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1. Motivation

To motivate the study of spaces with curvature bounded from above
(CBA for brevity) let us list some results which essentially use them.

1. The p-adic superrigidity of lattices in Sp(n, 1) and F4 was proven by
developing the theory of harmonic maps into singular Non Positively Curved
(NPC) spaces, e.g. Euclidean Bruhat-Tits buildings [59].

2. For each n ≥ 5, there are examples of closed topological n-manifolds
Mn with piecewise flat NPC metrics whose universal coverings M̃n are not
homeomorphic to Rn [55]. Furthermore, the interior of every compact con-
tractible PL-manifold Cn, again n ≥ 5, supports a complete metric d of
strictly negative curvature ([16], spines and metrization of polyhedra [29]).
When ∂Cn is not simply connected, there are geodesics of d which are wild
curves in Cn.

3. Solution of an old-standing problem concerning the existence of uni-
form estimates on the number of collisions in semi-dispersing billiards [50].

4. Examples of metric spaces with decent calculus, e.g. admitting
Poincaré inequalities, for which all quasi-conformal automorphisms are quasi-
symmetric, with Hausdorff dimension not an integer. These spaces come out
as ideal boundaries of some hyperbolic buildings [43].

A beautiful survey on CBA spaces is [4], where also spaces with both
lower and upper curvature bounds are discussed, see also [39]. That survey
reflects the initial development of the subject up to 1986, when emphasis was
placed on the comparison of angles and the angle excess of triangles rather
than comparison of distances between sidepoints. Together with the back-
ground of CBA and CBB (curvature bounded from below) spaces, the notion
of area, the Plateau problem and an isoperimetric inequality for a minimal
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surface are discussed. Significant part of that survey is dedicated to intro-
ducing a Riemannian structure on spaces with bi-sided curvature bounds
under some additional assumptions, and to proving smoothness results.

Comprehensive introductions into the subject, especially for nonposi-
tively curved spaces can be found in [46, 21, 48].

The global version of the CBA condition is the CAT property. We dis-
tinguish three major cases of CAT(κ)-spaces with quite different flavors,
results and approaches: κ< 0, κ = 0 and κ> 0. CAT(κ)-spaces with κ< 0 are
Gromov hyperbolic and, conversely, by a result of M. Bonk and O. Schramm
[51], every Gromov hyperbolic space (with a mild restriction) is roughly
homothetic to a convex subset in Hn. The most important examples are
hyperbolic groups. All Hadamard spaces are CAT(0) and the tangent spaces
of every CBA-space are Hadamard. Important examples of CAT(1)-spaces
are the space of directions of a CBA-space and the Tits boundary at infinity
∂T X of a Hadamard space.

Each of the classes of CAT(−1) and CAT(0) spaces deserves a separate
treatment, especially with respect to rigidity results, which we only briefly
touch in sect. 9. In this survey, we restrict ourself basically to those properties
of CBA(κ)-spaces which are independent of the sign of κ. In particular, we
do not discuss (large scale) applications to non-positively curved spaces and
to geometric group theory. We also regret that due to lack time and space
we do not discuss an important paper [58].

Acknowledgment. We thank Stephanie Alexander for a number of valu-
able remarks. We also thank the referees for the many helpful comments and
useful remarks. The first author is grateful to the University of Zürich for
the support and the hospitality during his visit when a part of this survey
has been written.

2. Defining CBA

2.1. CBA and CAT spaces. Throughout the paper, we use the nota-
tion d(x, y) or |xy| for the distance between points x, y in a metric space.

Let (X, d) be a metric space. The length of a (continuous) curve
σ : [a, b] → X is given by

L(σ) := sup
k∑

j=1

d(σ(tj−1), σ(tj)) ∈ [0,∞] ,

where the supremum is taken over all positive integers k and all subdivisions
a = t0 ≤ t1 ≤ . . . ≤ tk = b. Then

di(x, y) := inf{L(σ) : σ is a curve from x to y}

defines a semimetric on X, i.e. di satisfies the axioms of a metric except that
it may assume the value ∞ (one uses the convention that r +∞ = ∞ for
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r ∈ [0,∞]). Slightly abusing the terminology, one calls di the inner metric
on X induced by d. Note that di ≥ d; if d = di then (X, d) is said to be an
inner metric space. A curve σ : [a, b] → X is called minimizing or shortest
if L(σ) = d(σ(a), σ(b)). Then σ is said to be a minimizing geodesic if it
additionally has constant speed, i.e. there exists s ≥ 0 such that L(σ|[a, t]) =
s(t− a) for all t ∈ [a, b]. A metric space X is called locally geodesic if every
p ∈ X possesses a neighborhood U such that for all x, y ∈ U there exists a
minimizing geodesic in X from x to y. X is called a geodesic space if this
holds for U = X.

For κ ∈ R, let Mκ be the model 2-space of constant curvature κ, define

Dκ := diamMκ =

{
π/
√

κ for κ > 0,
∞ for κ ≤ 0.

A triangle in X is a triple Δ = (σ1, σ2, σ3) of minimizing geodesics
σi : [ai, bi] → X whose endpoints match as usual. Assume that Δ has
perimeter

P (Δ) := L(σ1) + L(σ2) + L(σ3) < 2Dκ .

Then there exists a comparison triangle Δκ for Δ in Mκ which is unique
up to isometry, namely, a triple of geodesic segments σκ

i : [ai, bi]→Mκ such
that L(σκ

i ) = L(σi) for i = 1, 2, 3, and such that the endpoints of σκ
1 , σκ

2 , σκ
3

match in the same way as those of σ1, σ2, σ3. Then Δ is said to be κ-thin
if d(σi(s), σj(t)) ≤ d(σκ

i (s), σκ
j (t)) respectively, whenever i, j ∈ {1, 2, 3}, s ∈

[ai, bi], and t ∈ [aj , bj ].

Definition 2.1 (CBA(κ)). A metric space X is said to have curvature
≤ κ, or it is called a CBA(κ)-space, if it is locally geodesic and every p ∈ X
possesses a neighborhood U such that all triangles in X with vertices in U
and perimeter < 2Dκ are κ-thin.

The global version of this definition is the following

Definition 2.2 (CAT(κ)). A metric space X is called a CAT(κ) space
if it is geodesic and all triangles in X of perimeter < 2Dκ are κ-thin.

It follows that for all x, y ∈ X with d(x, y) < Dκ there is a unique
minimizing geodesic σ : [0, 1] → X from x to y, and all metric balls in X
with radius < Dκ/2 are strongly convex. Note that Mκ is a CAT(κ) space.

In general, the convexity radius r(x) at x ∈ X of a CBA-space X is the
supremum of r > 0 such that the ball Br(x) is strictly convex. Taking the
infimum over all x ∈ X, we obtain the convexity radius of X.

There is another characterization of CBA-spaces via the Lipschitz exten-
sion property which is useful in some cases. We say that a metric space U
is CAT(κ) if for every triple S = {x, y, z} ⊂ Mκ with perimeter <2Dκ and
every isometric f : S → U , there is a 1-Lip extension {y, t, z} → U of
f |{y, z}, where t ∈ yz is the midpoint, and every such extension defines a
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1-Lip extension f : S ∪ {t} → U of f . In this case, a triple f(S) = {x, y, z}
is said to be κ-thin. A metric space X is CBA(κ) if it is CAT(κ) locally.

This definition is actually equivalent to the definition above under the
assumption that X is complete.

Remark 2.3. In the definition of a CAT(κ)-space, it suffices to compare
the medians of triangles. On the other hand, comparing the midlines instead
of the medians leads to Busemann’s condition of nonpositive curvature (for
κ = 0). The corresponding class of spaces is much larger than CBA(0)
and includes, in particular, linear normed spaces. The basic distinction is
that CBA(κ) implies the existence of angles whereas Busemann’s NPC does
not. Actually the Busemann NPC condition plus the existence of angles is
equivalent to CBA(0).

Remark 2.4. One can redefine the CAT(κ)-condition in an equivalent
way saying that for each ε > 0, 0 < P < 2Dκ there exists δ > 0 such that
for every (1, δ)-quasi-isometric f : S → U with perimeter of S bounded by
P , every (1, δ)-quasi-isometric extension {y, t, z} → U of f |{y, z} with the
midpoint t ∈ yz defines a (1, ε)-quasi-isometric extension f : S ∪ {t} → U
of f . This stabilized definition is useful for proving that the CBA-condition
behaves well under limiting operations.

A very important class of CBA spaces is the class of Hadamard spaces.

Definition 2.5 (Hadamard space). A Hadamard space is a complete
CAT(0) space.

2.2. Reshetnyak’s majorizing theorem. There is a broad general-
ization of the defining property of a CAT(κ) space which is an important
tool for the study of CBA-spaces [100].

Theorem 2.6 (RMT). Let γ be a closed curve of length <2Dκ in a
CAT(κ) space M . Then there is a closed curve γ̃ which is the boundary of a
convex region D in Mκ and a distance non-increasing map φ : D →M such
that the restriction of φ to γ̃ is an arclength-preserving map onto γ.

