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Abstract. Yau’s uniformization conjecture states: a complete
noncompact Kähler manifold with positive holomorphic bisectional
curvature is biholomorphic to Cn. The Kähler-Ricci flow has
provided a powerful tool in understanding the conjecture, and has
been used to verify the conjecture in several important cases. In
this article we present a survey of the Kähler-Ricci flow with focus
on its application to uniformization. Other interesting methods and
results related to the study of Yau’s conjecture are also discussed.

1. Introduction

A fundamental problem in complex geometry is to generalize the classical
uniformization theorems on Riemann surfaces to higher dimensions. In
Kähler geometry, the problem is to determine how curvature affects the
underlying holomorphic structure of a Kähler manifold. In one complex
dimension it is well known that a complete simply connected Riemann
surface (M, g) is biholomorphic to either the Riemann sphere (when M is
compact) or the complex plane (when M is noncompact) if the curvature
is positive, and it is biholomorphic to the open unit disc if the curvature is
negative and bounded from above away from zero.

In higher dimensions, for the compact case, the famous conjecture of
Frankel says that a compact Kähler manifold with positive holomorphic
bisectional curvature is biholomorphic to CPn. Frankel’s conjecture was
proved by Siu-Yau [52]. The stronger Hartshorne conjecture was proved
by Mori [37]. In case of compact Kähler manifolds with nonnegative holo-
morphic bisectional curvature the uniformization of such manifolds was
determined by Bando [2] for complex dimension three and by Mok [35]
for all dimensions.
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In the complete noncompact case there is a long standing conjecture
due to Yau [58] in 1974 predicting analogous results for positively curved
non-compact Kähler manifolds:

Yau’s Conjecture [58] A complete noncompact Kähler manifold with
positive holomorphic bisectional curvature is biholomorphic to Cn.

Or in Yau’s words [58, p. 620]: The question is to demonstrate that every
noncompact Kähler manifold with positive bisectional curvature is biholo-
morphic to the complex eulcidean space.

The conjecture continues to generate much research activity, and
although the full conjecture remains unproved, this research has produced
many nice results and useful techniques and methods. In this survey we will
discuss the method of using evolution equations, in particular the Kähler-
Ricci flow, to study the conjecture.

In [49], Shi (under the supervision of Yau) began a program to use the
Kähler-Ricci flow equation

(1.1)
dgij̄

dt
= −Rij̄

to prove Yau’s uniformization conjecture1. (1.1) is a geometric evolution
equation which deforms an initial Kähler metric in the direction of its Ricci
curvature (see §2). The equation is a strictly parabolic system for gij̄, so
one generally expects the geometry to improve under this evolution. The
idea is to show that the geometry improves to the point that it determines
the holomorphic structure of the manifold. This idea has been successfully
applied in many cases now. In this article we survey the progress on Yau’s
conjecture and the Kähler-Ricci flow program. We will also survey some
more general results relating to the conjecture. Since there are many works,
the survey cannot be exhaustive.

An outline of the paper is as follows. In §2 we introduce the Kähler-Ricci
flow and its basic theory on complete noncompact Kähler manifolds, and on
nonnegatively curved Kähler manifolds in particular. In §3 we discuss the
rate of curvature decay on a complete noncompact nonnegatively curved
Kähler manifold, which is also related to volume growth. This turns out
to be useful for latter application. The Steinness of non-negatively curved
noncompact Kähler manifolds is discussed in §4, and this begins our actual
survey of uniformization results. In §5 we introduce the Kähler-Ricci solitons
and present our uniformization theorem for steady and expanding gradient
Kähler-Ricci solitons. We place this section here because Kähler-Ricci soli-
tons are canonical models for the cases in §6 and the analogy drawn there

1The Kähler-Ricci flow had been used in Bando’s work [2] (under the supervision
of Yau) and Mok’s work [35] on the uniformization of compact Kähler manifolds with
nonnegative holomorphic bisectional curvature. The use of the Kähler-Ricci flow in these
works however was not very extensive and involves only short-time behavior of the solu-
tions. The study of long time behavior of the Kähler-Ricci flow in the compact case was
initiated by Cao in [6].
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between the Kähler-Ricci flow and complex dynamical systems. In §6 the
connection between the Kähler-Ricci flow and complex dynamical systems
is developed and used to prove a uniformization theorem for eternal solutions
to the Kähler-Ricci flow and normalized Kähler-Ricci flow. As a corollary,
we state a uniformization theorem for nonnegatively curved Kähler mani-
folds of average quadratic curvature decay, in particular for manifolds with
maximum volume growth. Finally, in §7 we present the gap theorems for
nonnegatively curved Kähler manifolds of faster than quadratic curvature
decay. Whenever it is possible, we will sketch the main ideas of the proofs
of the results.

2. Kähler-Ricci flow

The Ricci flow on a complete Riemannian manifold (M, g) is the follow-
ing evolution equation for the metric g:

(2.1)

⎧⎪⎨⎪⎩
dg(t)
dt

= −2Rc(t)

g(0) = g,

where Rc(t) is the Ricci tensor of g(t). The Ricci flow was introduced
by Hamilton [27] to study the Poincaré conjecture. In this seminal work,
Hamilton proved (2.1) has a short time solution on any smooth compact
Riemannian manifold. Hamilton then showed that the solution exists for
all time and converges after rescaling on any compact three manifold with
positive Ricci curvature.

We are interested in complete noncompact Riemannian manifolds. The
first fundamental result for the Ricci flow on noncompact manifolds is the
following short time existence result of Shi [48]:

Theorem 2.1. [48] Let (Mn, g) be a complete noncompact Riemannian
manifold with bounded sectional curvature. Then there exists 0 < T < ∞,
depending only on the initial curvature bound, such that (2.1) has a solution
g(t) on M × [0, T ]. Moreover, for all t ∈ [0, T ] we have

(i) g(t) has bounded sectional curvature and is equivalent to g.
(ii) For any integer m ≥ 0, there is a constant depending only on n,m

and the bound of the curvature of the initial metric g such that

sup
x∈M

|∇mRm|(x, t) ≤ C

tm

for all 0 ≤ t ≤ T . Here ∇ is the covariant derivative with respect
to g(t).

The following theorem of Shi [50] is fundamental to the theory and
application of the Ricci flow to complete noncompact Kähler manifolds.
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Theorem 2.2. [50] Let (M, g) be as in Theorem 2.1. Suppose (M, g) is
Kähler. Then

(i) the solution g(t) in the Theorem 2.1 is Kähler for t ∈ [0, T ]; and
(ii) g(t) has non-negative holomorphic bisectional curvature if the same

is true for g.

Hence in the Kähler category, we refer to the Ricci flow as the Kähler-
Ricci flow and the equation becomes:

(2.2)
dgij̄

dt
= −Rij̄.

