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Abstract. This paper is a survey on the structure of manifolds
with a lower Ricci curvature bound.

1. Introduction

The purpose of this paper is to give a survey on the structure of manifolds
with a lower Ricci curvature bound. A Ricci curvature bound is weaker than
a sectional curvature bound but stronger than a scalar curvature bound.
Ricci curvature is also special in that it occurs in the Einstein equation
and in the Ricci flow. The study of manifolds with lower Ricci curvature
bound has experienced tremendous progress in the past fifteen years. Our
focus in this article is strictly restricted to results with only Ricci curvature
bound, and no result with sectional curvature bound is presented unless
for straight comparison. The reader is referred to John Lott’s article in this
volume for the recent important development concerning Ricci curvature for
metric measure spaces by Lott-Villani and Sturm. We start by introducing
the basic tools for studying manifolds with lower Ricci curvature bound
(Sections 2–4), then discuss the structures of these manifolds (Sections 5–9),
with examples in Section 10.

The most basic tool in studying manifolds with Ricci curvature bound
is the Bochner formula. From there one can derive powerful comparison
tools like the mean curvature comparison, the Laplacian comparison, and
the relative volume comparison. For the Laplacian comparison (Section 3)
we discuss the global version in three weak senses (barrier, distribution,
viscosity) and clarify their relationships (I am very grateful to my col-
league Mike Crandall for many helpful discussions and references on this
issue). A generalization of the volume comparison theorem to an integral
Ricci curvature bound is also presented (Section 4). Important tools such
as Cheng-Yau’s gradient estimate and Cheeger-Colding’s segment inequality
are presented in Sections 2 and 4 respectively. Cheeger-Gromoll’s splitting
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theorem and Abresch-Gromoll’s excess estimate are presented in Sections 5
and 8 respectively.

From comparison theorems, various quantities like the volume, the
diameter, the first Betti number, and the first eigenvalue are bounded by the
corresponding quantity of the model. When equality occurs one has the rigid
case. In Section 5 we discuss many rigidity and stability results for nonnega-
tive and positive Ricci curvature. The Ricci curvature lower bound gives very
good control on the fundamental group and the first Betti number of the
manifold; this is covered in Section 6 (see also the very recent survey article
by Shen-Sormani [97] for more elaborate discussion). In Sections 7, 8, and
9 we discuss rigidity and stability for manifolds with lower Ricci curvature
bound under Gromov-Hausdorff convergence, almost rigidity results, and the
structure of the limit spaces, mostly due to Cheeger and Colding. Examples
of manifolds with positive Ricci curvature are presented in Section 10.

Many of the results in this article are covered in the very nice survey
articles [118, 23], where complete proofs are presented. We benefit greatly
from these two articles. Some materials here are adapted directly from [23]
and we are very grateful to Jeff Cheeger for his permission. We also benefit
from [49, 24] and the lecture notes [108] of a topics course I taught at
UCSB. I would also like to thank Jeff Cheeger, Xianzhe Dai, Karsten Grove,
Peter Petersen, Christina Sormani, and William Wylie for reading earlier
versions of this article and for their helpful suggestions.

2. Bochner’s formula and the mean curvature comparison

For a smooth function f on a complete Riemannian manifold (Mn, g),
the gradient of f is the vector field ∇f such that 〈∇f, X〉 = X(f) for all vec-
tor fields X on M . The Hessian of f is the symmetric bilinear form

Hess(f)(X, Y ) = XY (f)−∇XY (f) = 〈∇X∇f, Y 〉,

and the Laplacian is the trace Δf = tr(Hessf). For a bilinear form A, we den-
ote |A|2 = tr(AAt). The most basic tool in studying manifolds with Ricci
curvature bound is the Bochner formula. Here we state the formula for
functions.

Theorem 2.1 (Bochner’s Formula). For a smooth function f on a com-
plete Riemannian manifold (Mn, g),

(2.1)
1
2
Δ|∇f |2 = |Hessf |2 + 〈∇f,∇(Δf)〉+ Ric(∇f,∇f).

This formula has many applications. In particular, we can apply it to the
distance function, harmonic functions, and the eigenfunctions among others.
The formula has a more general version (Weitzenböck type) for vector fields
(1-forms), which also works nicely on Riemannian manifolds with a smooth
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measure [70, 85] where Ricci and all adjoint operators are defined with
respect to the measure.

Let r(x) = d(p, x) be the distance function from p ∈M . r(x) is a Lipschitz
function and is smooth on M \ {p, Cp}, where Cp is the cut locus of p. At
smooth points of r,

(2.2) |∇r| ≡ 1, Hess r = II, Δr = m,

where II and m are the second fundamental form and mean curvature of
the geodesics sphere ∂B(p, r).

Putting f(x) = r(x) in (2.1), we obtain the Riccati equation along a
radial geodesic,

(2.3) 0 = |II|2 + m′ + Ric(∇r,∇r).

By the Schwarz inequality,

|II|2 ≥ m2

n− 1
.

Thus, if RicMn ≥ (n− 1)H, we have the Riccati inequality,

(2.4) m′ ≤ − m2

n− 1
− (n− 1)H.

Let Mn
H denote the complete simply connected space of constant curva-

ture H and mH the mean curvature of its geodesics sphere; then

(2.5) m′
H = − m2

H

n− 1
− (n− 1)H.

Since limr→0(m−mH) = 0, using (2.4), (2.5) and the standard Riccati
equation comparison, we have

Theorem 2.2 (Mean Curvature Comparison). If RicMn ≥ (n − 1)H,
then along any minimal geodesic segment from p,

(2.6) m(r) ≤ mH(r).

Moreover, equality holds if and only if all radial sectional curvatures are
equal to H.

By applying the Bochner formula to f = log u with an appropriate cut-
off function and looking at the maximum point one has Cheng-Yau’s gradient
estimate for harmonic functions [34].

Theorem 2.3 (Gradient Estimate, Cheng-Yau 1975). Let RicMn ≥
(n − 1) H on B(p, R2) and u : B(p, R2) → R satisfying u > 0, Δu = 0.
Then for R1 < R2, on B(p, R1),

(2.7)
|∇u|2

u2 ≤ c(n, H, R1, R2).
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If Δu = K(u), the same proof extends and one has [23]

(2.8)
|∇u|2

u2 ≤ max{2u−1K(u), c(n, H, R1, R2) + 2u−1K(u)− 2K ′(u)}.

3. Laplacian comparison

Recall that m = Δr. From (2.6), we get the local Laplacian comparison
for distance functions

(3.1) Δr ≤ ΔHr, for all x ∈M \ {p, Cp}.