Taking γ to be a triangle, we get back the defining property of a CAT(κ)
space because for a geodesic subarc of γ, the corresponding subarc of γ̃ is
also a geodesic segment.

It is very surprising how far one can get by starting with the CBA(κ)
condition. For a complete X, this condition implies the local existence and
uniqueness of geodesics, the existence and comparison of angles, the prop-
agation from local to global comparison, the infinitesimal theory etc. The
basic device to extract various properties from the definition is the following.

Lemma 2.7. Assume that xyt, xtz are κ-thin triangles, where t ∈ yz.
Then, if the perimeter of xyz is less than 2Dκ, the triangle xyz is also
κ-thin.
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3. Infinitesimal properties of CBA-spaces

3.1. Tangent cone. Let Σ be a metric space with diam Σ ≤ π. The
Euclidean cone C(Σ) over Σ is defined as follows. The underlying set will be
Σ× [0,∞)/Σ×{0}. Given σ1, σ2 ∈ Σ, we consider embeddings ρ : {σ1, σ2}×
[0,∞) → R2 such that |ρ(σi, t)| = |t| and ∠0 (ρ(σ1, t1), ρ(σ2, t2)) = |σ1σ2|,
and we equip C(Σ) with the unique metric for which these embeddings are
isometric. The space C(Σ) is CAT(0) if and only if Σ is CAT(1).

Given a CBA(κ)-space X, x ∈ X, we let ΣxX be the direction space
at x that is the (metric completion of the) set of equivalence classes of
geodesic segments with initial point x (two such segments are equivalent if
they have zero angle at x). The tangent cone of X at x, denoted by TxX, is
the Euclidean cone C(ΣxX).

Theorem 3.1. If X is locally compact and geodesically complete, then
TxX is a Hausdorff-Gromov limit of blow-ups 1

ε (X, x) as ε→ 0. In general,
the CBA(εκ)-spaces 1

ε (X, x) converge to TxX on finite subsets. Thus the
tangent cone TxX of a CBA-space X is a CAT(0)-space at every x ∈ X;
consequently the direction space ΣxX is a CAT(1)-space.

(The last fact is due to I. Nikolaev, [90]). The proof is straightforward,
based on the existence of angles and uses the stabilized definition of the
CAT(κ)-condition. The direction spaces of CBA-spaces were studied in [33,
49, 66, 73, 74, 90, 93].

3.2. Scalar product and its concavity. We use the notation v = rσ
for v = (σ, r) ∈ TxX. Given v = rσ, v′ = r′σ′ ∈ TxX one defines their scalar
product

〈v, v′〉 :=
1
2
(r2 + r′2 − dx(v, v′)2).

The CAT(0)-property of TxX implies the concavity of the scalar product:
whenever γ : [0, 1]→ TxX is a geodesic and w ∈ TxX, then

〈γ(t), w〉 ≥ (1− t)〈γ(0), w〉+ t〈γ(1), w〉

for all t ∈ [0, 1]. By iterating this inequality one obtains the following.

Proposition 3.2. Let C ⊂TxX be the convex hull of a finite set {u1, . . . ,
uk}. Then for every v ∈ C there exist μ1, . . . , μk ≥ 0 with

∑
i μi = 1 such

that ∑
i

μi〈ui, w〉 ≤ 〈v, w〉

for all w ∈ TxX.

This is due to U. Lang and V. Schroeder, [73], who together with
B. Pavlović, [75], have used it to establish a remarkable Lipschitz exten-
sion property of Hadamard spaces, see sect. 8.1.
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3.3. Recognizing CBA-spaces. We give a fundamental example of a
space which is not CBA. This is the Euclidean cone X over a circle of length
<2π. Clearly, X contains arbitrarily short geodesic bigons (which live near
the vertex), thus it cannot be a CBA-space.

Basic examples of CBA(κ)-spaces are simplicial complexes obtained by
gluing together simplices of constant curvature κ. In such a complex, the link
of each simplex has itself the structure of a complex built out of spherical
simplices (the case κ = 1). It turns out that (see [20]):

Theorem 3.3. The original complex will be CBA(κ) if and only if the
link of every simplex is (globally) CAT(1). This is equivalent to saying that
the link of each simplex should contain no closed geodesic of length strictly
less than 2π.

Closely related is the following result due to V. Berestovskii [29].

Theorem 3.4. Any simplicial complex admits a piecewise spherical CAT
(1)-metric.

For the proof, one should take the barycentric subdivision and introduce
the metric in which every simplex of the subdivision is isometric to the
standard spherical one of the same dimension.

This result has several important applications, among them are exam-
ples of CBA(1)-spaces homeomorphic to n-manifolds (n ≥ 5) which contain
points where the direction space is not homeomorphic to a manifold, see [31]
(this settles in the negative a question of A. Aleksandrov). Take a homo-
logical Poincaré sphere Σ3 and let X = S1(S1(Σ3)) be its double suspension.
Its known that X is homeomorphic to S5, whereas Y = S1(Σ3) is not a man-
ifold. Starting with a triangulation of Σ3 one introduces a CBA(1)-metric
on X such that the direction space at some point is Y . In dimension n = 3, 4
the problem seems to be open (and related to the Poincaré conjecture for
n = 4). It follows from [49, Prop. 3.12] that the space of directions Σx

at every point is weakly homotopy equivalent to Sn−1. We do not know,
even for n = 3, whether Σx is a finite 2-polyhedron. On the other hand,
there are simple examples of finite 2-polyhedra with complete metrics of
upper bounded curvature and with extendable geodesics that are homotopy
equivalent, but not homeomorphic to the sphere S2.

The paper by P. Thurston [104] has some relation to this problem. It is
shown there that for arbitrarily small r > 0, the metric sphere Sr of radius r
around a point in a topological n-manifold with CBA-metric is homeomor-
phic to S2 for n = 3 and it is homeomorphic to a closed 3-manifold for n = 4.
However, it is not sufficient for the solution of the Alexandrov problem even
for n = 3 because we can only say that Sr converge to the link at the respec-
tive point by Hausdorff-Gromov. But there are easy examples of sequences
of metric 2-spheres which Hausdorff-Gromov converge e.g. to a 2-disc.

In this respect, we would like to mention some results of a sphere theo-
rem type. A (nontrivial) geodesic space X is geodesically complete if every
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nontrivial geodesic γ : J → X, J ⊂ R can be extended as a locally isometric
embedding to the whole real line R. Assume that 0 < Hn(Br(x)) < ∞,
n ∈ N, for every point x ∈ X of a compact, geodesically complete CAT(1)-
space X and for all sufficiently small r > 0, where Hn is the n-dimensional
Hausdorff measure.

It is proven in [88] that then Hn(X) ≥ volSn for the unit sphere
Sn ⊂ Rn+1. Moreover, if in addition Hn(X) < volSn + εn for some εn > 0
depending only on n ≥ 1, then X is bi-Lipschitz homeomorphic to Sn with
bi-Lipschitz constants close to 1.

In dimension n = 2 there is a much better result [89]: if

H2(X) < 6π(= 3/2 volS2)

then, under the conditions above, X is homeomorphic to S2. This result is
optimal because the union X of S2 and a hemisphere S2

+ along an equator
is not homeomorphic to S2 while H2(X) = 3/2 volS2.

3.4. κ-convexity. Let Fκ denote the family of solutions of the differ-
ential equation f ′′ + κf = 0, κ ∈ R. We say that a continuous function
f : X → R on a geodesic metric space X is κ-convex if its restriction to
every unit speed geodesic satisfies the differential inequality

f ′′ + κf ≥ 0

in the barrier sense. This means that f ≤ g if g ∈ Fκ coincides with f at
the end points of a sufficiently short subsegment. Thus F0-convexity is usual
convexity.

A real function F along a geodesic γ in X is called a normal Jacobi
field length if there is a sequence of geodesics γi and a sequence of positive
numbers ui approaching 0 for which

F (t) = limu−1
i |γi(t)γ(t)|,

where all γi and γ are arclength parameterized by [0, l], and |γi(t)γ(t)| =
dist(γi(t), γ) + o(ui) for all t ∈ [0, l]. In the case of Riemannian manifolds
with boundary, this notion is studied in detail in [13, 14] together with
the notion of Jacobi field direction. In particular, existence and regularity
results are obtained.

For this discussion, we do not need the notion of Jacobi field direction.

Proposition 3.5. Assume that a geodesic metric space X is CBA(κ)
for some κ ∈ R. Then every normal Jacobi field length along every unit
speed geodesic is κ-convex.