For compact Kähler manifolds, part (i) of Theorem 2.2 was proved by
Bando [2] and part (ii) was proved by Bando [2] for complex three manifolds
then by Mok [35] for all dimensions. Shi’s proof of (i) for the noncompact
case is different from that in [2]. Shi’s proof of (ii) is similar to that in [2] and
[35] which uses a so-called null-vector condition introduced in [2]. The proofs
of both (i) and (ii) use the maximum principle for noncompact Riemannian
manifolds which relies on the following result which was proved by Shi [50]
using an idea of Greene-Wu [24]: Let (M, g) be a complete noncompact
manifold with bounded curvature. Then one can construct a smooth function
with bounded gradient and bounded Hessian, which is uniformly equivalent
to the distance function from a point.

We now focus on complete non-compact Kähler manifolds with non-
negative holomorphic bisectional curvature. The main long time existence
result for the Kähler-Ricci flow in this setting is the following theorem of
Shi [50]. We will denote the scalar curvature by R and define the average
scalar curvature k(x, r) as:

k(x, r) :=
1

Vx(r)

∫
Bx(r)

RdV.

Theorem 2.3. [50] Let (Mn, g) be a complete noncompact Kähler
manifold with bounded and nonnegative holomorphic bisectional curvature.
Suppose

(2.3) k(x, r) ≤ C

(1 + r)ε

for some constants C and 0 < ε ≤ 2, and all x and r. Then (2.2) has a long
time solution g(t). Moreover,

(i)

R(x, t) ≤ Ct
2(1−ε)

ε ,

for some constant C for all x and t.
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(ii) For any integer m ≥ 0, there is a constant C such that

|∇mRm|(x, t) ≤ Ct
2(1−ε)

ε
(m+2)

for all x and t.

For example, if ε = 2, then tR will be uniformly bounded on spacetime.
The proof of the theorem is based on estimating the volume element

F (x, t) = log
det(gij̄(x, t))
det(gij̄(x, 0))

.

Shi proved that F stays bounded from below on any finite time interval.
Note that the bound F ≤ 0 from above follows from Theorem 2.2. Using
this and a parabolic version of the third order estimate for the complex
Monge-Ampère equation, Shi then showed that the Kähler-Ricci flow cannot
develop a singularity in finite time. In the case of ε > 1, there is also a method
by Ni-Tam [43] for proving the long time existence. Namely, by extending
the method of Mok-Siu-Yau [36], Ni-Shi-Tam [41] were able to construct
a potential u0, for the Ricci form of the initial metric, having uniformly
bounded gradient. It is readily seen that u = u0 − F is a potential of the
Ricci form for g(t). Using the maximum principle, one can show that u
also has uniformly bounded gradient. One then shows that |∇u|2 + R is a
subsolution of the time dependent heat equation, and applying the maximum
principle again, one concludes that |∇u|2 + R is bounded by its maximum
at t = 0. Since g(t) has nonnegative holomorphic bisectional curvature, the
Riemannian curvature can also be bounded from this.

On the other hand, the estimate of F depends on the fact that

Δ0F ≤ R(0) + eF ∂F

∂t

and some mean value inequalities (see [43] for example). Here Δ0 is the
Laplacian of the initial metric. Once we estimate F we can then estimate R
using the fact that

F (x, t) = −
∫ t

0
R(x, τ)dτ

and the Li-Yau-Hamilton type Harnack inequality Theorem 6.7 of Cao [7]
which implies that tR is nondecreasing in time. In any case, the estimates
of the covariant derivatives of the curvature tensor follow from the general
method developed by Shi [48].

Note that in the theorem, condition (2.3) is uniform in x. In many cases
this condition is at least true at a point by [42]. Using this and the pseudolo-
cality of Ricci flow by Perelman [44], which can be generalized to complete
noncompact manifolds, Yu and the authors [16] obtained the following result
on long time existence:
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Theorem 2.4. Let (Mn, g) be a complete non-compact Kähler manifold
with non-negative holomorphic bisectional curvature with injectivity radius
bounded away from zero such that

|Rm|(x) → 0

as x → ∞. Then the Kähler-Ricci flow with initial data g has a long time
solution g(t) on M × [0,∞).

It would be nice if one could remove the condition on the injectivity
radius.

3. Curvature decay rate

In order to apply Kähler-Ricci flow to Yau’s conjecture, the following
question becomes important in light of Theorem 2.3: What can we expect
of the the curvature decay rate on complete noncompact Kähler manifolds
with positive bisectional curvature? There are some results on the volume
and curvature of manifolds with nonnegative holomorphic bisectional cur-
vature in [41]. For example, it was proved that if the scalar curvature of a
complete noncompact Kähler manifold with nonnegative holomorphic bisec-
tional curvature decays quadratically in the pointwise and average sense,
and if the Ricci curvature is positive at some point, then the manifold must
have maximum volume growth. On the other hand, the following was proved
by Chen-Zhu [21]:

Theorem 3.1. [21] Let (Mn, g) be a complete noncompact Kähler
manifold with positive holomorphic bisectional curvature. Then for any
x ∈ M there is a constant C which may depend on x such that

(3.1)
1

Vx(r)

∫
Bx(r)

RdV ≤ C

1 + r
.

Later Ni and Tam [42] obtained the following, which generalizes the
above results:

Theorem 3.2. [42] Let (Mn, g) be a complete noncompact Kähler
manifold with nonnegative holomorphic bisectional curvature.

(i) Suppose M is simply connected, then M = N × M ′ holomorphi-
cally and isometrically, where N is a compact simply connected
Kähler manifold, M ′ is a complete noncompact Kähler manifold
and both N and M ′ have nonnegative holomorphic bisectional cur-
vature. Moreover, the scalar curvature R′ of M ′ satisfies the linear
decay condition (3.1).

(ii) If the holomorphic bisectional curvature of M is positive at some
point, then M itself satisfies the linear decay condition (3.1).
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The idea of the proof is to construct a strictly plurisubharmonic function
u of linear growth. If such a u exists, then one can use L2 theory to construct
nontrivial holomorphic section s of the canonical line bundle using u as a
weight function. The growth rate of u will give an estimate of the growth rate
of the L2 norm of the length ||s|| of s. Using the Bochner type differential
inequality:

(3.2) Δ log ||s||2 ≥ R

at the points where s 
= 0, one can show that log ||s|| is at most linear growth
by the mean value inequality of Li and Schoen [32]. Then the growth rate of
log ||s|| will give an estimate of the average of R over geodesic balls because
of (3.2).

If the holomorphic bisectional curvature is positive, one just considers
the Busemann function which is strictly plurisubharmonic at a point by a
well known result of Wu [55]. In general, one may solve the heat equation
with the Buesmann function as initial data. Then by a careful study of the
solution for t > 0, one obtains a suitable strictly plurisubharmonic function
in the case of Theorem 3.2 (ii).

Hence in some sense, linear decay is the slowest decay rate for the curva-
ture of complete noncompact Kähler manifolds with nonnegative holomor-
phic bisectional curvature.

