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Global Regularity and Singularity Development
for Wave Maps

J. Krieger

1. The wave maps problem

Let (M, g) be a Riemannian manifold, and denote the standard
Minkowski space by Rn +1, n ≥ 1, equipped with the Minkowski metric
mαβ = mαβ = diag(−1, 1, . . . , 1). A map u : Rn+1 → (M, g) is called a
wave map provided it is formally critical with respect to the Lagrangian
action functional1

L(u) :=
∫

Rn+1
〈∂αu, ∂

αu〉gdσ, ∂α =mαβ∂β

Here dσ= Πn
α =0dxα denotes the standard volume element on Rn+1. In local

coordinates, one finds the equation

(1.1) �ui + Γi
jk∂αu

j∂αuk = 0, � = ∂α∂
α

We shall refer to this as the local coordinate formulation of the wave maps
condition. Another possibility is to isometrically embed the target into a
Euclidean space M ↪→ Rk, and then work in terms of the ambient coordi-
nates. This is seen to lead to the condition

(1.2) �u ⊥ TMu

which leads to

(1.3) �ui + Si
jk(u)∂αu

j∂αuk = 0

in terms of the ambient coordinates, where Si
jk is the 2nd fundamental form

of the embedding M ↪→ Rk.

1Throughout, the Einstein summation convention is in force.
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Finally, in case the target is parallelizable2, and assuming {ei}k
i =1 is a

global orthonormal frame, we can introduce the family of functions φi
α via

the relations
u∗(∂α) =φi

αei

Then one deduces a divergence-curl system for the quantities φi
α of

the form

∂αφ
i
β − ∂βφ

i
α = Ci

jkφ
i
αφ

k
β(1.4)

∂αφ
iα = −Γi

jkφ
j
αφ

kα(1.5)

Here we have the relations Ci
jk = Γi

jk −Γi
kj , while the Γi

jk are the Christoffel
symbols with respect to the frame {ei}, i.e. ∇ejek = Γi

jkei. While the former
relation (1.4) arises simply from the fact that the φi

α represent the push-
forward of the ∂α under u, the latter relation (1.5) encodes the wave maps
condition. We shall refer to this system as the intrinsic formulation of wave
maps.

In some sense, the intrinsic formulation is the most natural one, as it
exemplifies the gauge invariance inherent in the problem: choosing a gauge
means fixing an orthonormal frame {ei}k

i=1 for TM . Choosing this frame
judiciously may improve the features of the equations. Indeed, this gauge
freedom was exploited first for the elliptic analogue of wave maps, harmonic
maps (for example [17]), and then in [11], and implicitly in [61, 62], which
then led to explicit applications in [27, 33, 42, 50].

Examples.

(i) let M = R. A wave map u : Rn+1 → R is a free wave �u= 0.
(ii) let M =Sk−1 ⊂ Rk equipped with the standard metric. Then the

wave maps condition can be cast in terms of ambient coordinates
as follows:

�u= − uut
,αu

,α, u ∈ Rk

Here u ∈ Rk is a column vector, and ut its transpose.
(iii) Now let M =H2, the hyperbolic plane with metric dh= dx2+dy2

y2 ,
y > 0. Choose the frame e1 =−y d

dx , e2 =−y d
dy . Then the wave maps

condition, cast in terms of the associated family φi
α, α= 0, 1, 2,

i= 1, 2, becomes

∂βφ
1
α − ∂αφ

1
β =φ1

αφ
2
β − φ2

αφ
1
β, ∂βφ

2
α − ∂αφ

2
β = 0(1.6)

∂αφ
1α = − φ1

αφ
2α, ∂αφ

2α =φ1
αφ

1α(1.7)

2In a lot of cases, one may reduce to this situation, for example by finding an isometric
embedding of M into an R

k equipped with a metric which renders the embedding totally
geodesic; see [8].
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The basic question one would like to answer is the Cauchy problem for
wave maps: given initial data (u, ∂tu) : Rn −→M ×TM , is there a global-
in-time wave map extending them? If not, explain the breakdown.

As posed the question is too vague. Indeed, a first issue to answer
is what are the minimal requirements on regularity of the data to even
obtain unique local solutions. It is by now well understood that there is a
satisfactory local well-posedness theory provided the data are of regular-
ity (u, ∂tu) ∈ Hs ×Hs−1, s> n

2 , n≥ 2. See [24, 28]. Moreover, there are
examples demonstrating that uniqueness of (distributional) solutions fails
provided the data are of class Hs, s< n

2 , see [1]. On the positive side, global
distributional solutions of energy class (H1) have been constructed in the
case n= 2 in [41].

Solutions of the optimal C∞ smoothness are also called classical wave
maps. We also observe here in passing that the Cauchy problem for the
case n= 1 is well understood (see [16, 60]) and globally well-posed, and
so we omit this case from now on. Thus a more precise formulation of our
main problem is as follows: given initial data (u, ∂tu) ∈ Hs ×Hs−1, for some
s> n

2 , n≥ 2, decide if they can be globally extended to a wave map.
In spite of a lot of recent progress, this question is largely open at this

time.

Motivation for studying wave maps
(a) Particle physics: The wave maps problem appears in [12] with target

SU(2) =S3 and domain R3+1, also referred to as nonlinear sigma model.
(b) Einstein’s equations: following Choquest-Bruhat and Moncrief [7],

consider a space-time 4 manifold M =M1 ×R, where M1 is a principal
U(1)-bundle over a surface Σ, with projection π : M → Σ×R. Then con-
sider metrics on M of the Kaluza-Klein form

g=π∗(g̃) + π∗(e2γ)Θ2

for some U(1)-connection 1-form Θ =Aαdx
α, Aα ∈u(1) = iR. Choosing suit-

able local coordinates we may write Θ = dx3 +
∑2

α=0 Aαdx
α, where x1,2 are

coordinates on Σ. Then the curvature is given by F := dΘ =Fαβdx
αdxβ, and

Einstein’s equations may be seen to imply that defining3 e3γ(∗F ) =E, we
have dE = 0. If for example Σ = R2 topologically, we have E = dω for some
function ω. Then it may be seen that the map

(γ, ω) : (Σ×R, g̃)−→ (H2, h)

is a wave map. The metric g̃ in turn is driven by the wave map. This suggests
as a model problem wave maps u : R2+1 −→H2. The case n= 2 is also
referred to as the energy critical case, as explained below.

3Here ∗F = 1
2 εαβγF βγdxα for the antisymmetric symbol εαβγ .



170 J. KRIEGER

(c) Wave maps are the natural hyperbolic analogues of the much studied
harmonic map heat flow, which in local coordinates is described by

∂tu
i =�ui +

n∑
α=1

Γi
jk(u)∂αu

j∂αuk

2. Well-posedness typology for nonlinear wave equations

Consider a general problem of the form

(2.1) �u=N(u,∇u), (u, ∂tu)|t=0 = (u0, u1)

for some smooth N(., .). Of course, wave maps in local coordinates fall into
this category. Assume that the set of solutions u(t, x) is invariant under the
scaling transformation u(t, x) → λαu(λt, λx). For wave maps, for example,
we have α= 0. Then one introduces the critical Sobolev index sc = n

2 − α.
Observe that the norm

||u0||Ḣsc + ||u1||Ḣsc−1

is left invariant under the re-scaling. We are interested in (i) local well-
posedness, and, having established (i), (ii) global well-posedness. In particu-
lar, we shall use the following definitions:

Definition 2.1. (strong local well-posedness) We call the problem (2.1)
strongly locally well-posed in the Sobolev space Hs(Rn), which we recall is the
space of all tempered distributions f satisfying

∫
Rn |f̂(ξ)|2(1 + |ξ|2)sdξ <∞,

provided the following holds: given data (u0, u1) ∈ Hs ×Hs−1, there is a time
interval4 [0, T ], T =T (||u0||Hs + ||u1||Hs−1)> 0 and a unique distributional
solution u(t, x) ∈ C([0, T ], Hs) ∩ C1([0, T ], Hs−1) of (2.1) on [0, T ]×Rn,
which depends continuously on the data, and preserves higher regularity of
the data.

Definition 2.2. (weak global well-posedness for small data) We call
(2.1) weakly globally well-posed for small data (u0, u1) in Ḣsc × Ḣsc−1, pro-
vided there exists some ε> 0 such that for all (u0, u1) ∈ Hs ×Hs−1, s> sc

with ||u0||Ḣsc + ||u1||Ḣsc−1 <ε, there exists a unique global solution u(t, x) ∈
C((−∞,∞), Hs) ∩ C1((−∞,∞), Hs−1).

The general method for establishing strong local well-posedness is by
means of iteration in a suitable Banach space, while the global (weak) well-
posedness at the critical Sobolev index follows usually by proving a priori
bounds.

4It is understood that T (.) is a decreasing function of its argument.
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The significance of the critical Sobolev index becomes clear on account
of the following
Expected Optimal Well-posedness:
Scaling constraint

Supercritical: If s< sc, one expects ill-posedness in Hs. Assume for exam-
ple sc > 0, and there exist data (u0, u1) ∈ Hs ×Hs−1, s< sc, such that
the corresponding solution exists on a maximal interval [0, T ), T <∞. By
finite propagation speed we may assume that they are compactly supported.
The data (u0,i, u1,i), where (v0,i, v1,i)(x) = (2αiv0(2ix), 2(α+1)iv1(2ix)), i≥ 1,
result in solutions with maximal interval of existence [0, 2−iT ). Then letting
(a0, a1) :=

∑
i ≥ 1 Ti(u0,i, u1,i) for a suitable translation operator

Ti, Ti(v(x)) := v(x + bi), chosen such that the corresponding solutions do
not overlap on their interval of existence, we have∥∥∥∥∑

i ≥ 1

Ti(u0,i, u1,i)
∥∥∥∥

Ḣs × Ḣs−1
≤
∑
i ≥ 1

2i(s−sc) <∞

for any s< sc. Hence we have ||∑i ≥ 1 Ti(u0,i, u1,i)||Hs <∞, s< sc, but the
solution corresponding to

∑
i ≥ 1 Ti(u0,i, u1,i) cannot exist on any interval

[0, T0), T0 > 0.
Critical: If s= sc, one expects weak global well-posedness for data small

in the critical space Ḣsc × Ḣsc−1. Note that re-scaling does not change
||u0||Ḣsc × Ḣsc−1 , so a local well-posedness result translates into a global
well-posedness result. Strong local well-posedness at the critical level is not
expected due to negative results in special cases, see e.g. [60], where failure
of uniformly continuous dependence on the data is shown. Thus the interval
of existence [0, T ) is expected to depend on the profile of the data, and not
just ||(u0, u1)||Ḣsc×Ḣsc−1 .