Note that if x ∈ Cp, then either x is a (first) conjugate point of p or there are
two distinct minimal geodesics connecting p and x [29], so x∈{conjugate
locus of p} ∪ {the set where r is not differentiable}. The conjugate locus
of p consists of the critical values of expp. Since expp is smooth, by Sard’s
theorem, the conjugate locus has measure zero. The set where r is not differ-
entiable has measure zero since r is Lipschitz. Therefore the cut locus Cp has
measure zero. One can show Cp has measure zero more directly by observing
that the region inside the cut locus is star-shaped [18, Page 112]. The above
argument has the advantage that it can be extended easily to show that
Perelman’s l-cut locus [85] has measure zero since the L-exponential map is
smooth and the l-distance function is locally Lipschitz.

In fact the Laplacian comparison (3.1) holds globally in various weak
senses. First we review the definitions (for simplicity we only do so for the
Laplacian) and study the relationship between these different weak senses.

For a continuous function f on M, q ∈ M , a function fq defined in a
neighborhood U of q is an upper barrier of f at q if fq is C2(U) and

(3.2) fq(q) = f(q), fq(x) ≥ f(x) (x ∈ U).

Definition 3.1. For a continuous function f on M , we say Δf(q) ≤ c
in the barrier sense (f is a barrier subsolution to the equation Δf = c at q),
if for all ε > 0, there exists an upper barrier fq,ε such that Δfq,ε(q) ≤ c + ε.

This notion was defined by Calabi [17] back in 1958 (he used the ter-
minology “weak sense” rather than “barrier sense”). A weaker version is in
the sense of viscosity, introduced by Crandall and Lions in [38].

Definition 3.2. For a continuous function f on M , we say Δf(q) ≤ c in
the viscosity sense (f is a viscosity subsolution of Δf = c at q), if Δφ(q) ≤ c
whenever φ ∈ C2(U) and (f−φ)(q) = infU (f−φ), where U is a neighborhood
of q.

Clearly barrier subsolutions are viscosity subsolutions.
Another very useful notion is subsolution in the sense of distributions.
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Definition 3.3. For continuous functions f, h on an open domain
Ω ⊂M , we say Δf ≤ h in the distribution sense (f is a distribution subso-
lution of Δf = h) on Ω, if

∫
Ω fΔφ ≤

∫
Ω hφ for all φ ≥ 0 in C∞

0 (Ω).

By [58] if f is a viscosity subsolution of Δf = h on Ω, then it is also a
distribution subsolution and vice versa, see also [66], [57, Theorem 3.2.11].

For geometric applications, the barrier and distribution sense are very
useful and the barrier sense is often easy to check. Viscosity gives a bridge
between them. As observed by Calabi [17] one can easily construct upper
barriers for the distance function.

Lemma 3.4. If γ is minimal from p to q, then for all ε > 0, the function
rq,ε(x) = ε + d(x, γ(ε)) is an upper barrier for the distance function r(x) =
d(p, x) at q.

Since rq,ε trivially satisfies (3.2) the lemma follows by observing that it
is smooth in a neighborhood of q.

Upper barriers for Perelman’s l-distance function can be constructed
very similarly.

Therefore the Laplacian comparison (3.1) holds globally in all the weak
senses above. Cheeger-Gromoll (unaware of Calabi’s work at the time) had
proved the Laplacian comparison in the distribution sense directly by observ-
ing the very useful fact that near the cut locus ∇r points towards the
cut locus [30], see also [23]. (However it is not clear if this fact holds for
Perelman’s l-distance function.)

One reason why these weak subsolutions are so useful is that they still
satisfy the following classical Hopf strong maximum principle, see [17], also
e.g., [23] for the barrier sense, see [67, 60] for the distribution and viscosity
senses, also [57, Theorem 3.2.11] in the Euclidean case.

Theorem 3.5 (Strong Maximum Principle). If on a connected open set,
Ω ⊂Mn, the function f has an interior minimum and Δf ≤ 0 in any of the
weak senses above, then f is constant on Ω.

These weak solutions also enjoy regularity (e.g., if f is a weak sub and
sup solution of Δf = 0, then f is smooth), see e.g., [47].

The Laplacian comparison also works for radial functions (functions
composed with the distance function). In geodesic polar coordinates, we
have

(3.3) Δf = Δ̃f + m(r, θ)
∂

∂r
f +

∂2f

∂r2 ,

where Δ̃ is the induced Laplacian on the sphere and m(r, θ) is the mean
curvature of the geodesic sphere in the inner normal direction. Therefore
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Theorem 3.6 (Global Laplacian Comparison). If RicMn ≥ (n−1)H, in
all the weak senses above, we have

Δf(r) ≤ ΔHf(r) (if f ′ ≥ 0),(3.4)

Δf(r) ≥ ΔHf(r) (if f ′ ≤ 0).(3.5)

4. Volume comparison

For p ∈ Mn, use exponential polar coordinates around p and write the
volume element d vol = A(r, θ)dr ∧ dθn−1, where dθn−1 is the standard vol-
ume element on the unit sphere Sn−1(1). By the first variation of the area
(see [118])

(4.1)
A′

A (r, θ) = m(r, θ).

Similarly, define AH for the model space Mn
H . The mean curvature com-

parison and (4.1) gives the volume element comparison. Namely if Mn has
RicM ≥ (n− 1)H, then

A(r, θ)
AH(r, θ)

is nonincreasing along any minimal geodesic(4.2)

segment from p.

Integrating (4.2) along the sphere directions, the radial direction gives
the relative area and volume comparison, see e.g., [118].

Theorem 4.1 (Bishop-Gromov’s Relative Volume Comparison). Sup-
pose Mn has RicM ≥ (n− 1)H. Then

(4.3)
Vol (∂B(p, r))
VolH(∂B(r))

and
Vol (B(p, r))
VolH(B(r))

are nonincreasing in r.

In particular,

(4.4) Vol (B(p, r)) ≤ VolH(B(r)) for all r > 0,

(4.5)
Vol (B(p, r))
Vol (B(p, R))

≥ VolH(B(r))
VolH(B(R))

for all 0 < r ≤ R,

and equality holds if and only if B(p, r) is isometric to BH(r).

This is a powerful result because it is a global comparison. The volume
of any ball is bounded above by the volume of the corresponding ball in the
model, and if the volume of a big ball has a lower bound, then all smaller
balls also have lower bounds. One can also apply the result to an annulus
or a section of the directions. For topological applications see Section 6.
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The volume element comparison (4.2) can also be used to prove a heat
kernel comparison [33] and Cheeger-Colding’s segment inequality
[25, Theorem 2.11], see also [23].