In case that the manifold has maximum volume growth, one may expect
the curvature will decay faster. In fact, it was conjectured by Yau [58]: If M
has maximal volume growth in the sense that Vp(r) ≥ Cr2n for some C > 0
for some p ∈ M for all r, then the curvature must decay quadratically in
the average sense. Assuming the curvature is bounded, this was confirmed
by Chen-Tang-Zhu [20] for complex surfaces and Chen-Zhu [21] for higher
dimension under a much stronger assumption that the manifold has non-
negative curvature operator. Finally, Ni [39] proved this conjecture of Yau
in general. More precisely, Ni obtained the following:

Theorem 3.3. [39] Let (Mn, g) be a complete noncompact Kähler man-
ifold with bounded nonnegative holomorphic bisectional curvature. Suppose
M has maximum volume growth. Then the scalar curvature R decay quadrat-
ically. That is to say, there exists C > 0 such that

(3.3)
1

Vx(r)

∫
Bx(r)

R dV ≤ C

(1 + r)2

for all x ∈ M and for all r > 0.

The main steps of the proof are as follow: First, use the results in [42], in
particular Theorem 3.2, to prove that a non-flat gradient shrinking Kähler-
Ricci soliton with nonnegative bisectional curvature must have zero asymp-
totic volume ratio. A gradient shrinking Kähler-Ricci soliton is a Kähler
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metric gij̄ satisfying

Rij̄ − ρgij̄ = fij̄, fij = 0

for some smooth real-valued function f and for some ρ > 0. For an n dimen-
sional Riemannian manifold with nonnegative Ricci curvature, the asymp-
totic volume ratio is defined as:

V(g) = lim
r→∞

Vx(r)
rn

.

The limit exists and is independent of the base point x by the Bishop volume
comparison theorem. In the case of maximal volume growth, this limit is
non-zero.

The second step is to prove that any non-flat complete ancient solution
of the Kähler-Ricci flow on a Kähler manifold with bounded and nonnegative
holomorphic bisectional curvature must also have zero asymptotic volume
ratio for all t. This is accomplished by showing that if this is not true, then
by a blow down argument as in Perelman [44] for Riemannian manifolds
with nonnegative curvature operator, one can construct a non-flat gradient
shrinking Kähler-Ricci soliton with nonnegative bisectional curvature which
has nonzero asymptotic volume ratio.

Now suppose (M, g) satisfies the conditions in Theorem 3.3, then one can
solve the Kähler-Ricci flow equation with solution g(t) with initial condition
g, and can prove that V(g(t)) = V(g) for all t. One then uses the second
step above to prove that g(t) must exist for all time and the scalar curvature
must satisfy

R(x, t) ≤ C

1 + t

for some C for all x and t. This is proved by contradiction: if this were
not so, one could construct an ancient solution as above having non-zero
asymptotic volume ratio, which contradicts the previous assertion. Finally,
one may use this asymptotic behavior of R as t → ∞ to get information
of R(x, 0) as x → ∞ and obtain (3.3). Here an argument similar to that in
Perelman [44] is also used.

In order to get more information on the question on curvature decay
rate, it would be helpful to construct examples. This is considerably easier
in the Riemannian setting: constructing complete noncompact Riemannian
manidfolds having positive sectional curvature. It is not easy to construct
complete Kähler metrics on Cn with positive holomorphic bisectional curva-
ture. The first example is by Klembeck [31] which has positive holomorphic
bisectional curvature. Klembeck’s example has linear curvature decay with
volume growth like V (r) ∼ rn. Later, Cao [8, 9] constructed examples of
U(n) invariant metrics on Cn having positive holomorphic bisectional curva-
ture. The examples in [8] have linear curvature decay and volume growth like
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V (r) ∼ rn while those in [9] have quadratic curvature decay and maximum
volume growth.

Complete U(n) invariant Kähler metrics with positive holomorphic bisec-
tional curvature on Cn have been classified and examples have been con-
structed by Wu and Zheng [56]. They have developed a systematic way to
construct examples having positive holomorphic bisectional curvature such
that the scalar curvature R satisfies various decay rates. In particular, for
any 1 ≤ θ ≤ 2 there are examples such that

(3.4)
1

Vx(r)

∫
Bx(r)

R dV ≤ C

1 + rθ

for some C for all r and for all x.
Finally, there are interesting results by Chen-Zhu [21] on volume growth

of positively curved noncompact Kähler manifolds. For example, they proved
that the volume of geodesic balls Bp(r) in a complete noncompact Kähler
manifold with positive holomorphic bisectional curvature must grow at least
like rn, where n is the complex dimension of the manifold. One may compare
this with the well-known result of Calabi and Yau (see [57], for example)
that in case of Riemannian manifold with nonnegative Ricci curvature, the
growth rate of geodesic balls is at least linear.

4. Steinness of nonnegatively curved manifolds

In [51], Siu asked whether a complete noncompact Kähler manifold with
positive holomorphic bisectional is Stein. This is a very interesting problem,
and an affirmative answer to this should strongly support Yau’s conjecture.
In fact, Greene and Wu [24] first proved the following result on the complex
structure of complete noncompact Kähler manifolds with positive curvature,
which is part of the motivation behind Yau’s conjecture:

Theorem 4.1. [24] Let (M, g) be a complete noncompact Kähler mani-
fold with positive sectional curvature. Then M is Stein.

The idea is to produce a smooth strictly plurisubharmonic exhaustion
function. Then by a well-known result of Grauert, M will be Stein. As in
the study of Riemannian manifolds with positive or nonnegative sectional
curvature by Cheeger and Gromoll [17], the method of Greene-Wu uses
the Busemann function B(x). Here the Busemann function is an exhaus-
tion function because the sectional curvature is nonnegative [17]. It is also
plurisubharmonic if the holomorphic bisectional curvature is nonnegative
and strictly plurisubharmonic at the points where the holomorphic bisec-
tional curvature is positive by Wu [55]. However, B(x) is only Lipschitz,
and so one needs to approximate B(x) by a smooth strictly plurisubhar-
monic exhaustion function. This can be done using the fact that B(x) is
strictly plurisubharmonic and the method developed by Greene-Wu [24].
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Because of these, Theorem 4.1 can be improved. For example, the theorem
is still true if we only assume that M has nonnegative sectional curvature
and positive holomorphic bisectional curvature.

In the case that B is only plurisubharmonic, it is more efficient to use
another method to approximate B(x). Namely, we solve the heat equation
with initial data B(x). Ni and Tam [42] proved that if u(x, t) is the solu-
tion to this, then u(x, t) is still plurisubharmonic for t > 0. Moreover, they
showed that the kernel K(x, t) of the complex Hessian of u(x, t) is a parallel
distribution. Using this one can obtain the following:

Theorem 4.2. [42] Let (M, g) be a complete noncompact Kähler man-
ifold with nonnegative holomorphic bisectional curvature. Suppose either M
has maximum volume growth or M has a pole. Then M is Stein.

Here one uses the fact that B(x) is still an exhaustion function by [47]
and so u(x, t) is also an exhaustion function. As in the proof of Theorem
3.2, one can conclude that u is also strictly plurisubharmonic for t > 0. In
the proof, one needs the following fact [42]: If (M, g) is a complete Kähler
manifold with nonnegative holomorphic bisectional curvature which sup-
ports a nontrivial linear growth harmonic function, then the universal cover
of M is a holomorphically isometric to the product of the complex C and
another complete Kähler manifold with nonnegative holomorphic bisectional
curvature.

