. However, it might also be possible to attack this problem directly
with methods that parallel, to some extent, those developed in the present
paper. In particular, harmonicity of the Gauss map for a CMC slice in such
a flat, higher dimensional spacetime will continue hold and the analogue
of Eq. (6.3) above is easy to derive. Thus it is of interest to see whether
one could derive an elliptic equation (or system) which plays the role for
these higher dimensional problems that our Monge-Ampêre equation for Λ†
plays here. One would expect the role of holomorphic quadratic differentials
to be played by the traceless Codazzi tensors of a fixed hyperbolic metric
h on Hn/Γ.

Finally, let us return to the problem alluded to at the end of Sec. 8,
namely the derivation of estimates for solutions of the Monge-Ampêre equa-
tion sufficiently sharp so as to characterize their asymptotics as τ ↘ −∞
(which limit corresponds to the big bang singularities in these models (c.f.
Ref. [6])). This problem is currently under study with S.-T. Yau.

As in the case of Wolf’s ray structures the natural conjecture here would
seem to be that the ray structures introduced in Sec. 9, representing families
of Einstein solution curves, have limits, as τ ↘ −∞, at Thurston bound-
ary points of T (Σ). More precisely, the idea is that, for any fixed ρ, the
collection of non-trivial solution curves emerging (at τ = 0) from this (arbi-
trary) interior point of T (Σ) effectively attach the Thurston boundary to
T (Σ) in the sense that each solution ray limits to a boundary point and
every such boundary point is the limit of a unique ray. That this should
be true is, to a large extent, already known from indirect, barrier-estimate
arguments due to L. Andersson [26] which in turn are based upon the fun-
damental work of R. Benedetti and E. Guadagnini [27]. The latter authors
use a “cosmic time” slicing (essentially a Gaussian normal slicing but hav-
ing the big bang singularity itself as a t= 0 level “surface”) and explicitly
construct a (dense) subset of the full solution space by suitably “cutting
and pasting” negatively curved Friedman-Roberton-Walker and flat Kazner
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metrics along certain leaves of geodesic laminations of Σ. This representa-
tion of the solutions induces different families of curves in T (Σ) from those
we get (since generically their slicings are neither smooth nor CMC whereas
ours are) but they show that their solution curves in T (Σ) do indeed limit
to Thurston boundary points. Andersson’s barrier arguments are designed
to control the asymptotics of CMC slicings relative to the cosmic time ones
near the big bang singularities and thereby to show that Thurston bound-
ary points are attained, in the limit, by the former as well as the latter.
Our Monge-Ampêre analysis yields, in principle, a direct characterization of
all CMC sliced solutions (and not only the “simplicial” ones dealt with by
Andersson) and thus affords the possibility of computing their (CMC-sliced)
singularity structures more explicitly.
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[5] A. Fischer and V. Moncrief, Hamiltonian reduction, the Einstein flow, and collapse
of 3-manifolds, Nucl. Phys. B (Proc. Suppl.) 88 (2000), 83–102.

[6] L. Andersson, V. Moncrief and A. Tromba, On the global evolution problem in 2 + 1
gravity, J. Geom. Phys. 23 (1997), 191–205.

[7] R. Puzio, The Gauss map and 2 + 1 gravity, Class. Quantum Grav. 11 (1994),
2667–2675.

[8] M. Wolf, The Teichmüller Theory of Harmonic Maps, J. Diff, Geom. 29 (1989),
449–479.



RELATIVISTIC TEICHMÜLLER THEORY 249

[9] B. Tabak, A Geometric Characterization of Harmonic Diffeomorphisms Between
Surfaces, Math. Ann. 270 (1985), 147–157.

[10] L. M. Sibner and R. J. Sibner, A non-linear Hodge-deRham theorem, Acta. Math.
125 (1970), 57–73.

[11] E. A. Ruh and J. Vilms, The tension field of the Gauss map, Trans. Am. Math. Soc.
149 (1970), 569–573.

[12] V. Moncrief, Reduction of Einstein’s Equations for Vacuum Space-Times with Space-
like U(1) Isometry Groups, Ann. Phys. (NY) 167 (1986), 118–142. See appendix
herein for an application of the sub and super solutions method.

[13] J. L. Kasdan, Some applications of Partial Differential Equations to Problems in
Geometry, Surveys in Geometry (copyright by J. L. Kasdan 1983). Some of this
material appears in the appendix of Einstein Manifolds by A. Besse (Springer, 2002)

[14] A. J. Tromba, Teichmüller Theory in Riemannian Geometry (Lectures in Mathemat-
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