Subcritical: If s> sc, one expects strong local well-posedness in Hs ×
Hs−1, for ‘well behaved equations’. However, for generic equations, this intu-
ition fails, see [39]; in particular, one may have to impose s> s1 >sc. It is
correct for geometric wave equations with null-structure such as WM [24],
YM [31], MKG [40].

Note that sc = n
2 for wave maps in the local coordinate formulation.

Energy constraint
Now assume that our problem of type (2.1) also admits an energy type

conserved functional, i.e., a quantity E[u] � ||u||Ḣs0 + ||ut||Ḣs0−1 which is
preserved under the flow.

Examples. For the equation �u= |u|p−1u, p≥ 1, on Rn+1, we may put

E[u] :=
∫

Rn

(
1
2
[u2

t + |∇xu|2] +
1

p + 1
|u|p+1

)
dx,

whence we have E[u] � ||u||Ḣ1 .
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For the wave maps problem, if we embed isometrically M ↪→ RN , we
may define

E[u] :=
∫

Rn

(
|ut|2 + |∇xu|2

)
dx

Alternatively, using assuming TM parallelizable and φi
α as in the gauge

invariant formulation of wave maps, we may define

E[u] =
∑
i,α

∫
Rn

(φi
α)2dx

Then one distinguishes between the following cases:
Energy subcritical sc <s0: one expects global well-posedness, provided

strong local well-posedness in the full subcritical range, or also just for some
sc <s<s0. Assume for example s0 ≥ 1. By finite propagation speed, to con-
trol the evolution on any finite time interval we may assume the data to
be compactly supported. Then a priori control over ||u||Ḣs0 + ||ut||Ḣs0−1 in
conjunction with Sobolev’s embedding and Hoelder’s inequality results in
an a priori bound on ||u||L2 + ||ut||L2 on fixed time slices. Hence we get a
priori bounds on ||u||Hs + ||ut||Hs−1 , s≤ s0, which allows us to extend the
local solutions to global ones.

Energy critical sc = s0. Global well-posedness hinges on fine structure
of equation. Assume that weak global well-posedness at the critical Sobolev
regularity obtains. Then finite propagation speed reduces establishing global
well-posedness (in the sense of regularity preservation above the critical
regularity) to excluding an energy concentration scenario.

Examples. The semilinear energy critical equation �u=u5 on R3+1

is globally well-posed, see e.g., [14, 49, 56]. Proof of this fact relies on
establishing a Morawetz type inequality, i.e., a priori estimate for a suitable
space-time average of |u|.

The wave maps problem becomes energy critical in dimension n= 2.
Then the global behavior hinges on the geometric structure of the target.
We have that suitable wave maps u : R2+1 −→S2 break down in finite time,
see [37, 45] and below, while it is conjectured that we have global well-
posedness when the target is H2, see e.g., [22].

Energy supercritical sc >s0. No global well-posedness for generic large
data expected. This is under the assumption that there is no ’better energy
type functional’ which provides a priori control for ||u||Ḣs , some s> sc in
the local well-posedness range. Indeed, it appears that for all examples
falling under this heading no positive well-posedness results for large data
are known.

Example: The wave maps equation with n≥ 3 is energy supercritical.
Explicit blow up examples with a rather eclectic list of targets can be found
in [6, 47].
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3. The local existence theory for wave maps

Recall the equation (1.1), which will suffice for the purposes of con-
structing a local solution, provided we further assume the data to map into
a single coordinate chart. Schematically, the equation is thus of the form
�u= Γ(u)(∇u)2, (u, ut)|t=0 = (u0, u1). This crude formulation suffices for
strong local well-posedness in Hs for the range s> n

2 + 1; recall that scaling
is sc = n

2 . To see this, recall the Sobolev embedding H
n
2 +(Rn) ⊂ L∞(Rn),

whence

||Γ(u)(∇u)2||
H

n
2 +ε(Rn) � ||∇u||2

H
n
2 +ε(Rn)

, ε> 0

by using the fractional Leibnitz’ rule. Then using that

u(t, x) =S(t)u0 + U(t)u1 +
∫ t

0
U(t− s)[Γ(u)(∇u)2](s)ds,

where S(t)u0, U(t)u1 are the free propagators for initial data (u0, 0), (0, u1),
respectively, as well as the energy inequality

||S(t)u0 + U(t)u1||Ḣs(Rn) � ||u0||Ḣs(Rn) + ||u1||Ḣs−1(Rn), ε ∈ R,

we can run a Banach iteration on sufficiently small time intervals to get a
unique fixed point: u(t, x) ∈ C([0, T ], H

n
2 +1+ε(Rn)) ∩ C1([0, T ], H

n
2 +ε(Rn)),

ε> 0, T > 0 sufficiently small.
The main issue for the local theory then is how to improve this argument

to require as little smoothness as possible. Recall from the preceding sec-
tion that we expect the optimal local well-posedness threshold to be sc = n

2 .
Indeed, a well-known example of Nirenberg, see e.g. [51, 53], shows that
this cannot be improved in general: consider the scalar problem

(3.1) �u= −(ut)2 +
n∑

i=1

(∂xiu)2

Note that using the coordinates (log r, θ) on R2\{0} with polar coordi-
nates (r, θ), the map (u, 0) : Rn+1 −→R2\{0} is then a wave map. This
is due to the fact that (3.1) implies �(eu) = 0. Now choose a free wave v
on Rn+1, n≥ 2, such that ||v(0, .)||L∞

x
< < 1 but such that ||v(t, .)||L∞

x
> 1,

and supt∈R ||v(t, .)||
H

n
2
<ε, for arbitrarily small ε> 0. Then u= − log(1−v)

is defined as long as v < 1, but becomes singular in finite time. Indeed, by
rescaling u(t, x) → u(λt, λx), λ> 1 (which will not increase the ||.||

H
n
2
-

norm), we can achieve breakdown on arbitrarily small time intervals, even
when restricting to small H

n
2 -norm. This shows that we cannot expect (1.1)

to be strongly locally well-posed at the critical level (or below)5.

5One may object here that the issue comes from the geodesic incompleteness of the
target R

2\{0}. However, there are examples of failure of local well-posedness below the
critical regularity for target S2, see [1].
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It turns out that the counterexample provided above is sharp, due to the
following theorem of Klainerman-Machedon [24] and Klainerman-Selberg
[28]: we formulate it as follows (the original work only referred to wave
maps confined to single coordinate charts).

Theorem 3.1. Let (M, g) be uniformly isometrically embeddable6 into
a Euclidean space. Then the wave maps problem is strongly locally well-
posed in H

n
2 +ε, any ε> 0, n≥ 2. Here the norm ||u||

H
n
2 +ε is defined by using

ambient coordinates.

We outline here roughly the procedure for obtaining this theorem.
Observe that the preceding argument established fixed time slice estimates
on ∇u, even though the logic of the preceding argument only presupposes
L1([0, T ], H

n
2 +ε) control of the nonlinearity Γ(u)(∇u)2. In effect, it is more

natural to work with L2 based spaces, on account of Plancherel’s theorem.
We then seek spaces X, Y (the latter to hold the nonlinearity) of func-
tions defined (possibly locally) on space-time and satisfying the following
requirements:
Abstract function space requirements:

(i) X ⊂ C([0, T ], H
n
2 +ε) ∩ C1([0, T ], H

n
2 −1+ε), ε> 0

(ii) X ×X ⊂ X
(iii) ∇x,tX ×∇x,tX ⊂ Y, Y ×X ⊂ Y
(iv) �−1Y ⊂ X

(v) S(t)[H
n
2 +ε] ⊂ X, U(t)[H

n
2 −1+ε] ⊂ X.

It turns out that these requirements cannot quite work. First, due to
explicit examples in [39], the equation �u=u2

t on R3+1 is ill-posed in H2.
Wave maps have the benefit of exhibiting a special algebraic cancellation
structure, following Klainerman [20], called a null-structure. Hence (iii)
needs to replaced by the requirement

(iii’) Q0(X,X) ⊂ Y, Y ×X ⊂ Y , where Q0(u, v) =
∑n

ν=0 ∂νu∂
νv.

Further, the fact that free waves correspond to measures supported on
the light cone on the Fourier side lead to difficulties when working with
L2(Rn+1) based functions. Hence using a trick of Bourgain, working on a
finite time interval [0, T ], T > 0, one introduces a smooth cutoff χT (t) sup-
ported on a dilate of [0, T ] and satisfying χT |[0,T ] = 1. Then we require 7

(iv’) χT �−1Y ⊂ X

(v’) χTS(t)[H
n
2 +ε] ⊂ X, χTU(t)[H

n
2 −1+ε] ⊂ X.

6This means we assume that there exists an isometric embedding such that the 2nd
fundamental form has bounded derivatives with respect to geodesic coordinates on M .
Thus one has (1.3), which has the same structure as (1.1).

7The implied constants depend on T .
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Function spaces X,Y satisfying the requirements (i), (ii), (iii’), (iv’),
(v’), were introduced in [24], in fashion similar to the Xs,b or Bourgain
spaces introduced in the context of the nonlinear Schrodinger equation. The
idea is to introduce a family of spaces analogous to Sobolev spaces but with
weights on the Fourier side reflecting the geometry of the light cone.

Definition: Define Xs,b to be the completion of S(Rn+1) with respect
to the norm

||u||2Xs,b :=
∫

Rn+1

(
1 + [|ξ| + |τ |]2

)s (1 + ||τ | − |ξ||2
)b |ũ|2(τ, ξ)dτdξ

Here we denote the space-time Fourier transform by8

ũ(τ, ξ) :=
∫

Rn+1
u(t, x)e−i(tτ+x·ξ)dtdx

Then we have the theorem of Klainerman-Machedon and Klainerman-Selberg
[24, 28, 29]:

Theorem 3.2. Let b> 1
2 , s= n

2 +ε, n≥ 2. Then the embeddings (i), (ii),
(iii’), (iv’), (v’) are true.