Without the assumption that the manifold has maximum volume growth,
if the Busemann function is an exhaustion function, then one can conclude
that the universal cover is a product of a compact Hermitian symmetric
manifold and a Stein manifold [42]. Using this, Fangyang Zheng (see [42])
obtained the following:

Theorem 4.3. Let (M, g) be a complete noncompact Kähler manifold
with nonnegative sectional curvature. Then its universal cover is of the form
M̃ = Ck × Ñ × L̃ where Ñ is a compact Hermitian symmetric manifold, L̃
is Stein and L̃ contains no Euclidean factor. Moreover, M is a holomorphic
and Riemannian fiber bundle with fiber Ñ × L̃ over a flat Kähler manifold
Ck/Γ. If in addition, the Ricci curvature is positive at some point, then M

is simply connected and M = M̃ = Ñ × L̃ where L̃ is diffeomorphic to the
Euclidean space.

So far the above results have made no assumptions on the boundedness
of curvature. When the curvature is bounded, one can use the more powerful
Kähler-Ricci flow (2.2), which can be solved for a short time by Theorem
2.1. The results in §2 suggests the study of g(t) in connection to Yau’s
conjecture or more generally, the Steinness of M . When g(t) exists for all
time 0 ≤ t < ∞ we expect the asymptotics of g(t) to be particularly useful.
In [15] the authors proved the following:
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Theorem 4.4. [15] Let (Mn, g0) be a complete non-compact Kähler
manifold with bounded non-negative holomorphic bisectional curvature. Sup-
pose the scalar curvature of g0 is such that k(x, r) ≤ k(r) for some function
k(r) satisfying

(4.1) k(r) ≤ C

r

as r → ∞ for some C > 0. Then M is holomorphically covered by a
pseudoconvex domain in Cn which is homeomorphic to R2n. Moreover, if M
has positive bisectional curvature and is simply connected at infinity, then M
is biholomorphic to a pseudoconvex domain in Cn which is homeomorphic
to R2n, and in particular, M is Stein.

When k(r) = C
1+r1+ε , for ε > 0, the result that M is biholomorphic

to a pseudoconvex domain was proved by Shi [50] under the additional
assumption that (M, g) has positive sectional curvature. Under the same
decay condition and assuming maximum volume growth, similar results were
obtained by Chen-Zhu [19]. The condition of positive sectional curvature in
[50] was used to produce a convex compact exhaustion of M . The maximum
volume growth condition in [19] was used to control the injectivity radius
for g(t). Note that the decay condition in Theorem 4.4 is almost optimal
because of Theorem 3.2.

The idea of proof of Theorem 4.4 is as follows. Let g0 be as in the
theorem. Then one can find g(t) which solves the Kähler-Ricci flow equation
(2.2) with initial data g(0) = g0 satisfying the conclusion in Theorem 2.3.
By taking the universal cover and by using the result of Cao [10], we may
assume that g(t) has positive Ricci curvature. Let gi = g(i). Then for any
fixed p ∈ M ,

(a1) cgi ≤ gi+1 ≤ gi for some 1 > c > 0 for all i.
(a2) |∇Rm(gi)| + |Rm(gi)| ≤ c′ for some c′ on Bi(p, r0), and for some

r0 > 0 for all i where Bi(p, r0) is the geodesic ball around p with
respect to gi.

(a3) gi is contracting in the following sense: For any ε, for any i, there
i′ > i with

gi′ ≤ εgi

in Bi(p, r0).
(a1)–(a2) follow from Theorem 2.3, and (a3) follows from Theorem 6.8
in §6.

Hence Theorem 4.4 is a consequence of the following:

Theorem 4.5. [15] Let Mn be a complex noncompact manifold. Suppose
there exist a sequence of complete Kähler metrics gi, i ≥ 1 on M with
properties (a1)–(a3). Then M is covered by a pseudoconvex domain in Cn

which is homeomorphic to R2n.
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We now sketch some key ideas in the proof Theorem 4.5 . Fix some point
p ∈ M . By (a2) we may lift the metric g(t) to the tangent space via the
exponential map at p and use L2 theory to construct a local biholomorphism
Φi : D(r) → M for each i so that Φ∗

i (gi) is equivalent to the Euclidean metric
in D(r) and equal to the Euclidean metric at 0, where D(r) is the Euclidean
ball of radius r with center at the origin (see Proposition 2.1 in [14]). Thus
Φi provides a holomorphic normal coordinate at p, and one would like to
consider an appropriate change of coordinate map from Φi and Φi+1. It
is not clear one can do this however as Φi is generally not injective and
may not even be a covering. Nevertheless, using (a1) and (a2), we can find
Fi+1 : D(r) → Cn such that Φi = Φi+1 ◦Fi+1 for a smaller r if necessary yet
independent of i. Note that this means that Fi+1(D(r)) is in the domain of
Φi+1. Also, we may choose this r so that Fi+1 is a biholomorphism onto its
image. By (a3) one can show that these maps are essentially contracting in
the sense that there are ni ↑ ∞ such that

(4.2) Fni+1 ◦ · · Fni+2 ◦ Fni+1(D(r)) ⊂ D
(r

2

)
for every i. Now let us suppose each Fi can be extended to a biholomorphism
of Cn, which we still denote as Fi, on Cn. We may then let

Si = (Fni ◦ · · · ◦ F2)
−1 (D(r))

and Ω =
⋃

i Si. Then Ω will be a pseudoconvex domain in Cn and it will be
homeomorphic to R2n because Si ⊂ Si+1. Let Ψ be defined as

Ψ(z) = Φni ◦ Fni ◦ · · · ◦ F2(z)

for z ∈ Si. Note that

Φni+1 ◦ Fni+1 ◦ · · · ◦ Fni ◦ · · · ◦ F2(z) = Φni ◦ Fni ◦ · · · ◦ F2(z)

if z ∈ Si and thus Ψ is a well-defined nondegenerate map from Ω to M .
Moreover, using (a3) and that gi is ‘shrinking’, one can prove that Ψ is
surjective thus proving Theorem 4.5. In case M is simply connected, one
can also prove that Ψ is injective.

Now in general, Fi can not be extended to a biholomorphism of Cn.
The key is to show that the maps Fi : D(r) → Cn can be approximated well
enough by biholomorphisms of Cn. For this one uses a theorem of Anderson-
Lempert [1] which states that if F is a biholomorphism from a star-shape
domain in Cn onto a Runge domain in Cn, then F can be uniformly approx-
imated by biholomorphisms of Cn on compact subsets of the domain. To use
the result it is thus sufficient to show that the image of Fi : D(r) → Cn is
Runge. Once it is established that Fi can be approximated in this way, one
uses the approximations to construct a map Ψ as above having the desired
properties.
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From the above proof, one expects to obtain stronger results depending
on how much more can be said of the maps Fi. We will see this to be the
case in the following sections §5 and §6.

5. Gradient Kähler-Ricci solitons

In very special cases, the maps Fi from the previous section will all be
equal to a single map F . This is the case when g(t) is a gradient Kähler-Ricci
soliton.