Given a function g ≥ 0 on Mn, put

Fg(x1, x2) = inf
γ

∫ l

0
g(γ(s))ds,

where the inf is taken over all minimal geodesics γ from x1 to x2 and s
denotes the arclength.

Theorem 4.2 (Segment Inequality, Cheeger-Colding 1996). Let RicMn ≥
−(n− 1), A1, A2 ⊂ B(p, r), and r ≤ R. Then

(4.6)
∫

A1×A2

Fg(x1, x2) ≤ c(n, R) · r · (Vol(A1) + Vol(A2)) ·
∫

B(p,2R)
g,

where c(n, R) = 2 sup0< s
2≤u≤s,0<s<R

Vol−1(∂B(s))
Vol−1(∂B(u)) .

The segment inequality shows that if the integral of g on a ball is small
then the integral of g along almost all segments is small. It also implies
a Poincaré inequality of type (1, p) for all p ≥ 1 for manifolds with lower
Ricci curvature bound [16]. In particular it gives a lower bound on the
first eigenvalue of the Laplacian for the Dirichlet problem on a metric ball;
compare [64].

The volume comparison theorem can be generalized to an integral Ricci
lower bound [89], see also [46, 115]. For convenience we introduce some
notation.

For each x ∈ Mn let λ (x) denote the smallest eigenvalue for the Ricci
tensor Ric : TxM → TxM, and RicH

− (x) = ((n − 1)H − λ(x))+ = max{0,
(n− 1)H − λ(x)}. Let

(4.7) ‖RicH
−‖p(R) = sup

x∈M

(∫
B(x,R)

(RicH
− )p dvol

) 1
p

.

‖RicH
−‖p measures the amount of Ricci curvature lying below (n − 1)H in

the Lp sense. Clearly ‖RicH
−‖p(R) = 0 iff RicM ≥ (n− 1)H.

Parallel to the mean curvature comparison theorem (2.6) under point-
wise Ricci curvature lower bound, Petersen-Wei [89] showed one can esti-
mate the amount of mean curvature bigger than the mean curvature in the
model by the amount of Ricci curvature lying below H in Lp sense. Namely
for any p > n

2 , H ∈ R, and when H > 0 assume r ≤ π
2
√

H
, we have

(4.8)

(∫
B(x,r)

(m−mH)2p
+ dvol

) 1
2p

≤ C (n, p) ·
(
‖RicH

−‖p(r)
) 1

2 .
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Using (4.8) we have

Theorem 4.3 (Relative Volume Estimate, Petersen-Wei 1997). Let
x ∈ Mn, H ∈ R and p > n

2 be given; then there is a constant C(n, p, H, R)
which is nondecreasing in R such that if r ≤ R and when H > 0 assume
that R ≤ π

2
√

H
, we have

(4.9)(
Vol B (x, R)
VolH (B(R))

) 1
2p

−
(

Vol B (x, r)
VolH (B(r))

) 1
2p

≤ C (n, p, H, R) ·
(
‖RicH

−‖p(R)
) 1

2 .

Furthermore, when r = 0 we obtain

Vol B (x, R) ≤
(

1 + C (n, p, H, R) ·
(
‖RicH

−‖p(R)
) 1

2

)2p

VolH (B(R)) .

(4.10)

Note that when ‖RicH
−‖p(R) = 0, this gives the Bishop-Gromov relative

volume comparison.
Volume comparison is a powerful tool for studying manifolds with lower

Ricci curvature bound and has many applications. As a result of (4.10),
many results with pointwise Ricci lower bound (i.e., ‖RicH

−‖p(R) = 0) can
be extended to the case when ‖RicH

−‖p(R) is very small [46, 89, 88, 40,
104, 90, 41, 8].

Perelman’s reduced volume monotonicity [85], a basic and powerful tool
in his work on Thurston’s geometrization conjecture, is a generalization of
Bishop-Gromov’s volume comparison to Ricci flow. In fact Perelman gave
a heuristic argument that volume comparison on an infinite dimensional
space (incorporating the Ricci flow) gives the reduced volume monotonicity.
It would be very interesting to investigate this relationship further.

5. Rigidity results and stability

From comparison theorems, various quantities are bounded by those of
the model. When equality occurs one has the rigid case. In this section we
concentrate on the rigidity and stability results for nonnegative and posi-
tive Ricci curvature. See Section 7 for rigidity and stability under Gromov-
Hausdorff convergence and a general lower bound.

The simplest rigidity is the maximal volume. From the equality of volume
comparison (4.4), we deduce that if Mn has RicM ≥ n − 1 and VolM =
Vol(Sn), then Mn is isometric to Sn. Similarly if Mn has RicM ≥ 0 and
limr→∞

VolB(p,r)
ωnrn = 1, where p ∈M and ωn is the volume of the unit ball in

Rn, then Mn is isometric to Rn.
From the equality of the area of a geodesic ball (the first quantity

in (4.3)) we get another volume rigidity: volume annulus implies metric
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annulus. This is first observed in [25, Section 4], see also [24, Theorem
2.6]. For the case of nonnegative Ricci curvature, this result says that if
RicMn ≥ 0 on the annulus A(p, r1, r2), and

Vol(∂B(p, r1))
Vol(∂B(p, r2))

=
rn−1
1

r2n−1 ,

then the metric on A(p, r1, r2) is of the form dr2 + r2g̃ for some smooth
Riemannian metric g̃ on ∂B(p, r1).

By Myers’ theorem (see Theorem 6.1), when Ricci curvature has a posi-
tive lower bound the diameter is bounded by the diameter of the model. In
the maximal case, using an eigenvalue comparison (see below) Cheng [35]
proved that if Mn has RicM ≥ n − 1 and diamM = π, then Mn is isomet-
ric to Sn. This result can also be directly proven using volume comparison
[98, 118].

The maximal diameter theorem for the noncompact case is given by
Cheeger-Gromoll’s splitting theorem [30]. The splitting theorem is the most
important rigidity result. It plays a very important role in the study of
manifolds with nonnegative Ricci curvature and manifolds with general Ricci
lower bound.

Theorem 5.1 (Splitting Theorem, Cheeger-Gromoll 1971). Let Mn be
a complete Riemannian manifold with RicM ≥ 0. If M has a line, then M
is isometric to the product R × Nn−1, where N is an n − 1 dimensional
manifold with RicN ≥ 0.