This easily follows from RMT applied to geodesic quadrilaterals γ(0)γ(l)
γi(l)γi(0), and properties of geodesics in the model space Mκ, see [14]. In the
case κ ≥ 0, the condition to be normal, i.e. that |γi(t)γ(t)| = dist(γi(t), γ)+
o(ui), can be omitted without violating the conclusion of the proposition.
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The converse is proved in a number of cases, see [14, 11], and the argu-
ment requires the following (local) properties of a geodesic metric space X:

• every point of X has a neighborhood in which any geodesic varia-
tion whose endpoint curves are Lipschitz is itself Lipschitz;

• the first variation formula;
• existence of the Jacobi field lengths and their splitting into the

normal and tangential components, where the last one is linear.
For example, these conditions are obviously fulfilled in the case X is a

Riemannian manifold (without boundary). It is more delicate to show that
they are also fulfilled for a Riemannian manifold with nonempty boundary,
see [13, 14] and the next section. Another important case, namely when X
is CBA, is discussed in [11], see sect. 7.

Proposition 3.6. Assume that a geodesic metric space X possesses the
properties above. If every normal Jacobi field length is κ-convex, then X is
CBA(κ).

This proposition implies in particular that every Riemannian manifold
with sectional curvatures ≤κ is CBA(κ).

The idea is to prove the angle comparison condition for any sufficiently
small triangle pqr ⊂ X. To this end, a “development” argument of the kind
introduced by Alexandrov [2] is used as follows, compare [14]. Connect p
with every point of qr by the minimizer and develop this variation as a
map into Mκ which also has the form of a cone over a curve. Two of the
developped sides, pq and pr, are geodesics of the same length as pq and pr
respectively and the third side, qr, is a curve of the same length as qr. It
suffices to show that the angle θ at p swept out by the comparison cone is
at least the angle θ at p in pqr. Choosing points x ∈ pq, y ∈ pr sufficiently
close to and different from p, connect the comparison points x ∈ pq, y ∈ pr
by the shortest path τ within the comparison cone. Lifting τ to the curve
τ connecting x and y in the initial cove over qr, we prove that the length
of τ is not greater than that of τ by representing the speed of τ as the
value of a Jacobi field length along appropriate pz, z ∈ qr, decomposing it
into the normal and tangent components and using the κ-convexity of the
normal component while the tangent component coincides with that in the
comparison cone. This implies the required θ ≤ θ.

Proposition 3.6 is typically used to establish a sharp CBA(κ) condition,
for example when it is already known that a given space X is CBA, see [68,
70, 11]. Yet, it is interesting to find general and effective conditions which
would imply the conditions of Proposition 3.6. The notion of a geometric
space, introduced in [78], seems to be suggestive in this respect.

According to [78], a proper geodesic space X is geometric if the following
holds:

• for every x ∈ X the union of all geodesics starting at x contains a
neighborhood of X and for any two such geodesics γ, γ′ the limit
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limt→0 |γ(t)γ′(st)|/t exists for all s > 0. Moreover, we require the
following uniformity condition in the limit above: for each ε > 0
there is ρ > 0 such that |γ(t)γ′(t)| ≤ εt for all positive t < ρ and
γ, γ′ whose directions at x are ρ-close to each other;

• each tangent space TxX, x ∈ X, is uniformly convex and smooth;
• geodesics vary smoothly in X.

For precise definitions we refer to [78]. The following classes of spaces
are geometric: CBA and CBB (curvature bounded below) spaces; extremal
subsets in CBB spaces [96]; surfaces with bounded total curvature (see
sect. 10.5); Hölder continuous Riemannian manifolds; sufficiently convex
and smooth Finsler manifolds; subsets of positive reach in CBA spaces (see
sect. 7). The class of geometric spaces is closed under natural metric oper-
ations and the first variation formula holds for the geometric spaces.

3.5. Riemannian manifolds with boundary. The following impor-
tant result is obtained in [14].

Theorem 3.7. Let M be a Riemannian manifold with boundary B. Then
the following two conditions are equivalent:

(1) M is CBA(κ).
(2) The sectional curvatures of the interior of M and the outward sec-

tional curvatures of the boundary B do not exceed κ (where an out-
ward sectional curvature of B is one that corresponds to a tangent
section all of whose normal curvature vectors point outward).

A characteristic difficulty lies in the possibility of unbounded switching
behavior, which may, for example, produce Cantor coincidence sets between
a geodesic and the boundary.

This theorem is proven by establishing the equivalence of conditions 1
and 2 with a third condition, namely, the κ-convexity of normal Jacobi field
lengths. The most difficult part of Theorem 3.7 is to prove that condition 2
implies κ-convexity of normal Jacobi field lengths, especially at points of
a geodesic γ⊂M lying in the boundary where the acceleration exists and
vanishes.

As an application, the following Hadamard-Cartan theorem for mani-
folds with boundary is obtained in [14].

Corollary 3.8. If for a simply connected, complete Riemannian man-
ifold with boundary, the sectional curvatures of the interior and the outward
sectional curvatures of the boundary are nonpositive, then any two points
are joined by a unique geodesic, and the distance between any two geodesics
is convex.

3.6. Higher order properties. On the unit tangent bundle UM of
every Riemannian manifold, there is a natural Riemannian metric, called
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the Sasaki metric, which is defined via the Levi-Civita parallel transport,
[101, 102]. An attempt to define an analog of the Sasaki metric or, more
precisely, of the notion of angle between two directions, possibly based at
different points, is made in [40] for general CBA-spaces. The approach is
based on the notions of quadrilateral cosine and sine, where the later is
defined via the former. The definition of the quadrilateral sine is rather
involved and for general CBA-space it is hard to prove anything useful about
that notion, see [40]. In the case of spaces with more regularity, one can
achieve more advances and more interesting results involving higher order
properties, see [91, 92].

4. Local properties of CBA-spaces

4.1. Geometric dimension. One defines the geometric dimension of
CBA spaces to be the smallest function (taking values in N∪∞) on the class
of CBA spaces such that

(1) GeomDim(X) = 0 if X is discrete;
(2) GeomDim(X) ≥ 1 + GeomDim(ΣxX) for every x ∈ X.

In other words, to find the geometric dimension of a CBA-space we look
for the largest number of times that we can pass to spaces of directions
without getting the empty set. This notion and the related results are due
to B. Kleiner, [65].

Theorem 4.1. For every CBA-space X we have

GeomDim(X) = sup{TopDim(K) : K ⊂ X is compact},

where TopDim is the topological dimension.
Let X be a CBA space with GeomDim(X) = n<∞. Then sup{k :

∀ε > 0 ∃(1 + ε)− bilipschitz embedding U → X of an open U ⊂ Rk} = n.
Let X be a locally compact Hadamard space on which Isom(X) acts

cocompactly. Then sup{k : There is an isometric embedding Rk → X} =
1 + GeomDim(∂T X).

Here ∂T X is the boundary at infinity of X equipped with the Tits metric.
Actually, a number of other properties related to GeomDim(X) are proved
in [65]. Here we have listed only the most important ones.

A key ingredient in the proofs is the notion of a barycentric simplex.
For z = (z0, . . . , zn) ⊂ X (with sufficiently small diameter if κ > 0), the
barycentric simplex determined by z is the singular simplex σz : Δn →
X which maps each α = (α0, . . . , αn)∈Δn to the unique minimum of the
uniformly convex function φα =

∑
αi dist(zi, ·)2. Barycentric simplices are

Lipschitz and possess the following remarkable property.
If x ∈ σz(Δn)\σz(∂Δn), then GeomDim(Σx) ≥ n− 1.
For the proof, one considers the differential gα = dφα =

∑
αifi : TxX →

R. It turns out that for α ∈ ∂Δn, its restriction to the unit sphere ΣxX ⊂
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TxX possesses a unique minimum and thus defines a Lipschitz σf : ∂Δn →
ΣxX which is a nondegenerate (n−1)-chain of barycentric simplices. Arguing
by induction, one concludes that GeomDim(ΣxX) ≥ n− 1.

This leads to the estimate TopDim(K) ≤ GeomDim(X) for compact
subsets K ⊂ X, and using the nondegenerate part σz(Δn)\σz(∂Δn), one
obtains bilipschitz embeddings of open sets U ⊂ Rn into X.

Though it is not stated explicitly, the existence of bilipschitz embeddings
U ⊂ Rn → X should imply (an extension of) the Rademacher-Stepanoff
theorem on the differentiability of Lipschitz functions to CBA-spaces, cf.
[67], [54].

4.2. Branch and singular points. Let X be a locally compact, geode-
sically complete CBA-space. A point x ∈ X is said to be regular, if the
direction space ΣxX is isometric to the unit sphere Sn−1 for some n ∈ N,
while Hn(Br(x)) < ∞ for some r > 0. A point x ∈ X that is not regular is
called singular.

Let x ∈ X, δ > 0. Following [94], we say that v ∈ ΣxX is a δ-branch
direction, if diamBv ≥ δ, where Bv ⊂ ΣxX consists of all directions forming
the (maximal possible) angle π with v. Furthermore, y ∈ X is called a δ-
branch point of x, if vyx ∈ ΣyX is a δ-branch direction, where the direction
vyx is tangent to some geodesic segment yx. We denote by Sx,δ the set of all
δ-branch points of x and by Sδ the set of all δ-branch points, Sδ = ∪x∈XSx,δ.
Note that if x ∈ Sδ then ΣxX is not isometric to Sn−1 for any n ∈ N. In
particular, it follows that Sδ consists of singular points.