Let us recall that Kähler-Ricci solitons are solutions to the Kähler-Ricci
flow for which the metric evolves only by dilation and pull back along a one
parameter family of biholomorphisms. More specifically, (M, gij̄) is said to
be a Kähler-Ricci soliton if there is a family of biholomorphisms φt on M ,
given by a holomorphic vector field V , such that gij(x, t) = φ∗

t (gij(x)) is a
solution of the normalized Kähler-Ricci flow:

∂

∂t
gij̄(x, t) = −Rij̄(x, t) − κgij̄(x, t)

gij̄(x, 0) = gij̄(x)
(5.1)

for some constant κ. The soliton is said to be steady if κ = 0, and expand-
ing if κ > 0 (which will be normalized to be 1). In particular, note that
φt : (M, g(t)) → (M, g) is an isometry for every t, and thus Kähler-Ricci
solitons can be viewed as generalized fixed points for the Kähler-Ricci flow.
If in addition, the holomorphic vector field V is the gradient of a real valued
function f , then the soliton is a gradient Kähler-Ricci soliton and the metric
gij̄ satisfies

fij̄ = Rij̄ + κgij̄ ,

fij = 0.
(5.2)

Conversely, if these equations are satisfied with bounded curvature, then
the corresponding solution to (2.2) is a gradient Kähler-Ricci soliton by the
uniqueness theorem of Chen-Zhu [22]. These equations are thus known as
gradient Kähler-Ricci soliton equations.

Solitons are extremely important in studying the formation of singulari-
ties under the flow and hence the underlying structure of the manifolds. As
described in [29] by Hamilton, solitons typically arise as limit solutions when
one takes a dilation limit around a singularity forming under the flow (see
[28] on limit solutions to the Ricci flow). In [7], Cao proved the following
classification of limit solutions to the Kähler-Ricci flow.

Theorem 5.1. [7] Let (M, g(t)) be a family of complete Kähler metrics
on a noncompact complex manifold M which form a solution to (5.1) for
t ∈ [0,∞) if κ > 0 and for t ∈ (−∞,∞) if κ = 0 such that the holomor-
phic bisectional curvature is nonnegative and the Ricci curvature is positive.
Assume that the scalar curvature of g(t) assumes its maximum in space time.
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Then (M, g(t)) is a gradient Kähler-Ricci soliton which is steady if κ = 0,
and expanding if κ = 1.

The proof of Theorem 5.1 relies on the LYH type Harnack inequality
Theorem 6.7 of Cao [7]. The theorem suggests that studying the uniformiza-
tion of gradient Kähler-Ricci solitons should give insight into the uniformiza-
tion of more general manifolds as in §6.

Let φt be the family of biholomorphisms defining a Kähler-Ricci soliton
so that g(t) = φ∗

t (g(0)). Assume the holomorphic bisectional curvature is
bounded and nonnegative. Suppose p is a fixed point of the flow φt and
let F = φ1 = φt|t=1. Then the injectivity radii of p with respect to g(t)
are constant. Hence one can construct biholomorphism Φi for g(i) as in
the proof of Theorem 4.5. In this case, we can actually take Φi such that
Φ−1

i+1 = Φ−1
1 ◦ (φ1)i and thus Φ−1

i+1 ◦ Φi = Φ−1
1 ◦ φ ◦ Φ1 = Fi+1. In other

words, the Fi’s from §4 can in this case be taken as the single map. And
studying the Fi’s reduces here to studying the discrete complex dynamical
system generated by F . Recall that p is a fixed point for F . In [46] Rosay-
Rudin proved the following result for attractive basins of a fixed points for
biholomorphisms of Cn , which was pointed out to hold on general complex
M by Varolin [54]:

Theorem 5.2. [46] Let F be a biholomorphism from a complex man-
ifold Mn to itself and let p ∈ Mn be a fixed point for F. Fix a complete
Riemannian metric g on M and define the basin of attraction

Ω := {x ∈ M : lim
k→∞

distg(F k(x), p) = 0}

where F k = F ◦ F k−1, F 1 = F .
Then Ω is biholomorphic to Cn provided Ω contains an open neighbor-

hood around p.

Now in many cases, the dynamical system generated by F = φ1 above
can be shown to have a unique attractive fixed point with the whole mani-
fold as a basin of attraction. By Theorem 5.2, such a soliton must then be
biholomorphic to Cn. This was observed by the authors in [11] where they
proved:

Theorem 5.3. [11] If (M, gij̄) is a complete non-compact gradient
Kähler-Ricci soliton which is either steady with positive Ricci curvature so
that the scalar curvature attains its maximum at some point, or expanding
with non-negative Ricci curvature, then M is biholomorphic to Cn.

This result was obtained independently by Bryant [5] for the steady case.
To prove the theorem one only needs to check that there is a unique fixed

point of the biholomorphisms φt and that φt is contracting on M . These are
easily verified using the condition on the positivity or nonnegativity of the
Ricci curvature.
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The proof of Theorem 5.2 relies on the fact that F can be transformed
to have a normal form around p. This fact is due to Sternberg [53] for
real systems, and was later independently proved by Rosay-Rudin [45] for
complex systems. We sketch the proof here for the case M = Cn. Let
F : Cn → Cn be a biholomorphism such that F (0) = 0. One then mod-
ifies F by a biholomorphism T near the origin, so that (i) T ◦ F ◦ T−1

is close to an upper triangular map G; and (ii) T ′(0) = I, the identity
map. Here G = (g1, . . . , gn) is an upper triangular map, if g1(z) = c1z1,
g2(z) = c2z2 + h(z1),. . ., gn(z) = cnzn + h(z1, . . . , zn−1) for some constants
c1, . . . , cn. By (i) we mean that for any m, we can choose T and G so that
G−1 ◦T ◦F −T = O(|z|m), with G being independent of m when m is large
enough. It can then be shown that Ψ = limk→∞ G−k ◦ T ◦ F k exists and is
a biholomorphism from the basin onto Cn. For any z in the basin, F k(z)
is defined if k is large enough. On the other hand, F is shrinking so G is
expanding. Hence one may expect the image will be the whole Cn.

In special cases, the Kähler-Ricci flow actually performs this uniformiza-
tion and the soliton metric converges in the re-scaled subsequence sense to a
complete flat Kähler metric under the flow. The following result was obtained
in [12].

Theorem 5.4. [12] Let (M, gij̄) be a complete non-compact gradient
Kähler-Ricci soliton as in Theorem 5.3 with smooth potential f and equi-
librium point p. let gij̄(x, t) be the corresponding solution to (5.1) and let
vp ∈ T 1,0

p (M) be a fixed nonzero vector with |vp|0 = 1. Then for any sequence
of times tk → ∞, the sequence of complete Kähler metrics 1

|vp|2tk
gij̄(x, tk)

subconverges on compact subsets of M to a complete flat Kähler metric hij̄

on M if and only if Rij̄(p) = βgij̄(p) at t = 0 for some constant β. In
particular,if this condition is satisfied then M is biholomorphic to Cn.

Note that the Theorem suggests in general, we do not expect to prove
uniformization by rescaling a solution g(t) to the Kähler-Ricci flow to obtain
a complete Kähler flat metric as a limit.