The result can be proven using the global Laplacian comparison
(Theorem 3.6), the strong maximum principle (Theorem 3.5), the Bochner
formula (2.1) and the de Rham decomposition theorem, see e.g., [118, 23,
86] for detail.

As an application of the splitting theorem we have that the first Betti
number of M is less than or equal to n for Mn with RicM ≥ 0, and b1 = n
if and only if M is isometric to Tn (the flat torus).

Applying the Bochner formula (2.1) to the first eigenfunction
Lichnerowicz showed that if Mn has RicM ≥ n− 1, then the first eigenvalue
λ1(M) ≥ n [65]. Obata showed that if λ1(M) = n then Mn is isometric to
Sn [79].

From these rigidity results (the equal case), we naturally ask what hap-
pens in the almost equal case. Many results are known in this case. For
volume we have the following beautiful stability results for positive and
nonnegative Ricci curvatures [26].

Theorem 5.2 (Volume Stability, Cheeger-Colding, 1997). There exists
ε(n) > 0 such that

(i) if a complete Riemannian manifold Mn has RicM ≥n − 1 and
VolM ≥ (1− ε(n))Vol(Sn), then Mn is diffeomorphic to Sn;
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(ii) if a complete Riemannian manifold Mn has RicM ≥ 0 and for
some p ∈ M , VolB(p, r) ≥ (1 − ε(n))ωnrn for all r > 0, then Mn

is diffeomorphic to Rn.

These were first proved by Perelman [82] with the weaker conclusion
that (i) Mn is homeomorphic to Sn, (ii) Mn is contractible.

The analogous stability result is not true for diameter. In fact, there
are manifolds with Ric ≥ n − 1 and diameter arbitrarily close to π which
are not homotopic to sphere [3, 80]. This should be contrasted with the
sectional curvature case, where we have the beautiful Grove-Shiohama dia-
meter sphere theorem [54], that if Mn has sectional curvature KM ≥ 1 and
diamM > π/2 then M is homeomorphic to Sn. Anderson showed that the
stability for the splitting theorem (Theorem 5.1) does not hold either [6].

By work of Cheng and Croke [35, 39], if RicM ≥n−1 then diamM is close
to π if and only if λ1(M) is close to n. So the naive version of the stability
for λ1(M) does not hold either. However, from the work of [36, 26, 87] we
have the following modified version.

Theorem 5.3 (Colding, Cheeger-Colding, Petersen). There exists ε(n)
> 0 such that if a complete Riemannian manifold Mn has RicM ≥ n − 1,
and radius ≥ π − ε(n) or λn+1(M) ≤ n + ε(n), then Mn is diffeomorphic
to Sn.

Here λn+1(M) is the (n + 1)−th eigenvalue of the Laplacian. The above
condition is natural in the sense that for Sn the radius is π and the first
eigenvalue is n with multiplicity n + 1. Extending Cheng and Croke’s work
Petersen showed that if RicM ≥ n − 1 then the radius is close to π if and
only if λn+1(M) is close to n.

The stability for the first Betti number, conjectured by Gromov, was
proved by Cheeger-Colding in [26]. Namely there exists ε(n) > 0 such that
if a complete Riemannian manifold Mn has RicM (diamM )2 ≥ −ε(n) and
b1 = n, then M is diffeomorphic to Tn. The homeomorphic version was first
proved in [37].

Although the direct stability for diameter does not hold, Cheeger-
Colding’s breakthrough work [25] gives quantitative generalizations of the
diameter rigidity results, see Section 8.

6. The fundamental groups

In lower dimensions (n ≤ 3) a Ricci curvature lower bound has strong
topological implications. R. Hamilton [56] proved that compact manifolds
M3 with positive Ricci curvature are space forms. Schoen-Yau [92] proved
that any complete open manifold M3 with positive Ricci curvature must be
diffeomorphic to R3 using minimal surfaces. In general the strongest control
is on the fundamental group.

The first result is Myers’ theorem [76].
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Theorem 6.1 (Myers, 1941). If RicM ≥H > 0, then diam(M)≤π/
√

H,
and π1(M) is finite.

This is the only known topological obstruction to a compact manifold
that supports a metric with positive Ricci curvature other than topological
obstructions shared by manifolds with positive scalar curvature. See Sec-
tion 10 for examples with positive Ricci curvature and Rosenberg’s article
in this volume for a discussion of scalar curvature.

We can still ask what one can say about the finite group. Any finite
group can be realized as the fundamental group of a compact manifold with
positive Ricci curvature since any finite group is a subgroup of SU(n) (for n
sufficiently big) and SU(n) has a metric with positive Ricci curvature (in fact
Einstein). What can one say if the dimension n is fixed? For example, is the
order of the group modulo an abelian subgroup bounded by the dimension?
See [109] for a partial result.

For a compact manifold M with nonnegative Ricci curvature, Cheeger-
Gromoll’s splitting theorem (Theorem 5.1) implies that π1(M) has an abelian
subgroup of finite index [30]. Again it is open if one can bound the index
by dimension.

For general nonnegative Ricci curvature manifolds, using covering and
volume comparison Milnor showed that [75]

Theorem 6.2 (Milnor, 1968). If Mn is complete with RicM ≥ 0, then any
finitely generated subgroup of π1(M) has polynomial growth of degree ≤n.

Combining this with the following result of Gromov [51], we know that
any finitely generated subgroup of π1(M) of manifolds with nonnegative
Ricci curvature is almost nilpotent.

Theorem 6.3 (Gromov, 1981). A finitely generated group Γ has poly-
nomial growth iff Γ is almost nilpotent, i.e., it contains a nilpotent subgroup
of finite index.

When Mn has nonnegative Ricci curvature and Euclidean volume growth
(i.e., VolB(p, r)≥ crn for some c > 0), using a heat kernel estimate Li showed
that π1(M) is finite [63]. Anderson also derived this using volume compari-
son [4]. Using the splitting theorem of Cheeger and Gromoll [30]
(Theorem 5.1) on the universal cover Sormani showed that a noncompact
manifold with positive Ricci curvature has the loops-to-infinity property
[99]. As a consequence she showed that a noncompact manifold with posi-
tive Ricci curvature is simply connected if it is simply connected at infinity.
See [96, 113] for more applications of the loops-to-infinity property.