The following result [94, 88] shows the abundance of regular points.

Theorem 4.2. Assume that Hn(Br(x)) < ∞ for some n ∈ N, x ∈ X
and a sufficiently small r > 0. Then Hn(Sx,δ ∩ Br(x)) = 0 for any δ > 0.
Moreover, Hn(Sδ ∩ Br(x)) = 0 and Hn(An ∩ Br(x)) = 0, where An ⊂ X
consists of all x with ΣxX not isometric to Sn−1.

We conclude that if 0 < Hn(Br(x)) <∞ for all sufficiently small r > 0,
then Hn-almost every point of every such ball is regular.

4.3. Manifold points. A manifold point in a metric space X is a point
with a neighborhood homeomorphic to an open subset in some Rn. The
following result is due to B. Kleiner. For simplicity, we give a qualitative
version.

Theorem 4.3. If a metric ball Br(x) in a geodesically complete CBA-
space X is sufficiently close in the Hausdorff-Gromov metric (see sect. 5)
to the ball Br(0) ⊂ Rn of the same sufficiently small radius r > 0, then a
smaller concentric ball Bρ(x) ⊂ Br(x) with ρ ! r is bi-Lipschitz homeo-
morphic to an open subset of Rn.
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For the proof see [49, §3], a quantitative version can be found in [88].
This theorem is similar to [47, Theorem 5.4] for CBB-spaces, and the argu-
ment follows a similar line of reasoning by proving the existence of a dis-
tance frame or strainer and studying the associated distance map into Rn.
The essential distinction to the CBB case is only that a lower estimate
for angles is based on the extendability of geodesics. For applications to
structure results for CBA-metrics on 2-polyhedra see [49] and sect. 10, for
applications to a volume convergence theorem see [88] and the end of sect. 5.

If every point of X is a manifold point, then X is called a CBA-manifold.
Even locally CBA-manifold can differ significantly from Riemannian mani-
folds, as the examples of CBA-manifolds whose space of directions Σx is not a
manifold (section 3.3) show. For every n ≥ 5 M. Davis and T. Januszkiewicz
[55] constructed CBA(0)-manifolds Mn whose universal covering space X =
M̃n is not simply connected at infinity, in particular not homeomorphic
to Rn. P. Thurston [104] however showed, that a 4-dimensional CAT(0)-
manifold X4 which possesses a tame point, is homeomorphic to R4. Here a
point x ∈ X is called tame, if for all r > 0 the distance sphere Sr(x) is a
closed manifold.

4.4. Propagation from local to global. A remarkable property of
the comparison conditions CBA as well as CBB is that they propagate from
local to global. However, there is a fundamental distinction between CBA
and CBB: in any CBB(κ) space every geodesic triangle satisfies the angle
comparison with Mκ (Toponogov’s theorem), whereas for CBA spaces this
is not the case. This is a major source of problems for proving or checking
the CBA-condition.

A geodesic γ : [0, 1] → X has no conjugate points, if for some neigh-
borhood U of γ (in the space of maps [0, 1] → X with the compact-open
topology) the map p : U → X×X, p(σ) = (σ(0), σ(1)) is a homeomorphism
on the neighborhood V = p(U) of (γ(0), γ(1)). We have [5] the following:

Theorem 4.4. Every geodesic γ of length L(γ) < Dκ in a complete
CBA(κ)-space X has no conjugate points. Moreover, every narrow triangle
with two sides sufficiently close to γ is κ-thin.

The main ingredient of the proof is the following middle-third con-
struction. For geodesics γ, σ, γ′, σ′ : [0, 1] → X such that γ′(0) = γ(0),
γ′(1) = σ(1/2), σ′(0) = γ(1/2), σ′(1) = σ(1) we denote (γ′, σ′) = Λ(γ, σ)
and put μ(γ, σ) = max {|γ(1/2)σ(0)|, |γ(1)σ(1/2)|}.

For every 0 < P < 2
3Dκ there exist δ = δ(P ), λ = λ(P ), δ > 0, 0 < λ < 1

such that if for pairs of geodesics (γ, σ), (γ′, σ′) = Λ(γ, σ) in a metric space X
the triangles Δ with sides γ, γ′, γ(1)γ′(1) and Δ′ with sides σ, σ′, σ(0)σ′(0)
are κ-thin and P (Δ), P (Δ′) ≤ P , μ(γ, σ) < δ then

μ(γ′, σ′) ≤ λμ(γ, σ).
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Applied to the case κ ≤ 0 this leads to an extension of the classical Hada-
mard-Cartan theorem to Hadamard spaces.

Theorem 4.5. For every κ ≤ 0, every complete simply connected CBA
(κ)-space satisfies CAT(κ).

There is a standard trap in the proof: if one has a space in which a
geodesic between any two points is unique then it is natural to suppose that
the geodesics vary continuously with their ends. This is indeed the case for
the locally compact CBA(κ)-spaces. However, in general, this is not true.
One can observe this effect by looking at the cartwheel. As an example (due
to W. Ballmann) one can take the metric completion X of B = ∪nBn where
B1 is the circle of length 3, and Bn+1 is obtained from Bn by connecting
every x, y ∈ Bn with dist(x, y) > 1 by a segment of length 1. Then X is a
complete CBA(κ)-space for each κ ∈ R such that every two points from the
dense subset B are connected by a unique geodesic. However, geodesics in
X do not vary continuously with their ends.

4.5. Busemann’s G-spaces. A G-space of Busemann is a locally com-
pact, complete, inner metric space in which geodesics are not overlapping
and locally extendable (geodesics are not overlapping if whenever two of
them, γ and γ′, have an open common interval, their union γ ∪ γ′ again
supports a geodesics). The following result due to V. Berestovskii [33]
describes G-spaces which are CBA.

Theorem 4.6. Every CBA G-space of Busemann is a Riemannian C0-
manifold. The components of the metric tensor are continuous w.r.t. distance
coordinates. Every two distance coordinates maps are C1-compatible.

Remark 4.7. A similar result holds true for CBB G-spaces, moreover,
in that case the components of the metric tensor are C1/2-smooth functions
of the distance coordinates, [34], [95].

Distance coordinates were introduced in [35] and used there to obtain
the first synthetic characterization of Riemannian manifolds as metric spaces
which are both CBA and CBB with locally extendable and non-overlapping
geodesics.

5. Different types of convergence

In general, the CBA-condition does not survive the Hausdorff-Gromov
convergence. The reason is that the size of CAT(κ)-neighborhoods may
become arbitrarily small. The standard example is this: the hyperboloids
Xε = {(x, y, z) ∈ R3 : x2 + y2 − z2 = ε2} with the induced intrinsic met-
rics are CBA(0) and they Hausdorff-Gromov converge to the double cone
X0 = {(x, y, z) ∈ R3 : x2 + y2 − z2 = 0} as ε → 0 which is not CBA.
However, we easily have:
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Theorem 5.1. If Xn → X by Hausdorff-Gromov and Xn are CBA(κ)
with convexity radii uniformly separated from 0, then X is CBA(κ).

One can define the Hausdorff-Gromov convergence as follows. The dis-
tortion of a map f : X → Y between metric spaces is

dis(f) = sup
x,x′∈X

∣∣dY (f(x), f(x′))− dX(x, x′)
∣∣ .

Let A be the class of all maps X → Y . Putting δ(X, Y ) = inff∈A dis(f), one
defines

|XY |HG = max {δ(X, Y ), δ(Y, X)} .

The convergence with respect to this metric is equivalent to the Hausdorff-
Gromov convergence.

Replacing the class A of all maps by the class of all homeomorphisms,
we arrive at the uniform metric and the uniform convergence respectively.

Now, we formulate a useful sufficient condition for retaining CBA(κ)
under uniform convergence. Recall that the dilatation of a mapping f bet-
ween metric spaces X, Y is the (possibly infinite) number

dil(f) = sup
|f(x)f(x′)|
|xx′| ,

where the supremum is taken over all distinct x, x′ ∈ X.
We say that a sequence of metrics {dk} on X has no local blow-ups if

for every x ∈ X there are n ∈ N and ε > 0 such that the restriction idε
n,n+k

of the identity map idn,n+k : (X, dn) → (X, dn+k) on the ball Bdn
ε (x) has

dilatation dil(idε
n,n+k) ≤ Cn < ∞ for all k ∈ N. The following sufficient

condition is proven in the lecture notes [53].

Theorem 5.2. Assume that a sequence {dn} of metrics without local
blow-ups on X uniformly converges to a metric d. If dn is complete, CBA(κ)
and its metric topology is locally compact for every n ≥ 1, then d is CBA(κ).

The condition that d is a metric is essential as the example Xε → X0
from above shows. Here we have the uniform convergence without blow-ups,
however, the limiting d is only a pseudo-metric.