6. Eternal solutions to the normalized Kähler-Ricci flow

In this section we generalize Theorem 5.3 for Kähler-Ricci solitons to
eternal solutions to the normalized Kähler-Ricci flow. As a corollary of this
we will present a uniformization theorem for the case of average quadratic
curvature decay. This is a critical case for uniformization in light of the
gap phenomenon for manifolds with faster than quadratic curvature decay
discussed in §7. The first major result in this case was the following theorem
of Mok [34].

Theorem 6.1. [34] Let (Mn, g) be a complete noncompact Kähler mani-
fold with positive holomorphic bisectional curvature. Suppose that the
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following conditions are satisfied for some p ∈ Mn,

(i) V ol(Bp(r)) ≥ C1r
2n, for all r ≥ 0

(ii) R(x) ≤ C2
(d(p,x)+1)2 . for some C1, C2, ε > 0.

Then Mn is biholomorphic to an affine algebraic variety.

It is well known that a complete noncompact Riemannian manifold
with positive sectional curvature is diffeomorphic to the Euclidean space
[26]. Using a result of Ramanujam [45] which states that an algebraic sur-
face which is homeomorphic to R4 must be biholomorphic to C2, Mok [34]
concluded:

Corollary 6.2. Let (M2, g) be a complete noncompact Kähler sur-
face with positive sectional curvature satisfying conditions (i) and (ii) in the
above theorem. Then M is biholomorphic to C2.

The method of Mok is to construct enough polynomial growth holo-
morphic functions to embed M into some CN so that the image will be an
affine algebraic variety. The proof uses algebraic geometric methods. Later,
in separate works, Chen-Tang-Zhu, Chen-Zhu and Ni used the Kähler-Ricci
flow to improve Mok’s result in Theorem 6.1. In particular in the case of
n = 2, Chen-Zhu [20, 21] obtained the same result as in the Corollary 6.2
by only assuming positive and bounded bisectional curvature and maximal
volume growth. Ni [39] further weakened the condition of positive holomor-
phic bisectional curvature to nonnegative holomorphic bisectional curvature.
The main idea is to show that maximum volume growth still implies qua-
dratic curvature decay condition, as mentioned in Theorem 3.3. Then one
can still prove that M is homeomorphic to R4 and produce enough polyno-
mial growth holomorphic functions to carry over Mok’s method and to use
the result of Ramanujam. Chen-Zhu [18] also proved that if a Kähler sur-
face with bounded and positive sectional curvature is such that the integral
of (Ric)2 is finite, then the surface is biholomorphic to C2, using Ramanu-
jam’s result again. Ramanujam’s theorem however is only true for complex
surfaces, and for higher dimensions we need other methods.

We would like to use the results on Kähler-Ricci flow by Shi in §2 to
generalize Theorem 5.3 for Kähler-Ricci solitons to general solutions g(t)
to the Kähler-Ricci flow. It is natural here to consider eternal solutions to
(5.1), in other words solutions defined for t ∈ (−∞,∞). It is readily seen
that a steady or expanding gradient Kähler-Ricci soliton is indeed an eternal
solution to (5.1). In light of this, one may expect that Theorem 5.3 is still
true when g(t) is an eternal solution to (5.1) with nonnegative uniformly
bounded holomorphic bisectional curvature. This expectation is confirmed
in Theorem 6.3 and was proved by the authors in [14]. Before stating the
theorem, we first discuss the case of quadratic curvature decay in relation
to eternal solutions.
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Suppose (M, g) is complete noncompact with bounded and nonnega-
tive holomorphic bisectional curvature so that its scalar curvature satisfies
the quadratic decay condition (3.3). Then by the results in §2, (6.1) has
a long time solution g̃ij̄ with initial data g, and the scalar curvature R̃
will satisfy tR̃ ≤ C for some constant C uniform on spacetime. Now if we
let g(t) = e−tg̃ij̄(et), then g(t) will be an eternal solution to the normalized
Kähler-Ricci flow (5.1) for κ = 1. Moreover, it is easy to see that g(t) has uni-
formly bounded nonnegative holomorphic bisectional curvature. Conversely,
given such an eternal solution g(t) one sees that g̃(t) = tg(log t) solves the
unnormalized Kähler-Ricci flow

(6.1)
∂

∂t
g̃ij̄ = −R̃ij̄.

for t ≥ 1, and that tR̃ ≤ C for some uniform constant C. This in turns
implies that the scalar curvature of the initial metric g(0) satisfies the qua-
dratic decay condition (3.3) see [43, 39].

Now we state our theorem on eternal solution:

Theorem 6.3. [14] Let Mn be a noncompact complex manifold. Suppose
there is a smooth family of complete Kähler metrics g(t) on M such that for
κ = 0 or 1, g(t) satisfies

(6.2)
∂

∂t
gij̄(x, t) = −Rij̄(x, t) − κgij̄(x, t)

for all t ∈ (−∞,∞) such that for every t, g(t) has uniformly bounded non-
negative holomorphic bisectional curvature on M independent of t. Then M
is holomorphically covered by Cn.

By the remarks preceding the theorem, we have the following result by
the authors:

Theorem 6.4. [14] Suppose (Mn, g) has holomorphic bisectional cur-
vature which is bounded, non-negative and has average quadratic curvature
decay. Then M is holomorphically covered by Cn.

Combining this with Theorem 3.3, we conclude:

Corollary 6.5. Let (Mn, g) be a complete noncompact Kähler manifold
with bounded and nonnegative holomorphic bisectional curvature such that
M has maximum volume growth then M is biholomorphic to Cn.

Remark 1. Corollary 6.5 was proved before Theorem 6.4 by the authors
in [13].

As noted earlier, if we assume the holomorphic bisectional curvature is
bounded and nonnegative, then Theorem 6.3 is basically a direct generaliza-
tion of Theorem 5.3 for gradient Kähler-Ricci solitons. However, the proof
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of Theorem 6.3 is much more complicated. Beginning with a solution g(t)
to the Kähler-Ricci flow as in Theorem 6.3, fix some point p ∈ M and con-
struct maps Φi as in the proof of Theorem 4.5 in §4. For simplicity, we will
assume that Φt is injective for every t (thus M is simply connected). In other
words, we assume the injectivity radius of g(t) at p is bounded from below
independently of t. Such a bound exists in the case of [13], where maximum
volume growth is assumed and removing the dependence on this bound is
the essential generalization made in [14]. We may also assume that g(t) has
positive Ricci curvature because of a dimension reduction result of Cao [10].