One version of the proof proceeds by first showing it for truncated free
waves as inputs9 and then using the following superposition principle for
Xs,b :

Lemma 3.3. Let u ∈ Xs,b, b> 1
2 . Then we can write

u=
∫

R

uada with
∫

R

||ua||L∞
t Hs

x
da � ||u||Xs,b ,

where each function ua = eiatφa, with �φa = 0.

Proof. This is easily seen by writing

ũ(τ, ξ) =
∫

R

δ(τ − |ξ| − a)ũ(|ξ| + a, ξ)da, ũa := δ(τ − |ξ| − a)ũ(|ξ| + a, ξ)

and then, using b> 1
2 and the Cauchy-Schwarz inequality,∫

R

(∫
Rn

(1 + |ξ|)2s|ũ|2(|ξ| + a, ξ)dξ
) 1

2

da

=
∫

R

(1 + |a|)−b

(∫
Rn

(1 + |ξ|)2s(1 + |a|)2b|ũ|2(|ξ| + a, ξ)dξ
) 1

2

da

≤
(∫

R

(1 + |a|)−2bda

) 1
2
(∫

Rn

(1 + |ξ|)2s(1 + |a|)2b|ũ|2(|ξ| + a, ξ)dξda
) 1

2

,

whence
∫

R
||ũ(|ξ| + a, ξ)||Hsda � ||u||Xs,b . �

8By contrast, we denote the spatial Fourier transform
∫

Rn e−ix·ξf(x)dx by f̂(ξ).
9Thus one considers for example Q0(u, v) where u, v are free waves.
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The role of the null-structure is easily seen by noting the identity
2∂νu∂

νv= �(uv) − (�u)v − u(�v). Hence one essentially reduces the proof
of theorem 3.2 to establishing (i), (ii), and the 2nd part of (iii’). We refer
to [29] for the details. The local solution is then constructed by a simple
iteration procedure in the Banach space X. Another version of the proof
proceeds via (space-time) frequency localization as well as Strichartz esti-
mates, as detailed in the next section, which deals with well-posedness at
the critical level. See e.g., [29].

4. Small data global existence theory

One strategy toward global existence is using Klainerman’s method of
commuting vector fields, which is well adapted to equations exhibiting a
null-form structure, such as wave maps. See, e.g., [21, 53]. The difficulty
with this approach is that the smallness requirement for the data is too
stringent to use it as stepping stone toward the large data global existence
problem in the pivotal energy critical case n= 2. Indeed, for energy critical
problems(like the 2+1-dimensional wave maps), the most natural approach,
see [8], is to first establish weak global well-posedness for small data at the
energy level and then show, using a Morawetz type monotonicity statement,
that the energy cannot concentrate inside a backward light cone. This suffices
due to the following

Lemma 4.1. Assume that the Cauchy problem for wave maps
u : R2+1 −→M is weakly globally well-posed for data of small energy. Also,
assume that the energy cannot concentrate in light cones. This means that
for every light cone10 C±

t0,x0
= {(t, x)|t − t0 = ± |x − x0|}, we have limt→t0∫

t×Rn∩C±
t0,x0

[|ut|2 + |∇u|2]dx= 0, see comments in the proof below.Then the
problem is globally well-posed in the sense of global regularity preservation
for data in Hs ×Hs−1, s> 1.

Proof. Assume that the wave map breaks down at time 0<t=T <∞,
and exists for t<T . We may truncate the data at time t= 0 to compact
support. We then claim that if ε> 0 is such that ||u0||Ḣ1 +||u1||L2 <ε ensures
global regularity preservation, there exists a time T0 <T such that∫

|x−x0| ≤ 2(T−T0)
[|ut|2 + |∇u|2](T0, x)dx< ε, ∀x0 ∈ Rn

Here we assume M ↪→ Rk via isometric embedding. Indeed, this follows
easily from a compactness argument and finite propagation speed, as well as
the local energy inequality. By global weak well-posedness for small data11,

10Here the choice of the sign depends on what side of the plane t = t0 the wave map
exists, at least locally.

11Strictly speaking, one has to truncate the solution on the slice t = T0 to define it on
all of R

n with small energy. This may be done upon choosing the embedding M ↪→ R
k to

have bounded image, for exampe, see [43].
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we may extend u of the same regularity as the initial data to the cone
|x− x0|= 2(T − T0) − (t− T0), T0 ≤ t≤ 2T − T0. The solutions constructed
on the cones as x0 varies agree on the overlap by finite propagation speed,
and hence we can extend the solution past the purported blow up time,
contradicting the assumption. �

4.1. Strong global wellposedness in the critical Besov space. A
first step in this direction was taken by Tataru, who proved the following
result, [66, 67]:

Theorem 4.2. (Tataru) The problem (1.1) is globally strongly well-posed
for small data (u0, u1) in the Besov space Ḃ

n
2 ,1 × Ḃ

n
2 −1,1, n≥ 2.

The definition of the spaces Ḃ
n
2 ,1 involves Littlewood-Paley frequency

localizers as follows: choose a nonnegative χ ∈ C∞
0 with support in [14 , 4]

and such that
∑

k∈Z χ( x
2k ) = 1 for all x ∈ R> 0. Then we define

Pkf(x) = (2π)−n

∫
Rn

χ

(
ξ

2k

)
f̂(ξ)eix·xdξ,

where f̂(ξ) =
∫

Rn f(x)eix·ξdx. Note that provided f ∈ C∞
0 (Rn), we have

f =
∑

k∈Z Pkf . One then defines ||φ||
Ḃ

n
2 ,1(Rn) :=

∑
k∈Z 2

nk
2 ||Pkφ||L2(Rn) for

smooth compactly supported φ, say, and denotes by Ḃ
n
2 ,1 the closure. We

immediately observe the important embedding Ḃ
n
2 ,1(Rn) ⊂ L∞(Rn). In par-

ticular, enforcing a smallness condition on the initial data in the Besov space
ensures that the wave map will remain in a single coordinate patch, whence
one may work globally in time with the formulation (1.1). The crux toward
establishing Tataru’s result in high dimensions, i.e., n≥ 4, consists in fre-
quency localization and exploitation of Strichartz estimates, which are quite
useful in a high dimensional setting. We recall here, see for example [51, 53]

Theorem 4.3. (Strichartz estimates in high dimensions) Assume �u= 0,
(u, ut)|t=0 = (u0, u1), u ∈ C∞(Rn+1) and compactly supported on fixed time
slices. Then we have for n≥ 4

sup
1
p
+n−1

2q
≤ n−1

4 , p ≥ 2
||P0u||Lp

t Lq
x(Rn+1) � ||u0||L2 + ||u1||L2

Now consider the nonlinearity in (1.1), which we simplify to 2Q0(u, u) =
�(u2) − 2(�u)u. As the free wave propagator respects frequency localiza-
tion, one first tries to control the frequency localized constituents of the
nonlinearity, i.e., the expressions Pk[�(u2)− 2(�u)u]. For this one needs to
find a suitable Banach space to iterate in. The idea here is to place each
frequency localized component of u in a Banach space which is compatible
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with the scaling underlying the equation. A natural candidate for such a
space is provided by the space

X =

⎧⎨⎩φ|
∑
k∈Z

sup
1
p
+n−1

2q
≤ n−1

4 , p ≥ 2
2
[

1
p
+n

q

]
k||Pkφ||Lp

t Lq
x
<∞

⎫⎬⎭
The problem here is that this space is not well-behaved with respect to
applying the operator �. The solution here is to shrink the space by impos-
ing a weak type of Xs,b control in addition: introduce the dyadic space-
time frequency localizers Qj via Q̃jφ=χ

( ||τ |−|ξ||
2j

)
φ̃(τ, ξ), j ∈ Z. Hence

again
∑

j∈Z Qjφ=φ provided φ ∈ C∞
0 (Rn+1), say. Then our new space X

is defined to be

X =

⎧⎨⎩φ|
∑
k∈Z

sup
1
p
+n−1

2q
≤ n−1

4 , p ≥ 2
2
[

1
p
+n

q

]
k||Pkφ||Lp

t Lq
x
<∞

⎫⎬⎭
∩
{
φ|
∑
k∈Z

sup
j∈Z

2
j
2+nk

2 ||PkQjφ||L2
t L2

x
<∞

}
The correct space to place the nonlinearity in is then, for example, the
following (see [66]) :

Y =

{
φ|
∑
k∈Z

[2
(

n
2 −1
)
k||Pkφ||L1

t L2
x
<∞

}

Then one can show the embeddings12,13,14

�IX ×X ⊂ Y, �−1Y ⊂ X, I =
∑
k∈Z

PkQ< k

These in conjunction with the algebra estimates X×X ⊂ X, X×Y ⊂ Y and
the structure of Q0 suffice to set up an iteration scheme for small data. To
see how the embedding �IX ×X ⊂ Y can hold, let us consider a simplified
situation in which both factors are of unit frequency. Thus Iu=P0Q≤ 0u,
v=P0v. Then∑

k∈Z

2
(

n
2 −1
)
k||Pk[�Iuv]||L1

t L2
x

� ||�Iu||L2
t L2

x
||v||L2

t L∞
x

� ||u||X ||v||X

12The operator �−1 refers to the solution of the inhomogeneous problem given by the
Duhamel parametrix.

13One uses the fact that Pk(L1
t L

2
x) ⊂ Ẋ

0,− 1
2

k = {φ| supj∈Z 2− j
2 ||PkQjφ||L2

t L2
x

< ∞}.
14We define Q < k :=

∑
j < k Qj . The point of the operator I is to ensure restriction

to the hyperbolic region where the distance to the light cone is at most comparable to the
spatial frequency. In the opposite case, expanding the null-form ∂νu∂νu as above may be
harmful.
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Here one uses that the summation over k is effectively only over k≤O(1),
due to our frequency support assumptions. The fact that �−1Y ⊂ X is partly
due to the Strichartz estimates. We refer for a detailed proof of Theorem 4.2
in case n≥ 4 to [66].

The cases n= 2, 3, treated in [67], are significantly harder, and involve a
different kind of decomposition of u into travelling waves. We shall discuss
this in more detail below.