Finally, we introduce the homotopy metric and the homotopy conver-
gence which is well adapted to the CBA(0)-condition. Let f : X → Y be
a homotopy equivalence with homotopy inverse g : Y → X. For compact
metric spaces X, Y we put

|XY |h = inf
f,g

max{dis(f), dis(g)},

where the infimum is taken over all homotopy equivalences (f, g) : X ↔ Y .
This homotopy distance defines a metric on the classes of isometric compact
metric spaces.
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Theorem 5.3. Assume that |XnX|h → 0 as n → ∞, where all Xn are
CBA(κ) with κ ≤ 0. Then X is CBA(κ).

This is proven in [19]. For κ > 0, the CBA(κ)-condition does in general
not survive as the following example due to S. Ivanov [61] shows.

Example 5.4. For every ε> 0 there exists a contractible closed 2-poly-
hedron X with a CBA(1)-metric having diameter less than ε.

This polyhedron X consists of a huge number of blocks Xi (depending
on ε), each of which is obtained as follows. Fix a tiny δ > 0 (depending
on ε) and take a unit sphere S2 with an open ball B removed, where the
boundary curve σ of B has length δ. Next, take a tree T ⊂ S2 \B with the
root vertex on σ such that the length of every edge of T is δ and whose
vertices form a sufficiently dense subset in S2. Finally, identify all vertices
of T getting Xi. Different blocks are glued together in a way such that the
vertices vi ∈ Xi are identified with a unique vertex v ∈ X and the boundary
curve σi of every block Xi is identified with a curve of another block Xj

which originates from an edge of Tj . This gives the contractibility of X (a
similar effect provides the contractibility of the dunce cap). To ensure the
CBA(1)-condition one should solve a combinatorial problem to guarantee
the 2π-systole condition for the link of the vertex v ∈ X.

The question if it is possible to find similar ε-small CBA(1)-metrics on
a fixed closed contractible 2-polyhedron remains open.

A volume convergence theorem for CBA-spaces is proven in [88] under
the following assumptions.

Let X, Xj, j ∈ N, be compact, geodesically complete CBA(κ)-spaces of
the same Hausdorff dimension n. Assume that the convexity radius r(Xj) is
separated from 0 uniformly in j ∈ N and |XXj |HG → 0 as j → ∞. Then
Hn(Xj)→ Hn(X).

6. Constructions

6.1. Gluing theorems. A simple but very useful tool is the following
gluing theorem by Reshetnyak [98].

Theorem 6.1. Let X1, X2 be complete locally compact CBA(κ)-spaces.
Suppose that there are convex sets Ci ⊂ Xi and an isometry f : C1 → C2.
Attach these spaces together along f . Then the resulting space X is CBA(κ).

The proof is more or less straightforward and uses the comparison of
angles. However, there is a standard trap while checking the condition of the
theorem. R2 with an open disk removed is CBA(0) with convex boundary
C = ∂X. Gluing two copies of X along the boundary, we obtain a CBA(0)-
space Y 2. However, taking Rn with n ≥ 3 instead of R2 we obtain a Y n

which is not CBA(0). The reason is that Rn with an open ball removed is
only CBA(κ) where κ = r−2 and r is the radius of the ball. Thus Y n is
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only CBA(r−2). Similarly, the hyperbolic space Hn with an open horoball
removed is only CAT(0) for n ≥ 3, but not CAT(−1).

On the other hand, if we glue two copies of Rn along closed isomet-
ric balls, then the resulting space Zn is CAT(0) for every n ≥ 1. These
additional pieces which save the CAT(0)-property are called fins and they
were successfully used in the proofs of quite different results (see the end of
sect. 6.2).

Trying to generalize Reshetnyak’s gluing theorem, one can ask for con-
ditions which would guarantee that gluing two smooth Riemannian man-
ifolds M1, M2 of the same dimension n ≥ 3 (the case n = 2 we discuss
in sect. 10) along isometric boundaries gives a CBA(κ)-space, if both M1,
M2 are CBA(κ). It is natural to conjecture that such a condition must be
L1 + L2 ≤ 0, where Li is the second fundamental form of ∂Mi. This was
proven by N. Kosovskii, [68].

Theorem 6.2. Assume that L := L1+L2 ≤ 0 at the corresponding points
of ∂M1, ∂M2. Then M = M1 ∪M2 is locally a CBA-space. Moreover, if in
addition the sectional curvatures of both M1, M2 are ≤ κ and the sectional
curvatures of their common boundary Γ are at most κ at those 2-directions
where both L1, L2 are negatively determined, then M is CBA(κ).

The example of the space Y n above shows that no condition can be
omitted, and in fact the conditions above are necessary. Let Γ ⊂ M be
the singular hypersurface obtained from ∂M1, ∂M2 while gluing M . The
approach is to extend the Riemannian metric appropriately , say of M1 ⊂M
to a neighborhood of Γ in M and then using L to perturb the metric on M1
smoothing Γ and pumping its singularity into the curvature of the perturbed
metric. The main issue is to obtain a uniform (in the perturbation parameter
δ) curvature estimate from above. This is achieved via tremendous analytic
calculations. The perturbed metrics form a sequence converging without
local blow-ups to the initial one, which shows that the gluing gives a CBA-
space.

Now, the sharp κ-estimate is obtained in two steps. First, it is obtained
under the assumption L < 0 using approaches from [14] and the fact that M
is CBA. Second, in the general case L ≤ 0, the manifold M is appropriately
approximated by those with L < 0. This is achieved by C2-small changes of
the metrics on M1, M2 in a way that the forms L1, L2 decrease while the
induced metric on Γ is not changed.

A sharp gluing CBB-theorem for two Riemannian manifolds is obtained
by similar arguments in [69].

The result above is generalized in [70] to the case of an arbitrary finite
number of manifolds Ma, a ∈ A, of the same dimension n ≥ 3 glued together
along the common boundary Γ, M = ∪aMa.

Theorem 6.3. Assume that the sectional curvatures of the manifolds
Ma, a ∈ A, are bounded from above by κ and that La +La′ ≤ 0 for each pair
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of different a, a′ ∈ A and for the second fundamental forms La, La′ of Γ
with respect to Ma, Ma′ respectively. Furthermore, assume that the sectional
curvatures of Γ are bounded from above by κ in those 2-directions where the
forms La, a ∈ A, are negative definite simultaneously. Then M is CBA(κ).

Again, the issue is to prove that M is locally CBA. Then the sharp κ-
estimate is obtained using methods of [14], see Proposition 3.6. Note that
the condition is weaker than that by [68] yielding the CBA(κ) property for
each union Ma ∪Ma′ with different a, a′ ∈ A. It is only known from [68]
that every such union is CBA(κ′) for some κ′ ∈ R.

To prove that M is locally CBA, one needs a good control over mini-
mizers in M . This is achieved under the assumption that the sums La + La′

are locally uniformly negative by introducing a class of curves called almost-
geodesics and careful study their properties (the general case La +La′ ≤ 0 is
obtained by approximation as in [68]). An almost-geodesic γ in M is a C1-
smooth curve concatenated from finitely many minimizers each of which is
running in its own leaf Ma. Using a sort of linearization argument, the author
shows that locally every almost-geodesic consists of at most three such min-
imizers, and the angle comparison with Mκ′ holds for triangles formed by
almost-geodesics. This suffices to prove that locally every minimizer in M
is almost-geodesic and therefore M is locally CBA.

6.2. Warped products. Suppose that B and F are intrinsic metric
spaces, and f : B → R≥0 is continuous. Distance in the warped product
B ×f F is defined by the infimum of path-lengths, where the length of a
curve γ = (γB, γF ) for rectifiable curves γB and γF in B and F is given by:

L(γ) =
∫ √

v2
B(t) + f2(γB(t))v2

F (t)dt,

where vB and vF are the speeds of γB and γF . Equivalently, L(γ) is the
supremum of the expressions∑

(dB(γB(ti), γB(ti−1))2 + f2(γB(ti))dF (γF (ti), γF (ti−1))2)1/2.

For example, taking F = Sn−1, we obtain that
• for the function f : B = [0,∞)→ R, f(t) = t, the warped product

space B ×f F is isometric to Rn with the metric

ds2 = dt2 + t2dω2
n−1,

where dω2
n−1 is the standard metric of the unit sphere Sn−1;

• for the function f : B = [0,∞) → R, f(t) = sinh t, the warped
product space B ×f F is isometric to Hn with the metric

ds2 = dt2 + sinh2(t)dω2
n−1;
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• for the function f : B = [0, π] → R, f(t) = sin t, the warped
product space B ×f F is isometric to Sn with the metric

ds2 = dt2 + sin2(t)dω2
n−1.

The most general sharp conditions for a warped product of metric spaces
to have a given curvature bound for CBA- as well as for CBB-spaces are
found by S. Alexander and R. Bishop in [9]. We formulate these conditions
for CBA-spaces.

Theorem 6.4. Let B and F be complete CAT(κ) and CAT(κF ) spaces,
respectively. Let f : B → R≥0 be κ-convex, where f is Lipschitz on bounded
sets or B is locally compact. Set X = f−1(0).