From the above one naturally wonders if all nilpotent groups occur as
the fundamental group of a complete non-compact manifold with nonnega-
tive Ricci curvature. Indeed, extending the warping product constructions



214 G. WEI

in [77, 11], Wei showed [105] that any finitely generated torsion free nil-
potent group could occur as fundamental group of a manifold with positive
Ricci curvature. Wilking [109] extended this to any finitely generated almost
nilpotent group. This gives a very good understanding of the fundamental
group of a manifold with nonnegative Ricci curvature except the following
long standing problem regarding the finiteness of generators [75].

Conjecture 6.4 (Milnor, 1968). The fundamental group of a manifold
with nonnegative Ricci curvature is finitely generated.

There is some very good progress in this direction. Using short gener-
ators and a uniform cut lemma based on the excess estimate of Abresch
and Gromoll [1] (see (8.2)) Sormani [101] proved that if RicM ≥ 0 and Mn

has small linear diameter growth, then π1(M) is finitely generated. More
precisely the small linear growth condition is:

lim sup
r→∞

diam∂B(p, r)
r

< sn =
n

(n− 1)3n

(
n− 1
n− 2

)n−1

.

The constant sn was improved in [114]. Then in [112] Wylie proved that in
this case π1(M) = G(r) for r big, where G(r) is the image of π1(B(p, r)) in
π1(B(p, 2r)). In an earlier paper [100], Sormani proved that all manifolds
with nonnegative Ricci curvature and linear volume growth have sublinear
diamter growth, so manifolds with linear volume growth are covered by
these results. Any open manifold with nonnegative Ricci curvature has at
least linear volume growth [116].

In a very different direction Wilking [109], using algebraic methods,
showed that if RicM ≥ 0 then π1(M) is finitely generated iff any abelian
subgroup of π1(M) is finitely generated, effectively reducing the Milnor
conjecture to the study of manifolds with abelian fundamental groups.

The fundamental group and the first Betti number are very nicely
related. So it is natural that Ricci lower bound also controls the first Betti
number. For compact manifolds Gromov [52] and Gallot [45] showed that
if Mn is a compact manifold with

(6.1) RicM ≥ (n− 1)H, diamM ≤ D,

then there is a function C(n, HD2) such that b1(M)≤C(n, HD2) and
lim

x→0−
C(n, x) = n and C(n, x) = 0 for x > 0. In particular, if HD2 is small,

b1(M) ≤ n.
The celebrated Betti number estimate of Gromov [50] shows that all

higher Betti numbers can be bounded by sectional curvature and diameter.
This is not true for Ricci curvature. Using semi-local surgery Sha-Yang con-
structed metrics of positive Ricci curvature on the connected sum of k copies
of S2×S2 for all k≥ 1 [95]. Recently, using Seifert bundles over orbifolds
with a Kähler Einstein metric, Kollar showed that there are Einstein metrics
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with positive Ricci curvature on the connected sums of arbitrary number of
copies of S2 × S3 [61].

Kapovitch-Wilking [59] recently announced a proof of the compact analog
of Milnor’s conjecture that the fundamental group of a manifold satisfying
(6.1) has a presentation with a universally bounded number of generators
(as conjectured by this author), and that a manifold which admits almost
nonnegative Ricci curvature has a virtually nilpotent fundamental group.
The second result would greatly generalize Fukaya-Yamaguchi’s work on
almost nonnegative sectional curvature [44]. See [106, 107] for earlier par-
tial results.

When the volume is also bounded from below, by using a clever cover-
ing argument M. Anderson [5] showed that the number of the short homo-
topically nontrivial closed geodesics can be controlled and for the class of
manifolds M with RicM ≥ (n− 1)H, VolM ≥ V and diamM ≤ D there are
only finitely many isomorphism types of π1(M). Again, if the Ricci curva-
ture is replaced by sectional curvature then much more can be said. Namely
there are only finitely many homeomorphism types of the manifolds with
sectional curvature and volume bounded from below and diameter bounded
from above [53, 81]. By [84] this is not true for Ricci curvature unless the
dimension is 3 [117].

Contrary to a Ricci curvature lower bound, a Ricci curvature upper
bound does not have any topological constraint [68].

Theorem 6.5 (Lohkamp, 1994). If n ≥ 3, any manifold Mn admits a
complete metric with RicM < 0.

An upper Ricci curvature bound does have geometric implications, e.g.,
the isometry group of a compact manifold with negative Ricci curvature is
finite. In the presence of a lower bound, an upper bound on Ricci curva-
ture forces additional regularity of the metric, see Theorem 9.8 in Section 9
by Anderson. It’s still unknown whether it will give additional topological
control. For example, the following question is still open.

Question 6.6. Does the class of manifolds Mn with |RicM | ≤ H, VolM
≥ V and diamM ≤ D have finite many homotopy types?

There are infinitely many homotopy types without the Ricci upper
bound [84].

7. Gromov-Hausdorff convergence

Gromov-Hausdorff convergence is very useful in studying manfolds with
a lower Ricci bound. The starting point is Gromov’s precompactness the-
orem. Let’s first recall the Gromov-Hausdorff distance. See [52, Chapter
3,5], [86, Chapter 10], [15, Chapter 7] for more background material on
Gromov-Hausdorff convergence.



216 G. WEI

Given a metric space (X, d) and subsets A, B ⊂ X, the Hausdorff
distance is

dH(A, B) = inf{ε > 0 : B ⊂ Tε(A) and A ⊂ Tε(B)},

where Tε(A) = {x ∈ X : d(x, A) < ε}.

Definition 7.1 (Gromov, 1981). Given two compact metric spaces X, Y ,
the Gromov-Hausdorff distance is dGH(X, Y ) = inf {dH(X, Y ) : all metrics
on the disjoint union, X

∐
Y , which extend the metrics of X and Y }.

The Gromov-Hausdorff distance defines a metric on the collection of
isometry classes of compact metric spaces. Thus, there is the naturally asso-
ciated notion of Gromov-Hausdorff convergence of compact metric spaces.
While the Gromov-Hausdorff distance makes sense for non-compact metric
spaces, the following looser definition of convergence is more appropriate. See
also [52, Defn 3.14]. These two definitions are equivalent [103, Appendix].

Definition 7.2. We say that non-compact metric spaces (Xi, xi) con-
verge in the pointed Gromov-Hausdorff sense to (Y, y) if for any r > 0,
B(xi, r) converges to B(y, r) in the pointed Gromov-Hausdorff sense.

Applying the relative volume comparison (4.5) to manifolds with lower
Ricci curvature bound, we have

Theorem 7.3 (Gromov’s precompactness theorem). The class of closed
manifolds Mn with RicM ≥ (n − 1)H and diamM ≤ D is precompact. The
class of pointed complete manifolds Mn with RicM ≥ (n−1)H is precompact.