4.2. Weak global well-posedness in the critical Sobolev space.
The first result establishing weak global well-posedness for small energy
data in the case n= 2 (as well as n= 3, 4) was obtained by Tao in [62], in
the case when the target M =Sk, k≥ 1. This was preceded by [61] which
dealt with weak global well-posedness for data small in Ḣ

n
2 , n≥ 5. The

challenge in improving Tataru’s result to data in Ḣ
n
2 lies in dealing with

what one may refer to as the summation problem: recall that the strategy
for proving Theorem 4.2 was to control the frequency localized components
of the nonlinearity and then invoke the Besov structure to sum over all
frequencies15 involved. However, when working with Sobolev spaces, one
can only assume square summability of the various frequency components,
and hence summing over all possible frequency interactions becomes quite
challenging. Tao’s method takes advantage of the intrinsic Gauge freedom
of the problem, albeit in somewhat complicated form. This was clarified in
[27, 42] and especially [50], where Tao’s result was extended to a much
more general class of target manifolds and the case n≥ 4. As hinted at in
the preceding section, the case n≥ 4 is significantly simpler than the case
n= 3 and especially the case n= 2, as the dispersive effects of free waves
become weaker in lower dimensions and hence estimates from the linear
theory become increasingly scarce, forcing one to exploit more and more
of the fine structure of the problem. Indeed, in [50] it became clear that
in dimensions n≥ 4, one does not have to invoke the somewhat difficult
Xs,b-space framework, but Strichartz estimates alone suffice. We cite

Theorem 4.4. [27](n≥ 5, boundedly parallelizable) [42](n≥ 4, compact
symmetric space target), [50](n≥ 4, uniformly isometrically embeddable tar-
gets) Let n≥ 4 and let (M, g) ↪→ Rk be uniformly isometrically embed-
dable into a Euclidean space16. Then wave maps u : Rn+1 −→M are weakly
globally well-posed for data small in Ḣ

n
2 . More precisely, this statement

applies to the equation for u obtained in terms of the ambient coordinates
on Rk, (1.3).

15The only delicate issue then is to deal with destructive resonance phenomena, i.e.,
two high frequency waves resulting in a cascade of low frequencies. This turns out to be
fairly simple.

16This means we assume that there exists an isometric embedding such that the 2nd
fundamental form has bounded derivatives with respect to geodeic coordinates on M of
all orders.
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The method of Klainerman-Rodnianski [27], Nahmod-Stefanov-Uhlenbeck
[42] and Shatah and Struwe in [50] exploits the Gauge freedom as in Tao’s
breakthrough work [61, 62], but from the point of view of the intrinsic for-
mulation (1.4), (1.5). Observe that from there one may infer a system of
wave equations for the φi

α, which may be seen to be of the form

�φi
α = − 2Γi

jkφ
k
ν∂

νφj
α + ”φ3”

Using Strichartz estimates alone and without introduction of a null-from
structure, the quadratic term on the right cannot be estimated. The trick
then consists in realizing that the product Ai

jν := − 2Γi
jkφ

k
ν is effectively a

skew-symmetric (in i, j) connection form. This is of course a reflection of the
fact that {ei} is an orthonormal frame. Now one changes the Gauge, i.e.,
replaces {ei} by {ẽi} := {gei} for a suitable SO(k)-valued function g (with
k the dimension of M), and (Ai

jν)ij =: Aν by Ãν := g−1∂ig + g−1Aνg. Then
the corresponding equation for φ̃i

α becomes

�φ̃i
α = Ãi

jν∂
ν φ̃j

α + ”φ̃3”

Imposing the Coulomb condition
∑n

i=1 ∂iÃi = 0, and using the crucial fact
that the curvature of the original connection Aν = (Ai

jν)ij, Fαβ = ∂αAβ −
∂βAα + [Aα, Aβ], is quadratic in φ thanks to (1.4), one can solve an ellip-
tic system of equations for the Ãα, resulting schematically in Ã=∇−1(φ2),
where ∇−1 stands for operators of the form ∇�−1. This Gauge condition is
of course quite classical, and was treated in the seminal paper [69] by Karen
Uhlenbeck. Thus the new leading term in the nonlinearity is now of the form

∇φ∇−1(φ2),

which is trilinear, and assuming the factors ∇φ, ∇−1(φ2) to be of the
same frequency, of essentially cubic form φ3 (we are careless here about
the distinction of φ̃, φ). One can now easily build a Banach space X based
on Strichartz estimates alone and of essentially the kind displayed in the
preceding subsection, with

||∇φ∇−1(φ2)||
L1

t Ḣ
n
2 −1 � ||φ||3X ,

as long as n≥ 4, and Strichartz estimates allow one to close a bootstrapping
argument. We refer to [50] for details, but note that the use of Lorentz spaces
there is easily avoidable due to the L2

tL
6
x-endpoint for Strichartz estimates

in n= 4 dimensions.
The extension of theorem 4.4 to the significantly more difficult cases

n= 2, 3 and target different than Sk was achieved in [33, 35, 68]. We state

Theorem 4.5. [33, 35, 68]. Let the target M be uniformly isometrically
embeddable into a Euclidean space or let M be the hyperbolic plane. Then
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the Cauchy problem for wave maps originating on Rn+1, n= 2, 3, is weakly
globally well-posed for data of small critical Sobolev norm.

We explain here the method of [33], where the Gauge freedom becomes
particularly transparent17 when the target is H2. We state the following

Theorem 4.6. [33] The Cauchy problem for wave maps u : R2+1 −→ H2

is globally well-posed for data of small energy. More precisely, for given
smooth data (u0, u1) : R2 −→ H2 × TH2, which, upon writing u0(x) =
(x,y)(x), y > 0, u1(x) = (x̃, ỹ)(x) (where we use the identification
T(x,y)H2 = R2 via (x̃, ỹ) → x̃ ∂

∂x + ỹ ∂
∂y) satisfy the inequality

∫
R2

⎛⎝∑
i=1,2

[
∂ix
y

]2

(x)

⎞⎠+

⎛⎝∑
i=1,2

[
∂iy
y

]2

(x) +
[
x̃
y

]2

(x) +
[
ỹ
y

]2

(x)

⎞⎠ dx < ε

for ε > 0 sufficiently small, there exists a unique smooth wave map u :
R2+1 −→ H2 extending the data globally in time; thus (u, ut)|t=0 = (u0, u1).

The proof departs from the intrinsic formulation in terms of the global
orthonormal frame {e1, e2} := {−y ∂

∂x ,−y ∂
∂y}, where we use the identifica-

tion H2 = {(x,y)|y> 0}. Then we have (1.6), (1.7), which can be used to
deduce a system of wave equations for the quantities φi

α, of the following
schematic form:

�φ1
α = − 2φ1

ν∂
νφ2

α + ”φ3”, �φ2
α = + 2φ1

ν∂
νφ1

α + ”φ3”,

where the fine structure of the terms ”φ3” has been suppressed. Given the
scarcity of Strichartz estimates in 2+1 dimensions (recall that one can only
control norms ||u||Lp

t Lq
x

where 1
p + n−1

2q ≤ n−1
4 , which for n= 2 translates into

p≥ 4), there is no hope to control the quadratic terms on the right hand side
using Strichartz estimates alone. Indeed, there is no hope to place these in
the energy space L1

tL
2
x even at the fixed frequency k= 0.

One then passes into the Coulomb Gauge following the procedure detailed
above in the case n≥ 4. Specifically, we introduce the complex valued
functions

ψα =ψ1
α + iψ2

α := (φ1
α + iφ2

α)e−i�−1 ∑
j=1,2 ∂jφ1

j

These quantities then satisfy a remarkable divergence curl system of the
following form:

∂αψβ − ∂βψα = iψβ�−1
∑

j=1,2

∂j(ψ1
αψ

2
j − ψ2

αψ
1
j )

− iψα�−1
∑

j=1,2

∂j(ψ1
βψ

2
j − ψ2

βψ
1
j )(4.1)

17One is aided by the fact that the Gauge group U(1) is abelian in this case.
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∂νψ
ν = iψν�−1

∑
j=1,2

∂j(ψ1
νψ

2
j − ψ2

νψ
1
j ).(4.2)

From here one can deduce a system of wave equations as follows:

�ψα = i∂β

⎡⎣ψα�−1
2∑

j=1

∂j

[
ψ1

βψ
2
j − ψ2

βψ
1
j

]⎤⎦(4.3)

− i∂β

⎡⎣ψβ�−1
2∑

j=1

∂j

[
ψ1

αψ
2
j − ψ2

αψ
1
j

]⎤⎦
+ i∂α

⎡⎣ψν�−1
2∑

j=1

∂j

[
ψ1νψ2

j − ψ2νψ1
j

]⎤⎦ .
The virtue of these equations is that the right hand side is roughly speak-
ing of the form ∇[ψ∇−1[ψ2]], and hence of cubic form, which in some sense
provides more room for estimates. Nonetheless, finding a space X holding
the functions ψα as well as a space Y holding the nonlinearity still appears
extraordinarily challenging, and the strategy in [33] uses a refined version
of the spaces in [62], which in turn are based on Tataru’s travelling wave
decompositions in [67]. The rough idea behind these spaces is as follows:
using the schematic form ∇[ψ∇−1[ψ2]] for the nonlinearity for now, localize
it to frequency k= 0, i.e. replace it by P0∇[ψ∇−1[ψ2]]. Ideally, assuming con-
trol over a Strichartz type norm ||Pkψ||L2

t L∞
x

, we could at least in principle
try to place this expression into L1

tL
2
x by using an estimate of the form

||P0∇[ψ∇−1[ψ2]]||L1
t L2

x
� ||ψ||L2

t L∞
x
||∇−1[ψ2]||L2

t L2
x

Here the 2nd term could be estimated, at least when restricted to frequencies
≥ 0, by

||P≥ 0∇−1[ψ2]||L2
t L2

x
� ||ψ||L2

t L∞
x
||ψ||L∞

t L2
x

This procedure unfortunately fails for several reasons. Most prominently, in
n= 2 spatial dimensions, there is no hope to recover control over ||ψ||L2

t L∞
x

using Strichartz estimates, as the best such estimate available is for ||ψ||L4
t L∞

x
,

see theorem 4.3.
In spite of this, it turns out and is well-known (e.g., [70]) that in cer-

tain situations, it is possible to obtain control over ||ψ1ψ2||L2
t L2

x
, provided

ψ1, ψ2 are free waves satisfying a certain angular separation condition for
their space-time frequency supports. Indeed, letting ψ1,2 be free waves, say
at frequency 0, write ψ1 = μ̃1, ψ2 = μ̃2, where˜denotes space-time Fourier
transform, and μ1,2 = δ(τ − |ξ|)f1(ξ), μ2 = δ(τ − |ξ|)f2(ξ), are measures sup-
ported on the light cone. Then, assuming the angular supports of f1,2 to
be separated, we have ψ̃1ψ2 =μ1 ∗ μ2, whence ||ψ̃1ψ2||L1