Now for N > 0 sufficiently large, as in §4, we can find a sequences of
biholomorphisms Fi from D(r) onto its image which is inside D(r):

(6.3) Fi+1 = Φ−1
(i+1)N ◦ ΦiN : D(r) → D(r)

for i ≥ 1. These Fi’s are basically the same as those in the proof of Theorem
4.5, which as noted in §5, can be chosen to be a single map F when g(t)
is gradient Kähler-Ricci soliton. One would now like to imitate the proof of
Rosay-Rudin’s Theorem 5.2. A key step in their proof was to transform F
into a particularly nice form. Now the main difficulty here is simultaneously
transforming the sequence {Fi} into a likewise nice form. In [30], Johnsson-
Varolin showed that this can be done provided that asymptotically they
behave close enough to a single map F . This closeness is essentially in terms
of the Lyapunov regularity of the Fi’s (see [3] for the terminology). In terms
of the Kähler-Ricci flow, the authors proved [14] that this transformability is
possible due to the Lyapunov regularity of g(t) as described in the following:

Theorem 6.6. [14] Let Mn, g(t) be as in Theorem 6.3 such that the
Ricci curvature of g(t) is positive. Let p ∈ M be fixed and let λ1(t) ≥
. . . ≥ λn(t) > 0 be the eigenvalues of Rij̄(p, t) relative to gij̄(p, t). Then
limt→∞ λi(t) exists for 1 ≤ i ≤ n and there is a constant C > 0 such that
λn(t) ≥ C for all t ≥ 0. Moreover, if we let μ1 > . . . > μl > 0 be the distinct
limits with multiplicities d1, . . . , dl, then V = T

(1,0)
p (M) can be decomposed

orthogonally with respect to g(0) as V1 ⊕ · · · ⊕ Vl so that the following are
true:

(i) If v is a nonzero vector in Vi for some 1 ≤ i ≤ l, then limt→∞
|vi(t)| = 1 and thus limt→∞ Rc(v(t), v̄(t)) = μi and

lim
t→∞

1
t

log
|v|2t
|v|20

= −μi − 1.

Moreover, the convergences are uniform over all v ∈ Vi \ {0}.
(ii) For 1 ≤ i, j ≤ l and for nonzero vectors v ∈ Vi and w ∈ Vj where

i 
= j, limt→∞〈v(t), w(t)〉t = 0 and the convergence is uniform over
all such nonzero vectors v, w.
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(iii) dimC(Vi) = di for each i.
(iv)

l∑
i=1

(−μi − 1) dimC Vi = lim
t→∞

1
t

log
det(gij̄(t))
det(gij̄(0))

.

The theorem basically says that the eigenvalues of the Ricci tensor have
limits and the eigenspaces are almost the same.

The proof of the theorem relies on an important differential Li-Yau-
Hamilton(LYH) inequality for the Kähler-Ricci flow by Cao [7]:

Theorem 6.7. [7] Let g(t) be a complete solution to the Kähler-Ricci
flow (2.2) on M × [0, T ) with bounded and nonnegative holomorphic bisec-
tional curvature. For any p ∈ M and holomorphic vector V at p, let

Zij̄ =
∂

∂t
Rij̄ + Rik̄Zkj̄ + Rij̄,kVk̄ + Rij̄,k̄Vk + Rij̄kl̄Vk̄Vl +

1
t
Rij̄ .

Then
Zij̄W

iW j̄ ≥ 0
for all holomorphic vectors W at p.

Using this differential inequality the authors proved that

Theorem 6.8. [15] Let g(t) be a complete solution to (2.2) with non-
negative holomorphic bisectional curvature such that for any T > 0, g(t) has
bounded curvature for all t ∈ [0, T ]. Fix some p ∈ M and let λi(t) be the
eigenvalues of Rc(p, t) arranged in increasing order. Then

tλk(t)

is nondecreasing in t for all 1 ≤ k ≤ n.

Now under the condition of Theorem 6.6, the proof of Theorem 6.8
directly implies that λi(t) is nondecreasing in t for every 1 ≤ i ≤ n. This
will imply that limt→∞ λi(t) exists for all i. From this, one argues as in the
proof of Theorem 5.1 in [9] to prove that g(t) behaves like gradient Kähler-
Ricci soliton with fixed point at p as t → ∞ in the following sense: For any
tk → ∞, there is a subsequence of g(t+ tk) such that (M, g(t+ tk)) converge
to a gradient Kähler-Ricci soliton. To prove this one actually only needs
the convergence of the scalar curvature R(p, t). In case the manifold has
maximum volume growth, a more general result similar to this was obtained
by Ni [40] independently. Now it is easy to see that if g(t) is a gradient
Kähler-Ricci soliton with fixed point p then Theorem 6.6 is true, and that
in this case we do not even have to take limits. Observing this, one then
argues carefully to obtain the results in Theorem 6.6.

We now return to our sketch of proof of Theorem 6.3. The F ′
is define

a randomly iterated complex dynamical system on D(r) with fixed point
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at the origin. Moreover, using that the Ricci curvature is bounded away
from zero at p for all t by Theorem 6.6, one can show that the maps Fi are
uniformly contracting at the origin and that limi→∞ Fi ◦ · · ◦F1(D(r)) = 0.
This is one of the biggest differences between the Fi’s here and those in §4.
Although the maps there were eventually contracting, they are in general
not uniformly contracting.

Theorem 6.6 can now be translated into Lyapunov regularity of the sys-
tem {Fi} which can roughly be described as follows. Let Ai = F ′

i (0). Then
the system is Lyapunov regular at 0 if one can decomposed Cn orthogo-
nally with respect the Euclidean metric as E1, . . . , El such that if E(i+1)

k =
Ai+1(E

(i)
k ), then E

(i)
k are asymptotically orthogonal and for each k, Ai is

asymptotically contracting at a constant rate on E
(i)
k .

Once this is established, one follows the construction in [30] to construct
a sequence of biholomorphisms Gi : Cn → Cn, and Ti : D(r) → D(r) (it
may be necessary to take r smaller here, but independently of i). Here, the
Gi’s represent approximations of the Fi’s in Aut(Cn) which are lower trian-
gular in a certain sense while the Ti’s represent a sequence of holomorphic
coordinate changes of D(r). The following Lemma describes the extent of
this approximation ([13] Lemma 5.7).

Lemma 6.9. Let k ≥ 0 be an integer. Then

Ψk = lim
l→∞

G−1
k+1 ◦G−1

k+2 ◦ · · · ◦G−1
k+l ◦ Tk+l ◦ Fk+l ◦ · · · ◦ Fk+2 ◦ Fk+1

exists and is a nondegenerate holomorphic map from D(r) into Cn. Moreover,
there is a constant γ > 0 which is independent of k such that

γ−1D(r) ⊂ Ψk(D(r)) ⊂ γD(r).

Since Fi is uniformly contracting, one can show that the sets
Ωi = ΦiT (D(r)) exhaust M as i → ∞. This together with Lemma 6.9 and
the definition of the F ′

is tell us that the sequence of maps

Si = G−1
1 ◦ · · ·G−1

i ◦ Ti ◦ Φ−1
iN : Ωi → Cn

converges to a biholomorphic map Ψ from M into Cn. It is shown in ([13],
§5) that Ψ is onto, and thus M is biholomorphic to Cn.

Now in case that the injectivity radius of p with respect to g(t) is not
bounded away from zero, one works on the pullback metrics ĝ(t) of g(t) under
the exponential maps. In this setting the injectivity radius will be bounded
away from zero and one can show that ĝ(t) still behaves like gradient Kähler-
Ricci soliton locally near 0 as t → ∞. One then constructs maps Fi as in
the proof of Theorem 4.5, which one then shows to be Lyapunov regular,
and proceeds as above to obtain Theorem 6.3.