By the above, for an open manifold Mn with RicM ≥ 0 any sequence
{(Mn, x, r−2

i g)}, with ri → ∞, subconverges in the pointed Gromov-
Hausdorff topology to a length space M∞. In general, M∞ is not unique
[83]. Any such limit is called an asymptotic cone of Mn, or a cone of Mn at
infinity .

Gromov-Hausdorff convergence defines a very weak topology. In general
one only knows that Gromov-Hausdorff limit of length spaces is a length
space and diameter is continuous under the Gromov-Hausdorff convergence.
When the limit is a smooth manifold with same dimension Colding showed
the remarkable result that for manifolds with lower Ricci curvature bound
the volume also converges [37], which was conjectured by Anderson-Cheeger.
See also [23] for a proof using mod 2 degree.

Theorem 7.4 (Volume Convergence, Colding, 1997). If (Mn
i , xi) has

RicMi ≥ (n− 1)H and converges in the pointed Gromov-Hausdorff sense to
smooth Riemannian manifold (Mn, x), then for all r > 0

(7.1) lim
i→∞

Vol(B(xi, r)) = Vol(B(x, r)).
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The volume convergence can be generalized to the noncollapsed singular
limit space (by replacing the Riemannian volume with the n-dimensional
Hausdorff measure Hn) [26, Theorem 5.9], and to the collapsing case with
smooth limit Mk in terms of the k-dimensional Hausdorff content [27,
Theorem 1.39].

As an application of Theorem 7.4, Colding [37] derived the rigidity result
that if Mn has RicM ≥ 0 and some M∞ is isometric to Rn, then M is iso-
metric to Rn.

We also have the following wonderful stability result [26] which sharpens
an earlier version in [37].

Theorem 7.5 (Cheeger-Colding, 1997). For a closed Riemannian
manifold Mn there exists an ε(M) > 0 such that if Nn is a n-manifold with
RicN ≥ −(n− 1) and dGH(M, N) < ε then M and N are diffeomorphic.

Unlike the sectional curvature case, examples show that the result does
not hold if one allows M to have singularities even on the fundamental group
level [80, Remark (2)]. Also the ε here must depend on M [3].

Cheeger-Colding also showed that the eigenvalues and eigenfunctions
of the Laplacian are continuous under measured Gromov-Hausdorff conver-
gence [28]. To state the result we need a definition and some structure result
on the limit space (see Section 9 for more structures). Let Xi be a sequence of
metric spaces converging to X∞ and μi, μ∞ be Radon measures on Xi, X∞.

Definition 7.6. We say (Xi, μi) converges in the measured Gromov-
Hausdorff sense to (X∞, μ∞) if for all sequences of continuous functions
fi : Xi → R converging to f∞ : X∞ → R, we have

(7.2)
∫

Xi

fidμi →
∫

X∞
f∞dμ∞.

If (M∞, p) is the pointed Gromov-Hausdorff limit of a sequence of
Riemannian manifolds (Mn

i , pi) with RicMi ≥ −(n − 1), then there is a
natural collection of measures, μ, on M∞ obtained by taking limits of the
normalized Reimannian measures on Mn

j for a suitable subsequence Mn
j

[43], [26, Section 1],

(7.3) μ = lim
j→∞

Volj(·) = Vol(·)/Vol(B(pj , 1)).

In particular, for all z ∈ M∞ and 0 < r1 ≤ r2, we have the renormalized
limit measure μ satisfy the following comparison

(7.4)
μ(B(z, r1))
μ(B(z, r2))

≥ Voln,−1 (B(r1))
Voln,−1 (B(r2))

.

With this, the extension of the segment inequality (4.6) to the limit, the
gradient estimate (2.8), and Bochner’s formula, one can define a canonical
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self-adjoint Laplacian Δ∞ on the limit space M∞ by means of limits of
the eigenfunctions and eigenvalues for the sequence of the manifolds. In
[19, 28] an intrinsic construction of this operator is also given on more gen-
eral metric measure spaces. Let {λ1,i · · · , }, {λ1,∞, · · · , } denote the eigen-
values for Δi, Δ∞ on Mi, M∞, and φj,i, φj,∞ the eigenfunctions of the jth
eigenvalues λj,i, λj,∞. In [28] Cheeger-Colding in particular proved the fol-
lowing theorem, establishing Fukaya’s conjecture [43].

Theorem 7.7 (Spectral Convergence, Cheeger–Colding, 2000). Let
(Mn

i , pi, Voli) with RicMi ≥ −(n−1) converge to (M∞, p, μ) under measured
Gromov-Hausdorff sense and M∞ be compact. Then for each j, λj,i → λj,∞
and φj,i → φj,∞ uniformly as i→∞.

As a natural extension, in [42] Ding proved that the heat kernel and
Green’s function also behave nicely under the measured Gromov-Hausdorff
convergence. The natural extension to the p-form Laplacian does not hold;
however, there is still very nice work in this direction by John Lott, see
[69, 71].

8. Almost rigidity and applications

Although the analogous stability results for maximal diameter in the case
of positive/nonnegative Ricci curvature do not hold, Cheeger-Colding’s sig-
nificant work [25] provides quantitative generalizations of Cheng’s maximal
diameter theorem and Cheeger-Gromoll’s splitting theorem (Theorem 5.1),
and the volume annulus implies the metric annulus theorem in terms of
Gromov-Hausdroff distance. These results have important applications in
extending rigidity results to the limit space.

An important ingredient for these results is Abresch-Gromoll’s excess
estimate [1]. For y1, y2 ∈Mn, the excess function E with respect to y1, y2 is

(8.1) Ey1,y2(x) = d(y1, x) + d(y2, x)− d(y1, y2).

Clearly E is Lipschitz with Lipschitz constant ≤2.
Let γ be a minimal geodesic from y1 to y2, s(x) = min(d(y1, x), d(y2, x))

and h(x) = mint d(x, γ(t)), the height from x to a minimal geodesic γ(t) con-
necting y1 and y2. By the triangle inequality 0 ≤ E(x) ≤ 2h(x). Applying the
Laplacian comparison (Theorem 3.6) to E(x) and with an elaborate (quan-
titative) use of the maximum principle (Theorem 3.5) Abresch-Gromoll
showed that if RicM ≥ 0 and h(x) ≤ s(x)

2 , then ([1], see also [22])

(8.2) E(x) ≤ 4
(

hn

s

) 1
n−1

.