τ L1
ξ
≤ ||f1||L1 ||f2||L1 ,
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||ψ̃1ψ2||L∞
τ L∞

ξ
� ||f1||L∞ ||f2||L∞ , and from here one gets ||ψ1ψ2||L2

t L2
x

�
||ψ1||L∞

t L2
x
||ψ2||L∞

t L2
x

by interpolation and Plancherel’s theorem.
The issue then becomes how to deal with bilinear interactions ψ1ψ2

where no angular separation condition for the Fourier support of the factors
is fulfilled. The standard way to deal with such a situation is to exploit an
additional cancellation stemming from a null-form structure in the equa-
tion at hand, for example one of type Qij(ψ1, ψ2) = ∂iψ1∂jψ2 − ∂jψ1∂iψ2.
However, such a structure is not apparent in (4.3).

To remedy this situation, one resorts to a Hodge type decomposition,
which works due to (4.1), see [33]. This trick is inspired due to a similar pro-
cedure in [26]. Specifically, one writes ψν =Rνψ+χν where Rν = ∂ν

√−�−1,
ν = 0, 1, 2, and we impose the vanishing divergence condition

∑
i=1,2 ∂iχi = 0.

From this one easily deduces relations of the schematic form
χ=∇−1[ψ∇−1[ψ2]]. Now one substitutes ψν =Rνψ+χν into (4.3). The null-
structure emerges if one only substitutes gradient type terms Rνψ. On the
other hand, the strategy implemented in [33] is that substituting at least
one term χν for ψν , one has ’more room’ for estimates due to the inherently
multilinear structure of χ.

On a more technical level, the above intuition needs to be translated to
a context in which the factors ψ1,2 etc are no longer free waves. A reasonable
procedure is to use function spaces whose elements are built up from pieces
which in some way behave like free waves. The breakthrough paper [67],
which also provided the basis for much of the harmonic analysis in [62],
achieves this by decompositions into functions replicating the behavior of
travelling waves. Specifically, the intuition again comes from free waves: let
�u= 0, (u, ut)|t=0 = (0, g), in the context of R2+1. Then we have

u(t, x) = c

∫ 2π

0

∫ ∞

0

eit|ξ| − e−it|ξ|

2|ξ| eix·ξ ĝ(|ξ|, ω)|ξ|d|ξ|dω

=
∫ 2π

0
aω(t + x · ω)dω −

∫ 2π

0
bω(−t + x · ω)dω

where we define aω(s) = c
∫∞
0 eis|ξ|ĝ(|ξ|, ω)d|ξ|, and similarly for bω(s). Note

that each of the functions (t, x) → aω(t + x · ω), (t, x) → bω(−t + x · ω),
is a travelling wave. Furthermore, from Plancherel’s theorem and Holder’s
inequality, we can conclude that if the support of ĝ(ξ) is contained in the
region |ξ| ∼ 1, we have∫ 2π

0
||aω(.)||L2

s
dω � ||g||L2

x
,

∫ 2π

0
||bω(.)||L2

s
dω � ||g||L2

x

Introduce the ‘null-frame coordinates’

tω :=
1√
2
(1, ω) · (t, x), xω = (t, x) − tω√

2
(1, ω),
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Then if we abuse notation and write aω(t, x) := aω(t + x · ω) etc, we have
just observed that

∫ 2π
0 ||aω(t, x)||L2

tω
L∞

xω
dω � ||g||L2 , and similarly for bω. In

other words, free waves can be written as superpositions of travelling waves
which satisfy the preceding relations. To move beyond the context of free
waves and yet retain the property of decomposability into functions behav-
ing in some sense like travelling waves, one introduces an atomic Banach
space. More specifically, for reasons which will become apparent soon, one
introduces a Banach space for each angular sector κ ⊂ S1, as follows: define
PW [κ] to be the atomic Banach space whose atoms are functions ψ satisfy-
ing infω∈κ ||ψ||L2

tω
L∞

xω
≤ 1. This means that we define the norm ||.||PW [κ] as

follows: assuming ψ ∈ C∞
0 (Rn)

||ψ||PW [κ] := inf∫
κ φωdω=ψ

∫
κ
||φω||L2

tω
L∞

xω
,

where the infimum is over all representations
∫
κ φωdω = ψ with ω →

C∞
0 (Rn+1) continuous, say. The norms ||.||PW [κ] are effectively our substitute

for the missing ||.||L2
t L∞

x
.

Now consider a product φ1φ2 where the factors have angularly separated
Fourier support, say along sectors κ1, κ2 ⊂ S1. Also, suppose that the dis-
tance is much larger than |κ2|. Assuming control over ||φ1||PW [κ1], we see
that it suffices to control a norm such as supω/∈2κ2

||φ2||L∞
tω

L2
xω

in order to be
able to bound ||φ1φ2||L2

t L2
x
. That a slight modification of this indeed works

is suggested by the following lemma, which tests this ansatz by looking at
essentially free waves again:

Lemma 4.7. Let ψ be a temporally truncated free wave with compact
spatial support on fixed time slices in the context of R2+1. Thus we have
ψ(t, x) =χ(t)ψ̃(t, x) where �ψ̃= 0, and χ(.) smoothly localizes to a compact
time interval [−T, T ], say. Letting P0,κ denote a Fourier multiplier which
localizes smoothly to (logarithmic) frequency ∼ 0 and angular sector κ, and
further Q+

< −2l−10 a space-time frequency multiplier smoothly restricting to
distance ≤ 2−2l−10 to the light cone, l ∈ N, as well as the upper half space
τ > 0, we have the inequality

sup
ω/∈2κ

dist(ω, κ)||P0,κQ
+
< −2l−10ψ||L∞

tω
L2

xω
� ||ψ||

Ẋ
1, 12 ,1
0

=
∑
j∈Z

2
j
2 ||Qjψ||L2

t L2
x

The latter quantity is bounded by the energy of ψ̃.

Proof. Note that for j < − 2l − 10, using Hoelder’s and Young’s
inequality

||P0,κQ
+
j ψ||L∞

tω
L2

xω
≤ ||P0,κQ

+
j ψ||L2

ξω
L1

τω
� [dist(κ, ω)]−12

j
2 ||Qjψ||L2

t L2
x
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To see this, one needs to obtain a restriction on the interval for τω = 1√
2
(1, ω)·

(τ, ξ) on the space time Fourier support of P0,κQ
+
j ψ: note that for fixed

ξω =
(
τ − τω√

2
, ξ − τωω√

2

)
:= (ξ1

ω, ξ
2
ω), one has

2j ∼
∣∣∣∣∣
(
ξ1
ω +

τω√
2

)2

−
∣∣∣∣ξ2

ω +
τωω√

2

∣∣∣∣2
∣∣∣∣∣ =

∣∣∣∣(ξ1
ω)2 −

∣∣ξ2
ω

∣∣2 +
τω√
2
(τ − ξ · ω)

∣∣∣∣
Further, we can bound from below

|τ − ξ · ω|= ||τ − |ξ| + |ξ| − ξ · ω|| � [dis(ω, κ)]2

on account of ||τ−|ξ|| ! 2−2l ≤ [dis(ω, κ)]2. This implies that τω is restricted
to an interval of length ∼ (dist(ω, κ))−22j . �

The preceding observations render the functional framework below plau-
sible. We need to define it carefully to state the precise null-form estimate,
theorem 4.8, which is at the heart of the paper [33]. First, we define (using
notation from [62])

||ψ||NFA[κ]∗ := sup
ω/∈2κ

dist(ω, κ)||ψ||L∞
tω

L2
xω

Then we define

||ψ||S[k,κ] := ||ψ||L∞
t L2

x
+ 2− k

2 |κ|− 1
2 ||ψ||PW [κ] + ||ψ||NFA[κ]∗

The spaces: For every integer l <−10, subdivide S1 into a uniformly finitely
overlapping collection Kl of caps κ of diameter 2l. Also, for every integer λ
with −10≥λ≥ l, we subdivide the angular sector {ξ ∈ R2| ξ

|ξ| ∈ κ, |ξ| ∼ 2k}
into a uniformly finitely overlapping collection Ck,κ,λ of slabs R of width
2k+λ. We introduce various localization operators associated with these
regions: for each κ ∈ Kl, choose a smooth cutoff aκ : S1 → R≥ 0 supported
on a dilate of κ. These are to be chosen such that

∑
κ∈Kl

aκ = 1. We also
introduce cutoffs mR(.) : R> 0 → R≥ 0 such that the cutoff mR(|ξ|)aκ

( ξ
|ξ|
)

localizes to a dilate of the slab R. Also, we require that
∑

R∈Ck,κ,λ

mR(|ξ|) =χ0
( |ξ|

2k

)
. We have the associated pseudo differential operator P̃Rψ:

̂̃PRψ(t, ξ) =mR(|ξ|)aκ

(
ξ

|ξ|

)
ψ̂(ξ)
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We also have the ΨDO’s Pk,κ associated with multiplier aκ

( ξ
|ξ|
)
χ0
( |ξ|

2k

)
. Then,

define

||ψ||S[k] : = ||ψ||L∞
t L2 + ||ψ||

Ẋ
0, 12 ,∞
k

+ ||ψ||
Ẋ

− 1
2 ,1,2

k

(4.4)

+ sup
±

sup
l < −10

sup
−10 ≥ λ ≥ l

|λ|−1

⎛⎝∑
κ∈Kl

∑
R∈Ck,κ,λ

||P̃RQ
±
< k+2lψ||2S[k,±κ]

⎞⎠1
2

.