The fact that ĝ behave like gradient Kähler-Ricci solitons locally near
0 as t → ∞ can be used to prove the following corollary to the Theorem 6.3.
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Corollary 6.10. Let M, g(t) as in Theorem 6.3. Suppose the Ricci cur-
vature is positive with respect to g(0) at some point p. Then M is simply
connected and is biholomorphic to Cn. In particular, if (M, g) is a com-
plete noncompact Kähler manifold with bounded positive holomorphic bisec-
tional curvature which satisfies the quadratic decay condition (3.3), then
M is biholomorphic to Cn.

One might want to compare the last assertion of the corollary with the
statement of Yau’s conjecture and the result of Zheng’s Theorem 4.3. The
main point of the proof of the corollary is to show that the first fundamental
group of M is finite. Since M is covered by Cn, M must then be simply
connected by a well-known result, see [4].

7. A Theorem of Mok-Siu-Yau and its generalizations

One may expect stronger results when the curvature decays faster than
quadratic. In fact, there are gap theorems which tell us that curvature of a
nonflat complete noncompact Kähler manifold (M, g) with nonnegative holo-
morphic bisectional curvature cannot decay too fast. These can be viewed
as converses to the curvature decay Theorem 3.1. The following classic gap
theorem of Mok-Siu-Yau [36] in 1981 was the first result supporting Yau’s
conjecture.

Theorem 7.1. [36] Let M be a complete noncompact Kähler manifold
with nonnegative holomorphic bisectional curvature. Suppose that the follow-
ing conditions are satisfied for some p ∈ M and some ε > 0:

(i) V ol(Bp(r)) ≥ C1r
2n, for all r ≥ 0.

(ii) R(x) ≤ C2
(d(p,x)+1)2+ε . for some C1, C2, ε > 0.

(iii) Either M is Stein or M has nonnegative sectional curvature.

Then M is isometrically biholomorphic to Cn.

By Theorem 4.2, condition (iii) is superfluous because of (i). The condi-
tion of maximum volume growth (i) however seems rather strong. In [19],
Chen-Zhu proved the following:

Theorem 7.2. [19] Let M be a complete noncompact Kähler manifold
with nonnegative and bounded holomorphic bisectional curvature. Suppose
that for some positive real function ε(r) satisfying limr→∞ ε(r) = 0 we have

(7.1)
1

V ol(Bx(r))

∫
Bx(r)

RdV ≤ ε(r)
(1 + r)2

for all x ∈ M and for all r > 0. Then the universal cover of M is isometri-
cally biholomorphic to Cn.
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The theorem says that if M has nonnegative holomorphic bisectional
curvature such that the curvature is bounded and decays faster than qua-
dratic on average uniformly at all points in M , then M is flat. It is not
hard to see these hypothesis are implied by (i) and (ii) in Theorem 7.1.
The proof of Theorem 7.2 uses the Kähler-Ricci flow. In fact, one can see
from the proof of Theorem 2.3 that if we consider the normalized flow (5.1)
with κ = 1, then the scalar curvature will tend to zero at infinity. Hence it
must be zero initially by the monotonicity derived from Theorem 6.7. Note
that in order to use the Kähler-Ricci flow, one needs to assume that the
curvature is bounded. On the other hand, there is a way to prove a stronger
result in this case without using the Kähler-Ricci flow by modifying the
method of [36].

Let us go back to the proof of Mok-Siu-Yau [36]. Their method is as
follows: First one solves the Poisson equation 1

2Δu = R with good esti-
mates. This can be done because assumptions (i) and (ii) in Theorem 7.1
give a good estimate of the Green’s function. Secondly, one can show that
||
√
−1∂∂̄u − Ric|| is subharmonic using the fact that M has nonnegative

holomorphic bisectional curvature. Using the estimate of u, one may get an
integral estimate of ||∂∂̄u||2 on geodesic balls. Then by a mean value inequal-
ity, we conclude that

√
−1∂∂̄u = Ric. In particular, u is plurisubharmonic.

Finally, one proves that u is constant implying that M is flat. One proves
this by contradiction: assuming u is not constant, one produces a function v
which at a point is strictly plurisubharmonic and satisfies (

√
−1∂∂̄v)n ≡ 0.

If the manifold is Stein one embeds M in CN for some N and proceeds to
use the coordinate functions of CN to construct such a v. If M has nonneg-
ative sectional curvature one uses the Busemann function, together with u,
to construct v.

Following this line of argument, Ni-Shi-Tam in [41] obtained a general
result on the existence of a solution of the Poisson equation on complete
noncompact Riemannian manifold with nonnegative Ricci curvature without
any volume growth condition. In particular, it was shown there that if (7.1)
holds at some point p, then one can still solve:

1
2
Δu = R

with

(7.2) lim sup
r→∞

u(x)
log d(p, x)

≤ 0.

These follow from the classic results of Li-Yau [33] on the heat kernel
estimates on manifolds with nonnegative Ricci curvature, which provide
an estimate for the Green’s function without assuming maximum volume
growth.
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In order to prove that
√
−1∂∂̄u = Ric, one needs the condition on the

L2 norm of R:

(7.3) lim inf
r→∞

[
exp(−ar2)

∫
Bp(r)

R2dV

]
< ∞

for some a > 0. Note that R may be allowed to grow like exp(a′r2) for some
a′ > 0. From this, one may then solve the heat equation with initial data u
and use the maximum principle and the mean value inequality as developed
by Li-Schoen [32] to conclude that u is indeed a potential of the Ric form.
Here (7.3) is used to apply the maximum principle.

Finally, one can prove that u is constant by (7.2) and the following
Liouville property for pluirsubharmonic functions of Ni-Tam [42]:

Theorem 7.3. [42] Let (M, g) be a complete noncompact Kähler man-
ifold with nonnegative holomorphic bisectional curvature. Suppose u is a
continuous plurisubharmonic function satisfying (7.2), then u is constant.

We may assume here that u is bounded from below. The idea of proof
of Theorem 7.3 uses methods as in the proof of Theorem 3.2 and uses the
following result of Ni [38] to conclude that u is actually harmonic:

Theorem 7.4. [38] Let (Mn, g) be a complete noncompact Kähler mani-
fold with nonnegative Ricci curvature. Suppose u is a plurisubharmonic func-
tion on M satisfying (7.2). Then (∂∂̄u)n ≡ 0.

Hence u must be harmonic and therefore constant by a classical result of
Cheng-Yau [23] on harmonic function on complete manifolds with nonneg-
ative Ricci curvature. From these results Ni-Tam [42] proved the following,
which is the best result up to now in the generalization of Theorem 7.1:

Theorem 7.5. [42] Let (M, g) be a complete noncompact Kähler mani-
fold with nonnegative holomorphic bisectional curvature. Suppose the scalar
curvature R satisfies (7.1) and (7.3) for some p. Then the universal cover
of M is isometrically biholomorphic to Cn.

It is still unknown whether the condition (7.3) can be removed.
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