This is the first distance estimate in terms of a lower Ricci curvature bound.
The following version (not assuming E(p) = 0, but without the sharp

estimate) is from [23, Theorem 9.1].
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Theorem 8.1 (Excess Estimate, Abresch-Gromoll, 1990). If Mn has
RicM ≥ −(n−1)δ, and for p ∈M , s(p) ≥ L and E(p) ≤ ε, then on B(p, R),
E ≤ Ψ = Ψ(δ, L−1, ε|n, R), where Ψ is a nonnegative constant such that for
fixed n and R Ψ goes to zero as δ, ε→ 0 and L→∞.

This can be interpreted as a weak almost splitting theorem. Cheeger-
Colding generalized this result tremendously by proving the following almost
splitting theorem [25], see also [23].

Theorem 8.2 (Almost Splitting, Cheeger–Colding, 1996). With the
same assumptions as Theorem 8.1, there is a length space X such that for
some ball, B((0, x), 1

4R) ⊂ R×X, with the product metric, we have

dGH

(
B

(
p,

1
4
R

)
, B

(
(0, x),

1
4
R

))
≤ Ψ.

Note that X here may not be smooth, and the Hausdorff dimension
could be smaller than n−1. Examples also show that the ball B(p, 1

4R) may
not have the topology of a product, no matter how small δ, ε, and L−1 are
[6, 73].

The proof is quite involved. Using the Laplacian comparison, the maxi-
mum principle, and Theorem 8.1 one shows that the distance function bi =
d(x, yi) − d(p, yi) associated to p and yi is uniformly close to bi, the har-
monic function with same values on ∂B(p, R). From this, together with the
lower bound for the smallest eigenvalue of the Dirichlet problem on B(p, R)
(see Theorem 4.2) one shows that ∇bi,∇bi are close in the L2 sense. In
particular ∇bi is close to 1 in the L2 sense. Then applying the Bochner for-
mula to bi multiplied with a cut-off function with bounded Laplacian one
shows that |Hessbi| is small in the L2 sense in a smaller ball. Finally, in the
most significant step, by using the segment inequality (4.6), the gradient
estimate (2.7) and the information established above one derives a quanti-
tative version of the Pythagorean theorem, showing that the ball is close in
the Gromov-Hausdorff sense to a ball in some product space; see [25, 23].

An immediate application of the almost splitting theorem is the exten-
sion of the splitting theorem to the limit space.

Theorem 8.3 (Cheeger-Colding, 1996). If Mn
i has RicMi ≥ −(n− 1)δi

with δi → 0 as i → ∞, converges to Y in the pointed Gromov-Hausdorff
sense, and Y contains a line, then Y is isometric to R×X for some length
space X.

Similarly, one has almost rigidity in the presence of finite diameter
(with a simpler a proof) [25, Theorem 5.12]. As a special consequence, we
have that if Mn

i has RicMi ≥ (n− 1), diamMi → π as i→∞, and converges
to Y in the Gromov-Hausdorff sense, then Y is isometric to the spherical
metric suspension of some length space X with diam(X) ≤ π. This is a kind
of stability for diameter.
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Along the same lines (with more complicated technical details) Cheeger
and Colding [25] have an almost rigidity version for the volume annulus
implies metric annulus theorem (see Section 5). As a very nice application to
the asymptotic cone, they showed that if Mn has RicM ≥ 0 and has Euclidean
volume growth, then every asymptotic cone of M is a metric cone.

9. The structure of limit spaces

As we have seen, understanding the structure of the limit space of mani-
folds with lower Ricci curvature bound often helps in understanding the
structure of the sequence. Cheeger-Colding made significant progress in
understanding the regularity and geometric structure of the limit spaces
[26, 27, 28]. On the other hand, Menguy constructed examples showing
that the limit space could have infinite topology in an arbitrarily small
neighborhood [73]. In [102, 103] Sormani-Wei showed that the limit space
has a universal cover.

Let (Y m, y) (Hausdorff dimension m) be the pointed Gromov-Hausdorff
limit of a sequence of Riemannian manifolds (Mn

i , pi) with RicMi ≥−(n−1).
Then m ≤ n and Y m is locally compact. Moreover Cheeger-Colding [26]
showed that if m = dimY < n, then m ≤ n− 1.

The basic notion for studying the infinitesimal structure of the limit
space Y is that of a tangent cone.

Definition 9.1. A tangent cone, Yy, at y ∈ (Y m, d) is the pointed Gromov-
Hausdorff limit of a sequence of the rescaled spaces (Y m, rid, y), where
ri →∞ as i→∞.

By Gromov’s precompactness theorem (Theorem 7.3), every such
sequence has a converging subsequence. So tangent cones exist for all y ∈Y m,
but might depend on the choice of convergent sequence. Clearly if Mn is a
Riemannian manifold, then the tangent cone at any point is isometric to Rn.
Motivated by this one defines [26]

Definition 9.2. A point, y ∈ Y , is called k-regular if for some k, every
tangent cone at y is isometric to Rk. LetRk denote the set of k-regular points
and R = ∪kRk, the regular set. The singular set, Y \ R, is denoted S.

Let μ be a renormalized limit measure on Y as in (7.3). Cheeger-Colding
showed that the regular points have full measure [26].

Theorem 9.3 (Cheeger-Colding, 1997). For any renormalized limit
measure μ, μ(S) = 0, in particular, the regular points are dense.

Furthermore, up to a set of measure zero, Y is a countable union of sets,
each of which is bi-Lipschitz equivalent to a subset of Euclidean space [28].
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Definition 9.4. A metric measure space, (X, μ), is called μ-rectifiable if
0 < μ(X) <∞, and there exist N <∞ and a countable collection of subsets,
Aj , with μ(X \ ∪jAj) = 0, such that each Aj is bi-Lipschitz equivalent to
a subset of Rl(j), for some 1 ≤ l(j) ≤ N . In addtion, on the sets Aj , the
measures μ and and the Hausdorff measure Hl(j) are mutually absolutely
continous.

Theorem 9.5 (Cheeger-Colding, 2000). Bounded subsets of Y are μ-
rectifiable with respect to any renormalized limit measure μ.

At the singular points, the structure could be very complicated. Fol-
lowing a related earlier construction of Perelman [84], Menguy constructed
4-dimensional examples of (noncollapsed) limit spaces with RicMn

i
> 1, for

which there exists a point so that any neighborhood of the point has infinite
second Betti number [73]. See [26, 72, 74] for examples of collapsed limit
space with interesting properties.