Here we use the notation ||φ||
Ẋa,b,c

k
:= 2ak[

∑
j∈Z(2jb||Qjφ||L2

t L2
x
)c]

1
c . This is

the norm used to control the frequency-k piece of ψ.
Next, let N [k] be the atomic Banach space whose atoms are Schwartz

functions F ∈ S(R2+1) with spatial Fourier support contained in the region
|ξ| ∼ 2k and

(1) ||F ||L1
t Ḣ−1 ≤ 1 and F has modulation < 2k+100.

(2) F is at modulation18 ∼ 2j and satisfies ||F ||L2
t L2

x
≤ 2

j
2 2k.

(3) F satisfies ||F ||
Ẋ

− 1
2 ,−1,2

k

≤ 1.

(4) There exists an integer l < − 10, and Schwartz functions Fκ with
Fourier support in the region{

(τ, ξ)| ± τ > 0, ||τ | − |ξ|| ≤ 2k−2l−100,
ξ

|ξ| ∈ ±κ

}
with the properties

F =
∑
κ∈Kl

Fκ,

⎛⎝∑
κ∈Kl

||Fκ||2NFA[κ]

⎞⎠ 1
2

≤ 2k

In the last inequality, NFA[κ] denotes the dual of NFA[κ]∗ (the
completion of S(R2+1) with respect to ||.||NFA[κ]∗) used in the def-
inition of S[k, κ]: Thus NFA[κ] is the atomic Banach space whose
atoms F satisfy

1
dist(ω, κ)

||F ||L1
tω

L2
xω

≤ 1

for some ω /∈ 2κ.
We can now state the core null-form estimate of [33], which is the crux for

estimating the right hand side of (4.3). Note that the expressions estimated
below, up to the frequency localizations, are obtained by substituting the
gradients Rνψ for ψν on the right of (4.3):

18By this it is meant that ||τ |− |ξ|| ∼ 2j on the space-time Fourier support of F . The
term ’modulation’ is adopted from [62].
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Theorem 4.8. [33] Let I =
∑

k∈Z PkQ< k+100. Then there exist numbers
δ1,2 > 0 such that

∥∥∥∥∥∥∂βPk

⎡⎣RαPk1ψ1�−1
2∑

j=1

∂jI[RβPk2ψ2RjPk3ψ3 −RβPk3ψ3RjPk2ψ2]

⎤⎦+ ∂αPk

(4.5)

×

⎡⎣RβPk1ψ1�−1
2∑

j=1

∂jI
[
RβPk2ψ2RjPk3ψ3 −RjPk2ψ2R

βPk3ψ3

]⎤⎦∥∥∥∥∥∥
N [k]

≤C2δ1 min{−min{k1−k,k2−k,k3−k},0}

×
∏

i

2δ2 min{maxj �=i{ki−k,ki−kj},0}∏
l

||Pkl
ψl||S[kl],

(4.6)∥∥∥∥∥∥Pk∂
β

⎡⎣RβPk1ψ1�−1
∑

j

∂jI [RαPk2ψ2RjPk3ψ3 −RjPk2ψ2RαPk3ψ3]

⎤⎦∥∥∥∥∥∥
N [k]

≤C2δ1 min{−min{k1−k,k2−k,k3−k},0}

×
∏

i

2δ2 min{maxj �=i{ki−k,ki−kj},0}∏
l

||Pkl
ψl||S[kl].

We observe that this theorem effectively deals with the summation
problem, as summing over the indices ki for fixed k is reduced to adding
the squares of ||Pki

ψ||S[ki], as is easily verified. Full details are to be found
in [33].

5. Approaching the large data problem in the critical
dimension n =2 and hyperbolic target

With the result of the preceding section as well as lemma 4.1 in hand,
global regularity for wave maps u : R2+1 −→H2 with large data will follow
if we establish a non-concentration result for the energy inside light cones.
Unfortunately, there does not seem to be a straightforward procedure for
this at the present time, and the most promising strategy may be a variant
of Bourgain’s induction on energy method, [4]: the idea here is to not only
show global regularity preservation, but furthermore obtain global control
over a suitable space-time norm of the wave map, in particular ensuring a
type of asymptotic growth control. To implement Bourgain’s method, one
first needs to establish a good perturbation theory for wave maps, of the
following kind. We let u : [−T, T ] × R2 −→H2, T ∈ (0,∞], a smooth wave
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map, with derivative components φ with respect to the standard frame and
ψ in the Coulomb Gauge:

Perturbative setup:
Find a family of norms ||ψ||X([−T,T ]×R2 , scaling like ||.||L∞

t L2
x
, and increas-

ing with respect to T , with the properties that

(i) ||ψ||X([−∞,∞]×R2) <∞ whenever ψ smooth and the energy is small
enough.

(ii) supT > 0 ||ψ||X([−T,T ]×R2 <∞ and smooth data implies ψ globally
smooth.

(iii) assuming ||ψ||X([−∞,∞]×R2 <∞, there exists an open neighborhood
U of the data (u0, u1) in the energy topology such that for a wave
map (ũ, φ̃, ψ̃) with data (ũ0, ũ1) ∈ U , we have ||ψ̃||X([−∞,∞]×R2 <∞.

Goal: show that ∀E0 ≥ 0, supE[u] ≤ E0
||ψ||X([−∞,∞]×R2) =C(E0)<∞.

Here the supremum is taken over all smooth wave maps u : R2+1 −→H2

of energy ≤E0.
Note that the perturbative setup ensures that the set of energies for

which C(E0)<∞ is nonempty and open. Hence if the Goal is false, there
exists a least energy for which C(E0) =∞. Ideally, one wants to show that
there exists a wave map of energy E0 for which supT > 0 ||ψ||X([−T,T ]×R2 =∞.
This wave map being a least energy blow up solution has to be extremely
special, and one hopes to be able to rule out such solutions. More specifically,
the next section will discuss the ’bubbling off of a harmonic map’ scenario in
a symmetric situation, but a modification of which is believed to also apply
in the general case, see the discussion below. In particular, the non-existence
of finite energy harmonic maps from R2 to H2 should then rule out blow up
for target H2.

While there is no result yet outlining a general perturbation theory as
in the above setup, the functional framework detailed before should suffice
for this task. Moreover, due to the abelian nature of the Gauge group, the
Coulomb Gauge can be canonically constructed for target H2 even for large
energy wave maps. The more general case of targets M of dimension k≥ 3
and hence nonabelian Gauge group offers the additional challenge of con-
structing canonical Gauges substitutable for the Coulomb Gauge, which is
no longer canonically constructible for large data then. In the case of nega-
tive curvature, a promising candidate for such a Gauge has been announced
in [64].

Finally, we mention a partial large energy perturbative result, [36], which
is based on the fact, to be discussed in the next section, that the Cauchy
problem for radial data is globally well-posed, [8, 9]: we have the

Theorem 5.1. [36] Let (u0, u1) : R2 −→H2×TH2 be smooth, compactly
supported spherically symmetric Cauchy data. Then for any σ> 0, there
exists ε> 0 such that for all no longer necessarily spherically symmetric



GLOBAL REGULARITY AND SINGULARITY DEVELOPMENT 189

smooth initial data (ũ0, ũ1) : R2 −→H2 × TH2 which are ε-close to (u0, u1)
in the H1+σ-topology, one has global existence.

The proof of this theorem exploits additional information about the
pointwise decay of radial wave maps into geodesically convex targets, which
was derived in [9]. Part of the challenge consists in proving that the large
energy radial wave maps can be bounded with respect to the norms discussed
above. A further crucial ingredient in the proof is control over a certain range
of subcritical Sobolev norms for the radial wave map, which is a priori only
globally bounded in energy. For details, we refer to [36].

6. Imposing symmetry: radial and equivariant wave maps
in the case n =2

6.1. Radial wave maps. A wave map u : R2+1 −→M is called radial,
provided that it only depends on r if we equip R2 with polar coordinates
(r, θ). In this case, we have the following theorem due to Christodoulou-
Tahvildar-Zadeh and Struwe:

Theorem 6.1. [8, 58, 59] Let (u0, u1) : R2 −→M × TM be smooth
radial data, (M, g) a smooth Riemannian manifold which is either compact
or satisfies a suitable geodesic convexity type condition. Then there exists
a unique smooth and global-in-time wave map u : R2+1 −→M extending
(u0, u1).

This theorem was first proved in [8] for targets satisfying a type of
geodesic convexity condition, and then later relaxed to general targets in
[59], by means of a careful blow up analysis. We shortly explain the outline
of the argument in [8], which of course parallels the strategy for the general
case explained before:

(i) Establish a small data global well-posedness result.
(ii) Show that an energy concentration scenario is impossible.

An advantage of the radiality assumption is that if a singularity forms
(whence the energy concentrates in a light cone), this can only possibly occur
at the spatial origin r= 0. This is on account of the conservation of energy.
Furthermore, assuming an energy concentration scenario in a backward light
cone centered at the space-time origin ((t, r) = (0, 0), which we may always
arrange), pointwise estimates on certain components the energy momentum
tensor become possible. The latter is a family of functions Tμν , 0≤μ, ν≤ 2,
associated with the wave map u as follows:

Tμν = gij

(
∂μu

i∂νu
j − 1

2
mμν∂αu

i∂αuj

)
, mμν = Minkowski metric

Note that the wave maps condition implies the vanishing divergence equation

(6.1) ∇νTμν = 0,
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where we stress the use of covariant differentiation as this is to be valid
for arbitrary systems of coordinates on R2+1, in particular the polar ones
(t, r, θ). In the radial context, the equations (6.1) can be integrated along
characteristics to yield pointwise bounds inside the light cone and away
from the singularity, which then imply the vanishing of the kinetic part of
the energy in an averaged sense, see [8]:

(6.2) lim
T→0

1
|T |

∫
0 < |t| < |T |

∫
|x| ≤ |t|

|ut|2dx= 0

Furthermore, one can show that the the energy has to concentrate in arbi-
trarily narrow neighborhoods of the axis r= 0:

(6.3) lim
|t|→0

∫
|t| > |x| > λ|t|

[|ut|2 + |ur|2]dx= 0∀λ> 0

Assuming a kind of geodesic convexity assumption, one can bound the spa-
tial part of the local energy

∫
|x| < |t| |ur|2dx in terms of the temporal part∫

|x| < |t| |ut|2, which together with (6.2) and the monotonicity of the local
energy implies the impossibility of an energy concentration scenario in the
radial case.