(1) If X = ∅, suppose κF ≤ κ(inf f)2.
(2) If X �= ∅, suppose f ′(0+)2 ≥ κF at footpoints of dX-minimizers in

B, and κF ≤ κf(p)2 for points p ∈ B further than π/2
√

κ from X.
Then B ×f F is CAT(κ).

These conditions are close to be necessary ones. Namely, if a warped
product of metric spaces B ×f F has an upper curvature bound κ, then the
same is true for B because its images in B×fF are totally convex. One can
also derive κ-convexity of the warped function f . It remains to show that
F has an upper curvature bound κF satisfying conditions (1) and (2). This
is obviously true if f takes a positive minimum f(p), since then {p} × F is
totally convex.

As applications, the theorem above gives rise to a number of construc-
tions of spaces with upper curvature bounds, among which is Reshetnyak’s
gluing theorem [98], which we discussed above (this theorem is used in the
proof). It also covers a result of Ancel and Guilbault [16] saying that the
interiors of compact contractible n-manifolds, n ≥ 5, support a geodesic
metric of strictly negative curvature.

The case of Hadamard spaces, that is, κ = κF = 0 and f > 0, was
studied earlier in [7]. We briefly sketch the proof of that case underling the
basic idea of the general proof. It can be illustrated as follows. Consider two
copies of Rn, n ≥ 1, glued together along unit balls. Let Xn be the resulting
space, Yn = Xn\(interior of B), where B is the image of the balls. Then
Xn is CBA(0) (and even CAT(0)) for every n ≥ 1 by Reshetnyak’s gluing
theorem, while for n ≥ 3 the space Yn is only CBA(1) and not CBA(0).
This is because the boundary sphere of B is convex in Yn, and for n ≥ 3
its dimension is bigger than 1. The effect of lowering a curvature bound by
adding B to Yn is crucial for the proof of the warped product theorem.

The proof proceeds by reduction to the case F = R and by approxima-
tion of B ×f R by subspaces Wε of Hadamard spaces W ∗

ε which are con-
structed as follows. We decompose the Euclidean product B × R into three
regions W

(0)
ε = {(p, u) : −εf(p) ≤ u ≤ εf(p)}, U

(0)
ε = {(p, u) : εf(p) ≤ u},
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L
(0)
ε = {(p, u) : u ≤ −εf(p)}, where the two last are closed convex subset

because f is convex. Taking isometric copies W
(n)
ε , U

(n)
ε , L

(n)
ε of these, we

construct W ∗
ε identifying isometric pairs U

(n)
ε with L

(n+1)
ε for each n ∈ Z. To

summarize, the space W ∗
ε consists of the mutually isometric strips W

(n)
ε and

the mutually isometric fins U
(n)
ε = L

(n+1)
ε with the appropriate boundary

components identified. Although the space Wε obtained by gluing together
the strips W

(n)
ε typically has positive infinite curvature, we recover nonpos-

itive curvature by gluing on the fins.
The same sort of construction which takes into account fins has been

used in [50] to prove a uniform estimate on the number of collisions in
semi-dispersing billiards. The idea is to develop a billiard trajectory into a
geodesic in a CBA-space obtained by gluing together step by step convex
walls that are hit by the trajectory. This translates a difficult dynamical
problem into a geometric one, which can be solved by geometric methods.

7. Gauss equation

The well known Gauss equation in Riemannian geometry allows to exp-
ress intrinsic sectional curvatures of a submanifold via extrinsic curvatures
and sectional curvatures of the ambient space. Surprisingly, the equation
can be extended in a sense to arbitrary CBA-spaces. To describe such an
extension, we recall some definitions.

Let M be a CBA(κ)-space, κ ∈ R. A subset N ⊂ M is said to have
positive reach ≥ r if every point x in the r-neighborhood of N has a unique
foot point in N , that is, p ∈ N with |xp| = dist(x, N). It is proved in
[77] that in the case M is a Riemannian manifold, any subset N ⊂ M of
positive reach has some intrinsic curvature bound from above. The condition
of positive reach can be expressed by comparing lengths of arcs and chords
as follows [79]: a complete subset N ⊂ M has positive reach if there exists
ρ > 0 such that intrinsic distances dN = s and extrinsic distances dM = r
satisfy s − r ≤ Cr3 for r < ρ (actually, these two conditions are more or
less equivalent for subsets of Riemannian manifolds). This estimate is an
important step toward the notion of extrinsic curvature. The constant C
in front of r3 on the right hand side may serve as a bound for extrinsic
curvature. Namely, we say N is a subspace of the extrinsic curvature ≤A
in M if there is a length-preserving map N → M between intrinsic metric
spaces, where N is complete and

s− r ≤ A2

24
s3 + o(s3)

for all pairs of points having s sufficiently small, [11]. For Riemannian sub-
manifolds, this is equivalent to a bound, |II| ≤ A, on the second fundamental
form. It is shown in [77] that subsets of bounded extrinsic curvature in a
CBA-space are CBA-spaces with respect to their intrinsic metric.
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It follows from [6] that points of N have neighborhoods in which r is
at least the chordlength of an arc of constant curvature A and length s in
the model plane Mκ. The following sharp bound for subspaces of extrinsic
curvature ≤A is obtained in [11].

Theorem 7.1 (Gauss equation). Suppose N is a subspace of extrinsic
curvature ≤A in a CBA(κ)-space. Then N is CBA(κ + A2).

This bound is realized by hypersurfaces of constant curvature in
Euclidean, hyperbolic and spherical spaces.

The proof uses the knowledge that N is CBA(K) for some K by [77],
and RMT as a tool. However, the sharp bound requires rather involved and
subtle arguments.

As an application, the following sharp estimate for the injectivity radius
of a subspace is obtained in [11], which is new even in the case of Riemannian
manifolds.

Theorem 7.2. Suppose N is a subspace of extrinsic curvature ≤A in a
CAT(κ) space. Then

injN ≥ min
{

π√
κ + A2

,
1
2
c(A, κ)

}
,

where c(A, κ) is the circumference of a circle of curvature A in Mκ.

8. Extension results

8.1. Lipschitz extension property. We say that a metric space Y
has the Lipschitz extension property (L) if there exists a constant c ≥ 1 such
that every λ-Lipschitz map f : S → Y defined on an arbitrary subset S of
some metric space X can be extended to a cλ-Lipschitz map f : X → Y .

Obviously, to have property (L) is a bilipschitz invariant of Y . One can
prove that the Lipschitz extension property implies that Y is contractible.

A classical result of McShane [85] states that R has the property (L) with
constant c(R) = 1. The same result stays true for a metric tree. Applying
this result to the coordinate functions, Rn has property (L) with constant
c(Rn) =

√
n. Lang [72] showed that the optimal constant for Rn has to

depend on n and that (L) is not valid for an infinite-dimensional Hilbert
space.

In [75] it is proven that

Theorem 8.1. The following three classes of Hadamard spaces have the
property (L)

(1) the 2-dimensional Hadamard manifolds;
(2) the class of Gromov-hyperbolic Hadamard manifolds whose curva-

ture is bounded by −b2 ≤ K ≤ 0;
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(3) the class of homogeneous Hadamard manifolds and Euclidean Tits
buildings.

The idea of the proof is as follows. Consider first an arbitrary Hadamard
space Y and a λ-Lipschitz map f : S → Y defined on a subset of a metric
space X. In a first step, one associate to each x ∈ X a bounded, closed
convex set A(x) ⊂ Y . A(x) is an intersection of closed balls centered at the
points of f(S) defined in the following way: We fix a constant α ≥ 0 and
associate to each x ∈ X the closed convex set

(1) A(x) :=
⋂
s∈S

B(f(s), αλd(x, s)) ⊂ Y,

where B(y, r) is the closed ball of radius r around y. Note that if x ∈ S,
then A(x) = {f(x)} since f(x) ∈ B(f(s), λd(x, s)) for all s ∈ S. One can
prove the following:

(a) If α ≥
√

2, then A(x) �= ∅ for all x ∈ X.
(b) For x, x′ ∈ X the Hausdorff distance between A(x) and A(x′) satisfies

Hd(A(x), A(x′)) ≤ 2
√

2λd(x, x′).

Hence, in order to extend f to X, it would suffice to find a Lipschitz
map φ : C → Y defined on the space C of bounded, closed convex subsets of
Y , endowed with the Hausdorff distance, such that φ({y}) = y for all y ∈ Y .

It is not known and an interesting open question, if such a Lipschitz
map φ exists for every finite dimensional Hadamard space (it is shown in
[72] that the map φ does not exist for the Hilbert space �2). However one
can construct such a map in the cases (1), (2), (3) above.

In the extension results above we have only assumptions on the target
space Y . If one also imposes assumptions on the source X, one can obtain
better extension properties.

The following classical result is due to Kirszbraun, [64]: Let X = Y =
Rn, S ⊂ X, then every 1-Lipschitz map f : S → Y has a 1-Lipschitz exten-
sion f̄ : X → Y of f .