Although we have very good regularity results, not much topological
structure is known for the limit spaces in general. E.g., is Y locally simply
connected? Although this is unknown, using the renormalized limit measure
and the existence of regular points, together with δ-covers, Sormani-Wei
[102, 103] showed that the universal cover of Y exists. Moreover when Y
is compact, the fundamental group of Mi has a surjective homomorphism
onto the group of deck transforms of Y for all i sufficiently large.

When the sequence has the additional assumption that

(9.1) Vol(B(pi, 1)) ≥ v > 0,

the limit space Y is called noncollapsed. This is equivalent to m = n. In this
case, more structure is known.

Definition 9.6. Given ε > 0, the ε-regular set, Rε, consists of those
points y such that for all sufficiently small r,

dGH(B(y, r), B(0, r)) ≤ εr,

where 0 ∈ Rn.

Clearly R = ∩εRε. Let
◦
Rε denote the interior of Rε.

Theorem 9.7 (Cheeger-Colding 1997, 2000). There exists ε(n) > 0 such
that if Y is a noncollapsed limit space of the sequence Mn

i with RicMi ≥
−(n− 1), then for 0 < ε < ε(n), the set

◦
Rε is α(ε)-bi-Hölder equivalent to a

smooth connected Riemannian manifold, where α(ε)→ 1 as ε→ 0.
Moreover,

(9.2) dim(Y \
◦
Rε) ≤ n− 2.
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In addition, for all y ∈ Y , every tangent cone Yy at y is a metric cone and
the isometry group of Y is a Lie group.

This is proved in [26, 27].
If, in addition, Ricci curvature is bounded from two sides, we have

stronger regularity [2].

Theorem 9.8 (Anderson, 1990). There exists ε(n) > 0 such that if Y
is a noncollapsed limit space of the sequence Mn

i with |RicMi | ≤ n− 1, then
for 0 < ε < ε(n), Rε = R. In particular the singular set is closed. Moreover,
R is a C1,α Riemannian manifold, for all α < 1. If the metrics on Mn

i are
Einstein, RicMn

i
= (n− 1)Hgi, then the metric on R is actually C∞.

Many more regularity results are obtained when the sequence is Einstein,
Kähler, has special holonomy, or has bounded Lp-norm of the full curvature
tensor; see [7, 20, 21, 31], especially [24] which gives an excellent survey in
this direction. See the recent work [32] for Einstein 4-manifolds with possible
collapsing.

10. Examples of manifolds with nonnegative Ricci curvature

Many examples of manifolds with nonnegative Ricci curvature have been
constructed, which contribute greatly to the study of manifolds with lower
Ricci curvature bound. We only discuss the examples related to the basic
methods here, therefore many specific examples are unfortunately omitted
(some are mentioned in the previous sections). There are mainly three meth-
ods: fiber bundle construction, special surgery, and group quotient, all com-
bined with warped products. These method are also very useful in construct-
ing Einstein manifolds. A large class of Einstein manifolds is also provided
by Yau’s solution of the Calabi conjecture.

Note that if two compact Riemannian manifolds Mm, Nn(n, m ≥ 2) have
positive Ricci curvature, then their product has positive Ricci curvature,
which is not true for sectional curvature but only needs one factor positive
for scalar curvature. Therefore it is natural to look at the fiber bundle case.
Using Riemannian submersions with totally geodesic fibers J. C. Nash [78],
W. A. Poor [91], and Berard-Bergery [10] showed that the compact total
space of a fiber bundle admits a metric of positive Ricci curvature if the base
and the fiber admit metrics with positive Ricci curvature and if the structure
group acts by isometries. Furthermore, any vector bundle of rank ≥ 2 over a
compact manifold with Ric> 0 carries a complete metric with positive Ricci
curvature. In [48] Gilkey-Park-Tuschmann showed that a principal bundle
P over a compact manifold with Ric> 0 and compact connected structure
group G admits a G invariant metric with positive Ricci curvature if and only
if π1(P ) is finite. Unlike the product case, the corresponding statements for
Ric ≥ 0 are not true in all these cases, e.g., the nilmanifold S1 → N3 → T 2

does not admit a metric with Ric≥ 0. On the other hand Belegradek-Wei
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[9] showed that it is true in the stable sense. Namely, if E is the total space
of a bundle over a compact base with Ric ≥ 0, and has either a compact
Ric ≥ 0 fiber or vector space as fibers, with compact structure group acting
by isometry, then E × Rp admits a complete metric with positive Ricci
curvature for all sufficiently large p. See [110] for an estimate of p.

Surgery constructions are very successful in constructing manifolds with
positive scalar curvature, see Rothenberg’s article in this volume. Sha-Yang
[94, 95] showed that this is also a useful method for constructing manifolds
with positive Ricci curvature in special cases. In particular they showed
that if Mm+1 has a complete metric with Ric > 0, and n, m≥ 2, then Sn−1×(
Mm+1 \∐k

i=0 Dm+1
i

)⋃
Id Dn × ∐k

i=0 Sm
i , which is diffeomorphic to(

Sn−1 ×Mm+1
)
#
(
#k

i=1S
n × Sm

)
, carries a complete metric with Ric > 0

for all k, showing that the total Betti number of a compact Riemannian
n-manifold (n ≥ 4) with positive Ricci curvature could be arbitrarily large.
See also [6], and [111] when the gluing map is not the identity.

Note that a compact homogeneous space admits an invariant metric
with positive Ricci curvature if and only if the fundamental group is finite
[78, Proposition 3.4]. This is extended greatly by Grove-Ziller [55] show-
ing that any cohomogeneity one manifold M admits a complete invariant
metric with nonnegative Ricci curvature and if M is compact then it has
positive Ricci curvature if and only if its fundamental group is finite (see
also [93]). Therefore, the fundamental group is the only obstruction to a
compact manifold admitting a positive Ricci curvature metric when there
is enough symmetry. It remains open what the obstructions are to positive
Ricci curvature besides the restriction on the fundamental group and those
coming from positive scalar curvature (such as the Â-genus).

Of course, another interesting class of examples are given by Einstein
manifolds. For these, besides the “bible” on Einstein manifolds [12], one can
refer to the survey book [62] for the development after [12], and the recent
articles [14, 13] for Sasakian Einstein metrics and compact homogenous
Einstein manifolds.
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[57] L. Hörmander, Notions of convexity, volume 127 of Progress in Mathematics,
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[65] A. Lichnerowicz, Géométrie des groupes de transformations, Travaux et Recherches
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