This argument is extended in [58, 59] to the context of general compact
smooth targets. The argument in [58] is especially intuitive, and parallels
developments detailed below in the equivariant case: one uses (6.2), as well
as (6.3), to infer, using suitable rescalings of the wave map, existence of a
nontrivial finite energy harmonic map u0 : R2 −→Sk, which also needs to
be radial. This however is impossible, ruling out blow up.

We also mention here the paper [9], which provides detailed pointwise
asymptotics of radial wave maps, under a geodesic convexity type assump-
tion on the target. This work provides the basis for theorem 6.1. The inter-
esting issue remains as to whether the solutions constructed in [58, 59],
satisfy similar asymptotics.

6.2. Equivariant wave maps. Assume that the target M admits a
smooth S1 action, ρ : S1 → Isom(M). A wave map u : R2+1 −→M is called
equivariant with respect to this action, provided we have

(6.4) u(t, ωx) = ρ(ω)u(t, x), ∀ω ∈ S1

Here S1 acts on R2 in the canonical fashion as rotations. Paralleling the
developments for radial wave maps in [8], we have the following result by
Shatah-Tahvildar-Zadeh.

Theorem 6.2. [48] Let the target (M, g) be a warped product manifold
satisfying a suitable geodesic convexity condition. Then equivariant wave
maps u : R2+1 −→M with smooth data stay globally regular.
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We refer to [48] for a detailed statement, as well as further results,
including optimal local well-posedness results which are now subsumed by
the more general theory expounded in section 4.

Of particular interest is the case of equivariant wave maps u : R2+1 −→S2,
which does not satisfy the hypotheses of the preceding theorem. We let S1

act on S2 by means of rotations around the z-axis via ρ(ω) = kω, k ∈ Z\{0},
ω ∈ S1. Fixing a k, the wave map is then determined in terms of the polar
angle, and becomes a scalar equation on R1+1 as follows:

−utt + urr +
1
r
ur = k2 sin(2u)

2r2

The case k= 1 in particular is called co-rotational, and has aroused a lot
of interest, due to numerical experiments [3, 18], which suggested develop-
ment of singularities within finite time. A rigorous result establishing the
development of singularities [37] will be discussed below.

Recall that every homotopy class of maps u : S2 −→S2 has a harmonic
representative. Indeed, in terms of polar coordinates on S2 = R2 ∪ {∞} as
well as spherical coordinates on S2 these are given by

Qk : (r, θ)−→ (2 arctan(rk), kθ),

where k ∈ Z ∼= π2(S2). Alternatively, one may view Qk as the composition
of zk : C ∪ {∞} → C ∪ {∞} with the (essentially) stereographic projection
Q1. Each of these harmonic maps is of course a static wave map.

We observe that due to weak global well-posedness for small data as well
as energy conservation, a singularity in this context can only form at r= 0.
A general ’bubbling off’ theorem is due to Struwe in the co-rotational case
k= 1:

Theorem 6.3. [57] Let the wave map u : R2+1 −→S2 be co-rotational
and become singular at (t, r) = (0, 0). Then there exists a sequence of times
ti → 0, as well as scaling parameters λi with |λi| → ∞, and further |λiti|→∞,
such that we have

(6.5) u(ti, r) =Q1(λir) + ε(ti, r)

where the local energy of ε(ti, .), Eloc(ε(ti, .)), converges to 0. Explicitly, this
means

lim
i→∞

∫
r < |ti|

(
1
2
[ε2t (ti, r) + ε2r(ti, r)] +

sin2(ε(ti, r))
r2

)
rdr= 0

In other words, if a co-rotational wave map u : R2+1 −→S2 develops a
singularity, there exists a sequence of times ti approaching the singularity
such that, upon restricting the wave map to the light cone centered at the
singularity, it can be decoupled into a re-scaled harmonic map Q1(λir), as
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well as a radiation part, which converges to zero in the energy topology.
Furthermore, the re-scaling is strictly faster than self-similar, whence the
energy concentrates in a cuspidal region r < 1

λi
(on each time slice t= ti).

Note that the fact that |λiti| → ∞ is a reflection of (6.3), which can also be
proven for equivariant wave maps, see [48], by the same technique as in the
radial case.

Note that Struwe’s theorem does not make an assertion about the actual
occurence of singularity formation, nor about the rate at which |λi| → ∞.
For example, it is an open issue whether the above decomposition (6.5) holds
on each time sufficiently close to the blow up.

6.3. Consequences for non-symmetric wave maps in the
critical dimension. Theorem 6.3 indicates that singularity formation for
wave maps may be tied to an inherent lack of compactness, due to the scal-
ing invariance. Removing the equivariance enlarges this lack of compactness,
by adding translations, as well as Lorentz boosts, for example of the form

(t, x1, x2)−→
(

ct− x1√
c2 − 1

,
t− cx1√
c2 − 2

, x2

)
, c> 1

Fortunately, unlike for example in the context of the critical defocusing
Schrodinger equation on R3+1, where the issue of translation invariance
poses significant difficulties, see [10], the finite propagation speed of wave
maps, as well as energy conservation, imply that for general wave maps
without symmetry assumptions, singularity formation can only happen via
a finite number of energy concentration scenarios within a forward light cone,
say (posing data at time t= 0). One may then concentrate on what happens
within a single such light cone. Note that each Lorentz boost centered at
the tip of the light cone leaves the latter invariant, but moves its time axis.
Then the following general blow up scenario may be plausible:

Conjectured general bubbling off scenario: Let u : R2+1 −→S2

be a wave map, no longer necessarily equivariant, which becomes singular
at (t, x) = (0, 0). Then there exists N and a sequence of times ti → 0, and
for each i Lorentz boosts T k

i , k= 1, . . . , N , as well as parameters λk
i with

|tiλk
i | → ∞ and harmonic maps Qk(x), such that the wave map, restricted

to the half of the light cone on which it is defined, may be decomposed into

u(ti, x) =
N∑

k=1

T k
i [Qk(λk

i x)] + ε(ti, x),

where we have Eloc(ε(ti, x)) → 0. Here the wave map is represented in terms
of the ambient coordinates S2 ↪→ R3.
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7. Singularity formation in the critical dimension

Recall from section 2 that due to the supercritical nature of wave maps
Rn+1 −→M , n≥ 3, generic targets M , one expects singularity formation
for large data. This has been achieved for a rather eclectic list of targets
in [6, 47], via a self-similar ansatz, i.e., writing u(t, x) = v(x

t ), and then
solving for v, which leads to an elliptic problem for v that can be solved by
variational techniques in certain cases. In particular, it is known that self-
similar blow up wave maps with smooth data exist with domain R3+1 and
target S3. In the latter case, the explicit self-similar solutions are believed to
represent the generic blow up phenomenon, see e.g. [2], although this appears
out of reach of present techniques. No other types of blow up solutions are
known in the supercritical regime. As seen below, recent blow up results in
the critical dimension are of a strikingly different character. In particular,
the rates are never self-similar.

7.1. The co-rotational case. In the critical dimension n= 2,
existence of singular wave maps with target S2 has been conjectured for
a while, on account of numerical experiments, see e.g. [3]. These have been
for the most part restricted to co-rotational wave maps u : R2+1 −→S2, see
preceding section, and thus deal with the scalar equation (with u the polar
angle)

(7.1) −utt + urr +
1
r
ur =

sin(2u)
2r2

Recall that these admit the static solution u(t, r) =Q1(r) = 2 arctan(r). It
was observed in [3] that sufficiently large perturbations of these appear to
lead to singularities in finite time, while small enough perturbations lead
to global existence and scattering. Rigorous existence of blow up solutions
with precise blow up dynamics is provided by the following

Theorem 7.1. [37] Let ν > 1
2 , and let t0 > 0 sufficiently small. Define

λ(t) = t−1−ν , and fix a large integer N . Then there exists a function ue

satisfying

ue ∈ Cν+ 1
2+ (t0 >t> 0, |x| ≤ t), Eloc(ue)(t) � [λ(t)t]−2| log t|2

and a blow up solution u(t, r) to (7.1) on [0, t0] which has the form

u(r, t) =Q1(λ(t)r) + ue(r, t) + ε(r, t), 0≤ r≤ t,

with ε ∈ tNH1+ν−
loc (R2), εt ∈ tN−1Hν−

loc (R2), Eloc(ε) � tN . The corresponding
solution u(t, x) can be extended of class H1+ν− to all of [0, t0] × R2.

A surprising feature is that there is a continuum of blow up rates. Indeed,
the fact that a nonlinear equation may admit such a family of blow up
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rates seems to have been observed here for the first time. Furthermore, the
fact that the energy of the static solutions Qk(.) is 4kπ, together with the
conjectured general bubbling off scenario from above, appear to suggest that
theorem 7.1 is optimal in some sense: any initial data of energy strictly below
that of Q1(.), which is 4π, should lead to globally regular solutions, while
the theorem produces blow up solutions of energy arbitrarily close to 4π.

We now outline the strategy for proving this theorem: one may be
tempted to try a naive perturbative ansatz, namely

(7.2) u(t, r) =Q(λ(t)r) + ε(t, r),

where ε(t, .) is small in a suitable sense, and where λ(t) is chosen to blow
up at t= 0. In particular, one may try to construct ε by means of an itera-
tive procedure. This ansatz however appears to fail: note that substituting
Q(λ(t)r) into (7.1), one obtains an error of the form

(7.3) λ̈(t)rQ′(λ(t)r) + (λ̇)2r2Q′′(λ(t)r)

However, note that this function is not in L2(rdr), unless λ(t) = t−1, which
we know is excluded from Struwe’s theorem 6.3. Furthermore, this function
is not going to be small, and hence we cannot expect that adding on a small
function ε, which is obtained by means of a direct iteration, will counteract
this error. The fact that (7.3) is not L2-integrable is related to an interesting
feature of the co-rotational case k= ± 1, namely the fact that the spectrum
of the linearization around the static solution Q1(.) has a resonance at its
endpoint ξ= 0. On the other hand, for equivariance indices |k| ≥ 2, the lin-
earization around Qk(.) has an eigenvalue at ξ= 0. Indeed, the resonance
and eigenfunctions are given by ∂

∂λQk(λr)|λ=1 = rQ′
k(r).