There is a generalization of this result to the class of spaces, where
the target space is CAT(κ) and the source space is CBB(κ) for the same
κ ∈ R, [73].

Theorem 8.2. Let κ ∈ R, and let X, Y be two geodesic metric spaces
such that X is CBB(κ) and Y is CAT(κ) and complete. Let S be an arbitrary
subset of X and f : S → Y a 1-Lipschitz map with diam f(S) ≤ Dκ/2. Then
there exists a 1-Lipschitz extension f̄ : X → Y of f .

It suffices to extend f to one additional point x ∈ X \ S. The general
case follows inductively. One first looks for an optimal candidate y ∈ Y as
an image point of x. Therefore choose α ≥ 0 minimal such that the above
defined set A(x) = Aα(x) �= ∅. In this case A(x) = {y} consists of a single
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point y which is the desired candidate. Comparing the space of directions in
x and y using the scalar product of section 3.2 one can show that f̄(x) = y
is actually a 1-Lipschitz extension.

8.2. Characterization of isometries. Let X be a metric space, a
bijective map f : X → X is an isometry, if it preserves all distances, i.e. for
all r ∈ (0,∞) the following holds: if x, y ∈ X then d(x, y) = r if and only if
d(f(x), f(y)) = r.

What can we say about a map with the property that there exists some
r > 0 such that we have d(x, y) = r if and only if d(f(x), f(y)) = r? Note
that there are nontranslational bijective (and continuous) maps f : R → R
such that |f(x + 1) − f(x)| = 1 for all x ∈ R. Thus f preserves the set of
pairs of points with distance 1. On the other hand, it is known from [27]
that for X = Rn with n ≥ 2, the bijection f is an isometry. In the sixties,
A.D. Alexandrov posed the problem to describe the class of metric spaces X,
for which all bijections X → X preserving distance 1 are isometries. There
is a number of results in this direction. We mention only that the hyperbolic
spaces Hn, n ≥ 2, are in that class according to [71]. Moreover, it turned
out that a large subclass of CAT(κ)-space with κ ≤ 0 is also there. More
precisely, the following is proved in [32].

Theorem 8.3. Let κ < 0 and let X be a locally compact, geodesically
complete CAT(κ)-space whose boundary at infinity is connected. Let f : X →
X be a bijective map such that there exists r > 0 such that d(x, y) = r if
and only if d(f(x), f(y)) = r. Then f is an isometry.

P. Andreev generalized this result to the case of CAT(0) spaces which
are Busemann G-spaces in [17], and finally to general CAT(0) spaces in [18],
that is, Theorem 8.3 holds true also for κ = 0.

9. Rigidity results

Let X be a Hadamard manifold. For every point x ∈ X, we have an invo-
lutive homeomorphism φx : ∂∞X → ∂∞X of the boundary at infinity defined
as follows. Given ξ ∈ ∂∞X, there is a unique geodesic ray γ : [0,∞) → X
with γ(0) = x asymptotic to ξ, γ(∞) = ξ. Then we put φx(ξ) = γ′(∞),
where the ray γ′, γ′(0) = x, is opposite to γ, dγ′

dt (0) = −dγ
dt (0). Clearly,

dT (ξ, φ(ξ)) ≥ π for the Tits metric dT on ∂∞X.
A subset A ⊂ ∂∞X is said to be involutive if it is invariant under all

involutions φx, x ∈ X.
For example, if X = X1 ×X2 is the metric product, then both subsets

∂∞Xi ⊂ ∂∞X, i = 1, 2, are proper, involutive and closed. In this example,
the Tits boundary ∂T X is a spherical join, ∂T X = ∂T X1 ∗ ∂T X2.

Another important example is the set of singular points S ⊂ ∂∞X of
a higher rank symmetric space X of noncompact type, that is, ξ ∈ S if
and only if ξ is the endpoint at infinity of a singular geodesic ray γ ⊂ X.
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Again, the subset S is proper, involutive and closed. In this example, the
Tits boundary ∂T X is a spherical building.

The famous higher rank rigidity [22, 52] can be established using the
following result of P. Eberlein (for detailed exposition see [56]):

Assume that the boundary at infinity ∂∞X of a Hadamard manifold X
contains a proper, involutive, closed (in the cone topology) subset A. Then
the holonomy group of X is not transitive.

Combined with well a known characterization of products and symmetric
spaces [41, 103], this yields:

Under the condition above, X is a product or a symmetric space and
therefore ∂T X is a spherical join or a building.

That is the context in which the following result [80] should be con-
sidered. Recall that the Tits boundary ∂T X of each Hadamard space X is
CAT(1).

Theorem 9.1. Let X be a finite dimensional geodesically complete CAT
(1) space. If X has a proper closed subset A containing with each a ∈ A all
antipodes of a, i.e. all points x ∈ X with |xa| ≥ π, then X is a spherical
join or building.

This result is also related to the characterization [76] of affine build-
ings or symmetric spaces as those geodesically complete locally compact
Hadamard spaces X that have a non-discrete irreducible spherical building
as the Tits boundary ∂T X.

As a consequence, we have a rigidity property of spherical buildings and
joins.

Corollary 9.2. Let X be a non-discrete spherical building or a spher-
ical join. If f : X → Y is a surjective 1-Lipschitz map onto a finite-
dimensional geodesically complete CAT(1) space, then Y is also a spherical
building or a spherical join too.

Typical examples of surjective 1-Lipschitz maps as above arise as follows.
Let X be a Hadamard space and let Σx be the space of directions of X at
some point x ∈ X. The map f : ∂T X → Σx that assigns to every ξ ∈ ∂T X
the direction f(ξ) ∈ Σx of the unique geodesic ray xξ ⊂ X is surjective and
1-Lipschitz. There are four basic cases:

• X is a product. Then ∂T X, Σx are spherical joins.
• X is hyperbolic. Then ∂T X is discrete.
• X is an affine building. Then ∂T X, Σx are spherical buildings of

one and the same dimension, and f folds a lot.
• X is an irreducible symmetric space of higher rank k ≥ 2. Then

∂T X is a spherical building of dimension k−1, Σx is the unit sphere
Sm−1, where m = dimX might be much larger than k.
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A subset A ⊂ X of a CAT(1) space X is said to be symmetric if it
contains all antipodes of its points, ant(A) ⊂ A. The following simple obser-
vation is at the very beginning of the rigidity above.

Let A be a subset in a geodesically complete CAT(1) space X, and x′ ∈ X
an antipode of x ∈ X. Then dist(x′, ant(A)) ≤ dist(x, A). In the case of
equality, we have |xx′| = π, and for every a ∈ A with dist(x, A) = |xa|, the
equality |xa|+ |ax′| = π holds, i.e., xax′ is a geodesic.

For the proof, we can assume that |ax′| < π for a given a ∈ A. Extending
the geodesic segment ax′ at the right end up to the length π, we find a′ ∈
ant(A) with x′ ∈ aa′, |aa′| = π. Then we have |ax′| + |x′a′| = π ≤ |xx′| ≤
|xa|+ |ax′|, therefore |x′a′| ≤ |xa|. Hence, the claim.

Given x ∈ X, we let Ax ⊂ X be the minimal symmetric subset that
contains x. Then y ∈ Ax is equivalent to x ∈ Ay, and therefore the sets
Ax, x ∈ X, define a decomposition of X into minimal symmetric subsets.
As a consequence of the lemma above, we see that this decomposition is
equidistant, that is, dist(Ax, y) = dist(Ax, Ay) = dist(x, Ay) for each x, y ∈
X. Therefore, the quotient map δ : X → ΔX = X/{Ax} is a submetry, that
is, for each x ∈ X and r > 0, the map sends the (closed) r-ball around x onto
the (closed) r-ball around δ(x). The notion of a submetry was introduced by
V. Berestovskii, see [36, 37, 38]. For a comprehensive account of submetries
see also [81]. A careful study of the submetry δ and of some of its refinements
leads to the proof of Theorem 9.1.

10. 2-dimensional polyhedra

In the case of 2-polyhedra, we have at our disposal a more or less com-
plete description of general CBA-metrics. Several new effects, which are
absent for surfaces, arise for polyhedra with topological singularities.

10.1. Singular edges are curves with bounded turn variation.
Let Y be the union of three rays with the common vertex v, X = Y × R.
Then l = v × R ⊂ X is the (topologically) singular edge. The important
fact is that for every CBA-metric on X, the edge l has bounded turn varia-
tion. It was formulated as a question in [26] and then proven by B. Kleiner
(unpublished).

The explanation (not the proof!) is very simple. Assume that we have a
CBA-metric on Y , in which l is piecewise geodesic. The link of every point
x ∈ l is the bipartite graph L with two vertices and three edges between
them. The CBA-condition implies that the systole of L is at least 2π. Now,
if x is a (metric) vertex with a small angle from one of the faces, then
the length of the corresponding edge of L is short. Hence, the lengths of
both other edges must be large to satisfy the systole condition. Thus we
have a large negative curvature at x. This is a mechanism which trans-
lates turns of a singular edge into negative curvature of the polyhedron.
If l would have the unbounded turn variation, then it would imply a huge
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accumulation of negative curvature along l which would destroy the topol-
ogy of the polyhedron. This explains why singular edges are curves with the
bounded turn variation |τ | w.r.t. a tame CBA-metric, which is the uniform
limit of piecewise smooth CBA-metrics. An efficient estimate of |τ | follows
from the Gauss-Bonnet formula.

10.2. Signed curvature measure and the Gauss-Bonnet formula
for tame metrics. Let X be a 2-polyhedron with a piecewise smooth met-
ric d. For a face f ⊂ X, let K denote the Gaussian curvature of f . The
curvature of a Borel subset B ⊂ f is defined by

ω(B) =
∫

B
K dσ,

where σ is the area measure of f .
For an edge e and a face f adjacent to e, we denote by τf the turn of e

from the side of f , that is, for a Borel subset B ⊂ e, τf (B) =
∫
B kf ds, kf

being the geodesic curvature of e with respect to f . The sign of kf is chosen
in such a way that kf is positive for a convex f . By definition, the curvature
of a Borel subset B ⊂ e is the sum of the turns from the side of all faces
adjacent to e,

ω(B) =
∑
f |e

τf (B).

For a vertex v, let χ(v) = χ(Λv) be the Euler characteristic of the link of
v in X. On Λv, the metric d induces the angle (pseudo-)metric αd in which
the length of an edge corresponding to a face f ⊂ X is the angle α(v, f) of
this face at v. Let α(v) be the length of the link Λv with respect to αd, i.e.,
the sum of the lengths of all edges of Λv. By definition, the curvature of v is

ω(v) = (2− χ(v))π − α(v).

By additivity, these definitions extend to the Borel subsets B ⊂ X. This
defines the signed curvature measure ω of a piecewise smooth metric on X.
Now, we have the Gauss-Bonnet formula

ω(X) = 2πχ(X)

for d, where χ(X) is the Euler characteristic of X, [26]. The notion of
the signed curvature measure ω and the Gauss-Bonnet formula have been
extended to the tame CBA-metrics on X in [19]. Using it, the following
estimate of turn was obtained there.

Theorem 10.1. Let X be a closed 2-polyhedron. For the turn variation
of the essential 1-skeleton of X with respect to a CBA(κ)-metric d we have

|τ |(esk1 X) ≤ c1 + c2 · ω(X \ esk1 X),

where c1, c2 are constants depending only on the topology of X. In particular,
|τ |(esk1 X) ≤ c1 + c2 · κ Area(X, d).
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10.3. Gluing condition, characterization and approximation
theorems. We denote by Rκ the class of locally compact 2-polyhedra with
a CBA(κ)-metric, all boundary edges of which are curves of finite turn varia-
tion. Let Mi be a domain on a surface of classRκ having the compact closure
M i and bounded by finitely many curves of finite turn variation (some of
these curves may degenerate to points). We glue a polyhedron X from a
collection of such domains Mi requiring that the following two conditions
are fulfilled.

(i) For any Borel subset B of an arbitrary edge e ⊂ X and any domains
Mi, Mj adjacent to e, we have

τi(B) + τj(B) ≤ 0,

where τi, τj are the turns of e from the (different!) sides of Mi, Mj respec-
tively.

(ii) For any vertex x ∈ X, the length of each noncontractible loop in the
link Λx is at least 2π.

For CBA-metrics on 2-polyhedrons we have a generalisation of Reshet-
nyak’s gluing theorem.

Theorem 10.2. A polyhedron X glued together from surfaces Mi ∈Rκ

is of class Rκ if and only if the conditions (i), (ii) are fulfilled.

The proof is based on the following Limit Metric Theorem.

Theorem 10.3. Assume that a metric d on a compact 2-polyhedron X
is the uniform limit of a sequence dn ∈ Rκ such that the positive curvature
parts ω+

n of these metrics are uniformly bounded on X \ esk1 X and the turn
variations of the boundary edges are uniformly bounded. Then d ∈ Rκ.

This was proven in [49] under the additional condition that the lengths
of esk1 X are uniformly bounded. In [60], it was shown that this condition
follows from the others. The main issue in the proof of the Limit Metric
Theorem is to obtain a uniform separation from zero of the convexity radius
for metrics dn.

Furthermore, we have a Characterization Theorem of CBA-metrics on
2-polyhedra:

Theorem 10.4. Each polyhedron X ∈ Rκ can be glued together from
surfaces Mi ∈ Rκ in such a way that the conditions (i), (ii) are fulfilled.

The proof is based on the following Approximation Theorem [49].

Theorem 10.5. Every metric d ∈ Rκ on a locally compact 2-polyhedron
X is the uniform limit of a sequence of piecewise smooth metrics dn ∈ Rκ

on X such that the curvature variations |ωn| of dn are (locally) uniformly
bounded on X\esk1 X, the essential 1-skeleton esk1 X has (locally) uniformly
bounded lengths, and the boundary edges have (locally) uniformly bounded
turn variations.
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The proof essentially uses the infinitesimal theory of locally compact
CBA-spaces due to B. Kleiner.

It would be very desirable to replace the condition in the Limit Metric
Theorem that the metric d is a certain uniform limit by the weaker condition
that d is the homotopy limit of metrics dn on the corresponding 2-polyhedra
Xn. However, this is still an open question.

10.4. Rigidity due to Gauss-Bonnet. There is another remarkable
geometric effect in the class of 2-polyhedra with a NPC-metric which is
completely invisible for surfaces. To start with, we consider the following
invariant of a finite graph Λ,

σ(Λ) := inf
α

α(Λ)
sys(α)

,

the size of Λ, where α is a length (pseudo)-metric on Λ, α(Λ) the length of
Λ, sys(α) the length of a shortest essential loop in Λ. Next, we put

ω(Λ) := (2− χ(Λ))π − 2πσ(Λ),

the maximal total curvature of Λ. Then ωα(Λ) := (2−χ(Λ))π−α(Λ) ≤ ω(Λ)
for every length metric α on Λ with sys(α) ≥ 2π. A length metric α is called
minimal if ωα(Λ) = ω(Λ), which is equivalent to α(Λ) = 2πσ(Λ).

A NPC-metric d on a closed 2-polyhedron X is tight if all maximal
surfaces of X are flat, all maximal essential edges of X are geodesics and
for any essential vertex v ∈ X the induced angle metric αd on the link Λv is
minimal.

Theorem 10.6. Assume that a closed 2-polyhedron X admits a NPC-
metric. Then

∑
v∈Ve

ω(Λv) ≥ 2πχ(X) and equality holds if and only if one,
and hence any, NPC-metric of X is tight.

This easily follows from Gauss-Bonnet. The reason is that for the sum-
mands of Gauss-Bonnet

2πχ(X) =
∑

v

ωα(Λv) +
∑

f

ω(f) +
∑

e

ω(e)

we have ω(f), ω(e) ≤ 0, ωα(Λv) ≤ ω(Λv) for any NPC-metric on X, and
these equalities imply that the metric is tight.

The examples of polyhedra with tight metrics include amongst others
branched coverings of degree 2 over a 2-skeleton of n-simplex, n ≥ 4 and fac-
tor spaces Y/Γ, where Y is a thick Euclidean 2-building and Γ is a properly
discontinuous and cocompact group of automorphisms of X. Furthermore,
there are closed 2-polyhedra with Gromov hyperbolic fundamental group
carrying tight NPC-metrics. Such a polyhedron admits no CAT(−1)-metric,
[26], and moreover, its fundamental group admits no discrete, cocompact
action on any CAT(−1) 2-polyhedron, [62].
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10.5. Metrics with bounded total curvature. For more than forty
years, there exists a theory of metrics on surfaces which includes CBA-
and CBB-metrics as rather particular cases. These are the metrics with
bounded total curvature (BTC-metrics) synthetically defined by the require-
ment that the total excess of any system of nonoverlapping geodesic triangles
be (locally) uniformly bounded, [3]. From an equivalent analytical point of
view, such a metric can locally be given by

ds2 = λ(x, y)(dx2 + dy2),

where ln λ(x, y) is the difference of two subharmonic functions, [99]. This
class of metrics is closed in the topology of the uniform convergence, and
curves with the bounded turn variation play a key role for a gluing theorem
and the Gauss-Bonnet formula. Gluing two BTC-surfaces along boundaries
which are curves with the bounded turn variation gives a BTC-surface.

All this together with the characterization theorem for CBA-metrics
on 2-polyhedra allows to suggest that there should exist a theory of BTC-
metrics on 2-polyhedra. However, it is even unclear how to define such a
metric: any straightforward generalization of the surface case fails.

A particular related question is the following. Let Y be again the union
of three rays with the common vertex v, X = Y × R2. Assume the a CBA-
metric on X is given. Is it true that the metric induced on the singular edge
v × R2 has bounded total curvature?
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