Note that one may be tempted to deal with the non-square-integrability
of (7.3) by truncation at infinity. Indeed, one is really only interested in con-
structing solutions on the backward light cone r≤ t, as one may extend these
arbitrarily outside the light cone. Hence one may try to replace Q(λ(t)r) by
χ( r

t )Q(λ(t)r) for some smooth cutoff χ( r
t ), where we write Q1 =: Q for the

remainder of this subsection. Indeed, rather than imposing a fixed form of
χ, one may try to substitute an ansatz χ( r

t )Q(λ(t)r) + ε(t, r) into (7.1) and
thereby obtain the correct form of χ. Indeed, it turns out that one obtains
an equation of the form

(7.4) (a2−1)χaa+
[
2a
(

1 − λtt

λ

)
+ a−1

]
χa = (independent of χ)+O(χ2),

where we have introduced the self-similar variable a= r
t . The operator

(a2 − 1)∂2
a + [2a(1 − λtt

λ ) + a−1]∂a is a singular linear differential operator,
which for λ(t) = t−1−ν admits a fundamental system of solutions of regular-
ity Cν+ 1

2+ across a= 1, which corresponds to the light cone. Unfortunately,
equation (7.4) is effectively inconsistent, as the right hand side depends
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on t in addition to a, and hence we really would have to choose χ of the
form χ( r

t , t), introducing additional error terms due to time differentiation.
Nevertheless, these observations motivate one to look for an approximate
solution (which is the Q(λ(t)r)+ue(t, r) in the theorem), which is in effect a
large profile modification of Q(λ(t)r) for fixed times t away from t= 0, and
obtained by solving certain elliptic problems on fixed time slices which in
some sense approximate the hyperbolic problem.

The precise procedure for proving theorem 7.1 is then as follows: to find
ue, one solves a sequence of elliptic problems on fixed time slices(thus in
some sense neglecting time derivatives) which improve the accuracy of the
problem near the symmetry axis r= 0, as well as the light cone r= t. The
latter is achieved by working with the coordinates (a, t) instead of (r, t), as
in the preceding paragraph. Specifically, if u is an approximate solution of
(7.1), an exact solution u + ε is given with ε satisfying(

−∂2
t + ∂2

r +
1
r
∂r

)
ε− cos(2u)

2r2 sin(2ε) +
sin(2u)

2r2 (1 − cos(2ε)) = e,

where the error e generated by u is given by

e =
(
−∂2

t + ∂2
r +

1
r
∂r

)
u− sin(2u)

2r2

We approximate sin(2ε) by 2ε, and moving nonlinear (in ε) terms to the
right, we encounter the problem(

−∂2
t + ∂2

r +
1
r
∂r −

cos(2u)
r2

)
ε = small

Near the origin r= 0, one expects the time derivatives to play less of a role.
Moreover, the smaller t becomes the less u should differ from Q(λ(t)r), which
suggests replacing u by the latter. Hence one obtains the problem(

∂2
r +

1
r
∂r −

cos[Q(λ(t)r)]
r2

)
ε = small

On the other hand, near r= t, one expects the time derivatives to play a
role, and replaces the above by(

−∂2
t + ∂2

r +
1
r
∂r −

1
r2

)
ε = small

In short, one constructs ue =
∑M

k=1 vk, where we put(
∂2

r +
1
r
∂r −

cos[Q(λ(t)r)]
r2

)
v2k+1 = e2k(7.5) (

−∂2
t + ∂2

r +
1
r
∂r −

1
r2

)
v2k = e2k+1(7.6)
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where the errors ek generated become increasingly smaller. It turns out that
(7.6), when translated into the coordinates a = r

t , t, leads to a problem of
the form (7.4) for a suitable auxiliary function. For details we refer to section
2 in [37]. Choosing M large enough, one may achieve eM =O

(
1

[λ(t)t]N

)
, for

arbitrary N .
Having constructed an approximate solution Q(λ(t)r) + ue(t, r) with(

−∂2
t + ∂2

r +
1
r
∂r

)
[Q(λ(t)r) + ue(t, r)]

− sin[2(Q(λ(t)r) + ue(t, r))]
2r2 = O

(
1

[λ(t)t]N

)
one needs to correct it to a precise solution u=Q(λ(t)r) + ue(t, r) + ε(t, r),
where ε(t, r) is to be solved for by means of iteration. We now consider the
equation for ε. In order to avoid a time-dependent elliptic operator, one
replaces the coordinates (t, r) by the new ones τ = −

∫ 1
t λ(s)ds + 1

ν , and
R=λ(t)r. Also, we replace ε by ε̃(τ,R) :=R

1
2 ε(t, r). Then one obtains the

problem

(7.7)

[
−
(
∂τ +

λτ

λ
R∂R

)2

+
1
4

(
λτ

λ

)2

+
1
2
∂τ

(
λτ

λ

)]
ε̃− Lε̃ = small,

where

L := −∂2
R +

3
4R2 − 8

(1 + R2)2

The latter operator has the property that in spite of being defined on the
half-line, it is self-adjoint even without the extra imposition of a boundary
condition at R= 0. This is due to the fact that the singularity at R= 0
already forces a vanishing condition at R= 0 for functions in its domain. The
theory of operators of the type of L, so called strongly singular operators,
is developed in [13]. We need the fact that the spectrum of L consists of
[0,∞), and 0 is a resonance for L, which is now considered as an operator
on L2([0,∞)). Indeed, we have that

L
(

R
3
2

1 + R2

)
= 0

It turns out that L admits for each z ∈ C a fundamental system of solutions
φ(R, z), θ(R, z) for the eigenvalue problem (L − z)f = 0, which obey the
asymptotics

φ(R, z) ∼ R
3
2 , θ(R, z) ∼ R− 1

2

One also says that L−z is in the limit point case at R= 0, see e.g. [38], and
φ(R, z) is the Weyl-Titchmarsh solution of L − z at R= 0.
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Further, assuming now Im z > 0, the Weyl-Titchmarsh solution at R=∞
is given asymptotically by

ψ+(R, z) ∼ z− 1
4 eiz

1
2 R, Im z

1
2 > 0,

and letting Im z → 0, one obtains an oscillatory (at R=∞) fundamental
system of solutions ψ+(R, ξ), ψ−(R, ξ) =ψ+(R, ξ), ξ > 0. We then also have
the condition

W (θ, φ) = 1, W (f, g) =
(

d

dR
f

)
g −

(
d

dR
g

)
f

With these tools, one can then introduce a distorted Fourier transform, as
follows:

f(R)−→ f̂(ξ) :=
∫ ∞

0
φ(R, ξ)f(R)dR

which is to be interpreted in a weighted L2-sense, similarly to the ordinary
Fourier transform. Further, one has the inversion relation

f(R) =
∫ ∞

0
φ(R, ξ)f̂(ξ)ρ(ξ)dξ, ρ(ξ) =

1
π

Im (m(ξ + i0)),

where the spectral density ρ is defined in terms of

m(ξ) :=
W (θ(., ξ), ψ+(., ξ))
W (ψ+(., ξ), φ(., ξ))

The construction of ε̃(τ,R) as above now proceeds via representing

ε̃(τ,R) =
∫ ∞

0
x(τ, ξ)φ(R, ξ)ρ(ξ)dξ,

and working with the Fourier coefficients x(τ, ξ) instead. The difficulty one
encounters here is that it is not immediate (as in the case of the free
d’Alembertian �) to deduce a transport equation for x(τ, ξ) from (7.7).
Nevertheless, neglecting the terms λτ

λ R∂R in (∂τ + λτ
λ R∂R) allows one to

obtain an approximate transport equation for the x(τ, ξ), which is enough
thanks to the rapid decay of the error (namely (λ(t)t)−N ). For details, we
again refer to [37].

We conclude this subsection by noting that interesting open questions
remain:

(i) What are the stability properties of the solutions constructed? One
may conjecture that there is a high co-dimensional manifold of data
resulting in the same blow up, which would be somewhat analogous
to [5].

(ii) Can the same construction be carried out for the higher homotopy
indices k≥ 2? It appears that the resonance for the linearization
around the ground state plays a fundamental role.
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(iii) Are there C∞-smooth data resulting in the kind of blow up rates
constructed in the theorem?

(iv) What other targets admit such blow up solutions? Can one say that
the existence of non-trivial finite-energy harmonic maps originating
on R2 to the target suffices?

7.2. Higher equivariance classes. Now consider equivariant wave
maps u : R2+1 −→S2 but of index k≥ 4. Then we have the following result
due to Rodnianski and Sterbenz:

Theorem 7.2. [45] For k≥ 4, there exists an open(with respect to a
suitable Sobolev topology) set of k-equivariant initial data (in particular C∞-
data) arbitrarily close to Qk(.), resulting in blow up solutions of the form

u(t, r) =Qk(λ(t)r) + ε(t, r),

where we have λ(t) ∼
√

| log(T−t)|
T−t , and T is the blow up time.

Observe that this theorem guarantees an open (within the k-equivariant
category) set of data resulting in a kind of stable blow up. Not surprisingly,
the method of proof here is quite different than the one of theorem 7.1,
and deduces the blow up rate from monotonicity type arguments and an
orthogonality relation, rather than imposing it. Moreover, rather than con-
structing ε(t, r) via iteration, Rodnianski-Sterbenz control it by means of a
Morawetz type estimate (for a time dependent wave operator!), hence via
a priori type estimates. The restriction k≥ 4 should be relaxable to k≥ 2,
while the case k= 1 appears unreachable, as the method heavily relies on
the L2-integrability of the zero mode ∂

∂λ
[Qk(λr)]|λ=1. We refer to [45] for

details. It remains an interesting open issue to see whether the methods
of theorem 7.1, theorem 7.2 can be combined to deduce a stable blow up
regime in the co-rotational case k= 1. Further, the issue of whether any of
these blow up solutions remain stable in the full category of (non-equivariant)
wave maps u : R2+1 −→S2 appears a quite difficult open problem.
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